
UC Davis
UC Davis Previously Published Works

Title
Pairwise correlations in layered close-packed structures.

Permalink
https://escholarship.org/uc/item/36r9j643

Journal
Acta crystallographica. Section A, Foundations and advances, 71(Pt 4)

ISSN
2053-2733

Authors
Riechers, PM
Varn, DP
Crutchfield, JP

Publication Date
2015-07-01

DOI
10.1107/s2053273315005264
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36r9j643
https://escholarship.org
http://www.cdlib.org/


electronic reprint

ISSN: 2053-2733

journals.iucr.org/a

Pairwise correlations in layered close-packed structures

P. M. Riechers, D. P. Varn and J. P. Crutchfield

Acta Cryst. (2015). A71, 423–443

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Cryst. (2015). A71, 423–443 P. M. Riechers et al. · Correlation functions

http://journals.iucr.org/a/
http://dx.doi.org/10.1107/S2053273315005264
http://journals.iucr.org/services/authorrights.html
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273315005264&domain=pdf&date_stamp=2015-06-02


research papers

Acta Cryst. (2015). A71, 423–443 http://dx.doi.org/10.1107/S2053273315005264 423

Pairwise correlations in layered close-packed
structures

P. M. Riechers,* D. P. Varn* and J. P. Crutchfield*

Complexity Sciences Center and Physics Department, University of California, One Shields Avenue, Davis, California

95616, USA. *Correspondence e-mail: pmriechers@ucdavis.edu, dpv@complexmatter.org, chaos@ucdavis.edu

Given a description of the stacking statistics of layered close-packed structures

in the form of a hidden Markov model, analytical expressions are developed for

the pairwise correlation functions between the layers. These may be calculated

analytically as explicit functions of model parameters or the expressions may be

used as a fast, accurate and efficient way to obtain numerical values. Several

examples are presented, finding agreement with previous work as well as

deriving new relations.

1. Introduction

There has long been an interest in planar defects or stacking

faults in crystals (Hendricks & Teller, 1942; Wilson, 1942).

With the recent realization of the technological import of

many materials prone to stacking faults – graphene (Castro

Neto et al., 2009; Geim &Grigorieva, 2013) and SiC (Zekentes

& Rogdakis, 2011) being but two well known examples – that

interest has only grown. Since stacking faults shift an entire

layer of atoms, it is not unexpected that they can profoundly

affect material properties. Many of these materials have more

than one stable stacking configuration and additionally many

metastable ones can exist (Sebastian & Krishna, 1994), as well

as many stacking configurations that show varying amounts of

disorder. Thus, understanding stacking faults, perhaps as a

prelude to controlling their kind and placement, presents a

significant, but compelling challenge.

Disordered layered materials are often studied via the

pairwise correlations between layers, as these correlations are

experimentally accessible from the Fourier analysis of a

diffraction pattern (Estevez-Rams, Martinez et al., 2001;

Estevez-Rams, Penton-Madrigual et al., 2001; Varn et al., 2002,

2013a), or directly from simulation studies (Kabra & Pandey,

1988, 1995; Shrestha & Pandey, 1996a,b, 1997; Shrestha et al.,

1996; Varn & Crutchfield, 2004). Such studies yield important

insights into the structural organization of materials. For

example, Kabra & Pandey (1988) were able to show that a

model of the 2H ) 6H1 transformation in SiC could retain

long-range order even as the short-range order was reduced.

Tiwary & Pandey (2007) calculated the size of domains in a

model of randomly faulted close-packed structures (CPSs) by

calculating the (exponential) decay rate of pairwise correla-

tion functions between layers. Recently Estevez-Rams et al.

(2008) derived analytical expressions for the correlation

functions for CPSs that contained both random growth and

deformation faults, and Beyerlein et al. (2011) demonstrated
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1 We will use the Ramsdell notation (Ortiz et al., 2013; Sebastian & Krishna,
1994) to describe well known crystalline stacking structures.
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that correlation functions in finite-sized face-centered cubic

crystals depend not only on the kind and amount of faulting,

but additionally on their placement.

Beyond the study of layered materials, pairwise correlation

information, in the form of pair distribution functions, has

recently attracted significant attention (Egami & Billinge,

2013). However, as useful as the study of pairwise correlation

information is, it does not provide a complete description of

the specimen. Indeed, it has long been known that very

different atomic arrangements of atoms can reproduce the

same pair distribution function, although there has been

recent progress in reducing this degeneracy (Cliffe et al., 2010).

Nor are they in general suitable for calculating material

properties, such as conductivities or compressibilities.

For crystalline materials, a complete description of the

specimen comes in the form of its crystal structure, i.e., the

specification of the placement of all the atoms within the unit

cell, coupled with the description of how the unit cells are

spatially related to each other, commonly referred to as the

lattice. The mathematical structure of the theory, which has

been called classical crystallography (Mackay, 1986), uses

exact symmetries couched in the language of group theory.

Determining these quantities for specimens and materials is of

course the traditional purview of crystallography. For disor-

dered materials, instead of using exact group symmetries, it

has recently been suggested that the partial symmetries

observed in these materials can be represented using semi-

groups. This new formalism, called chaotic crystallography

(Varn & Crutchfield, 2015), employs information- and

computation-theoretic measures to characterize and classify

material structure. Chaotic crystallography provides a unified

platform not only to calculate physical quantities of interest

but also to give insight into their physical structure. For

layered materials, where there is but one axis of interest,

namely the organization along the stacking direction, the

appropriate mathematical framework for this formalism has

been identified (Varn et al., 2002, 2007, 2013a) as computa-

tional mechanics (Crutchfield & Young, 1989; Crutchfield,

2012). The mathematical entity that gives a compact,

statistical description of the disordered material (along its

stacking direction) is its "-machine, a kind of hidden Markov

model (HMM) (Rabiner, 1989; Elliot et al., 1995). Chaotic

crystallography also has the advantage of encompassing

traditional crystal structures, so both ordered and disordered

materials can be treated on the same footing in the same

formalism.

It is our contention that an "-machine describing a speci-

men’s stacking includes all of the structural information

necessary to calculate physical quantities that depend on the

stacking statistics (Varn & Crutchfield, 2015). In the following,

we demonstrate how pairwise correlation functions can be

calculated either analytically or to a high degree of numerical

certainty for an arbitrary HMM and, thus, for an arbitrary "-

machine. Previous researchers often calculated pairwise

correlation functions for particular realizations of stacking

configurations (Berliner & Werner, 1986; Kabra & Pandey,

1988; Shrestha & Pandey, 1997; Estevez-Rams, Martinez et al.,

2001; Varn et al., 2013a) or from analytic expressions

constructed for particular models (Tiwary & Pandey, 2007;

Estevez-Rams et al., 2008; Varn & Crutchfield, 2004). The

techniques developed here, however, are the first generally

applicable methods that do not rely on samples of a stacking

sequence. The result delivers both an analytical solution and

an efficient numerical tool. Additionally, by shifting the

primary focus of study from the pair correlation functions to

the HMM, new insights into the behavior of correlation

functions, particularly their modes of decay to their asymptotic

value, are obtained. While we will specialize to the case of

CPSs for concreteness, the methods developed are extendable

to other materials and stacking geometries.

