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Pairwise Cardinality Networks⋆

Michael Codish and Moshe Zazon-Ivry

Department of Computer Science, Ben-Gurion University, Israel
{mcodish,moshezaz}@cs.bgu.ac.il

Abstract. We introduce pairwise cardinality networks, networks of com-
parators, derived from pairwise sorting networks, which express cardi-
nality constraints. We show that pairwise cardinality networks are su-
perior to the cardinality networks introduced in previous work which
are derived from odd-even sorting networks. Our presentation identifies
the precise relationship between odd-even and pairwise sorting networks.
This relationship also clarifies why pairwise sorting networks have signif-
icantly better propagation properties for the application of cardinality
constraints.

1 Introduction

Cardinality constraints take the form, x1 + x2 + · · · + xn ≺ k, where x1, . . . , xn

are Boolean variables, k is a natural number, and ≺ is one of {<,≤, >,≥,=}.
Cardinality constraints are well studied and arise in many different contexts.
One typical example is the Max-SAT problem where for a given propositional
formula (in CNF) with clauses {C1, . . . , Cn}, we seek an assignment that satisfies
a maximal number of clauses. One approach is to add a fresh blocking variable
to each clause giving ϕ = {C1 ∨ x1, . . . , Cn ∨ xn}. Now we seek a minimal value
k such that ϕ∧ (x1 +x2 + · · ·+xn < k) is satisfiable. We can do this by encoding
the cardinality constraint to a propositional formula ψk and repeatedly applying
a SAT solver to find the smallest k such that ϕ ∧ ψk is satisfiable.

There are many works that describe techniques to encode cardinality con-
straints to propositional formulas. The starting points for this paper are the work
by Asin et al.[1] and an earlier paper [4] which describes how pseudo Boolean
constraints (which are more general than cardinality constraints) are translated
to SAT in the MiniSAT solver. Both of these papers consider an encoding tech-
nique based on the use of sorting networks.

A (Boolean) sorting network is a circuit that receives n Boolean inputs
x1, . . . , xn, and permutes them to obtain the sorted outputs y1, . . . , yn. The
circuit consists of a network of comparators connected by “wires”. Each com-
parator has two inputs, u1, u2 and two outputs, v1, v2. The “upper” output,
v1, is the maximal value on the inputs, u1 ∨ u2. The “lower” output, v2, is the
minimal value, u1 ∧ u2. In brief, naming the wires between the comparators as
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propositional variables, we can view a sorting network with inputs x1, . . . , xn

and outputs y1, . . . , yn as a propositional formula, ψ, obtained as the conjunc-
tion of its comparators. In the context of the Max-SAT problem described above
the formula ψk expressing the cardinality constraint x1 + x2 + · · · + xn < k,
is obtained by sorting the x1, . . . , xn (in decreasing order), and setting the kth

largest output to 0. As the outputs are sorted, this implies that all outputs from
position k are zero and hence that there are less than k ones amongst the input
values. If the outputs are y1, . . . , yn, the cardinality constraint is expressed as
ψk = ψ ∧ ¬yk.

Adding a clause ¬yk to the formula ψ that represents a sorting network with
input wires x1, . . . , xn and output wires y1, . . . , yn, assigns a value (zero) to an
output wire. This, in turn, imposes constraints on other input and output wires.
So in some sense, we are running the network backwards. That sorting networks
are bi-directional is well-understood, see for example [2]. However, this point is
often overlooked. It is this bi-directionality that impacts the choice of sorting
network construction best suited for application to cardinality constraints.

Sorting networks have been intensively studied since the mid 1960’s. For an
overview see for example, Knuth [5], or Parberry [6]. One of the best sorting
network constructions, and possibly the one used most in applications, is due to
Batcher as presented in [2]. Parberry [7] describes this network as follows:

For all practical values of n > 16, the best known sorting network is the
odd-even sorting network of Batcher, which is constructed recursively
and has depth (logn)(log n+1)/2 and size n(log n)(log n− 1)/4+n− 1.

The presentations in [1] and in [4] describe the use of odd-even sorting net-
works to encode cardinality constraints. In this paper we take a similar approach
but apply the so called “pairwise sorting network” instead. Parberry [7], intro-
duces the pairwise network:

It is the first sorting network to be competitive with the odd-even sort
for all values of n. The value of the pairwise sorting network is not that
it is superior to the odd-even sorting network in any sense, but that it
is the first serious rival to appear in over 20 years.

In this paper, almost 20 years after the introduction of pairwise sorting net-
works, we are in the position to state that pairwise sorting networks are signif-
icantly superior to odd-even sorting networks, at least for encoding cardinality
constraints. To obtain our results, we first observe that both types of networks
are composed of two main components, which we term: pairwise splitters and
pairwise mergers. Usually, the odd-even sorting network is viewed as a network
of odd-even mergers. However, we show that each such odd-even merger is pre-
cisely equivalent to the composition of a pairwise splitter and a pairwise merger.
Consequently, in the odd-even sorting network, pairwise splitters and mergers
alternate, whilst in the pairwise network, the splitters and mergers occur in
separate blocks, splitters before mergers.



The precise and clear presentation of the relationship between pairwise and
odd-even sorting networks is new and is a contribution on its own right. It is also
the basis for our results. As we illustrate in the rest of the paper, the splitters
inhibit the propagation of data from the sorted outputs y1, . . . , yn towards the
original inputs x1, . . . , xn occurring in the cardinality constraint. Hence, when
encoding cardinality constraints, the splitters are best positioned closer to the
xi’s than to the yi’s.

Cardinality networks, similar to sorting networks, are networks of compara-
tors that express cardinality constraints. As described above, a cardinality net-
work is easily constructed using a sorting network. However, both the odd-even
as well as the pairwise sorting networks involve O(n log2 n) comparators to sort
n bits. Earlier work describes cardinality networks of size O(n log2 k) for con-
straints of the form x1+x2+· · ·+xn ≺ k which is an improvement for the typical
case where k is considerably smaller than n. For example, in [8], Wah and Chen
illustrate a O(n log2 k) construction for the (k, n) selection problem which is to
select the k smallest (or largest) elements from a set of n numbers. Also in [1],
Asin et al. define a simplified (odd-even) merge component and illustrate its
application to construct a cardinality network of size O(n log2 k).

