
A Pairwise Connected Tensor Network Representation of Path Integrals

Amartya Bose
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

It has been recently shown how the tensorial nature of real-time path integrals involving the
Feynman-Vernon influence functional can be utilized using matrix product states, taking advantage
of the finite length of the non-Markovian memory. Tensor networks promise to provide a new, unified
language to express the structure of path integral. Here, a generalized tensor network is derived and
implemented specifically incorporating the pairwise interaction structure of the influence functional,
allowing for a compact representation and efficient evaluation. This pairwise connected tensor
network path integral (PCTNPI) is illustrated through applications to typical spin-boson problems
and explorations of the differences caused by the exact form of the spectral density. The storage
requirements and performance are compared with iterative quasi-adiabatic propagator path integral
and iterative blip-summed path integral. Finally, the viability of using PCTNPI for simulating
multistate problems is demonstrated taking advantage of the compressed representation.

I. INTRODUCTION

Tensor networks (TN) are designed to be compact “fac-
torized” representations of high-ranked tensors. Proba-
bly the most common use of TN in physics is related
to representations of the quantum many-body wave-
function which, in general, is also a high-ranked ten-
sor. This use has been widely demonstrated in a mul-
titude of methods such as the density matrix renor-
malization group (DMRG) [1, 2] which uses a Matrix
Product State (MPS) [3, 4] representation, and multi-
configuration time-dependent Hartree (MCTDH) [5] and
its multi-layer version (ML-MCTDH) [6–8] which use tree
tensor networks. For multidimensional systems, an “ex-
tension” of MPS to multiple dimensions called projected
entanglement pair states (PEPS) [9] is used. For sys-
tems at critical points, an MPS representation does not
work because of long-range correlations necessitating the
use of the so-called multi-scale entanglement renormal-
ization ansatz (MERA) [10, 11]. Tensor networks, since
its introduction, have proliferated in various diverse fields
requiring the use of compact representations of multidi-
mensional data like machine learning and deep neural
networks.

While quantum dynamics at zero temperature can of-
ten be simulated using wave-function based methods like
time-dependent DMRG [2, 12, 13] or MCTDH, at finite
temperatures, owing to the involvement of a manifold of
vibrational and low frequency ro-translational states in
the dynamics, they suffer from an exponentially grow-
ing computational requirements. Feynman’s path inte-
gral provides a very convenient alternative for simulat-
ing the time-dependent reduced density matrix (RDM)
for the system. The vibrational states of the “solvent”
introduced as harmonic phonon modes under linear re-
sponse [14] are integrated out leading to the Feynman-
Vernon influence functional [15]. Identical influence func-
tional also arises in dealing with light-matter interaction
through the integration of the photonic field.

The primary challenge in using influence functionals
and path integrals is the presence of the non-local history-

dependent memory that leads to an exponential growth
of system paths. While many recent developments have
helped improve the efficiency of simulations [16–20], each
of them utilize very different and deep insights into the
structure of path integrals. It has recently been shown
that the MPS representation can be very effectively uti-
lized to reformulate real-time path integrals involving
the influence functional leveraging the finite nature of
the non-local memory [21–24]. While the MPS struc-
ture is the simplest tensor network that can be used,
the 1D topology is probably not optimal when the non-
Markovian memory spans a large number of time-steps
and suffers from growing bond dimensions. In this paper,
an alternate generalized tensor network that directly cap-
tures the pairwise interaction structure of the Feynman-
Vernon influence functional, is introduced. This pairwise
connected tensor network path integral (PCTNPI) has
an extremely compact representation, that can be effi-
ciently evaluated, allowing us to go to much longer non-
Markovian memories without resorting to various tech-
niques of path filtration. Tensor networks show great
promise in being a unifying language for formulating and
thinking about path integral methods.

The construction and evaluation of the tensor network
is discussed in Sec. II. In Sec. III, we illustrate some typ-
ical applications of the algorithm. The memory usage is
also reported for various parameters. The implementa-
tion of this method utilized the open-source ITensor [25]
library for tensor contractions allowing for extremely effi-
cient tensor contractions using highly efficient BLAS and
LAPACK libraries. We end the paper in Sec. IV with
some concluding remarks and outlook on future explo-
rations.

