
PAIRS OF MATRICES WITH PROPERTY L. U(1)
BY

T. S. MOTZKIN AND OLGA TAUSSKY

This note is concerned, for matrices with elements in an algebraically
closed field of arbitrary characteristic p, with pencils generated by pairs of
matrices with property L. A pair of n by n matrices is said to have property
L if for a special ordering of the characteristic roots a< of A and Bi of B, the
characteristic roots of \A+ptB are Xa<+p,/3,- for all values of X and pt. (See
[1-5].)

In §§1-5 another characterization of pairs of matrices with property L is
given for a large class of such pairs. The method employed for this purpose
is used in §6 for the study of pencils (not necessarily with property L) of
diagonable matrices, i.e., matrices which are similar to a diagonal matrix.
(These matrices are also called nondefective.) It is shown that for p=0, as
well as for n^p, such pencils are always generated by commutative matrices. In
§7 the significance of this result for general pencils of commutative matrices
is investigated.

1. The ^-discriminant. The new characterization of pairs A, B of matrices
with property L is obtained by considering those ratios X/p. for which \A +p,B
has a multiple characteristic root. We see as follows that this is the case either
for at most n(n — l) ratios or for every X/p.

The characteristic roots of X.4 +p.B are the solutions v =vi, • • ■ , v„ of the
determinantal equation

f(\, a, v) = | vi - \A - pB |   =0

where 7 is the unit matrix. This equation has a multiple root if and only if
the v-discriminant A of /(X, p., v) vanishes. The ^-discriminant A(g) of a poly-
nomial g= zZa-o gn,i = inTL"-i (v — Vi) is defined as the Sylvester resultant

gO ■   ■  '      ■ ■ gn-l        gn      0 •  •  ■      0

2n-2 TT / N2 0 •   •   •     0 gO gl .gn /
gn II (V,I- Vk)2  = /   gn

.'<* gl "  •  •      •       (n  —   l)gn-l      »gn 0 • ■   •   ■      0 /

0      • ■ •   • 0 gi    2g2    •      ■ ■ • ngn
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of g and dg/dv. Since A = A(f) is a form (homogeneous polynomial) in X and
M of degree n(n — 1) the assertion follows.

Call the ratios \/p for which A = 0 the discriminant roots of the pencil
X.4 +pB. These roots need not, of course, be simple. We have, e.g., the follow-
ing fact.

Theorem 1. Let A, B be a pair of matrices with property L. Then all dis-
criminant roots of the pencil \A +pB are of even order, and the number of differ-
ent discriminant roots is therefore at most n(n—l)/2, unless every matrix
\A +pB has a multiple characteristic root.

Proof. Because of property L we have

n

\vl -\A - pB\   = II (" - *«•• - P0i)i-i
whence

A = II [X«* + P0i - (Xa* + P0k)]2-
«*

2. Property D.
Definition. A pair of matrices A, B has property D if A = 0 or if all dis-

criminant roots are of even order, i.e., A is the square of a form in X and /u.
Note that for characteristic p = 2 the discriminant A is always a square.

To show this expand/(X, p, v) in powers of v:

>'-0

where /,- are forms in X and p. We then have for p = 2:

dv

Hence A is of the form

h h   ■     ■     ■     ■
0   /.   •     •     •     •

h o U o   •   •
0   /i   0   /,   •     •

which after subtracting the (« + l)st row from the first, the (w + 2)nd from
the second, and so on, turns out equal to
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/o   0    /,   0     •      •
0   /o   0   f2    ■     ■

/i  0   /,  0    ■     •
0   /i o   /,   •    •

The last column contains only zeros apart from/n in the (n — l)st or (2m — l)st
row, for even or odd n respectively. Expanding with respect to the last
column, we see that after a suitable permutation of rows and columns

Al      0 1/2       2
A=/„     n A =(/nAl)0 Ai

where
fo h   •     ■     ■
0 /o   •     •     •

Ai = h n • • ■
0   /i   •     •     ■

This proves the assertion.
Though property D does not imply property L as we shall see later, a

partial converse of the fact that property L implies property D is the follow-
ing.

