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Abstract. This paper describes an investigation of a potential weakness in DES 

which leads to a statistical property observable in plaintext/eiphertext pairs and 

dependent on the key. However, the number of encryptions of known plaintext 

needed to exploit this property is comparable with the number of r of 

an exhaustive key search, so the "weakness" is mainly of theoretical interest. 
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1. Introduction 

The Data Encryption Standard (DES) [5-1 is a block cipher that was adopted by 
the U.S. National Bureau of Standards as the standard cryptosystem for sensitive 

but unclassified data. The dependence of the financial community on DES for its 

data security functions makes it desirable to keep under review the strength of this 
algorithm. Though many interesting properties have been found, none of these is 

thought to make it less secure, when used judiciously, than its key size would 
indicate. For example, the differential cryptanalysis of DES given by Biham and 
Shamir [3] has a lower complexity than an exhaustive search, but requires the 
encryption of 2 +7.2 chosen plaintexts. This paper describes a potential weakness 
which, in principle, leads to a statistical property observable in plaintext/ciphertext 

pairs and dependent on the key. However, the attack is of comparable complexity 

with an exhaustive key search, and requires the encryption of enormous amounts 
of known plaintext, so the "weakness" is mainly of theoretical interest. 

The full description of DES is given in [5], but we begin by describing the details 

of DES that are relevant for this cryptanalysis. DES is a 16-round Feistel cipher 
acting on a 64-bit message space under the control of a 56-bit key. A description of 

the Feistel cipher principle is given in [2]. A schematic representation of DES is 
given in Fig. 1. We ignore the initial permutation I P  and its inverse I P  -1 in our 
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description of the attack. It is trivial to alter the attack to allow for them. For 

each round, the DES key scheduling produces a 48-bit subkey for each round by 

permuting the 56-bit key and then selecting a subset of 48 bits. Thus the ith round 

subkey K i (i = 1 . . . . .  15) consists of 48 of the 56 bits in the key. 

In order to perform the encryption, the 64-bit plaintext is split into 32-bit halves 

(Lo, Ro). The plaintext is enciphered by performing 16 iterations or rounds of the 

following encipherment rules: 

Li+ 1 = Ri ,  Ri+ 1 = L~ ~ f ( R  i, Ki+l), i = 0 . . . . .  15, 

where f is the round encryption function. The ciphertext is then given by (R ~ 6, L ~ 6). 

Decipherment is performed by applying the same algorithm to ciphertext but using 

the subkeys in the reverse order. 

We regard the plaintext as (R_~, Ro), when the encipherment rule is 

Ri+l = Ri-1 �9 f (Ri ,  Ki+l), i = 0 . . . . .  15, 

and the ciphertext is (R~6, R~s). Thus we have 

R16 = R14 ~) f(Rls,  g l6)  

= R12 t~f (R13,  K14)~ f (R l s ,  K16) 

= g 0 ~ {(~)~s=, f(g2,-1, K2,)}, 

and so 

and similarly 

~ = 1  f(Re~-l, K2i) -- R 0 @ R16, 

s R (~),=1 f(2t~-1), K2i- l)  = R-1 ~ Rls .  

Hence, in a known plaintext environment, where both plaintext and ciphertext are 

known, we can observe the value of an eightfold XOR of the outputs of the f 

function. In particular, if DES is being used in some naive feedback mode, we may 

well observe the XOR of plaintext and ciphertext and hence the eightfold XOR of 

the outputs of the f-function. 
In order to define f :  Z2 a2 x Z~ s -~ Z232, we need to define some other functions. 

These are P: Z232+ Z2 a2, a fixed permutation of the 32 bits, E: Z232-0 Z24a, the 

expansion phase, a linear function in which half the input bits are replicated, and 
S: Z~ s --* Z2 a2, a nonlinear function, consisting of eight S-boxes, St: Z26 + Z24 (i = 

1 . . . .  ,8). f is defined as 

f ( g ,  K) = P { S [ E ( R ) ~  K]}, 

and a diagram of f is given in Fig. 2. The expansion phase works by dividing the 

32-bit input into eight blocks of 4-bit inputs and expanding each block into 6 bits 

by adding the most significant bit of the block on the right as the least significant 

bit and by adding the least significant bit of the block on the left as the most 
significant bit. Each expanded block of 6 bits forms the input to an S-box. A 

schematic representation of E is given in Fig. 3. Each S-box consists of four 4-bit 

permutations of the middle 4 bits of the input, the particular 4-bit permutation being 

determined by the other two input bits. Thus S can be considered as a different 
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permutation of each 4-bit block in which the two neighbouring bits to a 4-bit block 

determine the permutation from a list of four. In the original description of DES, 

the S-boxes are given as 4 x 16 tables so that each row is a permutation. 

We can now describe the basic idea of this cryptanalysis. Suppose we observe 
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for inputs Ri and appropriate subkeys Ki. Thus, we can observe the joint distribu- 

tion of the sum of the outputs of one or several S-boxes by observing the appropriate 

bit positions in the input/output pairs. For this cryptanalysis, we are concerned 

with the output of either an adjacent pair or triplet of S-boxes. In this case, we show 

in Appendix 1 that for a known plaintext attack, Ri, the 10-bit (pairs attack) or 

14-bit (triplets attack) inputs to the relevant adjacent S-boxes, are approximately 

uniformly distributed and independent. 

The 4-bit output of any one S-box is statistically uniform, because each row is a 

permutation. However, because of the expansion phase of DES (the E function), the 

inputs to neighbouring DES S-boxes are related by certain key bits. For example, 

on the first round, the XOR of the bit 5 input (counting from the left) to S~ and the 

bit 1 input to $2 is the same as the XOR of key bits 49 and 33 (from the key 

scheduling). Similarly, XOR of the bit 6 input to S~ and the bit 2 input to S2 is the 

same as the XOR of key bits 17 and 57. More generally, the input to a pair of 

neighbouring S-boxes is constrained by two bits of information about the key, 

which we call the "common" key bits. Furthermore, the distribution of the 8-bit 

output of a pair of S-boxes conditioned on these common key bits can be deter- 

mined, and it is always nonuniform. In the next section we show that the distribution 

of the output of a pair of adjacent S-boxes in fact depends only on the XOR of these 

two bits of key information. Notice that, under the assumption of independent 

inputs, the distribution of the XOR of n outputs of pairs of neighbouring S-boxes 

is the n-fold convolution of the distribution of the output of neighbouring S-boxes, 

and we show that the distribution of the XOR of outputs depends only the XOR 

(a linear combination) of all the bits of key information given above. For a large 

number of messages and ciphertexts, this gives us 16 empirical distributions for the 

XOR of pairs of S-boxes, and so observations of outputs of.the form given above 

potentially give us probabilistic information about 16 linearly independent combi- 

nations of key bits (from the key scheduling). Thus we could obtain 16 bits of key 

information. We show how this can be used to give a known plaintext attack on 

DES that is comparable in complexity with an exhaustive key search. 