In this paper we show that when expressing a cardinality constraint x1 +
x2 + · · · + xn ≺ k in terms of a pairwise or an odd-even sorting network, the
network collapses automatically (by partial evaluation) to a cardinality network
with O(n log2 k) comparators. No further construction is required. Experimen-
tal evaluation indicates that the choice of a pairiwse sorting network results in
smaller encodings.

In Section 2 we present the classic odd-even and pairwise sorting networks.
Section 3 clarifies a precise relationship between these two types of networks.
This simplifies, and perhaps demystifies, the presentation of the pairwise net-
work. In Section 4 we show that a cardinality network of size O(n log2 k) is
derived by partial evaluation from a pairwise sorting network. Section 5 presents
a preliminary experimental evaluation and Section 6 concludes.

2 Sorting Networks - from Batcher to Parberry

Sorting networks were originally described as circuits, composed using compara-
tors, which given values on their input positions compute (in parallel) the sorted
values on their output positions. In the context of cardinality networks, it is ben-
eficial to view sorting networks as relations between the “input” and “output”
positions. Given such a relation, and values for some of the (input or output)
positions, we seek values for the rest of the positions that satisfy the relation.

We represent a comparator as a relation comparator(a, b, c, d) where intu-
itively a and b are two Boolean inputs and 〈c, d〉 a permutation of 〈a, b〉 with
c ≥ d. More formally, the relation is defined as follows:

comparator(a, b, c, d) ↔ (c↔ a ∨ b) ∧ (d↔ a ∧ b)

A network of comparators is a conjunction of their corresponding relations. A
sorting network is a relation on tuples of Boolean variables expressed in terms of



Fig. 1. An odd-even sorting network as a network of odd-even mergers

a network of comparators. To ease presentation, we will assume that the lengths
of tuples are powers of 2.

The Odd-Even Sorting Network

The odd-even sorting network, due to Batcher [2], is based on the merge-sort
approach: to sort a list of 2n values, first partition the list into two lists with
n values each, then recursively sort these two lists, and finally merge the two
sorted lists. The network is termed “odd-even” because of the way the merge
component is defined.

We present the odd-even merge component as a ternary relation on tuples
of Boolean values. The relation OEMerge(A,B,C) is defined as a conjunction
of comparators and expresses that merging sorted lists A and B, each of length
n gives sorted list C, of length 2n. The relation is defined for n = 1 and then
recursively for n > 1 as follows:

OEMerge(〈a1〉, 〈b1〉, 〈c1, c2〉) ↔ comparator(a1, b1, c1, c2).

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
OEMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧

OEMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)
∧

∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1).

The odd-even sorting network [2] is a binary relation on sequences of length 2m

and is defined as follows for m = 0 and recursively for m > 0. For m > 0 we
denote the sequence length 2m = 2n.

OESort(〈a1〉, 〈a1〉).

OESort(〈a1, . . . , a2n〉, 〈c1, . . . , c2n〉) ↔
OESort(〈a1, . . . , an〉, 〈d1, . . . , dn〉)

∧

OESort(〈an+1, . . . , a2n〉, 〈d
′
1, . . . , d

′
n〉)

∧

OEMerge(〈d1, . . . , dn〉, 〈d
′
1, . . . , d

′
n〉, 〈c1, . . . , c2n〉).

The recursive definition of an odd-even sorting network unravels to a network
of merge components. Figure 1 illustrates the network that defines the relation



between 8 unsorted “inputs”, on the left, and their 8 sorted “outputs”, on the
right. Each depicted odd-even merger represents a relation between two sorted
sequences of length n (on its left side) and their sorted merge of length 2n (on
its right side).

The Pairwise Sorting Network

The pairwise sorting network, due to Parberry [7], is also based on the merge-
sort approach but with one simple, yet influential, difference in the first stage
of the construction: To sort a list of 2n values, first split the list “pairwise” into
two lists, the first with the n “larger” values from these pairs, and the second
with the n smaller values. The resulting network is termed “pairwise” because
of the way the elements to be sorted are pairwise split before recursively sorting
the two parts and merging the resulting sorted lists.

PWSplit(〈a1, . . . , a2n〉, 〈b1, . . . bn〉, 〈c1, . . . , cn〉) ↔
∧

1≤i≤n

comparator(a2i−1, a2i, bi, ci).

The pairwise sorting network [7] is a binary relation on sequences of length 2m

and is defined as follows for m = 0 and recursively for m > 0. For m > 0 we
denote the sequence length 2m = 2n.

PWSort(〈a1〉, 〈a1〉).

PWSort(〈a1, . . . , a2n〉, 〈d1, . . . , d2n〉) ↔
PWSplit(〈a1, . . . , a2n〉, 〈b1, . . . bn〉, 〈c1, . . . , cn〉)

∧

PWSort(〈b1, . . . , bn〉, 〈b
′
1, . . . , b

′
n〉)

∧

PWSort(〈c1, . . . , cn〉, 〈c
′
1, . . . , c

′
n〉)

∧

PWMerge(〈b′1, . . . , b
′
n〉, 〈c

′
1, . . . , c

′
n〉, 〈d1, . . . , d2n〉).

The description of the pairwise merger (PWMerge) given by Parberry in [7] is
not straightforward to follow. We provide a simple specification of the PWMerge

relation in the next section. For now, let us note a property of the pairwise
merger by comparison to the odd-even merger. Consider the merging of two lists
of bits, 〈a1, . . . , an〉 and 〈b1, . . . , bn〉. The odd-even merger assumes only that the
two lists are sorted. In contrast, the pairwise merger assumes also that each pair
〈ai, bi〉 is sorted “internally”. Namely, that ai ≥ bi. Indeed, in [7], the pairwise
merger is called: “sorting sorted pairs”.

The recursive definition of a pairwise sorting network unravels to a network
of split and merge components. Figure 2 illustrates the network that defines the
relation between 8 unsorted “inputs”, on the left, and their 8 sorted “outputs”,
on the right. Scanning from left to right, we first have the network of splitters
and then a network of mergers.

3 Sorting Networks - from Parberry back to Batcher

In this section we clarify a precise relationship between the odd-even and pairwise
sorting networks. While very simple, this relationship is not to be found in the



literature. This relationship will provide the basis for our argument that pairwise
sorting networks are significantly better than odd-even networks in the context of
cardinality constraints. Parberry, in [7], provides little insight when stating that
(1) “one can prove by induction on n that the n input pairwise sorting network
is not isomorphic to the odd-even sorting network”; and (2) “it is also easy to
prove that the pairwise sorting network has the same size and depth bounds as
Batcher’s odd-even sorting network”.