Theorem 2. Let A, B be a pair of matrices with property D. Assume that
no matrix \A+pB (for X, p^O, 0) in the pencil has a characteristic root of
multiplicity ^ 3 nor two different double characteristic roots. Except if the char-
acteristic of the field is 2 it then follows that A, B have property L.

Remark. Instead of property D it suffices to assume that there is no
discriminant root of order 1.

3. The characteristic curve. In order to prove Theorem 2 a few concepts
from the theory of algebraic curves will be used. Interpret the equation
/(X, p, v) =0 as the equation of an algebraic curve C of order n in the projec-
tive X, ju, p-plane. We call C the characteristic curve of the pencil.

To say that A, B have property L is obviously equivalent to saying that
the characteristic curve C splits into straight lines.

For no A and 5 does C pass through the point E = (0, 0, 1). A straight
line ju0X—XoM = 0 through P meets C in n points (X0, Mo, vi) where Vi are the
characteristic roots of \qA +paB. Defining a tangent of C at a point T of C,
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390 T. S. MOTZKIN AND OLGA TAUSSKY [November

called point of contact, as a straight line having at T an intersection multi-
plicity^) m>l we see that ;uoX— X0m=0 is a tangent if and only if \0A+p0B
has a multiple characteristic root, and that to every multiple characteristic
root there corresponds a point of contact such that the intersection multiplic-
ity there equals the multiplicity of the root.

For a point T of C, the smallest intersection multiplicity at T of a straight
line through P is called the multiplicity m of T. (For P=(l, 0, 0), this is mil
\n-m ;s tjje highest power of X actually appearing in /(X, p, v)). For m=n,
C splits into straight lines through P.) A point T with m > 1 is singular, and
every straight line through T is a tangent at T in the sense defined. The
intuitive notion of tangent is better represented by the concepts of 0-tangent
and 1-tangent (see [7]). Let T = (1, 0, 0), and let a branch B of C be given by
power series

x = i,     m = E «*<*.     " = zZ 8ktk,
k=0 *—0

or equivalently by series in another parameter r obtained from the above by
substituting t = zZt-i JkTk, 7i5^0 (substitutions with 71 = 0 give inadmissible
representations of the branch); the branch B belongs to T if a0=B0 = 0. If
ko^m is the smallest k for which (ak(t, 8ko) 5*(0, 0), then Bkop. — ak(lv = 0 is the
0-tangent, and is a straight line through T whose intersection multiplicity
with B is >k0; hence its intersection multiplicity with C at T (added up from
the different branches at T) is >m. Denoting by p.'= zZ01^^1 and v'
= zZ^kkt11'1 the derivatives of p. and v, the generic tangent at (X, p., v) is, in
line coordinates, (pv' — vp.', —v', p!), and by specialization to r = 0 we obtain
the 1-tangent (0, —v', m')«-o, that is, Bklp — aklv = 0 where &i3jfc0 is the smallest
k for which (aklki, Bkfii) y^(0, 0). The 0-tangent and 1-tangent coincide certainly
if k0 is not divisible by the characteristic p of the field, hence in particular if
p =0 or n ^p (note that for m =n =p, k0 = 1); they will then be called proper
tangent.

All 1-tangents of C define, in the so-called dual plane, the dual C* oi C.
The dual Cf of an irreducible component Ci of C is an irreducible variety and
cannot be the whole plane; if its dimension is 1 then it has a point in common
with every straight line, and thus there is a 1-tangent to C through every point
of the original plane. If the dimension is 0 there is only one 1-tangent to C\
and Ci is a straight line(3).

Returning to a tangent MoX—X0ju =0 at a point T of multiplicity m we note
that there will be more than two coinciding n at T, that is, ~\0A+p0B will

(2) The intersection multiplicity of a curve C and a straight line Lata point is defined as
the multiplicity of the corresponding root of the resultant of their equations and as « if I
belongs to C.

(3) C** need, for finite characteristic, not be C, even if C contains no straight line [cf. [8],
where p=2 in the fifth line should be p^2].
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have a corresponding characteristic root of multiplicity three at least if and
only if either ffi^3,orm^2 and the tangent is a 0-tangent, orw^l and E is
an inflexion point(4).

Since the tangents from P to C correspond to the matrices with a multiple
characteristic root, they also correspond to the discriminant roots. A multiple
discriminant root, however, does not imply a characteristic root of higher
multiplicity than two. Necessary and sufficient conditions for the occurrence
of a multiple discriminant root are given in the following lemma.