In Section 3 we extend this method by considering triplets of adjacent S-boxes. 

As before we obtain 16 empirical distributions for triplets of adjacent S-boxes. 

However, the common key bits to a pair of S-boxes affect two S-box triplets, for 

example, the key bits "common" to S-boxes 1 and 2 affect the output of the S-box 

triplets 123 and 812. This dependence may make a DES-type cipher that is invulner- 

able to the attack based on pairs of S-boxes vulnerable to one based on triplets of 

S-boxes. 

2. Pairs of DES S-Boxes 

In this section we give a detailed account of the cryptanalysis as applied to a pair 

of adjacent S-boxes. Following the result of Appendix 1, we assume that the inputs 

to a given pair of S-boxes are uniformly and independently distributed. As we 

mentioned above, the output of such a pair of S-boxes is not necessarily uniform. 
For a given key, there are 21 o inputs and 2 s outputs. Thus for a uniform distribution 
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Table 1. Joint distribution of the outputs of $1, $2. 

$2 

S 1 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
1 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 

2 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6 
3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
5 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
7 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 
8 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 
9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
A 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2 
B 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 
C 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 
D 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 
E 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 
F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

of  inputs ,  each o u t p u t  in a un i form d i s t r ibu t ion  of  ou tpu t s  wou ld  occur  four  times. 

Table  1 is a table  of  the n u m b e r  of  t imes each o u t p u t  of  the pa i r  $1, $2 occur red  

with  the c o m m o n  key bits  (0, 0). Obvious ly ,  this d i s t r ibu t ion  o f  ou tpu t s  is non-  

uniform, as is the d i s t r ibu t ion  of  any  o the r  pa i r  o f  ad jacen t  S-boxes  with any  value 

for the c o m m o n  key bits, and  it is this fact we exploi t  in the cryptanalys is .  

T h r o u g h o u t  this c ryptanalys is ,  we a d o p t  the fol lowing convent ion.  F o r  any  n-bit  

b ina ry  n u m b e r  W, we let W~ deno te  the i th  bi t  f rom the left (or i th  mos t  significant 

bit). Thus  W1 denotes  the lef t -hand bit  of  W and  W~ the r igh t -hand  bit. F o r  a fixed 

key, let I ,  J ~ Z 6 deno te  the  inputs  to a pa i r  of  ne ighbour ing  D E S  S-boxes  Sp, S~, 

and  let X = Sp(1) and  Y = S~(J) e Z~ be the respective outputs .  Because of  the  

expans ion  funct ion of  DES,  the inputs  to  ad jacen t  S-boxes  are  re la ted  by  cer ta in  

key bits. Thus,  let  us define s = I5 ~ ,/1 a n d  t = 16 ~ J2, so we can  see f rom Fig. 3 

tha t  (s, t) are the key  bits  c o m m o n  to the ne ighbour ing  S-boxes.  We can now define 

Sx, r(s, t) to be the n u m b e r  of  t imes ou tpu t  (X, Y) occurs  over  all 21~ poss ible  inputs  

(I, J)  for the given values of  s and  t. Thus  we have 

Sx.r(s,  t) = # { I ,  J ~ Z26115 ~ J~ = s, 16 ~ Jz = t, So(I ) = X ,  Sq(J) = Y}, 

so Table  1 is a table  of  Sx.r(0, 0) for S-boxes  1 and  2, and  

Sx, r(s, t) = 21~ 
X,u 

W e  can define two more  funct ions for the ou tpu t s  of  each S-box,  namely ,  

dx( i , j  ) = # ( I  ~ Z6115 = i, 16 = j, Sp(I) = X} ,  

er ( i , j )  = # { J  E Z26[Jt = i, Jz =J ,  S~(J) = Y}, 
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so dx and er are the number of outputs over all possible inputs of the individual 

S-boxes given that certain inputs are fixed. Each row of a DES S-box is a permuta- 

tion, so we have the following properties: 

dx(i,j) = ~ er(i , j)= 2 for all X, Ye Z26. 

We can give an expression for Sx. r in terms of the functions defined above: 

Sx.r(s, t) = .~. dx(i, t ~ j)er(s ~ i,j) 
t , J  

= dx(O, t)er(S, O) + dx(1, t)er(s', O) 

+ dx(O, t')er(s, 1) + dx(1, t')er(S', 1) 

= dx(O, t)er(S, 0) + (2 - dx(O, t))er(s', O) 

+ dx(O, t')(2 - er(s, 0)) + (2 - dx(O, t'))(2 - er(s', 0)) 

= 4 + (dx(O, t) - dx(O, t'))(er(s, O) - er(s', 0)) 

= 4 + ( -  1)~t(dx(0, 0) - dx(O, 1))(er(0, 0) - er(1, 0)) 

= 4 + ( -  1)S~'dxer, 

where dx = (dx(O, O) - dx(O, 1)), er = (er(0, 0) - er(1, 0)), and s' denotes s ~ 1, t' 

denotes t ~ 1. Note that ~ x  dx = ~ r  er = O. 
We can now calculate an expression for the distribution of the output of the sum 

of two pairs of S-boxes. If we let S2x, r(Sl, s2, h ,  t2) denote the number of times 

output (X, Y) occurs over all 2 2o inputs, where the common key bits to the first box 

are (sl, t l)  and the common key bits to other box are (s2, t2), then 

S2x, r(S, t) = ~ Sx,,(sl, tl)Sr162 t2) 
x , y  

= ~ (4 + ( -  1)s'*t'dxer)(4 + ( -  1)*2*t2dx.xey.r) 
x , y  

= 212 + ( -  1) ~''0 ~ d~dx.x ~. erer . r  
x y 

= 212 + ( -  1)~"~ 

where ( - 1 )  t ' '~ denotes ( - 1 )  *'*~2*t'*'~ and so forth, and d2x = ~,~d~d~.x, e2r = 

~2r erer . r .  We can extend this result in the obvious way to obtain a result for the 

distribution of the output of the sum of n pairs of S-boxes, namely, 

Snx.r(S, t) = 2 l~ + ( -  1)r176 

where dnx and enr are easily calculable n-fold convolutions. 

We can regard the 8-bit output as a number in the range 0 . . . . .  255, and we have 

therefore just shown that, for a fixed key, the number of times output i (i = 

0 . . . . .  255) occurs over all 2 ~~ inputs, depends on the value k of the XOR of certain 

key bits, where k = (s, t), and conditioned on this can be expressed as 

Di(k) = 2 l~ + ( -  1)kE~, 
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where E i is easily calculated, and ~ i  E 5 = 0. Hence, the probability ps(k) of the output 

i conditioned on k, is given by 

pi(k) = 2 -s  + 2-1~ - 1)kEi = d + ( -  1)kds, 

where d i = 2-1~ . 