II. METHODOLOGY

Consider a quantum system coupled to a dissipative
environment described by a Caldeira-Leggett model [26–
28]

Ĥ = Ĥ0 + Ĥenv (p, x) (1)
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Ĥenv (p, x) =
∑
j

p2
j

2mj
+

1

2
mjω

2
j

(
xj −

cj ŝ

mω2
j

)2

(2)

where Ĥ0 is the Hamiltonian of the D-dimensional sys-
tem of interest shifted along the adiabatic path [29]. If
the quantum system can be described by a two-level
Hamiltonian, then Ĥ0 = εσ̂z − ~Ωσ̂x, where σ̂z and σ̂x
are the Pauli matrices. Ĥenv represents the Hamiltonian
of the reservoir or environment modes which are cou-
pled to some system operator ŝ. The strength of the
jth oscillator is cj . While we are using a time indepen-
dent Hamiltonian for simplicity, time-dependence from
an external field in the system Hamiltonian can be cap-
tured through the corresponding system propagator in a
straightforward manner.

For a problem where the environment is in thermal
equilibrium at an inverse temperature β = 1

kBT
, and its

final states are traced out, the interactions between the

system and the environment is characterized by the spec-
tral density [14, 26]

J(ω) =
π

2

∑
j

c2j
mωj

δ(ω − ωj). (3)

In fact, the spectral function, S(ω) corresponding to the
collective bath operator X = −

∑
j cjxj is related to the

spectral density as follows [30]:

S(ω) =
2~J(ω)

1− exp(−β~ω)
. (4)

For environments defined by atomic force fields or ab ini-
tio calculations, it is often possible to evaluate the spec-
tral density from classical trajectory simulations.

The dynamics of the RDM of the system after N time
steps, if the initial state is a direct product of the system
RDM and the bath thermal density is given as:

〈
s+
N

∣∣ρ(N∆t)
∣∣s−N〉 =

∑
s±0

∑
s±1

. . .
∑
s±N−1

〈
s+
N

∣∣ Û ∣∣s+
N−1

〉〈
s+
N−1

∣∣ Û ∣∣s+
N−2

〉
. . .

×
〈
s+

1

∣∣ Û ∣∣s+
0

〉〈
s+

0

∣∣ ρ(0)
∣∣s−0 〉〈s−0 ∣∣ Û† ∣∣s−1 〉 . . . 〈s−N−1

∣∣ Û ∣∣s−N〉F [{s±j }] (5)

where F [{s±j }] = exp

−1

~
∑
k

(s+
k − s

−
k )
∑
k′≤k

(ηkk′s
+
k′ − η

∗
kk′s

−
k′)

 . (6)

Here, Û is the short-time system propagator for ∆t
and {s+

j } and {s−j } are the forward-backward system

paths. The Feynman-Vernon influence functional [15],
F [s±j ], is dependent on the system path s±j and the
bath response function that is discretized as the ηkk′ -
coefficients [31, 32]. The influence functional depends
upon the history of the system path, leading to the well-
known non-Markovian nature of system-environment de-
composed quantum dynamics. Notice that it can be fac-
torized based on the “range” of interaction in the follow-
ing manner:

F [{s±j }] =

N∏
α=0

N∏
k=α

I(α)
sk,sk−α

(7)

I(α)
sk′ ,sk

= exp

(
−1

~
(s+
k − s

−
k )(ηkk′s

+
k′ − η

∗
kk′s

−
k′)

)
δk′,k−α.

(8)

The influence functional creates pairwise interactions
between points that are temporally separated. As it has
been shown, if MPS and MPO are used to model the
influence functional, the fact that these interactions can
spread across long temporal spans leads to an increase
in the effective bond dimension. Here, the goal is to cre-
ate a structure that naturally and efficiently accounts for

FIG. 1. Diagram for P (1) for a 5-step propagation. Dark
brown circles represent the K tensors.

the pairwise interactions that span long temporal separa-
tions while not being associated with any one particular
representation.