Our development is organized as follows. In x2 we introduce

nomenclature. In x3 we develop an algorithm to change

between different representations of stacking sequences. In x4

we derive expressions, our main results, for the pairwise

correlation functions between layers in layered CPSs. In x5 we

consider several examples: namely, (i) a simple stacking

process that represents the 3C crystal structure or a random

stacking structure depending on the parameter choice, (ii) a

stacking process that models random growth and deformation

faults, and (iii) a stacking process inspired by recent experi-

ments in 6H-SiC. And, in x6 we give our conclusions and

directions for future work.

Additionally, we find it useful to introduce a number of

abbreviations that may not be familiar to the reader. As an

aid, these abbreviations have been compiled in Table 1 along

with the section of the text where they are first defined.

2. Definitions and notations

We suppose the layered material is built up from identical

sheets called modular layers (MLs) (Price, 1983; Ferraris et al.,

2008). The MLs are completely ordered in two dimensions and

assume only one of three discrete positions, labeled A, B or C

(Ashcroft & Mermin, 1976; Sebastian & Krishna, 1994). These

represent the physical placement of each ML and are

commonly known as the ABC notation (Ortiz et al., 2013). We

define the set of possible orientations in the ABC notation as

AP ¼ fA;B;Cg. We further assume that the MLs obey the

same stacking rules as CPSs, namely that two adjacent layers

may not have the same orientation; i.e., stacking sequences

AA, BB and CC are not allowed. Exploiting this constraint,

424 P. M. Riechers et al. " Correlation functions Acta Cryst. (2015). A71, 423–443
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Table 1
A number of abbreviations are extensively used in the text and, as a
convenience for the reader, they are tabulated here.

CF Correlation function x2.1
CPS Close-packed structure x1
GM Golden Mean (process) x2.2
HMM Hidden Markov model x1
IID Independent and identically distributed (process) x5.1
ML Modular layer x2
RGDF Random growth and deformation fault (process) x5.2
SF Stacking fault x5.2
SFSF Shockley–Frank stacking fault (process) x5.3
SSC Simple state cycle x3.2
TM Transition matrix x2.2
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the stacking structure can be represented more compactly in

the Hägg notation: one takes the transitions between MLs as

being either cyclic, (A ! B;B ! C or C ! A), and denoted

as ‘+’; or anticyclic, (A ! C;C ! B or B ! A), and denoted

as ‘#’. The Hägg notation then gives the relative orientation of

each ML to its predecessor. It is convenient to identify the

usual Hägg notation ‘+’ as ‘1’ and ‘#’ as ‘0’. Doing so, we

define the set of possible relative orientations in the Hägg

notation asAH ¼ f0; 1g. These two notations –ABC and Hägg

– carry an identical message, up to an overall rotation of the

specimen. Alternatively, one can say that there is freedom of

choice in labeling the first ML. However, only the ABC

sequences directly relate to structure factors for the specimen,

making the ABC representation of the stacking structure the

natural choice for calculating pairwise correlation quantities.

Indeed, it will be shown that the spectral decomposition of the

ABC transition matrix directly corresponds to modes of the

correlation functions relevant to diffraction patterns, whereas

the same is not true for the Hägg representation.

2.1. Correlation functions

Let us define three statistical quantities, QcðnÞ, QaðnÞ and

QsðnÞ (Yi & Canright, 1996): the pairwise correlation functions

(CFs) between MLs, where ‘c’, ‘a’ and ‘s’ stand for cyclic,

anticyclic and same, respectively. QcðnÞ is the probability that

any two MLs at a separation of n are cyclically related. QaðnÞ

and QsðnÞ are defined in a similar fashion.2 Since these are

probabilities: 0 & Q!ðnÞ & 1, where ! 2 fc; a; sg. Additionally,

at each n it is clear that
P

! Q!ðnÞ ¼ 1. Notice that the CFs are

defined in terms of the ABC notation.

2.2. Representing layer stacking as a hidden process

We chose to represent a stacking sequence as the output of

a discrete-step, discrete-state HMM. A HMM ! is an ordered

tuple ! ¼ ðA; S;"0;TÞ, whereA is the set of symbols that one

observes as the HMM’s output, often called an alphabet, S is a

finite set of M internal states, "0 is an initial state probability

distribution, and T is a set of matrices that give the probability

of making a transition between the states while outputting one

of the symbols in A. These transition probability matrices or

more simply transition matrices (TMs) (Paz, 1971; Karlin &

Taylor, 1975) are usually written:

T
½s(
¼

Prðs;S1jS1Þ Prðs;S2jS1Þ . . . Prðs;SMjS1Þ

Prðs;S1jS2Þ Prðs;S2jS2Þ . . . Prðs;SMjS2Þ

.

.

.
.
.
.

.
.

.
.
.
.

Prðs;S1jSMÞ Prðs;S2jSMÞ . . . Prðs;SMjSMÞ

2

6

6

6

4

3

7

7

7

5

;

where s 2 A and S1;S2; . . . ;SM 2 S.

For a number of purposes it is convenient to work directly

with the internal-state TM; denote it T . This is the matrix of

state transition probabilities regardless of symbol, given by the

sum of the symbol-labeled TMs: T ¼
P

x2A T
½x(
. For example,

the ensemble internal-state distribution evolves according to

hl1j ¼ hl0jT . Or, more generally, hlLj ¼ hl0jT
L
. (In this

notation, state distributions are row vectors.) In another use,

one finds the stationary-state probability distribution:

hpj ¼ ½PrðS1Þ PrðS2Þ . . . PrðSMÞ(;

as the left eigenvector of T normalized in probability:

hpj ¼ hpjT : ð1Þ

The probability of any finite-length sequence of symbols can

be computed exactly from these objects using linear algebra.

In particular, a length-L ‘word’ w ¼ s0s1 . . . sL#1 2 A
L
, where

A
L
is the set of length-L sequences, has the stationary prob-

ability:

PrðwÞ ¼ hpjT
½w(
j1i

¼ hpjT
½s0(T

½s1( . . . T
½sL#1(j1i;

where j1i is the column vector of all ones.

As a useful convention, we will use bras h)j to denote row

vectors and kets j)i to denote column vectors. On the one

hand, any object closed by a bra on the left and ket on the

right is a scalar and commutes as a unit with anything. On the

other hand, a ket–bra j)ih)j has the dimensions of a square

matrix. More explanation can be found in Appendix A.

To help familiarize the reader with TMs as they will be

employed in the examples of x5, and to make a very useful

connection to automata theory (Hopcroft & Ullman, 1979),

we now develop these ideas using a simple pedagogical

example. Let us consider a CPS stacked according to the

Golden Mean (GM) process (Crutchfield & Feldman, 2003).