The probleni is to decide whether k -- 0 or k = 1. This is a standard statistical 

problem of deciding between two simple hypotheses and a fuller explanation of the 

following technique can be found in any standard statistics textbook, for example, 

[6]. Let X denote the output of m inputs to the pair of neighbouring S-boxes. 

Suppose we have a realization of X, x = (x 1 . . . . .  xm), then let m 5 be the number  of 

times output  i occurs, so ~ i  mi = m and we clearly have 

255  

P(X = x) = I-I pi(k) ~'. 
i = 0  

For  given data X = x, the above equation defines a function on the set of parameters 

(k = 0, 1) and this function is known as the likelihood function of k corresponding 

to the data x. It  is intuitively natural that the higher value of the likelihood given 

data x corresponds to the more likely value of k. Thus, by definition, the likelihood 

function of k corresponding to the data x is given by 

255  

L(x; k) = l-I Ps(k) ~'. 
i = 0  

We wish to test whether k = 0 or k = 1. Suppose we fix the probability of the error 

of deciding k = 1 when k = 0, then we need to design a test that given this error 

probabili ty minimizes the error of deciding k = 0 when k = 1, that is a most powerful 
test. The N e y m a n - P e a r s o n  lemma [6] tells us that the most powerful test of k = 0 

against k - -  1 is one based on a likelihood ratio statistic. The likelihood ratio 

statistic, 2, is given by 

2 - L(x; k = 1) - 5=o \p5(1)] " 

For  symmetric error probabilities, we decide whether k = 0 or k = 1 according to 

whether 2 > 1, that is, whether log 2 > 0. Now, 

255  

where 

255 "J fp5(O) 255 ( d  + 

l o g 2 =  i=oX mi lOg p  ] = 5=0 mi l~  \ d  - di,] = 5=0X miwi, 

However, if d5 is small compared with d, as is the case with DES with larger numbers 

of rounds, 

2d5 ~ 2d5 2di 
= l o g  (d + di~ = l o g  1 + ~ ~ - - .  

w5 \ d - a s /  d - ds/ a 

= l o g (  d + di" ~ 
wi \ d  - -  d i ] "  
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Thus, we can use the sign of 

255  d 
I = ~, mid ~ ~ ~ log it 

i = 0  

as a statistic for deciding whether k = 0 or k = 1. Now, 

255  

E(I) = ~ d,E(m,) 
i = 0  

255  

,~ ~_, d~m(d + ( -  1)~di) 
i---0 

255  

= m ( -  IF d, = ( -  1) mr, 
i = 0  

V255d2 where T -- z.i=o ~, and we also have 

2 5 5  255  

Var(I) ~ ~ d~ Var(m,) ~ md E d~ = m a t  
i = 0  i = 0  

For  large values of m, I is approximately normally distributed, so for a test of size 

0.0228, we need to find m such that JE(I)J is twice the standard deviation o f / ,  so 

4d 2 -6 

T T 

Now, 

r = Z d, = 2-=~ Z e,  
i i 

where ~ E/~ is easily calculable, so we can calculate T for a 16-round DES. The 

largest value of T occurs for S-boxes 7 and 8, with 

T = 2 -*60 x 1.32 x 297 = 1.32 x 2 -63 , 

and so m = 1.51 x 2 s6, which is larger than an exhaustive key search. A test of size 

0.0228 gives a probability of 0.955 of estimating both bits of key information 

correctly. This may be a higher probability than is needed for a successful crypt- 

analysis. For  example, if we perform a test of size 0.29, so we estimate both bits of 

key information with probability 0.504, then we require that E(1) is 0.553 standard 

deviations of I, which happens when m = 1.85 x 252. Heuristically speaking, in 

1.85 x 252 encryptions, we can, more often than not, determine two bits of key 

information. We then have to perform a reduced exhaustive key search on 54 bits 

which takes at most 253 and on average 2 s2 encryptions. Thus, we can determine 

the DES key in at most (1.85 x 2 s2) + 253 = 1.92 x 253 encryptions more often 

than not. 

DES has the following complementation property: 

DES(M, K) = DESC(M c, K c) for all messages M and keys K, 

where "denotes complementation, which enables the construction of an exhaustive 

key search of DES that has an expected running time of 2 s4 encryptions. Thus in 
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Table 2. Number of encryptions 
for a pairs test of size 0.028. 

S-boxes No. of encryptions 

12 1.94 X 265 

23 1.24 X 269 

34 1.56 x 2 as 
45 1.55 x 27o 
56 1.54 • 271 

67 1.96 x 265 

78 1.51 x 2 ~6 
81 1.21 • 277 

some sense this method of cryptanalysis is marginally faster than an exhaustive key 

search. Of course, as a method of cryptanalysis, it is impractical since it requires a 

vast number of encrypted pairs whereas an exhaustive key search requires very few 

known plaintext/ciphertext pairs. 

Table 2 gives the number of encryptions for a test of size 0.028 for each S-box 

pair. These values are inversely proportional to the log-likelihood and so propor- 

tional to the complexity of the cryptanalysis for each S-box pair, the constant of 

proportionality depending on the precision with which we wish to estimate the 

common key bits. It can be seen that a cryptanalysis based on S-boxes 7 and 8 is 

far simpler than any other pair of S-boxes. We can lessen the amount of data needed 

for a decision by using a sequential testing procedure I-6]. Further details of this 

sequential procedure can be found in Appendix 2. 

It is possible to reduce the number of plaintexts required still further. Recall that 

we are using equations of the form 

(~71f(R2i-1, K2i) ~)f(R15, K16) = R o ~) R16. 

In the known plaintext cryptanalysis given above, we use the known values of Ro 

and R16. However, we also know the value of R t 5 and it is possible to use this. For  

a pair of S-boxes, we would now be attempting to estimate the relevant 12 bits of 

K I 6  a s  well as the original key bit. When the likelihood framework is applied to 

this attack, the output counts conditioned on different values of K16 are correlated. 

In a preliminary investigation with Gilbert [4] of this technique, we provisionally 

estimate the complexity of such an attack as about 252 . 