To motivate the tensor network representation, first
consider the Markovian part of Eq. (5), involving just
the propagators and the terms of the influence functional
coupling consecutive time points. These terms can be
simply rearranged as:

P (1)
s0,sN = Ks0,s1Ks1,s2 . . .KsN−1,sN (9)

Ksj ,sj−1 =
〈
s+
j

∣∣Û ∣∣s+
j−1

〉 〈
s−j−1

∣∣Û†∣∣s−j 〉 I(1)
sj−1,sjI

(0)
sj ,sj , j ≥ 2

(10)

Ks1,s0 =
〈
s+

1

∣∣Û ∣∣s+
0

〉 〈
s−0
∣∣Û†∣∣s−1 〉 I(1)

s0,s1I
(0)
s1,s1I

(0)
s0,s0 .

(11)

Here, we are implicitly summing over repeated indices
that do not appear on both sides of the equation. The
± labels on the site indices of the tensors are omitted
for convenience of notation. The superscript, 1, on P
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is there to denote the maximum distance of interaction
that we have incorporated. Equation (9) is already a
tensor network; more specifically it is series of matrix
multiplication as shown in Fig. 1. Let us now bring the

“next-nearest neighbor” interactions I
(2)
sj−2,sj . Clearly, it

is not possible to directly contract the I
(2)
sj−2,sj tensor to

the P (1) tensor because the internal sj ’s have already
been traced over. To make it possible to incorporate the
I(2) tensors, we augment the K tensors as follows:

Kr1s0,s1 = Ks0,s1δs0,r1 (12)

KlN−1
sN−1,sN = KsN−1,sN δsN ,lN−1

(13)

Klj−1,rj
sj−1,sj = Ksj−1,sjδsj ,lj−1

δsj−1,rj if j 6= 1 and N.

(14)

It is convenient to think of lower indices as the “in-
put” indices and the upper indices as the “output” in-
dices, though there is no other mathematical significance
to the positioning of the indices. With this input-output
convention in mind, it is easy to see that the internal
augmented K tensors duplicate and flip the order of the
input indices, sj . This ensures that indices that differ
by two time steps are now placed adjacent in the output
layer. Now, the Markovian terms and the I(2) terms can
be combined and we get:

P (2)
s0,sN = Kr1s0,s1

N−2∏
j=1

I
(2)
rj ,lj

Klj ,rj+1
sj ,sj+1

I
(2)
rN−1,lN−1

KlN−1
sN−1,sN ,

(15)

which is depicted in Fig. 2. Notice that the index sj still

connects K̃sj−1,sj and K̃sj ,sj+1
, as in P (1), but now there

is another connection that goes through the I(2) tensor
in a “triangular” form. This feature of an I(α) with a
higher α acting as a bridge between K̃ or I tensors with
smaller values of α would become a recurring motif in
this tensor network.

FIG. 2. Diagram for P (2) for a 5-step propagation. The
darker circles which form the base represent the K tensors.
The comparatively lighter red circles forming the second layer
represent the I(2) tensors. The labels of the non-horizontal
indices have been reverted back to the s coordinate by using
the δ function relations in Eq. (12), Eq. (13) and Eq. (14).

The pattern for inclusion of the rest of the non-local
interactions is quite similar. Note that in Fig. 2, if we
did the same “trick” of duplicating and flipping the or-
der of the inputs, in the next layer indices that differ
by three time points, like s0 and s3, s1 and s4, are go-
ing to be adjacent. Hence, this can now be multiplied

FIG. 3. Diagram for the final Green’s function for a 5-step
propagation. Dark brown circles represent the K tensors. The
various red circles represent the I tensors for different sepa-
rations. The lighter reds show a larger separation between
interacting time-points.

by I
(3)
sj−3,sj . Continuing like this, we can complete the

network. The diagram is shown in Fig. 3 [33], these aug-
mented tensors are going to be written as K, I(2), . . . .
The tensor network shown in Fig. 3, which we will con-
ventionally denote by P (∞), represents the final Green’s
function for the propagation of the system RDM having
incorporated the non-local influence from the environ-
ment. So, ρ(t) = P (∞)ρ(0).

If the system is defined to have D states, then in Fig. 3,
all the indices have D2 dimensionality corresponding to
each of the possible combination of forward-backward
states. However, this is not optimal. Notice that the

influence functional tensors, I
(α)
sk−α,sk for a time differ-

ence of α, depends only on the “difference” coordinate,
∆sk = s+

k −s
−
k of the latter time point. So, currently, we

are carrying over more information than we need to.
To take care of this redundancy, we need to redefine the

K tensors to not just duplicate the input indices, but to
project the “latter” index onto its difference coordinates
as follows:

K̃lN−1
sN−1,sN = KsN−1,sN δs+N−s

−
N ,lN−1

(16)

K̃lj−1,rj
sj−1,sj = Ksj−1,sjδs+j −s

−
j ,lj−1

δsj−1,rj if j 6= 1 and N.