The GM process has been previously treated in the context of

CPSs in Varn (2013b). The GM process is generically defined

as follows: any sequence is allowed as long as there are no

consecutive 0’s. This is accomplished by examining the

previous observed symbol: if it is 1, then the next symbol in the

sequence is either 0 or 1 with equal probability; if it is 0, then

the next symbol is necessarily 1.3 Thus, when scanning a

sequence there are two possible states corresponding to the

above two conditions. Let us call these states U (next symbol is

a 0 or 1 with equal probability) and V (next symbol is a 1). And

so, we say S ¼ fU;Vg. The two 2-by-2 TMs for this process –

one for each symbol in the alphabet – are given by

research papers
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2 As yet, there is no consensus on notation for these quantities. Warren (1969)
uses P0

m;P
þ
m and P#

m; Kabra & Pandey (1988) call these PðmÞ;QðmÞ and RðmÞ;
and Estevez-Rams et al. (2008) use P0ð"Þ;Pfð"Þ and Pbð"Þ. Since we prefer to
reserve the symbol ‘P’ for other probabilities previously established in the
literature, here and elsewhere we follow the notation of Yi & Canright (1996),
with a slight modification of replacing ‘QrðnÞ’ with ‘QaðnÞ’.

3 The alert reader may object that there isn’t any inherent prohibition against
consecutive 0’s appearing in the stacking sequence of CPSs. She is quite right.
While there is no general prohibition, it may be that in a particular specimen,
whether by accident, by some natural as yet undiscovered mechanism or by
the design of an experimentalist, the 00 sequence never appears. This should
be reflected in the HMM. Additionally, the reader may object that rotating the
specimen by 60+ about the stacking direction will exchange all 0’s and 1’s,
making such sequence prohibitions spurious. Indeed, for simple CPSs, 0 , 1 is
a good symmetry. [See Varn & Canright (2001) for a discussion.] While a
physical rotation of the specimen doesn’t alter the physical stacking, it can
alter the details of how the stacking sequence is labeled, and this is reflected in
the HMM. In any event, the details of the GM process are not relevant to our
overall theoretical development, and the prohibition of the 00 sequence just
serves to create a simple HMM that is both nontrivial and easy to analyze.
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T
½0( ¼

0 1
2

0 0

! "

and T
½1( ¼

1
2 0

1 0

! "

:

The GM process has internal-state TM:

T ¼ T
½0( þ T

½1(

¼
1
2

1
2

1 0

! "

:

The asymptotic state probabilities are found by direct appli-

cation of equation (1) and are found to be hpHj ¼ ½23
1
3(.

Thus, a more formal definition of the GM process is given as

!
ðHÞ
GM ¼ ðA; S;"0;TÞ ¼ (f0; 1g; fU;Vg; ½23

1
3(; fT

½0(; T½1(g).4 HMMs

are often conveniently depicted as a finite-state automaton

(Hopcroft & Ullman, 1979), a kind of labeled directed graph.

For example, the labeled directed graph that represents the

HMM for the GM process is shown in Fig. 1. When the finite-

state automaton representing the HMM is given in terms of

the Hägg notation (as is done here), we will call that theHägg-

machine for that process.

Thus, if the MLs of a specimen were stacked according to

the GM process, that would mean that sequences like 00 are

never observed in that specimen. Alternatively, this can be

restated in the ABC notation: sequences of the form ACB,

CBA and BAC are not observed in that specimen. In the next

section we show how to rewrite any Hägg-machine as a finite-

state automaton in the ABC notation, which we will call the

ABC-machine. This is the necessary mathematical object

required to calculate CFs and will be used extensively in our

theoretical development (x4).

3. Expanding the Hägg-machine to the ABC-machine

While simulation studies (Varn & Crutchfield, 2004) and "-

machine spectral reconstruction (Varn et al., 2002, 2007,

2013a,b) express stacking structure in terms of the Hägg-

machine, our theoretical methods developed in x4 require

that it be re-expressed in terms of the ABC-machine. This

section is devoted to detailing techniques to do just that.

We give a graphical procedure for expanding the Hägg-

machine into the ABC-machine (x3.1) and then provide an

algebraically equivalent algorithm (x3.3). We note that this

expansion procedure is not unique and can vary up to an

overall rearrangement of the columns and rows of the

resulting ABC-machine TM. This difference, of course,

does not alter the results of calculations of physical

quantities.

3.1. Graphical expansion method

Recall that the Hägg notation and the ABC notation are

equivalent representations of the stacking structure, up

to an overall rotation of the crystal. Stated alternatively,

in the Hägg notation, there is an ambiguity concerning

the orientation of each ML – it could be either A, B or C.

To account for this degeneracy, when we transform to the

ABC representation, we triple the size of the Hägg-machine.

As a first step, one writes down three states for each state

found in the Hägg-machine, but not the transitions between

them. To distinguish among these new states of the triplet,

label each with a superscript (A, B or C) indicating the

last ML added to arrive at that state. Symbolically, this is

stated:

Transitions between states on the ABC-machine still respect

the same state-labeling scheme as on the Hägg-machine

(explained below), but now they store the ML information.

Transitions between states on the Hägg-machine that were

labeled with 1 advance the stacking sequence cyclically (i.e.,

A ! B ! C ! A) and the corresponding transitions on the

ABC-machine reflect this by taking the ML label on the initial

state and advancing it cyclically. In a completely analogous

way, transitions labeled 0 on the Hägg-machine advance the

states on the ABC-machine in an anticyclical fashion (i.e.,

A ! C ! B ! A).

Continuing our GM process example, let us write out the six

(¼ 3, 2) states labeled with superscripts to distinguish them.

This is done in Fig. 2(a). [It does not matter in what order

these states are labeled. The scheme chosen in Fig. 2(a) turns

out to be convenient given the state-to-state transition struc-

ture of the final ABC-machine, but any arrangement is satis-

factory.] The transitions between the states on the ABC-

machine preserve the labeling scheme of the original Hägg-

machine. That is, if in the original Hägg-machine there is

transition Si#!
sjp

Sj, then there must be three similar transitions

on the ABC-machine of the form S
½x(
i #!

x0jp
S
½x0(
j , with

x; x0 2 fA;B;Cg. Additionally, the transitions on the ABC-

machine corresponding to the transitions on the Hägg-

machine have the same conditional probability.

Let us consider the self-state transition on the Hägg-

machine shown in Fig. 1: U#!
1j12

U . Since the corresponding

transitions on the ABC-machine still respect the state-labeling

scheme, the self-loop on U only induces transitions among the

U ½x(. Since a 1 advances the stacking sequence cyclically, the

appropriate transitions are

426 P. M. Riechers et al. " Correlation functions Acta Cryst. (2015). A71, 423–443
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Figure 1
The GM process written as a Hägg-machine. The circles indicate states,
and the arcs between them are transitions, labeled by sjp, where s is the
symbol emitted upon transition and p is the probability of making such a
transition.

4 Here and in the examples of x5, we take the stationary-state probability
distribution p as the initial probability state distribution "0, as we are
interested for now in stationary behavior.
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U ½A( #!
Bj12

U ½B(

U ½B( #!
Cj12

U ½C(

U ½C( #!
Aj12

U ½A(
:

This is illustrated in Fig. 2(b). Applying the same procedure to

the other transitions on the Hägg-machine, i.e., U#!
0j12

V and

V#!
1j1

U , results in the completely expanded ABC-machine,

and this is shown in Fig. 2(c).