3. Triplets of DES S-Boxes 

The obvious extension of a cryptanalysis based on S-box pairs is a cryptanalysis 

based on S-box triplets, and, following Appendix 1, we assume that the inputs to a 

given triplet of S-box triplets are uniformly and independently distributed. For  a 

fixed key, let I, J, K ~ Z 6 denote the inputs to three neighbouring DES S-boxes Sp, 

Sq, S,, and let X, Y, Z ~ Z~ be the respective outputs. Because of the expansion 

function of DES, the inputs to adjacent S-boxes are related by certain key bits. 
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According, let 

Sx, r,z(S, t, u, v) = # {I, J, K ~ Z~ISp(I) = X, S~(J) = Y, Sr(K ) = Z,  

(ls,/6, Js, J6) ~ (J~, J2, K1, K2) = (s, t, u, v)}, 

where s, t, u, v are completely determined by the key. Sx.r,z(S, t, u, v) is the number 

of times output (X, Y, Z) occurs over all 214 different inputs, so 

Y, Sx, y,z(s, t, u, v) = 21" 
X,Y,Z 

In Appendix 3 it is shown that 

Sx, r,z(S, t, u, v) = 4 + 2(-1)S~'DxP~ + 2(-1)U~VFzR~ + (-1)~et~ z 

+ (--1)s~t~176 ') + ( -1)s~176176 

where the various functions are defined there. Equivalently we can write 

Sx, r,z(S, t, u, v) = 4 + ( -  ly~ z 

+ ( -  ly~ 'Ox[Pr(v) f~  ', 1) + Pr(v ') f~ ', 0)1 

+ ( -  1) '~Dx[Rr(s)d~ t') + Rr(s')d~ t')] 

= 4 + ( -  l y ~ ' ~ U ~ Q r D x F  z + ( -  1)'~ v) 

+ ( -  l y~Fzl~x,~(s ,  t), 

where 

ar,z(U, v) = [Py(v)fz~ ', 1) + Pr(v ') f~ ', 0)1 

flx.r(S, t) = [Rr(s)d~ t') + Rr(s')d~ t')]. 

In order to perform the cryptanalysis we now need to calculate the XOR of two 

outputs of three neighbouring S-boxes. We can denote by 

S2x,r,z(S, t, u, v) 

the number of times output (X, Y, Z) occurs over all 2 zs inputs in the XOR of the 

two triplets of S-boxes that give rise to 

Sx, r.z(Sl, t l ,  ul ,  vl) and Sx.r.z(S 2, t2, u2, vz). 

Thus $2 is a convolution, that is 

S2x, r,z(Sl, s2, tl,  t2, u~, u2, vl, v2) 

-- (S(sl, t l ,  ul,  vl) * S(s z, t2, uz, vz))x,r.z 

= ~ Sx,y,z(sl, t l ,  ul ,  vl)Sx~x.y~y,z~z(s2, t2, u2, v2). 
XtytZ 

In order to calculate this convolution, note first that we can write 

Sx,~.z(s, t, u, v) = 4 + Tx.r,z(S, t, u, v), 
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where 

Tx, r.z(S, t, u, v) = 2 ( -  1)S~tDxP~ + 2 ( -  1)U~~176 ) + ( -  1)~t~"~QrDxF z 

+ (-- 1)*~t*~PrDxf~ ) + ( -  1)~*Ur176 

so ~x . r . z  Tx.y.z(S, t, u, v) = 0. Thus, 

S2x, y,z(S, t, u, v) = 216 + T2x, r.z(S, t, u, v), 

where ~x,Y.Z T2x,r,z = 0 and T2 denotes the similar convolution for T that $2 

denotes for S. We can extend this result to an n-fold convolution, so 

Snx.r.z(S, t, u, v) = 214n-12  + Tnx, r,z(S, t, u, v), 

and ~,x.r.z Tnx, r.z = 0. Thus, in order to calculate the convolutions Sn, we need 

only calculate Tn. 
The distribution Tn is parametrized by 2 4" parameters, but there are less than 2 4- 

Tn distributions, because we show in Appendix 4 that we can express Tn in the 

following way: 

Tnx, r,z(S, t, u, v) = Tnx, r,z((~s, t~, u~, (~v )  

for any ~ e S,, so there are many identical distributions. This result for Tn means 

we can write the components ors and v in any order we please. We can now calculate 

the number of essentially different distributions Sn. Let W~ = (tl, ui), so we can regard 

W~ e {0, 1, 2, 3). The number of different distributions is then four times the n~mber 

of different arrangements of W = (W1 . . . .  , W~). These arrangements for n = 4 and 

n = 8 are given in Tables 3 and 4. Type 4 0 0 0 means that all of the W~ take one 

value, type 3 1 0 0 means that three of the W~ take one value and the other W~ takes 

a different value and so forth, where, for example, W = (0, 0, 0, 0), (1, 1, 1, 1) are 

forms of the type 4 0 0 0. We therefore have 140 essentially different $4 distributions 

and 660 different $8 distributions. The efficient calculation of the distributions Tn 
and thus $n depends on the fast calculation of discrete convolutions. We can do 

this efficiently by using Walsh transforms, a discrete form of Fourier transforms, 

see [1]. Details are given in Appendix 5. 

We have thus shown that the XOR of a number of S-box triplet outputs belongs 

to one of a manageable number of easily calculable distributions that depend on 

common key bits. The cryptanalytic decision problem is to decide from which of 

Table 3. $4: W distribution. 

No. of No. of No. of 

W type forms each form type 

Total 35 256 

(1) 4000 4 1 4 

(2) 3100 12 4 48 

(3) 2200 6 6 36 

(4) 2110 12 12 144 

(5) 1111 1 24 24 
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Table 4. $8: W distribution. 

No. of No. of No. of 
W type forms each form type 

(1) 8000 4 1 4 
(2) 7100 12 8 96 
(3) 6200 12 28 336 
(4) 6110 12 56 672 
(5) 5300 12 56 672 
(6) 5210 24 168 4,032 
(7) 5111 4 336 1,344 
(8) 4400 6 70 420 
(9) 4310 24 280 6,720 

(10) 4220 12 420 5,040 
(11) 4211 12 840 10,080 
(12) 3320 12 560 6,720 
(13) 3311 6 1,120 6,720 
(14) 3221 12 1,680 20,160 
(15) 2222 1 2,520 2,520 

Total 165 65,536 

these dis t r ibut ions (or which subset) the X O R  arose. This is a similar, bu t  more  

difficult, p rob l em to the one faced in a cryptanalysis  based on an adjacent  pair  of  

S-boxes, where  we had  to choose between two distributions.  Thus,  consider a 

2n- round DES,  and  let 

v '  = (s', t', u', v') = ( |  w',  03")  

denote  the key bits concerned with the triplet of  S-boxes centred on  S~, for the left 

half  of  the output .  No te  tha t  W ~ = (t ~, u~), where there is no loss of  generali ty in 

assuming  W~ < .. .  < W2, when W ~ is regarded as a 2-bit number .  We  also trivially 

have 

(s i, t i) = (u H ,  vi-a), (u i, v i) = (s i+1, t '+l). 

We have  to find a statistical p rocedure  that  gives us candidates  for the key, tha t  is, 

the mos t  likely values in some sense for Wi or W i. We  can do this using Bayes '  

theorem,  of  which m o r e  details can be found in any  s tandard  statistics t ex tbook  

[6]. Suppose  we wish to es t imate  some pa rame te r  0, which we have reason  to believe 

comes  f rom some dis t r ibut ion p(O), a pr ior  distribution. Suppose  we now have some 

da ta  x, then, by using the l ikel ihood function of 0 cor responding  to the da ta  x,/(xl0),  

we can obta in  a pos ter ior  dis t r ibut ion for 0, that  is, a dis t r ibut ion for 0 given x by 

using Bayes '  theorem.  Thus  we have 

p(OIx)ocl(xlO)p(O), 

or, equivalently,  up to an addit ive constant:  

logEp(Olx)] = log[l(xlO)] + logEp(O)] = L(xlO) + logEp(O)]. 
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We do have, however, a natural prior distribution for W ~, and thus a natural prior 

for the common key bits. Since we can calculate a likelihood, we can calculate a 

posterior distribution for the common key bits. Thus, it may be possible to obtain 

candidates for the true common key bits. 