4. Double discriminant roots.

Lemma. Let /(X, p, v)—Q be the equation of an algebraic curve C in the
projective plane over an algebraically closed field F. Then the ratio \o/po is a
multiple root of the v-discriminant A of f if and only if the straight line poh— XoM
= 0 either passes through a singular point of C or is the tangent at an inflexion

point of C or is a tangent with at least two points of contact or is a tangent at
P = (0, 0, 1), or if the characteristic of F is 2.

Proof. Since Xo/mo is a root of A, the line poK— X0ju=0 is a tangent of C.
If a point of contact E is j&P we can assume, without loss of generality,
E=(l, 0, 0). We then want to see under what circumstances jUo = 0 is a mul-
tiple root of A. Since p = 0 has a point of contact at E, we have f=pg+v2h
where g is a form in X, p, v and h is a form in X, v. Let

g = Y giv\ gi = gi(\ p)
and

h = Y hy, hi = hi(\).
The j/-discriminant of / is then

pgo pg\ pg2+ h0    ■ • ■   A„-2    •

/hn-2-

Dividing the first column by p we may write A//j.=Ai (mod p) where

go    0      ho    hi h0    hi

0     0     0      h0    ■     • 0      ho    ■     ■     ■

Ai = / hn-2 = ± 4:g0h0 / hn-2.
gi  2h0 3hi 4h2 I 2A0 3hi I

0     0    2ho 3hi    ■     ■ 0    2ho    ■     ■     ■

(4) A point T with m = 1 is called inflexion point if the tangent at T has at T an intersection
multiplicity ^3.
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Subtracting the double of every row starting with an h0 from the row starting
in the same column with 2h0 we obtain

ho    hi
0      ho    ■     ■     ■

Ai = + 4go&oA2, Aa =     ,    „, / ^n-2-
hi 2«2    •     •     •    /

0      h    ■     ■     ■

We see that, for Tr*P, A is divisible by p,2 if and only if: either 2=0, or gQ is
divisible by p. (T is singular since/(l, p., v) has no constant term and no linear
terms), or g0 is not divisible by p. and ho = 0 (T is an inflexion point), or hor^O
and A2 = 0 (existence of another point of contact). For T = P we can assume
juo = 0 whence, in similar notation as before, f=p.g+\2h and

(M-l)strOW 0 • •  • 0   pgo + \2ho ••• Mg„_2+A2fcn-2 Pgn-1 1

A= .
(2n-l)strow    0-0 0 ngi+\2h ••• (w-l)Mgn-i      »

since the coefficient of v" is 0. Dividing the last column but one by p. we have
A/ju=Ai (mod p.) with

(n— l)st row      0 • • • 0   \2ho      ■ • ■            \2hn-2             g„_i          1

Ai= .
(2»-l)strow    0---0    0     \2hi-■ ■ (n-2)\2hn-2 (n-l)gn-i   n

since the last three columns have entries 9*0 only in two rows.
If every matrix \oA+p.oB has a multiple characteristic root it follows

that C has a component which has to be counted double, or for characteristic
p 9*0, a component for which the exponents of v with nonvanishing coefficients
are all divisible by p. Indeed, from A = 0 it follows that every straight line
through P is a tangent to C and therefore since P is not on C that C, if without
multiple components, has an irreducible component whose generic tangent
passes through P. We now show under what circumstances this is possible. If
g(X, p., v) =0 is the equation of the irreducible component and if all tangents
pass through P = (0, 0, 1) this implies dg/dv = 0 along C. Since C is an irre-
ducible curve this is not possible unless dg/dv = 0. (This conclusion follows
e.g. from the Hilbert Nullstellensatz.) The fact that dg/dv = 0 implies the
assertion.
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5. Property D resumed.
Proof of Theorem 2. We want to prove that under the conditions assumed

the curve C splits into n straight lines. Suppose C has an irreducible com-
ponent not a straight line and consider a 1-tangent t from E to this com-
ponent. As the matrix which corresponds to t has only one multiple character-
istic root, t has only one point of contact with the whole curve C. Since
there are no triple characteristic roots the point of contact is not an inflection
point of C nor a singular point of multiplicity > 2, and if it were a point of
multiplicity 2 for pj^2 then t would be a 0-tangent and yield a character-
istic root of multiplicity>2. By the lemma it follows for A^O that t corre-
sponds to a discriminant root of multiplicity 1 the existence of which was ex-
cluded. For A = 0 and a double component we get a characteristic root of
multiplicity =4. There remains the case A = 0, p^O with no double com-
ponent. The multiplicity of the characteristic root is then at least p, whence
p = 2.