Fig. 2. A pairwise sorting network as a network of splitters and pairwise mergers

We first introduce a simple recursive definition for the pairwise merger and
claim that it is indeed a suitable pairwise merger and that it has the same size
and depth bounds as Parberry’s pairwise merger.

Theorem 1 (pairwise merge). Consider the following specification of a pair-
wise merger for merging sequences of length n defined for n = 1 and then recur-
sively for n > 1.

PWMerge(〈a1〉, 〈b1〉, 〈a1, b1〉).

PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
PWMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧

PWMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)
∧

∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1).

This specification is: (1) a correct merger for the pairwise sorting network; (2) a
network of depth log n and size n log n−n+1; and (3) isomorphic to the iterative
specification given by Parberry in [7] (pg.4).

Proof. (sketch) For (1) we need to show that if 〈a1, . . . , an〉 and 〈b1 . . . , bn〉 are
sorted sequences and for each position ai ≥ bi, then 〈d1, c2, . . . , c2n−1, en〉 is
sorted (and has the same total number of 1’s and 0’s as in 〈a1, . . . , an〉 and
〈b1 . . . , bn〉). This follows by a simple induction. Showing (2), is also straightfor-
ward, solving S(1) = 0 and S(n) = 2S(n/2)+(n−1) for the size, and D(1) = 0,
D(n) = D(n/2) + 1 for the depth. (3) Follows by induction on n, which we
assume to be a power of 2. Assuming that the two recursive calls to PWMerge



are isomorphic to their iterative specifications, we have that they each consist in
(log2 n − 1) layers generated by the iterations of Parberry’s specification. Each
respective pair of these layers (one from the odd call and one from the even call)
are shown to combine to give a corresponding layer of the full network. The last
iteration layer in the full network is precisely that introduced by the conjunction
∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1).

We now proceed to observe the relationship between the pairwise and odd-
even mergers.

Theorem 2 (odd-even merge). An odd-even merger is equivalent to the com-
position of a pairwise split and a pairwise merger. For n ≥ 1,

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔
PWSplit(〈a1, b1, a2, b2, . . . , an, bn〉, 〈a

′
1, a

′
2 . . . , a

′
n〉, 〈b

′
1, b

′
2 . . . , b

′
n〉)

∧

PWMerge(〈a′1, a
′
2 . . . , a

′
n〉, 〈b

′
1, b

′
2 . . . , b

′
n〉, 〈c1, . . . , c2n〉).

Proof. (brief description) The proof is by induction on n and follows the struc-
ture of the definition of OEMerge where the theorem holds for the recursive calls
to OEMerge. (See Appendix.)

Figure 3 illustrates the relationship between the two types of sorting net-
works. There are three networks in the figure. On the left, we have a pairwise
sorting network (of size 8). In the middle of this network, the column of four
splitters (each of size 2) followed by the column of four pairwise mergers (also of
size 2), form together a single column of four odd-even mergers, each of which
is a 2 × 2 sorter. These 2 × 2 sorters are boxed in the left network. Now, the
column of two splitters (each of size 4) can migrate to the right, because splitting
before or after sorting has the same effect. This migration results in the middle
network of the figure. In this middle network we now have, in the middle of
the network, two 4 × 4 odd-even sorters. These 4 × 4 sorters are boxed in the
middle network. The transition to the right network is once again by migrating
a splitter over the two smaller sorting networks. This results in an 8×8 odd-even
network. Figure 4 provides a high-level perspective on this transition. The left

Fig. 3. Migration of splitters: from pairwise to odd-even

is a pairwise sorting network, composed of a split component followed by two
recursive sorting networks and finishing with a pairwise merger. The splitter can



Fig. 4. High-level view on: from pairwise to odd-even

be migrated to the right, as splitting and sorting (twice) has the same effect as
(twice) sorting and then splitting.

In [4] and in [1], the authors prove that for the CNF encodings of cardinality
constraints using odd-even sorting networks, unit propagation preserves arc con-
sistency. This means that for a constraint of the form x1 + x2 + · · ·+ xn < k, as
soon as k−1 of the xi variables have become true, then the rest will become false
by unit propagation. If 〈x1, . . . , xn〉 and 〈y1, . . . , yn〉 are the inputs and outputs
of an odd-even sorting network, it means that setting any k − 1 variables from
〈x1, . . . , xn〉 the value 1, then by unit propagation the first k − 1 variables in
〈y1, . . . , yn〉 will be assigned the value 1. Moreover, if also yk = 0 then the rest
of the n− k + 1 variables from 〈x1, . . . , xn〉 will be assigned the value 0 by unit
propagation. We note that pairwise sorting networks enjoy all of the same arc
consistency properties as do the odd-even networks. The proofs of these claims
are similar to those presented in [1]. We will see that pairwise networks enjoy one
additional propagation property which does not hold for the odd-even networks.

4 The Pairwise Cardinality Network

In this section we show how the application of a pairwise sorting network to
encode a cardinality constraint x1 + x2 + · · · + xn ≺ k can be collapsed to a
network with O(n log2 k) comparators. To obtain this result we first enhance the
definition of the pairwise merger, adding a linear number of clauses which express
that the outputs of the merger are sorted. These clauses are redundant in the
sense that in any satisfying assignment of the formula representing a pairwise
sorting network, the outputs of the mergers are sorted anyway. Their purpose is
to amplify propagation. We focus on the case when ≺ is the less-than relation.
We assume that n is a power of 2 and that k ≤ n/2 + 1. Otherwise we can
encode the dual constraint (counting the number of empty seats is easier than
counting the passengers in an almost full aircraft). In general, it is common that
k is significantly smaller than n and in the worst case k = n/2+1. The following
definition specifies the enhanced pairwise merger.

Definition 1 (enhanced pairwise merger). The enhanced pairwise merger
is defined for n ≥ 1



PWMerge′(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉) ↔
PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉)

∧

sorted(〈c1, c2, . . . , c2n〉.
where

sorted(〈c1, . . . , c2n〉) ↔
∧2n−1

i=1
(ci ∨ ¬ci+1).