The initial distribution of W ~, 

qi(w) = p [ W i =  w], 

is given by the relevant entry in Tables 3 and 4. For  example, for a 4-round DES, 

P [ W  i = (0, 0, 0, 0)] = 1/256 and P [ W  i = (0, 0, 1, 3)] = 12/256. We can also define 

fi(c) = P [ @ t '  = c], gi(a) = P [ @ u '  = a] 

and thus obtain 

p~(c, w, d) = P [ t F i  = (c, w, d ) ]  = gi_l(c)q~(w)f~+l(d), 

where initially f~(c) = g~(d) = �89 

In order to calculate the likelihood function, note that we can represent (X, Y, Z) 

as a number in the range 0 . . . . .  4095, and so we have 

Snj(V') = 214"-12 + TnSfq2 i) j = 0 . . . . .  212 - 1. 

The probability of any particular outcome j is D s, where D s = 2-t4"SnS. D s is thus 

given by 

oS(v')  = a + dS('I"), 

where d = 2 -12 and d s = 2-1*"Tnj. Let X i denote the output of m inputs to three 

neighbouring S-boxes. Suppose we have a realization of X i, x i = (x~ . . . . .  x~), then 

let m s be the number of times output j occurs, so ~ m s = m, and we have 

k 

v ( x ' =  x') = I-I 
j=O 

Thus, the likelihood function of tFi is given by 

k 

l(x'; ~F') = I-I OS(trr m~, 
j=O 

and so the log-likelihood is given by, up to an additive constant, 

k 

L(x'; V') = ~ m s log[OS(V')] 
j=O 

k 

= E mS log[d + aS(v/)] 
j=O 

1 k 

__X ~ 
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since d](~ i) << d. Hence let us define, for permissible 0, 

k 

Ii(O) = ~ m]d](O) ~ dL(xi; V'). 
) = 0  

Having calculated the log-likelihood of the data for each permissible key, we can use 

Bayes' theorem to calculate a posterior distribution for permissible keys. By 

repeated use of Bayes' theorem (taking the old posterior as the new prior), we may 

find candidates for the true common key bits. 

The application of Bayes' theorem in effect alters the probability of our belief 

that a particular key is the true key. The amount we alter it by is given by realizations 

of the random variables Ii(O). Suppose that the correct key is ~b i, then we have 

k 

E[-I'(~')] = Z d](~')E[m]] 
j=O 

k 

,~ ~ d~(~b~)m[d + d~(~)l 
j=O 

k 

= m ~ [dj(~//i)] 2 = m ~ i ( d / i ) ,  
j=O 

k where ~ ( ~ )  = ~j=o [d](@~)] 2. However, for incorrect keys 0 r ~ we have 

k 

E[I'(O)] = E d~(O)E[m]] 
j = 0  

k 

~., d](O)m[d + dj(@')] 
j = 0  

k 

= m E d~(O)d](d/'). 
j = 0  

However, for any value of 0, we have 

Var[Ii(O)] ~ md~,i(O). 

Hence, on average, the change in the value of the posterior distribution at 0 is 

proportional to the correlation between P(O) and P(~,~). Thus, all we have to do is 

to choose m large enough, so that the value of E [P(~b~)] is highly likely to be positive. 

Essentially we are then looking at the keys which are likely to give the largest value 

for E[P(0)]  as candidate keys. These keys are those for which the distribution 

{dj(0)}j is highly correlated with the distribution of the true key (dj(q~)}j. 

Table 5 gives the number of encryptions for a test of size 0.028 for each S-box 

triplet if there are essentially two key classes. The values in Table 5 are inversely 

proportional to the long-likelihood, so these values are proportional to the com- 

plexity of the various attacks. The constant of proportionality depends on the 

precision of estimation of the true key class, and the correlations of the key classes. 

In particular, if there are essentially two key classes, these values can be directly 
compared with the values in Table 2. However, as we mentioned in the Introduction, 

common key bits to a pair of S-boxes affect two S-box triplets, and for some choices 

of S-boxes it may be possible to use this fact together with Bayes' theorem 
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Table 5. Number of encryptions 
for a triplets test of size 0.028. 

S-boxes No. of encryptions 

812 1.94 • 265 

123 1.77 x 265 
234 1.24 • 269 

345 1.55 x 270 
456 1.03 • 270 

567 1.92 x 265 
678 1.51 • 256 
781 1.51 x 256 

by allowing a posterior distribution of triplet key classes to alter the prior distribu- 

tion of overlapping triplet key classes. An algorithm to do this is given in Appendix 6. 

Clearly, the analysis of triplets of S-boxes is an extension of the analysis of pairs 

of S-boxes. Thus, any result on the complexity of an attack based on pairs of S-boxes 

is an upper bound for the complexity of an attack based on triplets of S-boxes. 

Hence, a cryptanalysis of DES based on triplets of S-boxes has at most the same 

complexity as an exhaustive key search. As noted above, an attack based on different 

triplets of S-boxes may be quicker since the distributions we observe are clearly 

correlated, and it may be possible to use this fact. Heuristically, after each iteration 

of the algorithm given above, the probability assigned to the true key bits is 

increased slightly and the probability assigned to the false key bits remain roughly 

unchanged. We then have to perform enough iterations so that the probability 

assigned to the true key becomes much larger than any other probability. Table 5 

essentially gives the average value of ~i(.) for the true keys each different i, that 

is, each triplet of S-boxes. It can be seen from this list that triplets [678] and [781] 

give a much larger value for ~( ' )  than any other triplets, so a cryptanalysis of DES 

based on triplets would cycle between i = 7 and i = 8. However, this large value 

occurs because in the analysis of pairs of S-boxes, the pair [78] is very much weaker 

than any other pair (Table 2). In fact, any pair of the 660 distributions for the triplets 

1-678] has a correlation coefficient of + 1 to three decimal places (10 binary places), 

depending on whether the pair have the same XOR of the key bits "common" to 

S-boxes 7 and 8. This is, of course, the criterion used in the analysis of pairs of 

S-boxes for dividing the possible key inputs "common" to boxes 7 and 8 into two 

subsets. The same result is true of the triplet [781]. Thus, the S-box pair [78] 

dominate any triplet cryptanalysis and there is no saving in this cryptanalysis over a 

pair cryptanalysis. 