(17)

Notice that the upper-right output indices in the dia-
grams remain exactly the same. Only the upper-left out-
put index of K changes. Therefore, the tensor Kr1s0,s1
remains unchanged. The dimensionality of the “l” in-
dices is the number of unique values of ∆s = s+ − s−
that the system can have. For a general D-level system,
this value is B = D2 −D+ 1 instead of D2, however the
actual symmetries present in the system might reduce
this even further. Finally, the influence functional ten-

sors have to be changed to be consistent, viz. Ĩ(α)
sk−α,∆sk

=

exp
(
− 1

~∆sk(ηk,(k−α)s
+
k−α − η∗k,(k−α)s

−
k−α)

)
. Even with
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FIG. 4. Optimized diagram for the final Green’s function for
a 5-step propagation. Dashed lines have dimension B, and
solid lines carry dimension D2. Cyan arrows show the order
of contraction.

these changes, the basic topology of the network remains
the same. The new network with the different dimensions
is shown in Fig. 4.

Having discussed the tensor network, now let us turn
to the job of contracting it. Typically, many tensor net-
works are constructed using singular value decomposition
(SVD) and evaluated via the truncation of the singu-
lar values [21, 24]. The PCTNPI network is constructed
without resorting to any SVD calculations and conse-
quently “exact.” The goal now is to find an optimal
contraction scheme that preserves this “exactness.” The
storage cost, S, is also evaluated at the end of every step.
The canonical contraction order that we discuss below
has been marked out in cyan arrows in Fig. 4. For a
simulation with N time steps:

1. Start with Ĩ(N)
s0,sN and contract it with Ĩ(N−1)

s0,sN−1 . S =
D2B2.

2. Multiply by Ĩ(N−2)
s0,sN−2 . S = D2B3.

3. Multiply all Ĩ(α)
s0,sα followed by K̃s0,s1ρs0 . At this

stage the storage cost is S = D2BN−1.

4. Contract the second edge sequentially, starting
from K̃s1,s2 . S = (D2)2BN−2.

5. While contracting the remaining N − 3 tensors on
the second edge, the storage cost remains constant
at S = (D2)2BN−2.

6. Lastly, the topmost tensor on the second edge
needs to be contracted. The storage drops to
S = D2BN−2.

FIG. 5. Diagram for the final Green function for a 5-step
propagation with memory length L = 3.

7. Continuing in the same fashion, the storage require-
ments of contracting the internal tensors of the jth

edge is S = (D2)2BN−j when j < N .

8. After contracting the final tensor on the jth edge,
the storage drops to S = D2BN−j .

9. Finally, the last tensor, K̃sN−1,sN is contracted.

In the above contraction scheme, we multiply the ini-
tial condition, ρs0 , and get the final RDM. While this
leads to a more efficient algorithm in terms of the storage
and computational cost, it is possible to reformulate the
scheme in terms of the Green’s function by not involving
the initial condition in the contractions and evaluating
P (∞). An in-depth analysis of the memory and computa-
tional cost is given in Appendix A. Of course, the storage
requirement grows to a maximum of (D2)2BN−2 before
decreasing continuously. This näıve contraction scheme
does not solve the problem of storage. Still, as would be
illustrated in Sec. III, PCTNPI outperforms both tradi-
tional iterative quasi-adiabatic propagator path integrals
(QuAPI) [31, 32], and iterative blip summed path inte-
gral (BSPI) [17, 18], when used without path filtration,
in the memory lengths that can be accessed without any
sort of filtration. In a future work, filtration schemes on
top of PCTNPI would be introduced that can not only
deal with this problem, but would also avoid the con-
struction and storage of the full tensor. The focus of this
paper is however on the tensor network and its perfor-
mance in the most näıve implementation.