The pairwise cardinality network for x1 + x2 + · · · + xn < k is obtained as
a pairwise sorting network with inputs x1, . . . , xn and outputs y1, . . . , yn. We
assume that the pairwise mergers in the network are enhanced and we set the
kth output yk to zero (by adding the clause ¬yk). The network then collapses to
a smaller network by propagating the known value yk = 0 (backwards) through
the network. In particular, from the rightmost enhanced pairwise merger we
have sorted(〈y1, . . . , yn〉) and obtain from yk = 0 by unit propagation yi = 0 for
k < i ≤ n.

The following definition specifies how comparators may be eliminated due to
partially known inputs. It works like this (we focus on the propagation of zero’s):
For each comparator, if the upper output value is zero then we can remove the
comparator, setting the other output bit to zero as well as the two input bits;
and if either one of the input bits is zero, then we can remove the comparator
setting the lower output bit to zero while the upper output bit is identified
with the other input bit. The elimination of comparators is a simple form of
partial evaluation and applied at the comparator level, before representing the
network as a CNF formula. Except for the identification of an output bit with
an input bit (e.g. b = c in the definition below), it could also be performed as
unit propagation at the CNF level.

Definition 2 (partial evaluation of comparators).

comparator(a, b, c, d) ∧ ¬c |=pe ¬a ∧ ¬b ∧ ¬d

comparator(a, b, c, d) ∧ ¬a |=pe ¬d ∧ (b = c)

comparator(a, b, c, d) ∧ ¬b |=pe ¬d ∧ (a = c)

Figure 5 illustrates an 8 by 8 pairwise sorter and details the comparators in
each of the components (as vertical lines between the wires). The figure highlights
the rightmost merger

PWMerge(〈a1, . . . , a4〉, 〈b1, . . . , b4〉, 〈c1, . . . , c8〉)

To express the cardinality constraint x1 +x2 + · · ·+x8 < 4, we set the output c4
to 0. In the figure, applying partial evaluation, five of the nineteen comparators
consequently become redundant (indicated by dashed lines) and can be removed.
The reader is encouraged to check that in the corresponding odd-even network
only 4 comparators can be eliminated.

The next two theorems express a propagation property of the pairwise merger.
First, consider the relation PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉)



Fig. 5. A size 8 pairwise cardinality network (dashed comparators are redundant)

specified in Theorem 1. In the context of the pairwise sorting network, the in-
puts, upper 〈a1, . . . , an〉 and lower 〈b1 . . . , bn〉 to the merger, are both sorted as
sequences as well as sorted pairwise. It means that (in any satisfying assignment)
there are at least as many ones in the upper inputs as in the lower inputs. Hence,
if there are less than k ones in the output sequence (namely, ck = 0), then there
must be less than ⌈k/2⌉ ones in the lower input sequence (namely b⌈k/2⌉ = 0).
This facilitates constraint propagation in the design of the pairwise cardinality
network. For example, in Figure 5, The zero on output c4 of the rightmost merger
propagates to a zero on its lower input, b2. This process continues as b2 is also
an output of the next merger (to the left).

The next theorem states that if there are less than k ones in the outputs
of the merger, then it follows from the definition of the merger and partial
evaluation alone that there are less than ⌈k/2⌉ ones in the lower set of inputs.
The consequence itself is obvious for each merger in the context of the sorting
network (because in any satisfying assignment there are more ones in the upper
set of inputs than in the lower). That it follows (independent of the context of
the merger) by partial evaluation is not obvious and is useful below to simplify
a pairwise network. Note that the claim is with regards to the non-enhanced
pairwise merger. Namely it does not rely on the fact that the outputs of the
merger are sorted.

Theorem 3. For k ≤ n,

PWMerge

(

〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)

∧ (
∧2n

i=k ci) |=pe (
∧n

j=⌈k/2⌉ bj)

Proof. (brief description) The proof is by induction on n. It follows from the
recursive definition of PWMerge focusing on the parity of k and of ⌈k/2⌉. (See
Appendix.)

The next theorem is similar. It states that if there are less than k ones in
the outputs of the merger, then it follows from partial evaluation that for the
smallest k′ ≥ k which is a power of 2, the k′-th bit in the upper set of inputs is



a zero. Once again, it is obvious that in the actual context of the merger in the
sorting network, all of the inputs ak, . . . , an will be set to zero. But the weaker
result (for k′) follows from the definition of the merger and partial evaluation
alone.

Theorem 4. Let k ≤ n and let k′ be the smallest power of 2 that is greater or
equal to k. Then

PWMerge

(

〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)

∧ (
∧2n

i=k ci) |=pe ak′

The proof is similar to that of Theorem 3 but with fewer cases due to the fact
that k′ is a power of 2.

Proof. (by induction on n) The base case for n = 1 is trivial. For n > 1 assume
that the statement holds for all n′ < n and denote k′ = 2p. We have

(
∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1)

∧ (
∧2n

i=k ci)

)

|=pe

n
∧

i=p

ei (1)

The inductive hypothesis implies that the pth element, a2p = ak′ , of the sequence
〈a2, a4, . . . , an〉 is zero. So we get ak′ as claimed.

It is important to note that Theorem 4 does not claim that all of the aj with
j ≥ k′ become negated by partial evaluation. This does not hold. However, when
using enhanced pairwise mergers we have sorted(〈a1, . . . , an〉) from the corre-
sponding merger where 〈a1, . . . , an〉 are outputs. This gives by unit propagation
that aj = 0 for k′ ≤ j ≤ n.

The next theorem is inspired by the work presented in [1] where the authors
observe, in the context of the n× n → 2n odd-even sorting network, that if we
are only interested in the n+1 largest elements of the output, the merger can be
simplified to a network with two inputs, each of length n and an output of length
n + 1. We show a similar result for the pairwise merger but emphasize that if
we are only interested in the n + 1 largest outputs because cn+1=0, . . . , c2n=0
(as in the context of a cardinality constraint with k ≤ n + 1), then we obtain
by partial evaluation a simplified merge network with n + 1 outputs in which
the last output is surely a zero. We keep it in the presentation to simplify the
proofs.

Theorem 5. Consider the following specification for a simplified pairwise merger.

SMerge(〈a1〉, 〈b1〉, 〈a1, b1〉).

SMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , cn+1〉) ↔
SMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn/2+1〉)

∧

SMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en/2+1〉)
∧

en/2+1 ∧
∧n/2

i=1
comparator(ei, di+1, c2i, c2i+1).



Then,

PWMerge

(

〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)

∧

2n
∧

i=n+1

ci |=pe SMerge





〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , cn+1〉





Proof. (by induction on n) For n = 1 there is nothing to prove. Let us observe
the case, n = 2. We have from the definitions

PWMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉) = comparator(a2, b1, c2, c3)

SMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3〉) = b2 ∧ comparator(a2, b1, c2, c3)

And the result holds:

PWMerge
(

〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉
)

∧b2 |=pe SMerge

(

〈a1, a2〉, 〈b1, b2〉,
〈a1, c2, c3〉

)

For the general case n > 2. Assume that
∧2n

i=n+1
ci. Partial evaluation of the

comparator(ei, di+1, c2i, c2i+1) from the definition of PWMerge (for n/2 + 1 ≤
i ≤ n− 1) gives

∧n
i=n/2+2

di and
∧n

j=n/2+1
ej , and from the same definition we

obtain that c2n = en. The remaining comparators from this part of the definition
are

S1 =
∧i=n/2

i=1
{comparator(ei, di+1, c2i, c2i+1)}

Now, applying the inductive hypothesis on the odd and the even cases we get:

S2 =

(

SMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn/2+1〉)
∧

SMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en/2+1〉) ∧ en/2+1

)

The result follows because SMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , cn+1〉) ↔ S1∧
S2.

The next theorem complements the previous one. Consider

PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n−1, c2n〉)

When negating the outputs 〈ck, . . . , c2n〉 and assuming that 〈a1, . . . , an〉 are con-
strained to be sorted, the pairwise merger reduces by partial evaluation to a
simplified merger, the size and depth of which depend exclusively on k. This is
the key property that enables the construction of a cardinality network of size
O(n log2 k). Looking over a pairwise sorting network from outputs to inputs,
we have a series of mergers followed by a series of splitters. If the first merger
(from the outputs) has zeros from its kth position then at the next level there
are zeros from the kth and from the (k/2)th positions. After log k levels, some of
the mergers become trivial (zeros on all inputs and outputs).

Theorem 6. Let k ≤ n and let k′ be the smallest power of 2 that is greater or
equal to k. Then

PWMerge





〈a1, . . . , an〉,
〈b1, . . . , bn〉,
〈c1, . . . , c2n〉



 ∧ sorted(〈a1, . . . , an〉) ∧
∧2n

i=k ci |=pe

SMerge
(

〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . ck′+1〉
)



n full Method k=4 k=8 k=16 k=32 k=n/2

128 1471 pw 258 416 644 955 1248
oe 315 572 879 1148 1335

256 3839 pw 515 812 1226 1841 3288
oe 635 1164 1851 2532 3510

1024 24063 pw 2053 3143 4475 6425 20933
oe 2555 4716 7683 11268 22260

2048 58367 pw 4102 6230 8680 12056 51130
oe 5115 9452 15459 23048 54259

Table 1. # of comparators for cardinality networks obtained via partial evaluation

Proof. (See Appendix.)

We are now in position to state the main theorem of the paper.

Theorem 7. The pairwise cardinality network encoding a cardinality constraint
x1+x2+· · ·+xn ≺ k collapses by partial evaluation to a network with O(n log2 k)
comparators.

Proof. (sketch) Construct an n × n pairwise sorting network. For simplicity,
assume that k and n are powers of 2 and that k ≤ n/2.

1. View the network like this: in the middle we have n/k sorting networks of
size k × k. These give a total size of O(n/k ∗ k log2 k) = O(n log2 k).

2. On the “right” of these k × k networks we have 1 + 2 + · · · + n
2k = n

k − 1
pairwise mergers, each of size O(k log k) after partial evaluation. This gives
another O(n log k).

3. Now view the full sorting network. Let c(n, k) denote the number of compara-
tors in the split components of the network after partial evaluation originat-
ing from setting the kth output to zero. That c(n, k) is in O(n log2 k) comes
from the recurrence

c(n, k) =







0 if k = 1

k log2 k if n = k and k > 1
c(n/2, k) + c(n/2, k/2) + n/2 otherwise.

That the pairwise cardinality network for n variables and bound k reduces
by partial evaluation to a network with O(n log2 k) comparators is theoretically
pleasing. However, note that it is also possible to build the same reduced network
directly using simplified pairwise mergers and propagating the bound k which is
halved in each step for the lower recursively defined pairwise sorter.

Finally, we note that Theorem 7 holds also when encoding a cardinality
network using an odd-even sorting network. The proof is based on the observation
that an odd-even merger OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) where
ck = 0 simplifies to a network of size O(k log k).



5 A Preliminary Evaluation

This section describes a preliminary comparison of the use of odd-even and
pairwise sorting networks for the applications involving cardinality constraints.

Table 1 shows some statistics regarding the size of the networks obtained from
sorting networks after application of partial evaluation. Here size is measured
counting number of comparators. Note that each comparator can be encoded
using 6 CNF clauses, or alternatively, based on the technique proposed in [1] as
a “half comparator” and encoded using only 3 clauses.

The first column in Table 1 indicates the size of the network, the second
column indicates the number of comparators before application of unit propaga-
tion. The third column indicates the type of network considered, pairwise (pw)
or odd-even (oe). The next columns indicate the size of the network after unit
propagation for various values of k. The last column considers the worst case
with k = n/2. The table indicates that cardinality networks expressed using
pairwise sorting networks are more amenable to partial evaluation.

Table 2 describes results when solving a Boolean cardinality matrix problem
encoded using three techniques. An instance, (n, k1, k2), is to find values for the
elements of an n × n matrix of Boolean variables where the cardinality of each
row and column is between values k1 and k2. The table summarizes results for
n = 100, for various values of k1 with k2 = k1 + 2 and k2 = k1 + 3.