4. Conclusions 

We have exhibited a property of the DES algorithm that leads to a known plaintext 

attack, an S-box pair attack, that requires a vast amount of data. The natural 

extension of the S-box pair attack is the S-box triplet attack, but we have shown 

that there in no saving for an S-box triplet cryptanalysis of DES over an S-box pair 

cryptanalysis. However, a DES-type cipher with different S-boxes may be vulnera- 
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ble to an S-box pair or an S-box triplet triplet cryptanalysis. One way to avoid the 

triplet attack would be to design the S-boxes so that one S-box pair is very much 

"weaker" than all the other S-box pairs. The security of the cryptosystem against 

these types of attack would rest solely with its security against a pairs attack. This 

is certainly the case with DES. 
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Appendix 1. S-Box Inputs are Approximately Uniform and Independent 

In the pairs and triplets cryptanalysis we observe the eightfold XOR of the outputs 

of two or three neighbouring S-boxes, respectively. In this appendix we show that 

for the pairs cryptanalysis, under the assumption of a known-plaintext attack, the 

inputs to the neighbouring S-boxes are uniform and approximately independent. A 

similar argument holds for the triplets attack, though the approximation is less 

accurate. We denote the function f( . ,  K~): Z~ 2 ~ Z] 2 b y f ,  where Kl is the ith round 

subkey. Under the assumption of a known-plaintext attack, the left and right halves 

of the plaintext are independent uniformly distributed 32-bit numbers, that is, for 

plaintext (Y, X), X, Y ,-, Uni(Z] 2) independently. 

We first note that after any number of rounds, the left and fight registers are 

independent uniformly distributed 32-bit numbers, since the joint entropy of the 

left and right registers is 64 bits. We are concerned with the inputs to the f-function 

in alternate rounds. Suppose we have (Y, X) as register contents before the ith round, 

where we have shown that X and Y are independent randomly distributed 32-bit 

numbers. Before the (i + 2)th round we have register contents 

(Y(~(X), X ~ ~+,(Y (~ ~(X))). 

Let ZD denote the restriction of the 32-bit number Z to the ten input bits to a pair 

of neighbouring S-boxes, and let k and I be the 12 bits of the ith and (i + 2)th round 

subkeys Ki and K~+ 2 that form the input to the pair of neighbouring S-boxes on 

the ith and (i + 2)th round, respectively. Then the input bits to the pair of S-boxes 

on round i are ED(Xo) ~ k and on round (i + 2) are 

Eo(XD) ~ Eo(fi+,(Y O) f~(X))D) O) !, 

where Eo: Z *~ + Z 12 is the restriction of the expansion phase E to the inputs to 
two S-boxes and Eo 1 its inverse where this is well defined. The conditional probabil- 

ity of the input on round (i + 2) given the input on round iis given, for any a and b, by 

P[ (Eo( Xo) ~ Eo(fi+1( Y q~) f i(X) )o) (~) 1 = b)l(Eo(Xo) ~ k) = a)] 

= P [ f ~ + ~ ( W ) D  = E;,~(c)I, 
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where W = Y ~ ft(XIXD) is a uniformly distributed 32-bit number and E-l(c) = 

E-l (a  ~ b ~ k ~ l) is a fixed but unknown 10-bit number. Thus the conditional 

probability is given by the distribution of certain output bits of the DES f-~function 

under the (i + 1)th round subkey Ki+l. In fact, the distribution only depends on 

the "overlapping" key bits. It is of course intractable to calculate the distribution 

of fi+l(W)o since it would require 232 evaluations of the function f~+l for each 

relevant subkey, but we can calculate an approximation to it by simulation. In a 

number of simulations, each based on a million random values for W and different 

overlapping key bits, we have found that this distribution is approximately uniform, 

with the most nonuniform distribution corresponding to the inputs to S-boxes 3 

and 4. In this case the conditional probability of a particular input is approximately 

2 -1~ ___ 2 -12 (depending on the XOR of the outer input bits), though for other 

S-boxes it is much nearer 2 -1~ . We can therefore calculate the distribution of the 

output of a pair of S-boxes given the inputs to (and hence the outputs of) the S-boxes 

two rounds earlier. This corresponds to perturbing the values of Sx, y, as given, for 

example, in Table 1, by a small but unknown amount, with most values of Sx, r for 

most S-box pairs almost exactly correct. 

In order to perform the cryptanalysis, we have to calculate Snx.r, an n-fold 

convolution of Sx, r with itself. If we allow for the conditional distributions above, 

we have to calculate the n-fold convolution of small unknown perturbations of Sx, r 

with itself and this is very nearly Snx, r. Thus it is a valid assumption that the S-box 

inputs in different rounds are uniformly and independently distributed. 

Appendix 2. Sequential Procedure for S-Box Pairs 

The idea of a sequential procedure is to calculate the log-likelihood ratio, log 2, 

sequentially for every output, and stop if it is too large or too small. A fuller 

explanation of sequential testing can be found in [6]. We can write It, the log- 

likelihood ratio after I outputs, as 

It = ~,, dx. 
j=O 

To construct a sequential test of size approximately 0.0228, we have to calculate It 

according to the following stopping rule: 

I z > a Accept K = 0 

a < I t < - a  Continue 

It < - a  Accept K = 1, 

where a = - 2  - 9  log(0.0228/0.9772) = 0.00734. The expected value of l, that is how 

many outputs are needed before a decision can be reached, is given by 

a 2 2-18 1og(0.9772/0.0228) z 
E(I) = ~ = 2_8T 2 

-~ 2 -6 
= [log(42.85)]22 -4 = 0.882 ~ .  
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Thus, a sequential approach on average needs 88% of the data of the nonsequential 

approach given above to reach a decision about the key in a test of size 0.0228. For  

the S-box pair [78], this means (1.33 x 256) encryptions. Thus we can guess 2 bits 

of key information with probability 0.95 in this time. We can of course perform 

sequential tests of a larger size than this, but as the size of the test increases, 

calculation of the stopping rule becomes more complicated. 

Appendix 3. Derivation of S~  r.z(s, t, u, v) 

Recall that 

Sx.r,z(s, t, u, v) = # {I, J, K e Z~ISAt ) = X,  Sq(J) = Y, S,(K) = Z, 

(I5, 16, Js, -/6) (3 (J1, J2, K1, K2) = (s, t, u, v)}, 

where s, t, u, v are completely determined by the key. Sx, rlz(S, t, u, v) is the number 

of times output (X, Y, Z) occurs over all 214 different inputs, so 

~, Sx, r,z(S, t, u, v) = 21". 
X , Y , Z  

We can define three other functions, related to S, for the outputs of each S-box: 

dx(i,j)  = # { I  e Z~ISp(I) -- X, I s -- i, 16 --j},  

er(i,j, k, l ) = # {J ~ Z~[Sq(J) = 1, J t = i, J 2 = J, Js = k, J6 = I}, 

fz( i , j )  = #{ZIK2 = k, K2 = l}. 