We are now able to write down the stacking process for the

GM process from its expanded graph, Fig. 2(c). First, we note

that the alphabet is ternary: AP ¼ fA;B;Cg. Second, there

are six states on the ABC-machine, i.e., S ¼

fU ½A(;U ½B(;U ½C(;V ½A(;V ½B(;V ½C(g. Ordering the states as above,

the TMs may be directly constructed from the expanded

graph, and are given by

T
½A(

¼

0 0 0 0 0 0

0 0 0 1
2 0 0

1
2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; T
½B(

¼

0 1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1
2 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and

T
½C(

¼

0 0 0 0 0 1
2

0 0 1
2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

As before, the internal-state TM is simply the sum of the

symbol-specific TMs, given by T ¼ T
½A(

þ T
½B(

þ T
½C(
. For the

GM process this turns out to be

T ¼

0 1
2 0 0 0 1

2

0 0 1
2

1
2 0 0

1
2 0 0 0 1

2 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

For completeness, the HMM for the GM process in terms of

the physical stacking of MLs is !
ðPÞ
GM ¼ ðA; S;"0;TÞ ¼

ðfA;B;Cg, fU ½A(;U ½B(;U ½C(;V ½A(;V ½B(;V ½C(g, 1
9 ½2 2 2 1 1 1(,

fT
½A(
; T

½B(
; T

½C(
gÞ. It is from suchABC representations that we

will make direct connection to the CFs in x4.

3.2. Mixing and nonmixing state cycles

Observe Fig. 2(c)’s directed graph is strongly connected –

any state is accessible from any other state in a finite number

of transitions. It should be apparent that this need not have

been the case. In fact, in this example connectivity is due to the

presence of the self-state transition U#!
1
U . The latter guar-

antees a strongly connected expanded graph. Had this tran-

sition been absent on the Hägg-machine, such that there were

only transitions of the form U#!
0
V and V#!

1
U , the expansion

would have yielded a graph with three distinct, unconnected

components. Only one of these graphs would be physically

manifest. It is sufficient to take just one component, arbitrarily

assign an A, B or C to an arbitrary state on that component,

and then replace all of the f0; 1g transitions with the appro-

priate fA;B;Cg transitions, as done above.

research papers
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Figure 2
The steps to graphically expand the Hägg-machine to the ABC-machine demonstrated using the GM process. (a) The two states of Hägg-machine shown

in Fig. 1 are increased to six, as shown. (b) The self-state transition U!
1j12

U of the Hägg-machine now becomes three transitions among the U ½x( of the
ABC-machine. (c) The remaining transitions of the Hägg-machine are expanded in a similar fashion (see text), resulting in theABC-machine for the GM
process.
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To determine whether the expansion process on a Hägg-

machine results in a strongly connected graph, one can

examine the set of simple state cycles (SSCs) and calculate the

winding number for each. An SSC is defined analogous to a

causal state cycle (Varn et al., 2013a) on an "-machine as a

‘finite, closed, nonself-intersecting, symbol-specific path’ along

the graph. The winding number W for an SSC on a Hägg-

machine is similar to the parameter" previously defined by Yi

& Canright (1996) and the cyclicity (C) (Dornberger-Schiff &

Schmittler, 1971) for a polytype of a CPS. The winding number

differs from cyclicity as the former is not divided by the period

of the cycle. We define the winding number for an SSC as

WSSC ¼ n1 # n0;

where n1 and n0 are the number of 1’s and the number of 0’s

encountered traversing the SSC, respectively. We call those

SSCs mixing if WSSCðmod 3Þ 6¼ 0, and nonmixing if

WSSCðmod 3Þ ¼ 0. If there is at least one mixing SSC on the

Hägg-machine, then the expanded ABC-machine will be

strongly connected. For example, there are two SSCs on the

Hägg-machine for the GM process: ½U( and ½UV(.5 The winding

number for each is given by W ½U( ¼ 1# 0 ¼ 1 and

W ½UV( ¼ 1# 1 ¼ 0. Since W ½U( 6¼ 0 and ½U( is thus a mixing

SSC, the Hägg-machine for the GM process will expand into a

strongly connected ABC-machine. Let us refer to those Hägg-

machines with at least one mixing SSC as mixing Hägg-

machines and those that do not as nonmixing Hägg-machines

and similarly for the corresponding ABC-machines. We find

that mixing Hägg-machines, and thus mixing ABC-machines,

are far more common than nonmixing ones and that the

distinction between the two can have profound effects on the

calculated quantities, such as the CFs and the diffraction

pattern (Riechers et al., 2014).

3.3. Rote expansion algorithm

To develop an algorithm for expansion, it is more conve-

nient to change notation slightly. Let us now denote S as the

set of hidden recurrent states in the ABC-machine, indexed by

integer subscripts: S ¼ fSi : i ¼ 1; . . . ;MPg, where MP ¼ jSj.

Define the probability to transition from state Si to state Sj on

the symbol x 2 AP as T
½x(
i;j . Let’s gather these state-to-state

transition probabilities into anMP ,MP matrix, referring to it

as the x-transition matrix (x-TM) T
½x(
. Thus, there will be as

many x-TMs as there are symbols in the alphabet of the ABC-

machine, which is always jAPj ¼ 3 for CPSs.

As before, transitioning on symbol 1 has a threefold

degeneracy in the ABC language, as it could imply any of the

three transitions ðA ! B, B ! C, or C ! A), and similarly

for 0. Thus, each labeled edge of the Hagg-machine must be

split into three distinct labeled edges of the ABC-machine.

Similarly, each state of the Hägg-machine maps onto three

distinct states of the ABC-machine. Although we have some

flexibility in indexing states in the resulting ABC-machine, we

establish consistency by committing to the following

construction.6

If MH is the number of states in the Hägg-machine, then

MP ¼ 3MH for mixing Hägg-machines. (The case of nonmixing

Hägg-machines is treated afterwards.) Let the ith state of the

Hägg-machine split into the ð3i# 2Þ-th through the ð3iÞ-th

states of the correspondingABC-machine. Then, each labeled-

edge transition from the ith to the jth states of the Hägg-

machine maps into a 3-by-3 submatrix for each of the three

labeled TMs of the ABC-machine as

and

We can represent the mapping of equations (2) and (3) more

visually with the following equivalent set of statements:

T
½A(
3i#2;3j#2 T

½A(
3i#2;3j#1 T

½A(
3i#2;3j

T
½A(
3i#1;3j#2 T

½A(
3i#1;3j#1 T

½A(
3i#1;3j

T
½A(
3i;3j#2 T

½A(
3i;3j#1 T

½A(
3i;3j

0

B

@

1

C

A
¼

0 0 0

T
½0(
ij 0 0

T
½1(
ij 0 0

0

@

1

A; ð4Þ

T
½B(
3i#2;3j#2 T

½B(
3i#2;3j#1 T

½B(
3i#2;3j

T
½B(
3i#1;3j#2 T

½B(
3i#1;3j#1 T

½B(
3i#1;3j

T
½B(
3i;3j#2 T

½B(
3i;3j#1 T

½B(
3i;3j

0

B

@

1

C

A
¼

0 T
½1(
ij 0

0 0 0

0 T
½0(
ij 0

0

@

1

A ð5Þ

and

T
½C(
3i#2;3j#2 T

½C(
3i#2;3j#1 T

½C(
3i#2;3j

T
½C(
3i#1;3j#2 T

½C(
3i#1;3j#1 T

½C(
3i#1;3j

T
½C(
3i;3j#2 T

½C(
3i;3j#1 T

½C(
3i;3j

0

B

@

1

C

A
¼

0 0 T
½0(
ij

0 0 T
½1(
ij

0 0 0

0

@

1

A; ð6Þ

which also yields the 3-by-3 submatrix for the unlabeled ABC

TM in terms of the labeled Hägg TMs:

T 3i#2;3j#2 T 3i#2;3j#1 T 3i#2;3j

T 3i#1;3j#2 T 3i#1;3j#1 T 3i#1;3j

T 3i;3j#2 T 3i;3j#1 T 3i;3j

0

@

1

A ¼

0 T
½1(
ij T

½0(
ij

T
½0(
ij 0 T

½1(
ij

T
½1(
ij T

½0(
ij 0

0

B

@

1

C

A
:

ð7Þ

For nonmixing Hägg-machines, the above algorithm creates

three disconnected ABC-machines, of which only one should

be retained.

Furthermore, for mixing Hägg-machines, the probability

from the stationary distribution over their states maps to a

triplet of probabilities for the stationary distribution over the

ABC-machine states:

such that
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5 We use the same nomenclature to denote an SSC as previously used to
denote a causal state cycle: the state sequence visited traversing the cycle is
given in square brackets (Varn et al., 2013a). For those cases where an
ambiguity exists because the transition occurs on more than one symbol, we
insert a subscript in parentheses denoting that symbol.

6 Alternative constructions merely swap the labels of different states, but this
choice of indexing affects the particular form of the TMs and how they are
extracted from the Hägg-machine TMs. We choose the construction here for
its intuitive and simple form.
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hpj ¼ p1 p2 p3 p4 . . . pMP#1 pMP

# $

¼ 1
3 pH1 pH1 pH1 pH2 . . . pH

MH
pH
MH

h i

: ð9Þ

The reader should check that applying the rote expansion

method given here results in the same HMM for the GM

process as we found in x3.1.

4. Correlation functions from HMMs

In this section we derive expressions for the CFs in terms of

the ABC-machine. We present two layers of analysis: one

directly in terms of the TMs in x4.1, followed by one based on

spectral analysis of the ABC-machine in x4.2. From the results

of this latter method, we find the conditions under which the

CFs decay to asymptotic values in x4.3 and, additionally, we

discover constraints on the modes of decay of the CFs in x4.4.

We introduce the family of cyclic relation functions

!̂!ðxÞ 2 fĉcðxÞ; âaðxÞ; ŝsðxÞg, where, for example,

ĉcðxÞ ¼

B if x ¼ A

C if x ¼ B

A if x ¼ C

8

<

:

: ð10Þ

Thus, ĉcðxÞ is the cyclic permutation function. Complementa-

rily, âaðxÞ performs anticyclic permutation among

x 2 fA;B;Cg; ŝsðxÞ performs the identity operation among

x 2 fA;B;Cg and is suggestively denoted with an ‘s’ for same.

In terms of the absolute position of the MLs, i.e.,

AP ¼ fA;B;Cg, the CFs directly relate to the products of

particular sequences of TMs. This perspective suggests a way

to uncover the precise relation between the CFs and the TMs.

Using this, we then give a closed-form expression forQ!ðnÞ for

any given HMM.

4.1. CFs from TMs

As a prelude to developing a general method to calculate

any arbitrary CF from the ABC-machine, let us first consider

the meaning of Qcð3Þ. In words, this is the probability that two

MLs separated by two intervening MLs are cyclically related.

Mathematically, we might start by writing this as

Qcð3Þ ¼ PrðA - -BÞ þ PrðB - -CÞ þ PrðC - -AÞ; ð11Þ

where - is a wildcard symbol denoting an indifference for the

symbol observed in its place.7 That is, -’s denote marginalizing

over the intervening MLs such that, for example,

PrðA - -BÞ ¼
P

x12AP

P

x22AP

PrðAx1x2BÞ: ð12Þ

Making use of the TM formalism discussed previously, this

becomes

PrðA - -BÞ ¼
X

x12AP

X

x22AP

PrðAx1x2BÞ

¼
X

x12AP

X

x22AP

hpjT
½A(
T

½x1(T
½x2(T

½B(
j1i

¼ hpjT
½A(

X

x12AP

X

x22AP

T
½x1(T

½x2(

 !

T
½B(
j1i

¼ hpjT
½A(

X

x12AP

T
½x1(

 !

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼T

X

x22AP

T
½x2(

 !

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼T

T
½B(
j1i

¼ hpjT
½A(
ðT ÞðT ÞT

½B(
j1i

¼ hpjT
½A(
T

2
T

½B(
j1i;

where j1i is a column vector of 1’s of lengthMP. Hence, we can

rewrite Qcð3Þ as

Qcð3Þ ¼ PrðA - -BÞ þ PrðB - -CÞ þ PrðC - -AÞ

¼ hpjT
½A(
T

2
T

½B(
j1iþ hpjT

½B(
T

2
T

½C(
j1i

þ hpjT
½C(
T

2
T

½A(
j1i

¼
P

x2AP

hpjT
½x(
T

2
T

½ĉcðxÞ(
j1i:

For mixing ABC-machines, PrðA - -BÞ ¼ PrðB - -CÞ ¼

PrðC - -AÞ ¼ 1
3Qcð3Þ, in which case the above reduces to

Qcð3Þ ¼ 3hpjT
½x0(T

2
T

½ĉcðx0Þ(j1i; where x0 2 AP:

The generalization to express any Q!ðnÞ in terms of TMs may

already be obvious by analogy. Nevertheless, we give a brief

derivation for completeness, using similar concepts to those

developed more explicitly above. For all ! 2 fc; a; sg and for

all n 2 f1; 2; 3; . . .g, we can write the CFs as

Q!ðnÞ ¼ PrðA - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðAÞÞ þ PrðB - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðBÞÞ

þ PrðC - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðCÞÞ

¼
X

x02AP

Prðx0 - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðx0ÞÞ

¼
X

x02AP

X

w2An#1
P

Prðx0w!̂!ðx0ÞÞ

¼
X

x02AP

X

w2An#1
P

hpjT
½x0(T

½w(
T

½!̂!ðx0Þ(j1i

¼
X

x02AP

hpjT
½x0(

X

w2An#1
P

T
½w(

0

@

1

AT
½!̂!ðx0Þ(j1i

¼
X

x02AP

hpjT
½x0(

 

Y

n#1

i¼1

X

xi2AP

T
½xi(

!

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼T

T
½!̂!ðx0Þ(j1i

¼
X

x02AP

hpjT
½x0(T

n#1
T

½!̂!ðx0Þ(j1i; ð13Þ

where the stationary distribution hpj over states of the ABC-

machine is found from equation (1). The most general
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7 While it is tempting to add the stipulation that no two consecutive symbols
can be the same, this will fall out naturally from Qsð1Þ ¼ 0 via the transition
constraints built into the ABC-machine construction.
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connection between CFs and TMs is given by equation (13) and

this represents one of the main results of this paper.