The first column indicates the value of k2 in terms of k1: k2 = k1 + 2 or
k2 = k1 + 3. The second column indicates what is being measured: CNF size
after partial evaluation (in 1000’s of clauses) or CPU time for solving the problem
(in seconds). We are running MiniSAT version 2 through its Prolog interface
as described in [3]. The machine is a laptop running Linux with 2 Genuine
Intel(R) CPUs, each 2GHz with 1GB RAM. The third column indicates the
encoding method: using a pairwise cardinality network (based on a pairwise
sorting network) (pw), or using an odd-even sorting network (oe), or using the
cardinality network described in [1] (based on a construction built from a cascade
of odd-even sorting networks). The next columns provide the data for various
values of k1. The results indicate a clear advantage for the use of pairwise sorting
networks.

6 Summary and Conclusion

Sorting networks are often applied when encoding cardinality constraints. We
argue the advantage in basing such encodings on the pairwise sorting network
instead of on the odd-even sorting network as typically chosen, for example in
[4] and in [1].

Our presentation clarifies the precise relationship between the pairwise net-
work introduced in 1992 and the odd-even network from 1968. The simplicity
of this connection is surprising and perhaps demystifies the intuition underlying
the pairwise network, which from 1992 is not referred to at all in the literature.

In contrast to previous works, such as [8] and [1], which encode cardinality
constraints by application of specially constructed networks of comparators, our



Measure Method k1=5 k1=10 k1=15 k1=20 k1=25

cnf size pw 350 542 763 761 782
(×1000) oe 467 683 883 896 920

k2 = k1 + 2 card 473 665 760 878 914
cpu time pw 6 19 27 89 270

(sec.) oe 23 1152 2395 946 1250
card 41 382 2916 1110 832

cnf size pw 350 554 763 766 782
(×1000) oe 467 697 883 901 920

k2 = k1 + 3 card 509 684 840 904 924
cpu time pw 5 8 46 100 280

(sec.) oe 37 257 2583 1122 1546
card 27 621 1798 1317 1158

Table 2. Results for Boolean cardinality matrix problems (n, k1, k2) with n = 100.

contribution is based directly on the (automatic) simplification of a sorting net-
work. It is straightforward to apply this kind of simplification directly on the
procedure that generates the network for x1 + x2 + · · ·+ xn ≺ k, instead of first
generating the O(n log2 n) sorting network and then simplifying it to a network
of size O(n log2 k).

Acknowledgement We thank the anonymous reviewers for useful comments
on the earlier version of this paper.
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A Appendix: Proof Sketches

Proof. (of Theorem 2) By induction on n. The base case, n = 1, follows directly
from the definitions. For n > 1, assume that the theorem holds for all n′ < n.
By definition,

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
OEMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧

OEMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)
∧

∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1)

and the induction hypothesis holds for the recursive odd and even cases giving:
OEMerge(〈a1, a3, . . . , an−1〉, 〈b1, b3, . . . , bn−1〉, 〈d1, . . . , dn〉) ↔

PWSplit

(

〈a1, b1, a3, b3, . . . , an−1, bn−1〉
〈a′

1, a
′

3 . . . , a′

n−1〉, 〈b
′

1, b
′

3 . . . , b′n−1〉

)

∧

PWMerge(〈a′1, a
′
3, . . . , a

′
n−1〉, 〈b

′
1, b

′
3, . . . , b

′
n−1〉, 〈d1, . . . , dn〉)

OEMerge(〈a2, a4, . . . , an〉, 〈b2, b4, . . . , bn〉, 〈e1, . . . , en〉) ↔

PWSplit

(

〈a2, b2, a4, b4, . . . , an, bn〉,
〈a′

2, a
′

4 . . . , a′

n〉, 〈b
′

2, b
′

4 . . . , b′n〉

)

∧

PWMerge(〈a′2, a
′
4, . . . , a

′
n〉, 〈b

′
2, b

′
4, . . . , b

′
n〉, 〈e1, . . . , en〉)

substituting this in the definition (and rearranging the conjuncts) gives:
OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔

PWSplit

(

〈a1, b1, a3, b3, . . . , an−1, bn−1〉
〈a′1, a

′
3 . . . , a

′
n−1〉, 〈b

′
1, b

′
3 . . . , b

′
n−1〉

)

∧

PWSplit

(

〈a2, b2, a4, b4, . . . , an, bn〉,
〈a′2, a

′
4 . . . , a

′
n〉, 〈b

′
2, b

′
4 . . . , b

′
n〉

)

∧

PWMerge(〈a′1, a
′
3, . . . , a

′
n−1〉, 〈b

′
1, b

′
3, . . . , b

′
n−1〉, 〈d1, . . . , dn〉)∧

PWMerge(〈a′2, a
′
4, . . . , a

′
n〉, 〈b

′
2, b

′
4, . . . , b

′
n〉, 〈e1, . . . , en〉)∧

∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1)

which by definitions of PWSplit and PWMerge gives the required result.

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔
PWSplit(〈a1, b1, a2, b2, . . . , an, bn〉, 〈a

′
1, a

′
2 . . . , a

′
n〉, 〈b

′
1, b

′
2 . . . , b

′
n〉)

∧

PWMerge(〈a′1, a
′
2 . . . , a

′
n〉, 〈b

′
1, b

′
2 . . . , b

′
n〉, 〈c1, . . . , c2n〉)

Proof. (of Theorem 3). By induction on n. The base case, n = 1, holds vacuously.
For n > 1, assume that the statement holds for all n′ < n and consider the
following cases according to the parities of k and ⌈k/2⌉. Recall that,

PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
PWMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧

PWMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)
∧

∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1).

Let {b′1, b
′
2, . . . , b

′
n/2

}, and {b′′1 , b
′′
2 , . . . , b

′′
n/2

} be the the odd and the even subse-

quences of {b1, b2, . . . , bn} respectively. We consider two cases depending on the
parity of k.
k is even: Denote k = 2p. We have

(
∧n−1

i=1
comparator(ei, di+1, c2i, c2i+1)

∧ (
∧2n

i=k ci)

)

|=pe (

n
∧

i=p+1

di) ∧ (

n
∧

j=p

ej) (2)



Now consider two subcases depending on the parity of p: (1) Assume p = 2q.