Since each row of a DES S-box is a permutation, we have the following properties: 

dx(i,j) -- 2, ~, er(i,j, k, l) -- 1, ~. fz(k,  1) = 2, 
i j , k  1 

and hence we can define 

d~ = dx(O,j) = 2 - dx(1,j), f~  = fz(k,  O) = 2 - fz(k,  1). 

We can give an expression for Sx, r,z in terms of the functions defined above 

Sx.r,z(S, t, u, v) = ~. dx(s (3 i, t (3 j)er(i , j ,  k, l)fr(u (3 k, v (31 ) 
i , j , k , l  

fdx(O, t (3j)er(S, j, k, V)fz(U (3 k, O) ] 

I + dx(O' t (3j)er(s , j ,  k, v')fz(u (3 k, 1) / 
= ~ I + dx(l't(3j)er(s"j'k'v)fz(u(3k'O) I ' 

t. + dx(1, t (3j)er(s ' , j ,  k, v')fz(U (3 k, 1)J 

where s' denotes s (3 1 and t' denotes t (3 1. Thus, 

d ~  (3 j)er(s, j ,  k, v) f~ (3 k) 

+ d~ (3j)er(s , j ,  k, v')[2 - fz~ (3 k)] 
Sx, r,z(S, t, u, v) = ~. 

~.k + [2 -- d~ (3j)]er(s ' , j ,  k, v) f~ (3 k) 

+ [2 - d~ (3j)]er(s ' , j ,  k, o')1"2 - f ~  (3 k)] 
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Suppose  we define 

PY(J, v) = er(0, j ,  0, v') - er(1, j ,  0, v') + er(0 , j ,  1, v') - er(1, j ,  1, v'), 

rr(S, k) = er(s', O, k, O) - er(S', O, k, 1) + er(s', 1, k, O) - er(s', 1, k, 1), 

qr(J, k) = er(0, j ,  k, 0) - er(0 , j ,  0, 1) - er(1 , j ,  k, 0) + er(1 , j ,  k, 1), 

so pr(0, v) = - p r ( 1 ,  v) a n d  r(s, O) = - r ( s ,  1). W e  then  have  

( -  1)Spr(j, v) = er(S, j, O, v') -- er(s', j, O, v') + er(S, j, 1, v') -- ev(s',j, 1, v'), 

(-- 1)Vrr(s, k) = er(S', O, k, v) - er(s', O, k, v') + er(S', 1, k, v) - er(S', 1, k, v'), 

( -  1)S~Vqr(j, k) = er(s, j, k, v) - er(s,j, k, v') - er(s',j, k, v) + er(s', j, k, v). 

Thus,  

Sx, r,z(S, t, u, v) = 4 + 2 ( -  1) ~ ~.  d~ (~J)PY(J, v) + 2 ( -  1) ~ ~ . f ~  (~ k)rr(s, k) 
J J 

+ (-- 1) s*o ~ d~ ~ j ) f ~  �9 k)qr(j, k), 
j , k  

since ~j.ker(S' , j ,  k, v') = 1. Now,  

d~ t ~J)PY(J, v) = d~ v) + d~ ', v) 
J 

= [d~ - d~ v) 

= ( -  1)q-d~ - d~ v) 

= ( -  1)'D~176 

where 

Similarly,  

where  

N o w  

D ~ = d~ - d~ Pro(v) = pr(O, v). 

f ~  ~ k)rr(s, k) = ( -  1)'F~176 
k 

F~ = f ~ 1 7 6  R~(s)=r,(O,s).  

Pr = Pr~ - Pro(0) = qr(O, 0) + qr(0, 1) = qr(1, 1) + qr(1, 0), 

Ry = R~ - R~ = qr(0, 0) + qr(1, 0) = qr(1, 1) + qr(0, 1), 

a n d  so, if we let QY = qr( 0, 0), we have  

d~ ~ j)fz~ ~ k)qrtJ, k) 
j , k  

= d~176 O) + d~176 1) + d~176 O) 

+ d~176 1) 
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= d~176 + d~176 [Pr - Qr] + d~176  [Rr - Qr] 

+ d~176 [Qr - Pr - Rr ]  

= Qr[d~ - d~ [fz~ - / f f ( u ' ) ]  + Pr[d~ - d~  ') 

+ R r [ f ~  - fO(u ' )]d~ 

= ( -  1)te*QrDxFz + ( -  1) tPrDxf~ ') + ( -  1)*RrFzd~ 

We are now able to give an expression, conditioned on certain key bits, for the 

number of inputs to three adjacent DES S-boxes that give a particular output value. 

Thus we have 

Sx.r.z(S, t, u, v) = 4 + 2 ( -  1)'etOxP~ + 2 ( -  1)'*~FzR~ 

+ (--  1 ) ' e te '*~QrDxF z 

+ ( -  1 )~e '~PrDx f~  ') + ( -  1 ) ' * ' ~ R r F x d ~  

or, equivalently, 

where 

Sx, r.z(S, t, u, v) = 4 + ( - 1 ) s e ' ~ e V Q r D x F  z 

+ ( -  1 )~ 'Dx[er (v ) f~  ', 1) + er (v ' ) f~  ', 0)] 

+ (--  1)~*~OxfRr(s)d~ t') + Rr(s')d~ t ')] 

= 4 + ( -  1)s*t*UeVQrDxF z + ( -  1)~e'Dxar, z(U, v) 

+ ( -  1)u*~Fzflx, r(S, t), 

~r,z(U, v) = [Pr(v) f~ ', 1) + Pr(v ' ) f~  ', 0)], 

flx, r(s, t) = [Rr(s)d~ t') + Rr(s')d~ t')]. 

Appendix 4. Derivation of Tn~ r.z(s, t, u, v) 

In order to simplify the calculation of T2, we introduce some notation for the 

various convolutions: 

D2 x = (D * D)x, F2 z = (F * F)z, Q2r = (Q * Q)r, 

e Q r  = (P * Q)r, e r r  = (P * R)r, QRr = (Q * R)r, 

d2~176 t2) = (d~176  , f 2 ~ 1 7 6  u2) = ( f ~ 1 7 6  , 

P2~176 v2) = (e~  * e~ R2~176 s2) = (R~ * R~ 

P2~176  = ( e ,  e ~  R2~176 = ( R ,  R~ 

Dd~ = (D * d~ Ff~ = (F *f~ z. 