It is well-known that the non-local memory of the in-
fluence functional dies away with the distance between
the points, allowing for a truncation of memory. This
idea is commonly used both in Nakajima-Zwanzig gen-
eralized quantum master equations [34–36] and iterative
QuAPI [31, 32]. In the framework of PCTNPI, the length
of the non-Markovian memory is equal to the depth of
the resultant network. The topmost tensor encodes the
interaction between the most distant points, while the
bottom most tensor captures the Markovian interactions
coming through the propagator and the I(1) terms.

At two time-steps of memory, that is L = 2, we basi-
cally get Fig. 2. In Fig. 5, we show the structure of the
network for a 5-step propagation with L = 3. Because s0

does not interact with s4 or s5, it is not necessary to store
and evaluate the full diagram at once, but it can be built
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(a) Contract all influence functionals with s0.

(b) Contract result with all influence functionals with s1. No-
tice that the external index with s1 from the previous step has
been contracted out and now the bottom-most external index

is s2.

(c) Contract result with remaining terms to get RDM.

FIG. 6. First steps of algorithm for iteration. The basic
contractions are done in the same way as described for the
full path part.

iteratively. The first edge, corresponding to interactions
with s0 is contracted, and multiplied by the second edge,
using the canonical contraction scheme discussed previ-
ously. As soon as this is done, the storage of the first
edge can be freed, and the third edge can be contracted.
This iteration scheme turns out to be identical to the it-
eration scheme in iterative QuAPI. The first steps of the
iteration algorithm is pictorally outlined in Fig. 6.

Makri [17] has shown that it is possible to think of
the memory as arising from two different causes. The
influence functional F can be rewritten in terms of the
real and imaginary parts of the η-coefficients as:

F [{s±j }] = e−
1
~
∑
k ∆sk

∑
k′≤k(Re ηkk′∆sk′−2i Im ηkk′ s̄k′ )

(18)

where ∆sk = s+
k − s

−
k and s̄k = 1

2 (s+
k + s−k ). The part of

the influence functional that arises from Re ηkk′ is called
the classical decoherence factor. It corresponds to stim-
ulated phonon absorption and emission [37]. This can
also be obtained through classical trajectory-simulations
and reference propagators [38] in a Markovian manner.
All effects of temperature is captured in the classical de-

coherence term. The term with the Im ηkk′ is the back-
reaction that leads to quantum decoherence. This part
of the memory is truly non-local and temperature inde-
pendent.

As a cheap approximation to the dynamics, it is pos-
sible to do a simulation with classical decoherence, that
would become increasing accurate as the temperature of
the simulation rises. In this, the full ηkk′ coefficients
are used only when k = k′ or k = k′ + 1, and other-
wise the imaginary part of ηkk′ is ignored. (Actually, the
true expressions for classical decoherence would include
the full ηkk′ coefficients only when k = k′ and the real
part otherwise. In PCTNPI, we can include the case of
k = k′+1 as well at the same storage and computational

cost.) Effectively, we are modifying the I
(α)
sk′ ,sk operators

to be exp (−1/~Re(ηkk′)∆sk∆sk′) when α = k− k′ ≥ 2.
Just like before when the sk lines carried unnecessary in-
formation, now the sk′ lines carry more information than
they need to. We only need to know about ∆sk′ . Thus
we can make the required changes to the dimensionality
of the indices by putting in the corresponding projector
operators in the K tensors, thereby reducing the cost of
computation even further. The network for the classi-
cal decoherence simulations would have exactly the same
structure as Fig. 3 with all edges except the base ones
being B dimensional. This approximation is especially
accurate at short times.

III. RESULTS

As illustrative examples, we apply PCTNPI to a two-
level systems (TLS) coupled bilinearly to a dissipative
environment:

Ĥ0 = εσ̂z − ~Ωσ̂x (19)

The dissipative environment is chosen to be defined by
Ohmic model spectral densities, which are especially use-
ful in modeling the low frequency ro-translational modes.
We use the very common Ohmic form with an exponen-
tial cutoff,

J(ω) =
π

2
~ξω exp

(
− ω

ωc

)
(20)

where ξ is the dimensionless Kondo parameter and ωc is
the characteristic cutoff frequency and the Ohmic form
with a Drude cutoff,

J(ω) = κωc
ω

ω2 + ω2
c

(21)

where κ is a measure of the coupling strength. Generally
these model spectral densities are often thought to be
fully characterized by a reorganization energy

λ =
2

π

∫ ∞
−∞

J(ω)

ω
dω (22)
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and the cutoff frequency, ωc. The reorganization energies
for the exponential and the drude cutoff spectral densities
are as listed below:

λExp = 2ξωc (23)

λDrude = 2κ. (24)

As we demonstrate through the examples, though the
reorganization energy and the cutoff frequency are same,
the exact dynamics of the reduced density matrix is
highly dependent on the form of the “decay function.”