From Equation (2) and the inductive hypothesis we get
∧n/2

i=q+1
b′i and

∧n/2

j=q b
′′

j

which together imply that
∧n

i=k/2
bi. (2) Assume p = 2q+ 1. From Equation (2)

and the inductive hypothesis we get
∧n/2

i=q+1
b′i and

∧n/2

j=q+1
b′′j which together

imply that
∧n

i=p bi or in terms of k that
∧n

i=k/2
bi.

k is odd: Denote k = 2p+ 1. We have
„ Vn−1

i=1
comparator(ei, di+1, c2i, c2i+1)

∧ (
V

2n
i=k ci)

«

|=pe (

n̂

i=p+2

di) ∧ (

n̂

j=p+1

ej). (3)

Two subcases are considered for the parity of p: (1) Assume p = 2q. From Equa-

tion (3) and the inductive hypothesis we get
∧n/2

i=q+1
b′i and

∧n/2

j=q+1
b′′j . There-

fore,
∧n

i=p+1
bi or

∧n
i=⌈k/2⌉ bi. (2) Assume p = 2q+1. From Equation (3) and the

inductive hypothesis we get
∧n/2

i=q+2
b′i and

∧n/2

j=q+1
b′′j . Therefore,

∧n
i=p+1

bi or
∧n

i=⌈k/2⌉ bi. In all four subcases we have
∧n

i=⌈k/2⌉ bi which proves the theorem.

To prove Theorem 6 we use the following lemmata

Lemma 1. For n > 1,

PWMerge

0

@

〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , c2n〉

1

A ∧
n̂

i=n/2+1

(ai ∧ bi) |=pe PWMerge

0

@

〈a1, . . . , an/2〉,
〈b1 . . . , bn/2〉,
〈c1, . . . , cn〉

1

A ∧
2n̂

i=n+1

ci

Proof. (by induction on n). For the base case n = 2 we have (by definition)
PWMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉) ↔ comparator(a2, b1, c2, c3)

PWMerge(〈a1〉, 〈b1〉, 〈a1, b1〉) ↔ true

We need to show that if a2 and b2 are negated then c3 and b2 become negated,
and that 〈a1, b1〉 = 〈a1, c2〉. Both facts follow because when a2 = 0 the compara-
tor gives by partial evaluation that c3 = 0 and b1 = c2.

For the general case, we apply the inductive hypothesis (*) to the odd and
the even cases in the definition of the pairwise merger. Giving respectively:

PWMerge

0

@

〈a1, a3, . . . , an−1〉,
〈b1, b3 . . . , bn−1〉,
〈d1, . . . , dn〉

1

A ∧
Vn/2

i=n/4+1
(a2i−1 ∧ b2i−1) |=pe

PWMerge

0

@

〈a1, a3, . . . , an/2−1〉,
〈b1, b3 . . . , bn/2−1〉,
〈d1, . . . , dn/2〉

1

A ∧
Vn

i=n/2+1
di

PWMerge

0

@

〈a2, a4, . . . , an〉,
〈b2, b4 . . . , bn〉,
〈e1, . . . , en〉

1

A ∧
Vn/2

i=n/4+1
(a2i ∧ b2i) |=pe

PWMerge

0

@

〈a2, a4, . . . , an/2〉,
〈b2, b4 . . . , bn/2〉,
〈e1, . . . , en/2〉

1

A ∧
Vn

i=n/2+1
ei

Several of the comparators from this application (*) are reduced by partial
evaluation as follows:

en ∧

n−1
^

i=n/2+1

ei ∧ di+1 ∧ comparator(ei, di+1, c2i, c2i+1) |=pe

2n̂

i=n+2

ci



en/2 ∧ dn/2+1 ∧ comparator(en/2, dn/2+1, cn, cn+1) |=pe cn+1

Together this gives
∧2n

i=n+1
ci, and now the required result follows directly from

the definition of the pairwise merger.

Lemma 2. Let k ≤ n and let k′ be the smallest power of 2 which is greater or
equal to k. Then,

PWMerge

0

@

〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , c2n〉

1

A∧
Vn

i=k′+1
ai∧bi |=pe PWMerge

0

@

〈a1, . . . , ak′〉,
〈b1 . . . , bk′〉,
〈c1, . . . , c2k′〉

1

A∧
V

2n
i=2k′+1

ci

Proof. The proof is by induction on n. For n = k′ it is trivial. For the general
case, n > k′, we apply the induction hypothesis (*) to the odd and even cases
in the definition of the pairwise merger. Note that each such application gives a
pairwise merger of size k′:

PWMerge

0

@

〈a1, a3, . . . , an−1〉,
〈b1, b3 . . . , bn−1〉,
〈d1, . . . , dn〉

1

A ∧
Vn/2

i=k′/2+1
(a2i−1 ∧ b2i−1) |=pe

PWMerge

0

@

〈a1, a3, . . . , a2k′
−1〉,

〈b1, b3 . . . , b2k′
−1〉,

〈d1, . . . , d2k′〉

1

A ∧
Vn

i=2k′+1
di

PWMerge

0

@

〈a2, a4, . . . , an〉,
〈b2, b4 . . . , bn〉,
〈e1, . . . , en〉

1

A ∧
Vn/2

i=k′/2+1
a2i ∧ b2i∧ |=pe

PWMerge

0

@

〈a2, a4, . . . , a2k′〉,
〈b2, b4 . . . , b2k′〉,
〈e1, . . . , e2k′〉

1

A ∧
Vn

i=2k′+1
ei

The application (*) of the pairwise merger definition introduces comparators
which are reduced by partial evaluation:

en ∧

n−1
^

i=2k′+1

ei ∧ di+1 ∧ comparator(ei, di+1, c2i, c2i+1) |=pe

2n̂

i=4k+2

ci

e2k′ ∧ d2k′+1 ∧ comparator(e2k′ , d2k′+1, c4k′ , c4k′+1) |=pe c4k′+1

Together this gives
∧2n

i=4k′+1
ci and from the definition of the pairwise merger

we get PWMerge(〈a1, . . . , a2k′〉, 〈b1 . . . , b2k′〉, 〈c1, . . . , c4k′〉) ∧
V

2n
i=4k′+1

ci which to-
gether with the lemma statement and application of the previous lemma gives:

PWMerge(〈a1, . . . , a2k′〉, 〈b1 . . . , b2k′〉, 〈c1, . . . , c4k′〉) ∧
∧2k′

i=k′+1
ai ∧ bi |=pe

PWMerge(〈a1, . . . , ak′〉, 〈b1 . . . , bk′〉, 〈c1, . . . , c2k′〉) ∧
∧4k

i=2k′+1
ci.

These two give us the required PWMerge(〈a1, . . . , ak′〉, 〈b1 . . . , bk′〉, 〈c1, . . . , c2k′〉)∧
∧2n

i=2k′+1
ci.