As before, we might assume on physical grounds that

PrðA - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðAÞÞ ¼ PrðB - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðBÞÞ ¼ PrðC - ) ) ) -
|fflffl{zfflffl}

n#1-s

!̂!ðCÞÞ:

ð14Þ

For example, equation (14) is always true of mixing ABC-

machines. This special case yields the more constrained set of

equations:

Q!ðnÞ ¼ 3hpjT
½x0(T

n#1
T

½!̂!ðx0Þ(j1i; ð15Þ

where x0 2 AP.

4.2. CFs from spectral decomposition

Although equation (13) is itself an important result, we can

also apply a spectral decomposition of powers of the TM to

provide a closed form that is even more useful and insightful.

Ameliorating the computational burden, this result reduces

the matrix powers in the above expressions to expressions

involving only powers of scalars. Also, yielding theoretical

insight, the closed forms reveal what types of behaviors can

ever be expected of the CFs from stacking processes described

by finite HMMs.

The most familiar case occurs when the TM is diagonaliz-

able. Then, T
n#1

can be found via diagonalizing the TM,

making use of the fact that T
L
¼ CDLC#1, given the eigen-

decomposition T ¼ CDC#1, whereD is the diagonal matrix of

eigenvalues. However, to understand the CF behavior, it is

more appropriate to decompose the matrix in terms of its

projection operators.

Moreover, an analytic expression for T
n#1

can be found in

terms of the projection operators even when the TM is not

diagonalizable. Details are given elsewhere (Crutchfield et al.,

2013; Riechers & Crutchfield, 2015). By way of summarizing,

though, in the general case the L-th iteration of the TM

follows from

T
L
¼ Z#1 ðI# z#1T Þ

#1
& '

; ð16Þ

where I is the MP ,MP identity matrix, z 2 C is a continuous

complex variable and Z#1f)g denotes the inverse z-transform

(Oppenheim & Schafer, 1975) defined to operate elementwise:

Z#1ðgðzÞÞ .
1

2#i

I

C

zL#1gðzÞ dz ð17Þ

for the z-dependent matrix element gðzÞ of ðI# z#1T Þ
#1
.

Here,
H

C
indicates a counterclockwise contour integration in

the complex plane enclosing the entire unit circle.

For non-negative integers L, and with the allowance that

0L ¼ $L;0 for the case that 0 2 #T , equation (16) becomes

T
L
¼
X

%2#T

X

&%#1

m¼0

%L#m L

m

( )

T % T # %Ið Þ
m
; ð18Þ

where #T ¼ f% 2 C : detð%I# T Þ ¼ 0g is the set of T ’s

eigenvalues, T % is the projection operator associated with the

eigenvalue % given by the elementwise residue of the resolvent

ðzI# T Þ
#1

at z ! %, the index &% of the eigenvalue % is the

size of the largest Jordan block associated with %, and

L

m

( )

¼
L!

m!ðL#mÞ!

is the binomial coefficient. [Recall, e.g., that
L

0

( )

¼ 1,
L

1

( )

¼ L,
L

2

( )

¼ 1
2!LðL# 1Þ and

L

L

( )

¼ 1.] In terms of

elementwise contour integration, we have

T % ¼
1

2#i

I

C%

zI# Tð Þ
#1

dz; ð19Þ

where C% is any contour in the complex plane enclosing the

point z0 ¼ % – which may or may not be a singularity

depending on the particular element of the resolvent matrix –

but encloses no other singularities.

As guaranteed by the Perron–Frobenius theorem, all

eigenvalues of the stochastic TM T lie on or within the unit

circle. Moreover, the eigenvalues on the unit circle are guar-

anteed to have index one. The indices of all other eigenvalues

must be less than or equal to one more than the difference

between their algebraic a% and geometric g% multiplicities.

Specifically:

&% # 1 & a% # g% & a% # 1 and a% ¼ g% if j%j ¼ 1:

Using equation (18) together with equation (13), the CFs can

now be expressed as

Q!ðnÞ ¼
X

%2#T

X

&%#1

m¼0

T
!ðAÞ
%;m

D E

n# 1

m

( )

%n#m#1; ð20Þ

where hT
!ðAÞ
%;m i is a complex-valued scalar:8

T
!ðAÞ
%;m

D E

.
P

x02AP

hpjT
½x0(T % T # %Ið Þ

m
T

½!̂!ðxoÞ(j1i: ð21Þ

Evidently, the CFs’ mathematical form [equation (20)] is

strongly constrained for any stacking process that can be

described by a finite HMM. Besides the expression’s elegance,

we note that its constrained form is very useful for the so-

called ‘inverse problem’ of discovering the stacking process

from CFs (Varn et al., 2002, 2007, 2013a,b).

When T is diagonalizable, &% ¼ 1 for all % so that equation

(18) simply reduces to

T
L
¼

P

%2#T

%LT %; ð22Þ

where the projection operators can be obtained more simply

as

T % ¼
Y

'2#T
' 6¼%

T # 'I

%# '
: ð23Þ

In the diagonalizable case, equation (20) reduces to
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8 hT
!ðAÞ
%;m i is constant with respect to the relative layer displacement n.

However, fhT
!ðAÞ
%;m ig can be a function of a process’s parameters.
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Q!ðnÞ ¼
P

%2#T

%n#1
P

x02AP

hpjT
½x0 (T %T

½!̂!ðx0Þ(j1i

¼
P

%2#T

T
!ðAÞ
%

D E

%n#1; ð24Þ

where hT
!ðAÞ
% i . hT

!ðAÞ
%;0 i is again a constant with respect to n:

T
!ðAÞ
%

D E

¼
P

x02AP

hpjT
½x0(T %T

½!̂!ðx0Þ(j1i: ð25Þ

4.3. Asymptotic behavior of the CFs

From the spectral decomposition, it is apparent that the CFs

converge to some constant value as n ! 1, unless T has

eigenvalues on the unit circle besides unity itself. If unity is the

sole eigenvalue with a magnitude of one, then all other

eigenvalues have magnitude less than unity and their contri-

butions decay to negligibility for large enough n. Explicitly, if

argmax%2#T
j%j ¼ f1g, then

lim
n!1

Q!ðnÞ ¼ lim
n!1

X

%2#T

X

&%#1

m¼0

T
!ðAÞ
%;m

D E n# 1

m

( )

%n#m#1

¼ T
!ðAÞ
1

D E

¼
X

x02AP

hpjT
½x0(T 1T

½!̂!ðx0Þ(j1i

¼
X

x02AP

hpjT
½x0(j1ihpjT

½!̂!ðx0Þ(j1i

¼
X

x02AP

Prðx0ÞPrð!̂!ðx0ÞÞ:

In the above, we used the fact that &1 ¼ 1 and that, for an

ergodic process, T 1 ¼ j1ihpj.