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5 3

ρ
1
1
(t

)

Ωt

L = 10

L = 13

L = 15

L = 16

(a) Convergence with respect to memory length, L.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5 3

ρ
1
1
(t

)

Ωt

Exponential
Drude

(b) Comparison between spectral densities with exponential
and Drude decay functions.

FIG. 7. Dynamics of a symmetric TLS interacting with a
bath with λ = 2, ωc = Ω at an inverse temperature ~Ωβ = 1.

Consider a symmetric TLS (ε = 0) and Ω = 1 inter-
acting strongly (ξ = 2) with a sluggish bath (ωc = Ω)
initially localized on the populated system state 1. The
bath has a reorganization energy of λ = 4 and is held at
an inverse temperature of ~Ωβ = 1. The dynamics was
converged at ∆t = 0.125, and a memory length L = 16.
The convergence is shown in Fig. 7 (a) for an Ohmic bath
with an exponential decay. Full quantum-classical simu-
lations for this parameter is available [39]. If the Drude
form of decay is used, the dynamics changes quite signif-

icantly. The comparison between the dynamics arising
from the two spectral densities is shown in Fig. 7 (b).

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5 3 3.5 4

ρ
1
1
(t

)

Ωt

L = 8

L = 10

L = 12

L = 14

L = 16

(a) Spectral density with exponential decay functions

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 0.5 1 1.5 2 2.5 3 3.5 4

ρ
1
1
(t

)

Ωt

L = 8

L = 10

L = 12

L = 14

L = 16

(b) Spectral density with Drude decay functions

FIG. 8. Convergence with respect to memory length for the
spectral density with an exponential cutoff.

Next, consider a case where not only is the dynamics
different between the two different decay functions, but
the converged non-Markovian memory length is differ-
ent as well. The dynamics of the same TLS as above
(ε = 0,Ω = 1) is now simulated in a bath with the re-
organization energy λ = 8 and a characteristics cutoff
frequency ωc = 5. The bath is equilibrated at an inverse
temperature of ~Ωβ = 5. The time-step is converged at
Ω∆t = 0.125. The convergence of the dynamics of the re-
duced density matrix on changing the memory length, L,
is shown in Fig. 8. While the memory length for the ex-
ponential decay function spectral density is quite close to
convergence at L = 14, for the Drude spectral function,
it converges at L = 10.

In Fig. 9, we consider a TLS coupled to a strongly
coupled Ohmic bath with an exponential cutoff (ξ = 1.2,
ωc = 2.5Ω) equilibrated at a high temperature ~Ωβ =
0.2. The converged time step is ∆t = 0.125. The clas-
sical memory calculations converge at a comparatively
lower memory length, L and agree quite well with the
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0.5
0.55
0.6

0.65
0.7
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0.8

0.85
0.9

0.95
1
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ρ
1
1
(t

)

Ωt
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classical L = 4

classical L = 6

classical L = 8

FIG. 9. Comparison between the classical and full memory
calculations for a strongly coupled high temperature bath.

full simulations at short times. Though at intermediate
and long times, the classical decoherence dynamics dif-
fers from the true dynamics, this can often be enough for
estimating timescales of processes, especially using rate
theory [40–43].

Next, the storage requirements of PCTNPI is com-
pared with that of iterative QuAPI and iterative BSPI
in Fig. 10 (a). To keep the comparisons fair, the iQuAPI
and iBSPI methods were run without any path filtering.
It is quite clear from the plot that the scaling of PCT-
NPI is essentially “like” that of iBSPI, i.e. for a TLS, 3L

scaling for iBSPI and PCTNPI vs 4L scaling of iQuAPI.
However, the prefactor is much smaller, allowing us to
access much longer memories with limited resources. In
fact, this difference in the prefactor would grow with the
dimensionality of the quantum system. In iBSPI, there
would be 3L paths for a memory length of L, but the
storage is more than just a number corresponding to each
path. It stores a small dimensional matrix for each path.
This is the cause of the larger prefactor.