Proof. (of Theorem 6) From Theorem 3 we have:

PWMerge

(

〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)

∧ (
∧2n

i=k′ ci) |=pe (
∧n

j=k′/2
bj)

In particular we have
∧n

i=k′+1
bi. In addition, from Theorem 4 we have:

PWMerge

(

〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)

∧ (
∧2n

i=k′ ci) |=pe ak′



and consequently that ak′ ∧ sorted(〈a1, . . . , an〉) |=pe

∧n
i=k′+1

ai. From lemma 2,
and the above we obtain PWMerge(〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . , c2k′〉). We

are given that
∧2k′

i=k′+1
ci. Hence, according to Theorem 5 we get

SMerge(〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . ck′+1〉).

B Appendix: Specifying Sorting Networks in Prolog

This appendix illustrates working Prolog specifications for the sorting network
constructions presented in the paper. The code is simplified assuming that in-
put/output sizes are powers of 2. Networks are represented as lists of compara-
tors. Comparators are atoms of the form comparator(A,B,C,D) where A,B are
the inputs and C,D are the outputs.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a Batcher odd-even sorting network %

% (see 4th page of article) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oe_sort(As,Cs,Comparators) :-

oe_sort(As,Cs,Comparators-[]).

oe_sort([A],[A],Cmp-Cmp) :- !.

oe_sort(As,Cs,Cmp1-Cmp4) :-

split(As,As1,As2),

oe_sort(As1,Ds1,Cmp1-Cmp2),

oe_sort(As2,Ds2,Cmp2-Cmp3),

oe_merge(Ds1,Ds2,Cs,Cmp3-Cmp4).

% merge two sorted sequences to a sorted sequence

oe_merge([A],[B],[C1,C2],

[comparator(A,B,C1,C2)|Cmp]-Cmp) :- !.

oe_merge(As,Bs,[D|Cs],Cmp1-Cmp4) :-

oddEven(As,AsOdd,AsEven),

oddEven(Bs,BsOdd,BsEven),

pw_merge(AsOdd,BsOdd,[D|Ds],Cmp1-Cmp2),

pw_merge(AsEven,BsEven,Es,Cmp2-Cmp3),

combine(Ds,Es,Cs,Cmp3-Cmp4).

% split down the middle

split(Xs,As,Bs) :-

length(Xs,N), N1 is ceil(N/2),

length(As,N1), append(As,Bs,Xs).

% split to odd and even

oddEven([Odd,Even|As],[Odd|Odds],[Even|Evens]) :-

oddEven(As,Odds,Evens).

oddEven([],[],[]).

% combines the even and odd sorted elements

combine([],[B],[B],Cmp-Cmp).

combine([A|As],[B|Bs],[C1,C2|Cs],

[comparator(A,B,C1,C2)|Cmp1]-Cmp2) :-

combine(As,Bs,Cs,Cmp1-Cmp2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct an (alternative) odd-even merger. %

% It is specifified as the combination of a %

% pairwise split and a pairwise merge %

% (see Theorem 2) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alternative_oe_merge(As,Bs,Cs,Cmp1-Cmp3) :-

interleave(As,Bs,ABs),

pw_split(ABs,ABs1,ABs2,Cmp1-Cmp2),

pw_merge(ABs1,ABs2,Cs,Cmp2-Cmp3).

interleave([],[],[]).

interleave([A|As],[B|Bs],[A,B|ABs]) :-

interleave(As,Bs,ABs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise sorting network %

% (see 5th page of article) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pw_sort(As,Cs,Comparators) :-

pw_sort(As,Cs,Comparators-[]).

pw_sort([A],[A],Cmp-Cmp) :- !.

pw_sort(As,Cs,Cmp1-Cmp5) :-

pw_split(As,As1,As2,Cmp1-Cmp2),

pw_sort(As1,Ds1,Cmp2-Cmp3),

pw_sort(As2,Ds2,Cmp3-Cmp4),

pw_merge(Ds1,Ds2,Cs,Cmp4-Cmp5).

% split pairs from a sequence to their larger and smaller elements

pw_split([],[],[],Cmp-Cmp).

pw_split([A1,A2|As],[B|Bs],[C|Cs],

[comparator(A1,A2,B,C)|Cmp1]-Cmp2) :-

pw_split(As,Bs,Cs,Cmp1-Cmp2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise merger. It merges %

% two sorted sequences of sorted pairs %

% (see Theorem 1, page 5) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pw_merge([A],[B],[A,B], Cmp-Cmp) :- !.

pw_merge(As, Bs, [D|Cs], Cmp1-Cmp4) :-

oddEven(As,AsOdd,AsEven),

oddEven(Bs,BsOdd,BsEven),

pw_merge(AsOdd,BsOdd,[D|Ds],Cmp1-Cmp2),

pw_merge(AsEven,BsEven,Es,Cmp2-Cmp3),

combine(Ds,Es,Cs,Cmp3-Cmp4).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise merger following the %

% description from page 4 of [Parberry92]. %

% This is the network referred to in the %

% proof of Theorem 2. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

parberry_pw_merge(As,Bs,Cs,Ds,Cmp1-Cmp2) :-

length(As,K),

parberry_pw_merge_by_level(K,As,Bs,Cs,Ds,Cmp1-Cmp2).

parberry_pw_merge_by_level(1,As,Bs,As,Bs,Cmp-Cmp).

parberry_pw_merge_by_level(M,As,Bs,Cs,Ds,Cmp1-Cmp3) :-

M>1, !, M1 is M//2,

length(NewAs1,M1), append(NewAs1,As2,As),

length(NewBs2,M1), append(Bs1,NewBs2,Bs),

compare(Bs1,As2,NewBs1,NewAs2,Cmp1-Cmp2),

append(NewAs1,NewAs2,NewAs), append(NewBs1,NewBs2,NewBs),

parberry_pw_merge_by_level(M1,NewAs,NewBs,Cs,Ds,Cmp2-Cmp3).

compare([],[],[],[],Cmp-Cmp).

compare([A|As],[B|Bs],[C|Cs],[D|Ds],

[comparator(A,B,C,D)|Cmp1]-Cmp2) :-

compare(As,Bs,Cs,Ds, Cmp1-Cmp2).