Recall that ~ x D x  = ~ z F z  = 0, so if we denote an expression of the form 
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( -  1) s~*~'e' '~' '  by  ( -  1) (''t) and so forth, then we the following expression for T2: 

T2x, r, z( s, t, u, v) 

= (-1)("t '" ' )Q2rD2xF2z + 64( -1 ) ( "~176176  v2) 

+ 6 4 ( -  1)("')F2zR2~176 1, s2) 

( , t  ,) oo , ( -  1) ( ' ' ' ' )R2rF2xd2~176 t'2) + ( -  1) ' ' P2rD2xf2z  (ul, u~) + 

+ 3 2 ( -  1)~"~ - 1)~2p2~ + ( -  1)v'P2~ 

+ 3 2 ( -  1 ) ~  1)~e2~ + ( -  1)~P2~ 

+ ( -  1)~"t")D2xPQr[(- 1)"~Ff~ + ( -  1)U'Ffz~ 

+ ( -  1)("" ')QRrF2z[(-  1)"Dd~ + ( -  1)t'Dd~ 

+ ( -  1){"'~PRr[( - 1)t,~",Dd~176 + ( -  l)"~'~Dd~ 

However ,  

2" P2~176 v2) + ( - 1 ) v ' P 2 ~  + ( -1)v 'P2~ 

= 2[P~ * P~ + [P~ * (P~ - P~ r 

+ [P~ * (P~ - P~ Y 

= [g~ P~ + [P~ g~ 

= P2~176 v~) + P2~176 v2), 

and, similarly, 

2" R2~176 s2) + (-1)S~R2~ + (-1)S 'R2~(s2)  = R2~176 s~) + R2~176 s2). 

Thus 

T2x.r.z(S, t, u, v) 

= ( -  1)("t'=")Q2rD2xF2z + 32(--  1)("~176176 v'2) + P2~176 v2)] 

+ 3 2 ( -  1)("')F2z[R2~176 s'2) + R2~176 s2)] 

+ ( -  1)("t"~PZrD2xfZ~176 u'2) + ( -  1) ( .... ")RZrFZxdZ~176 t'2) 

+ ( -  1)t"t")D2xPQr[(- 1)U, Ffz~ + ( -  1)U'Ffz~ 

+ ( -  1)("" 'QRrF2z[(  - 1)t2Dd~ + ( -  1)"Dd~ 

+ ( -  1){" ')PRr[( - 1)',~U~Dd~ + ( -  1)'~*U'Dd~176 

It can now be easily seen that, for any c = 0, 1, 

T2x.r.z(St, sa �9 c, t, u, v) = T2x, r.z(S' 1, s~ ~ c, t, u, v), 

T2x, r,z(S, t, u, v 1, v I t~ c) = T2x, r,z(S, t, u, v'l, v'l ~ c). 

We can therefore write T2 as a function with fewer than eight arguments  as 

T2x.r,z(S, t, u, v) = T2x, r.z((~s, t, u, (~v) ,  
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where @) s denotes the XOR of the elements of s. It is also clear from the form of 

T2 given above, and intuitively obvious, that T2 is invariant i f (q ,  u~) and (t2, u2) 

are swapped, so, for any permutation n ~ $2, we can express T2 in the following way: 

T2x, r.z(S, t, u, v) = T2x.r.z(@S, trq un, @)v). 

As with the result for the distribution of S at the end of the previous appendix, the 

result for T2 was verified by direct computer calculation. This result for T2 essen- 

tially means we can write the pairs (si, s~) and (v k, vj) in any order we please. 

Therefore, the general n-fold convolution can be written, for some ~ ~ S,, as 

Tnx, r,z(S, t, u, v) = Tnx, r,z(@S, tn, wt, @v). 

Appendix 5. Fast Calculation of Tn by Walsh Transform 

The efficient calculation of the distributions Tn and thus Sn depends on the fast 

calculation of discrete convolutions, which can be done by using Walsh transforms, 

a discrete form of Fourier transforms, see [1]. Suppose f ,  O: Z]  ~ R, then the Walsh 

transform of f ,  j~ is given by 

f ( x ) =  ~ ( -1)*"f (y) .  

The usual inversion and convolution theorems apply, so 

f(x) = 2"f(x), 

( f*  g)(x) = f(x),~(x). 

We thus have a method of calculating convolutions by taking the Walsh transforms, 

multiplying and inverting. We can, however, calculate Walsh transforms extremely 

quickly by a method similar to the fast Fourier transform. For any z e Z~, let 

z' e Z~ -~ denote the first (n - 1)-bits ofz. Thus z' = (zx, . . . ,  z,_~). We can now define 

two functions ho, hi: Z~ -1 --* R by 

ho(z') = f[(z ' ,  0)], hx(z') = f[(z ' ,  1)]. 

Let x, w E Z~, then 

/(x) = ~ (-- 1) x" Wf(w) 
w~ Z~ 

= ~ ( -  1)z '" ' f [ (w ', 0)] + ~ (-- 1 ) z " " ( -  1)~-f[(w ', 1)] 
w'~ Z~ -~ w'~ Z~ -2 

= ~ ( - 1 ) z " " h o ( w ' ) + ( - l )  x" ~ (-1) '"W'hl(w ') 
w ' e Z ~  i w'e  Z~-t 

= ho(x') + ( -  1)X"hl(x'). 

We have thus reduced the calculation of two n-fold transforms to two (n - 1)-fold 

transforms, and we can of course calculate both of these in terms of (n - 2)-fold 

transforms and so on. 
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Appendix 6. An Algorithm for Overlapping Triplets Cryptanalysis 

Precalculation: calculate the values IS(O) for all permissible values of 0; calculate the 

initial distribution of W ~, q~, by the method given above. 

Calculation (cyclically for some ordering of i): 

1. The prior distribution p~ by 

pi(c, w, d) = PElF i = (c, w, d)] = gi_l(c)qi(w)fi+l(d). 

2. The log posterior distribution, log p~, given up to a constant by 

log[pi(c, w, d)lx i] = IS(c, w, d) + log[pi(c, w, d)]. 

3. The renormalized posterior distribution, p~. 

4. The posterior distribution, q~, given by 

q,(wlx/) = ~ pi[(c, w, d)lxi]. 
c,d 

5. The posterior distributions, f~ and #i, given by 

A(cIx i) = ~ qi[( ti, uJ)lxi],  

tt=c 

o,(dlx') = ~ q,[(t',nJ)lxi]. 

6. The posterior distributions, gi-1 and fi+l, given by 

gi- l (dlx  i) = ~ pi[(c, w, d)lxi], 
C, W 

f , , l ( c lx ' )  = Y~ p,[(c, w, a) lx ' ] .  
w,d 

7. The posterior distributions, q~_l and q~+x, given by 

qi-1 [(t, u)lx i] - gi-1 [ O t l  xi] q,-1 [(t, u)], 
0i-l(Ot) 

qi+l [(t, n)lx i-] - fi+l [(~) nl xi] 
f i+l( t~u)  qi+l[(t, u)]. 

We continue with this algorithm until we have sufficient information about some 

of the key bits, that is, fi and #~ take values sufficiently near to 0 and 1. We can then 
repeat the process with the right half of the output. The critical stage is step 2. At 
this stage, we are able to alter the probability of a particular key occurring. The 
amount we alter it by is given by realizations of the random variables I~(0), given 

in Table 5. 
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