The condition that no matrix in the pencil has a triple characteristic root
is necessary. We can give two matrices A, B with property D, but without
property L:

0    10 [112
4=00-1, B =       1      1      2  .

.0    0    0J [-1   -1  -2,
The matrices A and 5 have the triple characteristic root 0. The matrix
A+B, however, does not have the characteristic root 0, hence A, B do not
have property L. The discriminant of the pencil is — 27X4ju2.

Another example, valid for matrices with elements in a field with arbitrary
characteristic p9^2, is

0    10) [0    1    0
4=001, 5=000.

.0    0    0J ll    0    0.
The matrices A, B, A—B all have a triple characteristic root; A, B do not
have property L, since A has all its characteristic roots zero and 5 is singular,
while A+B is not singular. Here all discriminant roots are exactly double
roots, A=-27XV(X+m)2.

An example without triple characteristic roots, where some (six) matrices
have two double characteristic roots, valid for p 9^ 2, 3, 5, is

10     0     0] [0100
0-100 -1000

A = ,5 =
0000 0002
.0     0     0     4j 10     0-20.
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Here   \vI-\A-»B\ = (v2+p2-'K2)(v2+4:fjL2-4v\), A = (8(m2-X2)(m2+3X2)
X(9m2-5X2))2, whence D holds but not L.

For characteristic p = 2 property D does not imply property L; as noted
all pairs have property D, but already for n = 2, e.g.

-CD' -CO
do not have property L.

According to Theorem 2, for p9^2 and w = 2 property D alone with A^O
implies property L. Hence we have for n — 2: a pencil with, but for scalar
multiples, only one matrix with a double characteristic root is generated by a pair
of matrices with property L.

A direct proof of this fact can easily be obtained: Assume A in triangular
form and that it is the only matrix with a double root, which is further assumed
to be zero. These assumptions do not constitute a restriction. Assume then

-c:> -co-
If the matrix

(a    0 + \b\

has no double roots for all finite values of X then

(a + 8)2 - 4(<x5 - y(0 + \b)) ^ 0

for all X. This implies yb = 0. If b = 0 the pencil contains a scalar matrix; in
this case it is generated by a pair of commutative matrices. If y=0 then
A, B are both triangular matrices, and hence have property L.

6. Pencils of diagonable matrices.

Theorem 3. Let \A+nB be a pencil in which all matrices are diagonable
and, for py^Q, let n^p. Then A, B have property L.

Proof. Consider again the characteristic curve C of the pencil. Suppose C
had an irreducible component C which is not a straight line. Let t be a proper
tangent from E = (0, 0, 1) to C. Without loss of generality we may assume the
point of contact E= (1, 0, 0). This means that A has a multiple characteristic
root 0, say of multiplicity m. Hence we may suppose, by hypothesis, that the
first m rows and columns of A vanish. Expanding ] vI—\A —pB\ into powers
of X we see that no higher power than Xn_m occurs; T is therefore of multi-
plicity m, so that / is not a proper tangent at E, and this contradiction proves
the theorem.

For characteristic 0, the conclusion of Theorem 3 still holds if (but for
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scalar multiples) only a single matrix in the pencil is not diagonable. Indeed,
the line (0, 0, 1) is, for p = 0, not a tangent to the dual Cf of any irreducible
component G of C, and has therefore, if C\ is not a straight line, at least two
points in common with Cf. To these there correspond two proper tangents
from the point (0, 0, 1) to G, and hence two nonproportional nondiagonable
matrices.

With G of order 2, pencils without property L are easily constructed
which have only two nonproportional nondiagonable matrices.