A comparison of the run times of PCTNPI with re-
spect to iBSPI without any filtration for a simulation
of 100 time steps is presented in Fig. 10 (b). A lap-
top with Intel® CoreTM i5-4200U CPU with a clock
speed of 1.60GHz was used for these benchmark calcu-
lations. These measurements are not going to be con-
sistent with similar benchmarks run on other machines,
but the basic trends would continue to hold. The PCT-
NPI algorithm is built on top of ITensor and automat-
ically uses parallel BLAS and LAPACK wherever pos-
sible. There is no standard iBSPI code. The iBSPI
program used for these benchmarks was manually par-
allelized with OpenMP loop parallelization.

As a final example, consider a molecular wire described
by the tight-binding Hamiltonian involving N sites:

Ĥ0 =
∑

1≤j≤N

εj |σj〉〈σj | − ~V
∑

1≤j<N

(|σj〉〈σj+1|+ |σj+1〉〈σj |).

(25)
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(a) Plot of memory requirements with respect to memory
length for different methods.
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(b) Plot of execution times with respect to memory length for
different methods.

FIG. 10. Comparison of PCTNPI with other methods. Note
that while the memory used is independent of machine, but
the execution time is not.

The site energy of the jth site is εj and the nearest neigh-
bor couplings are V . The sites are separated by unit dis-
tance such that |σj〉 are eigenstates of the position oper-
ator, ŝ |σj〉 = (j − 1) |σj〉. The site energy of all but the
first site is chosen to be zero εj = 0 for j 6= 1 and ε1 = 1.
The intersite coupling is chosen to be V = 0.025 [44].

The computational cost grows exponentially with the
number of sites. To test the efficiency of the basic con-
traction scheme outlined here, we use a system with
N = 4 sites. The bath is characterized by an Ohmic
spectral density with an exponential cutoff, Eq. (20) with
ωc = 4 and ξ = 0.12 [24] equilibrated at an inverse tem-
perature of β = 0.1. As discussed in Sec. II, the scaling
of the algorithm would go as B < D2. The symmetry of
the Hamiltonian in this case ensures that the number of
unique values of ∆s, B = 7 for this 4 state system, which
is even less than the D2−D+ 1 for a completely general
Hamiltonian. The population dynamics of all the states
is shown in Fig. 11. An initial state with only the first
site populated was used. Because of the high temper-
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FIG. 11. Population dynamics corresponding to an initially
populated first site. Lines: full simulations, markers: classical
memory simulations. For full decoherence, L = 6; for classical
decoherence, L = 4.

ature of the bath, the classical decoherence simulation
produces practically identical dynamics but converges at
a smaller memory length L.

IV. CONCLUSION

A novel tensor network is introduced to perform path
integral calculations involving the Feynman-Vernon in-
fluence functional. This pairwise connected tensor net-
work path integral (PCTNPI) captures the pairwise in-
teraction structure of influence functional. PCTNPI can
be contracted efficiently, and minimizes the storage re-
quirements as far as possible without resorting to various
path filtration algorithms. Iterative decomposition of the
memory is also possible in an elegant manner. Compar-
isons between PCTNPI and iQuAPI and iBSPI show the
scaling of memory requirements of PCTNPI to be similar
to iBSPI, but much smaller.

PCTNPI provides an alternative to the MPS repre-
sentation [21, 24], serving as a small step in further
elucidating the deep relation between tensor networks
and path integrals. While no path filtration scheme has
been developed, PCTNPI is already quite useable. It
can easily incorporate classical trajectories through har-
monic backreaction quantum-classical path integrals [37]
thereby making it possible to include anharmonic effects
of the environment in an approximate manner without
any additional cost. Additionally, harmonic backreac-
tion also leads to an increase in the converged time-step
and a decrease in the effective memory length such that
some ultrafast reactions can be simulated directly. Tak-
ing advantage of the extended memories that are accessi-
ble with PCTNPI, the combined method would be able to
simulate systems with strongly coupled sluggish realistic
solvents with high reorganization energy. This promises
to be a fruitful avenue of research in terms of applications

(a) Contraction of internal tensor along the left edge (j ≥ 2).
C = (D2)2BN−j+1. S = D2BN−j+1.