For mixing ABC-machines, PrðxÞ ¼ 1=3 for all x 2 AP. That

this is so should be evident from the graphical expansion

method of x3.1. Therefore, mixing processes with

argmax%2#T
j%j ¼ f1g have CFs that all converge to 1=3:

lim
n!1

Q!ðnÞ ¼
P

x02AP

Prðx0ÞPrð!̂!ðx0ÞÞ

¼ 3 1
3 ,

1
3

* +

¼ 1
3 :

Nonmixing processes with argmax%2#T
j%j ¼ f1g can have

their CFs converging to constants other than 1=3, depending

on fPrðxÞ : x 2 APg, although they are still constrained by
P

! Q!ðnÞ ¼ 1.

If other eigenvalues in #T beside unity exist on the unit

circle, then the CFs approach a periodic sequence as n gets

large.

4.4. Modes of decay

Since T has no more eigenvalues than its dimension (i.e.,

j#T j & MP), equation (20) implies that the number of states in

the ABC-machine for a stacking process puts an upper bound

on the number of modes of decay. Indeed, since unity is

associated with stationarity, the number of modes of decay is

strictly less than MP. It is important to note that these modes

do not always decay strictly exponentially: they are in general

the product of a decaying exponential with a polynomial in n,

and the CFs are sums of these products.

Even if – due to diagonalizability of T – there were only

strictly exponentially decaying modes, it is simple but impor-

tant to understand that there is generally more than one mode

of exponential decay present in the CFs. And so, ventures to

find the decay constant of a process are misleading unless it is

explicitly acknowledged that one seeks, e.g., the slowest decay

mode. Even then, however, there are cases when the slowest

decay mode only acts on a component of the CFs with negli-

gible magnitude. In an extreme case, the slowest decay mode

may not even be a large contributor to the CFs before the

whole pattern is numerically indistinguishable from the

asymptotic value.

In analyzing a broad range of CFs, nevertheless, many

authors have been led to consider correlation lengths, also

known as characteristic lengths (Tiwary & Pandey, 2007; Varn

et al., 2013b). The form of equation (20) suggests that this

perspective will often be a clumsy oversimplification for

understanding CFs. Regardless, if one wishes to assign a

correlation length associated with an index-one mode of CF

decay, we observe that the reciprocal of the correlation length

is essentially the negative logarithm of the magnitude of the

eigenvalue for that mode. We find that the typically reported

correlation length ‘C derives from the second-largest contri-

buting magnitude among the eigenvalues:

‘#1
C ¼ # log j'j; for ' 2 argmax

%2q
j%j; ð26Þ

where q ¼ f% 2 #T n f1g : hT
!ðAÞ
% i 6¼ 0g.

Guided by equation (20), we suggest that a true under-

standing of CF behavior involves finding #T with the corre-

sponding eigenvalue indices and the amplitude of each mode’s

contribution fhT
!ðAÞ
%;m ig.

This now completes our theoretical development, and in the

next section we apply these techniques to three examples.

5. Examples

5.1. C polytypes and random ML stacking: IID processes

Although real materials often display much more complex

behaviors, as a pedagogical exercise the random stacking of

MLs in CPSs has often been treated (Guinier, 1963) to study

stacking faults. This stacking process is the simplest stacking

arrangement that can be imagined,9 and there are previous

analytical results that can be compared to the techniques

developed here. In statistics parlance, this process is an

Independent and Identically Distributed (IID) process (Cover

& Thomas, 2006).
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9 This is not mere hyperbole. It is possible to quantify a process’s structural
organization in the form of its statistical complexity C", which measures the
internal information processing required to produce the pattern (Crutchfield
& Young, 1989; Crutchfield, 2012; Varn et al., 2013a). In the present case
C" ¼ 0 bits, the minimum value.
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Let us assume that the placement of MLs is independent of

the previous MLs scanned, except that it of course must obey

the stacking constraints. The Hägg-machine that describes this

process is shown in Fig. 3. We allow for the possibility that

there might be a bias in the stacking order, and we assign a

probability q that the next layer is cyclically related to its

predecessor. Thus, the 1-by-1 symbol-labeled TMs for the

Hägg-machine are

T
½1( ¼ ½q( and T

½0( ¼ ½q(;

where q . 1# q, with q 2 ½0; 1(.

The physical interpretation of the IID process is straight-

forward. In the case where q ¼ 1, the process generates a

stacking sequence of all 1’s, giving a physical stacking structure

of . . .ABCABCABC . . .. We recognize this as the 3Cþ crystal

structure. Similarly, for q ¼ 0, the process generates a stacking

sequence of all 0’s, which is the 3C# crystal structure. For those

cases where q is near but not quite at its extreme values, the

stacking structure is 3C with randomly distributed deforma-

tion faults. When q ¼ 1
2, the MLs are stacked in a completely

random fashion.

Now, we must determine whether this is a mixing or

nonmixing Hägg-machine. We note that there are two SSCs,

namely [Sð0Þ] and [Sð1Þ]. The winding numbers for each are

W ½Sð1Þ( ¼ 1 and W ½Sð0Þ ( ¼ #1, yielding W ½Sð1Þ ( ðmod 3Þ ¼ 1 and

W ½Sð0Þ( ðmod 3Þ ¼ 2. Since at least one of these is not equal to

zero, the Hägg-machine is mixing, and we need to expand the

Hägg-machine into the ABC-machine. This is shown in Fig. 4.

The ABC-machine TMs can either be directly written down

from inspecting Fig. 4 or by using the rote expansion algorithm

of x3.3, using equations (2) and (3). By either method we find

the 3-by-3 TMs to be

T
½A(

¼

0 0 0

q 0 0

q 0 0

2

4

3

5; T
½B(

¼

0 q 0

0 0 0

0 q 0

2

4

3

5

and

T
½C(

¼

0 0 q

0 0 q

0 0 0

2

4

3

5:

The internal-state TM then is their sum:

T ¼

0 q q

q 0 q

q q 0

2

4

3

5:

The eigenvalues of the ABC TM are

#T ¼ f1;$;$-g;

where

$ . #
1

2
þ i

31=2

2
ð4q2 # 4qþ 1Þ

1=2

and$- is its complex conjugate. Already, via equation (26), we

can identify what the characteristic length of the CFs will be.

In particular, ‘#1
C ¼ # log j$j ¼ # 1

2 logð1# 3qþ 3q2Þ yields

‘C ¼ #
2

logð1# 3qþ 3q2Þ
:

If we identify q with the deformation faulting parameter ( in

the model introduced by Estevez-Rams et al. (2008) (see the

next example in x5.2, the RGDF process), this is identical to

the result obtained there in equation (35). There is much more

structural information in the CFs, however, than a single

characteristic length would suggest. This fact will become

especially apparent as our examples become more sophisti-

cated.

According to equation (13), we can obtain the CFs via

Q!ðnÞ ¼
P

x02AP

hpjT
½x0 (T

n#1
T

½!̂!ðx0Þ(j1i:

The stationary distribution over the ABC-machine states is

found from equation (1):

hpj ¼ 1
3

1
3

1
3

# $

:

Furthermore, an analytic expression for T
n#1

follows from the

z-transform as given in equation (16). As a start, we find

I# z#1T ¼

1 #q=z #q=z

#q=z 1 #q=z

#q=z #q=z 1

2

4

3

5

and its inverse
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Figure 4
ABC-machine for the IID process. The single state of the Hägg-machine
has expanded into three.