For n = kp + l, k^l, an example(6) of a pencil without property L formed
entirely by diagonable matrices is (shown for n = 4):

0   0   0    1] [0000
10   0    1 0   0   0    0

A = B =
110    1 0   0   0   0

.1110] [o   0   0   1.

with f=\vI-\A-p.B\=v»-1(v+\-p.)-(K+v)"-1\=vn-vn-lp.-'k", df/dv
= v"~1. Here/ is irreducible and \A+pB has no multiple characteristic root
except for X = 0.

The proof of Theorem 3 shows that every 0-tangent from (0, 0, 1) belongs
to a nondiagonable matrix. The converse is not true: for

A-Q&    s"Co>
we havef=(v—p)v, and the nondiagonable matrix A belongs to the tangent
p. = 0 which is not a 0-tangent.

A stronger result than Theorem 3 will now be established.

Theorem 4. Let \A +p.B be a pencil in which all matrices are diagonable
and, for pj*0, assume n^p or that A and B have property L. Then A, B can be
diagonalized by the same similarity and therefore they commute.

As in Theorem 3 it is essential that the field of elements be algebraically
closed.

A = ( )    and    B = ( )
\0   0/ \1    0/

do not have property L, but ~KA +pB is diagonable and has different char-
acteristic roots for all real X and p(r*(0, 0)).

Theorem 4 fails to hold if a single matrix in the pencil is not diagonable.
As an example take

(5) Developed in a discussion with I. Kaplansky in 1955, to whom we are also grateful for an
earlier remark that led us to Theorems 3 and 4.
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-O-  -CD-
We shall use the following

Lemma. Consider the determinant

Xn X12 • • •        xXr

X21     X22   —   X2A  •  •  ■ X2r
A   =        •

I  xri xr2       • ■ • xrr — xrX

and assume that A and all its principal minors of order ^r — s containing Xu
vanish for X=Xo. Then A is a polynomial in X which has Xo as a root of multi-
plicity s + 1.

Proof. We may assume X0 = 0, for otherwise we put X=X'+X0 and con-
sider A as a polynomial in X'. Express now A as a polynomial in X. It is easily
seen that the constant term as well as the coefficients of all powers of X up
to X* vanish. This establishes the lemma.

Return now to the proof of Theorem 4. By Theorem 3 the characteristic
roots of X^4 +B are Xaj+(3<. If every matrix in the pencil X^4 +B has a multiple
characteristic root, then there must be some value of i, k (i?*k) for which the
equation \ai+Bi=\ak+Bk is satisfied for all values of X. This implies «<=«*,
Bi=8k. Assume the characteristic roots so numbered that ai=«2= ■ ■ • =at
(t = l in case not every matrix \A+B has a multiple characteristic root),
at+i9*ai, i>0, 8i=82= ■ • • =8, (s^t). For t>s interchange A and B. It
follows that \ai+8i is a characteristic root of multiplicity t of \A +B for all
values of X, but of multiplicity >t only for special values of X. We assume
A in diagonal form. The matrix X^4 +B is then of the form

Xai + i»n c»i2    -bn • ■ bin

b2i       Xai + 622    • b2t • ■ b2n

bti bn    •    Xai + btt ■ btn   ■

bt+1,1 ■       • Aai+i + bt+i,t+i

bni ... . .    Xa„ + bnn

Consider the matrix C\ = (Xai+pi)7— X^4 — B. SinceX.4+P has the character-
istic root Xai+/3i with multiplicity t for all values of X the (n — t + ^-dimen-
sional minors of C\ must vanish for all values of X, because the same is true
for the similar diagonal matrix.  Now consider an  (n — / + l)-dimensional
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minor formed from the last n — t rows and columns and the ith row and feth
column (i, k = l, 2, ■ ■ • , t). The coefficient of Xn-' is +&«• H/>< («/""ai) f°r
i?*k and ±(ba—0x)- H/>« («>—«i) for i = k. Since this coefficient vanishes,
but a — aiT^O it follows that &,* = 0 for *V£, i, k = l, • • • , t, and &,-,=p\,
*-l, ■■•,*.

In order to prove that all other &<» = 0, i^fe, consider values of X for which
Xon+|8i is a characteristic root of higher multiplicity than t. This will occur
when for some i>t we have

Xii-ai + 0i = Xi<a< + Pi.