(b) Contraction of K̃s0,s1ρs0 . C = (D2)2BN−1. S =
D2BN−1.

FIG. 12. Contraction along the left edge of the triangle.
Dashed lines show the B dimensional indices, and solid lines
show the D2 dimensional indices.

to electron and proton transfer reactions.
Algorithms based on MPS representations of the aug-

mented reduced density tensor [21] or of the path-
dependent Green’s function [24] can be thought of as par-
ticular optimized re-factorizations of the PCTNPI net-
work. We have demonstrated the viability of evaluat-
ing PCTNPI in a brute force manner compared to other
methods. This suggests that using the PCTNPI net-
work directly to generate other optimized representations
might also lead to novel methods.

While ideas of path filtration were not a considera-
tion of the present paper, schemes based on the singu-
lar value decomposition (SVD) can be incorporated with
PCTNPI, leading to a method that significantly reduces
the storage, since the full tensor would not need to be
computed and stored. This development would be dis-
cussed in a future publication.
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Appendix A: Cost of Contraction

Consider the tensor network corresponding to a full
path simulation spanning N time-steps. To calculate the
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(a) Contracting the first tensor of the next parallel edge. C =
(D2)3BN−1. S = (D2)2BN−2.

(b) Contracting the last tensor of the next parallel edge. C =
(D2)2BN−1. S = D2BN−2.

FIG. 13. Contraction along an intermediate edge, say the one
next to the left-most edge.

cost of contraction, the left “edge” of the triangular net-

work is first considered. Consider contracting Ĩ(j)s0,sj , for
j ≥ 2, with two D2 indices and one B index, as schemat-
ically indicated in Fig. 12 (a). The part that has already
been contracted has one D2 index and (N−j) B indices.
Therefore, the cost of contraction is (D2)2BN−j+1. The
space requirement at this stage is D2BN−j+1. To fin-
ish the contraction of the left-most edge of the triangle,
we need to multiply by K̃s0,s1ρs0 leading to the tensor
network shown in Fig. 12 (b). The resultant tensor does
not have a index corresponding to s0 because that has
been traced over. The computational cost of this step is
C = (D2)2BN−1 and the storage becomes S = D2BN−1.

Now, the second parallel edge is to be contracted. This
step however is started from the bottom, i.e. from K̃s1,s2 .

The first contraction, shown in Fig. 13 (a), is the most
costly step in the entire algorithm. The computational
cost of this step is C = (D2)3BN−1 and the storage
requirement increases to S = (D2)2BN−2. Continuing
with the other intermediate tensors of the first parallel
edge, notice that the cost of contraction remains constant
at C = (D2)3BN−1 and the space required remains con-
stant at S = (D2)2BN−2. Finally, the last, top-most ten-
sor of this edge is to be contracted. This is illustrated in
Fig. 13 (b). The computational cost is C = (D2)2BN−1.
The storage cost now drops to S = D2BN−2.

Now, consider contracting a general diagonal edge, say
the jth one. The resultant tensor from the previous con-
traction has one D2 index and N − j+ 1 B indices. Con-
tracting the K̃ tensor leads to a tensor with two D2 in-
dices and (N − j) B indices. The cost of this contraction
is C = (D2)3BN−j+1 and the storage is S = (D2)2BN−j .
For all the intermediate tensors at this stage, once again
both the computational costs and the storage costs re-
main the same. On contracting the last tensor of this
diagonal, the storage drops to S = D2BN−j .

Below we list the total computational cost for contract-
ing each of the “parallel” edges. The edge number is
given as the subscript.

C1 = (D2)2BN−1 +

N−1∑
j=2

(D2)2BN−j+1

= (D2)2

(
BN−1 +

B2(BN−2 − 1)

B − 1

)
(A1)

Cj = (D2)2BN−j+1
(
1 + (N − j)D2

)
, 2 ≤ j ≤ N

(A2)

The prefactor of the computational and storage costs
is lower for classical decoherence simulations: It goes
from a power of D2 to the corresponding power of B.
It is clear that the complexity of the entire contraction
goes as O

(
BN−1

)
and the peak storage requirement is

O
(
BN−2

)
.
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