If such a characteristic root is of multiplicity t+s then the (n — t — 5 + 1)-
dimensional minors of C\ must all vanish for X=Xn. Consider the minor A
formed by the first column and the last n — t — 1 columns and by the last
n—t rows. The determinant A is of the form mentioned in the lemma with
r = n — t and s replaced by s — 1. Hence Xn is a zero of A of multiplicity 5.
However, A is a polynomial in X of degree n — t—1 which vanishes for all
values of Xn, hence for n — t values. Although these values need not be
different the lemma shows that they have to be counted with their full
multiplicities. This is only possible if the polynomial vanishes identically.
The coefficient of X"-'-1 is i&H-i.iHoi («!+— «i), hence &«+i,i=0. Similarly
we can show that bt+i,k = 0, i = l, • • • , n — t, k = l, • ■ ■ , t. The same argu-
ment further applies to the columns, and we obtain &*,<+, = 0, * = 1, • • • ,n — t,
k = l, - ■ ■ , t. The matrix X4 +5 is therefore of the form

Xai + Pi 0 ... 0

0 \ax + px 6 • • • 6
0        • • •       0 Xai+i + bt+i.t+i ■ ■ •     bt+i,n

0        • • •       0 bn,t+i • ■ ■ Xa„ + bnn.

The pencil in the lower right corner consists again of diagonable matrices
with property L. By induction the theorem is proved.

7. Pencils of commutative matrices. It is well known that every matrix
with complex numbers as elements can be regarded as the limit of a sequence
of diagonable matrices, e.g., as the limit of a sequence of matrices with only
simple characteristic roots. This idea can be extended to pairs of commuta-
tive matrices. We have

Theorem 5. Every pair of commutative nbyn matrices A, B with complex
numbers as elements is the limit of a sequence of pairs of (eo ipso, simultaneously)
diagonable commuting matrices.
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This theorem can be interpreted as a converse of Theorem 4.
Proof. Assume that the theorem holds for smaller n. We consider several

cases: 1. The case where A has at least two different characteristic roots;
2. The case when A has only one characteristic root, but more than one
characteristic vector corresponding to it; 3. The case when A has only one
characteristic root with only one characteristic vector corresponding to it.

In all three cases we assume A in its Jordan normal form. This is no re-
striction, for apply the same similarity transformation which transforms A
to Jordan normal form to both A and B. We obtain again a pair of com-
mutative matrices. If we show that this pair is the limit of a sequence of
pairs of diagonable commuting matrices then the original pair is the limit of
the sequence of pairs obtained by applying the inverse similarity.

Case 1. In this case A can be assumed in the form

(Al°)

VO     A J
where Ai, A2 are square matrices with no characteristic roots in common.
Since B commutes with A, it must be of the form

Vo    bJ
where Pi, B2 are square matrices of the same dimensions as Ai, .42. This can
easily be ascertained for A in normal form (see [9, p. 148]). The result then
holds by induction hypothesis.

Case 2. Since A splits up into several blocks, let m(<n) be the dimension
of the first one. Denote by C an auxiliary diagonal matrix (cu) with Cn
= c22= ■ ■ • =cmm9*cm+i,m+i=cm+2,m+2= ■ ■ ■ =cnn. The matrices A and C
commute and hence A and any matrix \B+p.C commute. Since C does not
have all its characteristic roots equal there must (by continuity) be some
matrix \B+pC, \?*0 which does not have all its characteristic roots equal.
Hence the pair of matrices A, B + (jj,/\)C satisfies the conditions of Case 1
and is therefore the limit of a senuence of pairs of diagonable matrices. The
same is therefore true for the pair A, B.

"ase 3. A is of the form

0    10     •    •    0
0   0    10-0

A =.+ ai,
.1
.0 .

hence B is of the form
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0   pi p2 ■ ■ ■ pn-i

0    0    pi-- ■ 0n_2
B =.      +PI.

0   0   0  • -0   01
.0   0   0  • • •    0  .

The matrix B—0iA has more than one characteristic vector which reduces
Case 3 to Case 2.

This completes the proof of Theorem 5.
For matrices with elements in an arbitrary algebraically closed field an

analogous proof shows:

Theorem 6. A generic pair of commutative n by n matrices A, B is diagon-
able.

This means that the commutative pairs form an irreducible variety V
(in 2»2-dimensional affine space) on which almost every point corresponds to
a diagonable pair. Here "almost every" is the algebrico-geometrical "almost
all": all but a proper, and thus lower-dimensional subvariety of V. For
matrices with complex elements this implies that every commutative pair
A, B is the limit of a sequence of pairs of diagonable matrices. If we already
knew that V is irreducible the theorem would follow easily by remarking
that a general A is not only diagonable, but has only simple characteristic
roots, and that when this A is in diagonal form, 5 is also diagonal. As it is,
the irreducibility of V is a by-product of the proof, in which we assume that
the theorem is true for every smaller degree (for n = 1 it holds trivially). We
want mainly to show that V is generated by, that is, is the smallest variety
containing, all diagonable pairs. This implies the irreducibility of V; for let
W be the ostensibly irreducible variety of all pairs of diagonal matrices and
T any nonsingular matrix: then if/ and g are polynomials in the 2w2 elements
of a pair of n by n matrices such that/g = 0 on V then, for every T, either
/ = 0 or g = 0 on TWT'1, and since the E's generate the irreducible variety of
all n by n matrices, it follows that either/ = 0 on EWE-1, for every E, and
thus/ = 0 on V, or else g = 0 on V, which means that V is irreducible.

We now proceed as in the proof of Theorem 5. In the first case where A
has at least two different characteristic roots let

/4i   0 \
A = t( jr-1

\0     A J
where Au A2 are square matrices with no characteristic roots in common.
Since 5 commutes with A it must be of the form

/Ei   0 \
t[ )t-1Vo    bJ
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where Pi, P2 are square matrices of the same dimensions as Ait A2. Since
Ai and P,- (i = l, 2) commute the pair Ai, Bi is by induction hypothesis in the
variety generated by diagonable pairs of the corresponding dimension, and
thus the same is true for A, B.

Secondly, if A has only the characteristic root a but more than one char-
acteristic vector define m and C as in Case 2 of the preceding proof. Again A
and every \B+p.C commute. Now \B+pC has, for general \/p., different
characteristic roots, whence by Case 1 the pair A, XB +p.C is in the variety gen-
erated by diagonable pairs, and the same is therefore true for the specializa-
tion A, B.

Finally if A has only one characteristic vector then

0    10-0
0    0    1-0

A = T.T-1 +al

0   0   0-1
.000-0.

and B must be of the form
0    bi  b2 • ■ ■ &„_i

0      0       &l •  •  •   J„_2

B = T.T-1 + 81-
0   0   0  • -0   h
.0   0    0  • • •   0

The matrix B — biA has more than one characteristic vector, so that by Case 2
the pair A, B — biA belongs to the variety generated by diagonable pairs,
and since the set of diagonable pairs, with C, D, also contains C, D+biC,
the same holds for the variety generated by it.

Theorem 7. If A, B commute and n>2 then the pencil ~\A +pB (X, p. t*0, 0)
contains either only diagonable matrices or none or exactly one (but for scalar
multiples). If n = 2 there is no commutative pencil which contains only non-
diagonable matrices.

Proof. If the pencil contains two nonproportional diagonable matrices A, B
then all are diagonable. For let A be in diagonal form with equal character-
istic roots arranged adjoining each other so that

Ai   0   • • • 0
0     A,-■■ 0

A =

.0 0     •  • • Ar.
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Here the Ai are scalar matrices such that Ai and 4* have different diagonal
elements when i^k. It then follows that

5X   0   •• • 0
0     B2 ■ ■ ■ 0

B =

.0      0   • • • BT,

where 5,- is a square matrix of the same order as 4,-. Since 5 is diagonable
each Bi is. The similarity which diagonalizes 5,- leaves 4,- invariant, hence
4, 5 are simultaneously diagonable and every matrix in the pencil is diagon-
able.

That all three cases can occur for n > 2 is evident from the case n = 3. The
pencil generated by

0    1    01 [0   0    1
4=001, 5=000

0   0   OJ 10   0   0
does not contain any diagonable matrix apart from the zero matrix.

For n = 2 the pencil generated by

-c:> -ci)-
contains a diagonable matrix. It is easy to see that any two commutative
2 by 2 nondiagonable matrices can be reduced to this form by similarities
and by adding scalars.
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