Figure 3
Hägg-machine for the IID process. When q ¼ 1, the IID process
generates a string of 1’s, which is physically the 3Cþ stacking structure.
Conversely, when q ¼ 0, the structure corresponds to the 3C# structure.
For q ¼ 1=2, the MLs are stacked as randomly as possible. Here and
elsewhere we adopt the convention that a bar over a variable means one
minus that variable, i.e. q . 1# q, with q 2 ½0; 1(.
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ðI# z#1T Þ ¼
1

ð1# z#1Þð1#$z#1Þð1#$-z#1Þ

,

1# qqz#2 qz#1 þ q2z#2 qz#1 þ q2z#2

qz#1 þ q2z#2 1# qqz#2 qz#1 þ q2z#2

qz#1 þ q2z#2 qz#1 þ q2z#2 1# qqz#2

2

6

4

3

7

5

:

Upon partial fraction expansion, we obtain

ðI# z#1T Þ
#1

¼
1

3

1

ð1# z#1Þ

1 1 1

1 1 1

1 1 1

2

6

4

3

7

5

þ
1

ð$# 1Þð$#$-Þ

1

ð1#$z#1Þ

$
2 # qq q$þ q2 q$þ q2

q$þ q2 $
2 # qq q$þ q2

q$þ q2 q$þ q2 $
2 # qq

2

6

4

3

7

5

þ
1

ð$- # 1Þð$- #$Þ

1

ð1#$-z#1Þ

$
-2 # qq q$- þ q2 q$- þ q2

q$- þ q2 $
-2 # qq q$- þ q2

q$- þ q2 q$- þ q2 $
-2 # qq

2

6

4

3

7

5
;

ð27Þ

for q 6¼ 1=2. (The special case of q ¼ 1=2 is discussed in the

next subsection.) Finally, we take the inverse z-transform of

equation (27) to obtain an expression for the L-th iterate of

the TM:

T
L
¼ Z#1

I# z#1T
* +#1
n o

¼
1

3

1 1 1

1 1 1

1 1 1

2

6

4

3

7

5

þ
$

L

ð$# 1Þð$#$-Þ

$
2 # qq q$þ q2 q$þ q2

q$þ q2 $
2 # qq q$þ q2

q$þ q2 q$þ q2 $
2 # qq

2

6

4

3

7

5

þ
$

-L

ð$- # 1Þð$- #$Þ

$
-2 # qq q$- þ q2 q$- þ q2

q$- þ q2 $
-2 # qq q$- þ q2

q$- þ q2 q$- þ q2 $
-2 # qq

2

6

4

3

7

5
:

These pieces are all we need to calculate the CFs. Let’s start

with QsðnÞ. First, we find

hpjT
½A(

¼ 1
3 0 0
# $

and

T
½ŝsðAÞ(

j1i ¼ T
½A(
j1i ¼

0

q

q

2

4

3

5:

Then

hpjT
½A(
T

n#1
¼

1

9
½1 1 1(

þ
1

3

$
n#1

ð$# 1Þð$#$-Þ
$

2 # qq q$þ q2 q$þ q2
# $

þ
1

3

$
-n#1

ð$- # 1Þð$- #$Þ
$

-2 # qq q$- þ q2 q$- þ q2
# $

ð28Þ

and

hpjT
½A(
T

n#1
T

½A(
j1i ¼

1

9
þ
1

3

$
n#1

ð$# 1Þð$#$-Þ
2qq$þ$$

-ð Þ

þ
1

3

$
-n#1

ð$- # 1Þð$- #$Þ
2qq$- þ$$

-ð Þ:

ð29Þ

One can verify that equation (15) can be applied in lieu of

equation (13), which saves some effort in finding the final

result, which is

QsðnÞ ¼
1

3
þ 2Re

$
n

ð$# 1Þð$#$-Þ
ð2qqþ$

-Þ

, -

: ð30Þ

The cyclic and anticyclic CFs can also be calculated from

equation (15) using the result we have already obtained in

equation (28). A quick calculation yields

T
½ĉcðAÞ(

j1i ¼ T
½B(
j1i ¼

q

0

q

2

4

3

5

and

T
½âaðAÞ(

j1i ¼ T
½C(
j1i ¼

q

q

0

2

4

3

5:

Then, we have

QcðnÞ ¼ 3hpjT
½A(
T

n#1
T

½B(
j1i

¼
1

3
þ 2Re

$
n

ð$# 1Þð$#$-Þ
ðq2 þ q$Þ

, -

ð31Þ

and

QaðnÞ ¼ 3hpjT
½A(
T

n#1
T

½C(
j1i

¼
1

3
þ 2Re

$
n

ð$# 1Þð$#$-Þ
ðq2 þ q$Þ

, -

: ð32Þ

All of this subsection’s results hold for the whole range of

q 2 ½0; 12Þ [ ð12 ; 1(, where all T ’s eigenvalues are distinct.

However, for q ¼ 1=2, the two complex conjugate eigenvalues,

$ and $
-, lose their imaginary components, becoming repe-

ated eigenvalues. This requires special treatment.10 We

address the case of q ¼ 1=2 in the next subsection, which is of

interest in its own right as being the most random possible

stacking sequence allowed.

5.1.1. A fair coin?. For a completely random stacking of

MLs, such that q ¼ 1=2, the relative orientations of the MLs

are effectively assigned by a fair coin. The resulting TM is

symmetric with repeated eigenvalues, implying that, super-

ficially at least, the CFs take on a special form.11

To obtain the CFs for the Fair Coin IID process, we follow

the procedure of the previous subsection with all of the same

research papers
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10 Indeed, the straightforward z-transform approach yielding the CF equations
given in this section appears to need special treatment for q ¼ 1=2. However, a
more direct spectral perspective as developed in x4.2 shows that since T is
diagonalizable for all q, all eigenvalues have index of one and so yield CFs of
the simple form of equation (24).
11 But since the TM remains diagonalizable, the CFs retain the simple form of
equation (24).
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results through equation (27) which, with q ¼ 1=2 and

$jq¼1=2 ¼ $
-jq¼1=2 ¼ #1=2, can now be written as

ðI# z#1T Þ
#1

¼
1

ð1# z#1Þð1þ 1
2 z

#1Þ
2

,

1# 1
4 z

#2 1
2 z

#1 þ 1
4 z

#2 1
2 z

#1 þ 1
4 z

#2

1
2 z

#1 þ 1
4 z

#2 1# 1
4 z

#2 1
2 z

#1 þ 1
4 z

#2

1
2 z

#1 þ 1
4 z

#2 1
2 z

#1 þ 1
4 z

#2 1# 1
4 z

#2

2

6

4

3

7

5

:

However, the repeated factor in the denominator yields a new

partial fraction expansion. Applying the inverse z-transform

gives the L-th iterate of the TM12 as

T
L
¼ Z#1

I# z#1T
* +#1
n o

¼
1

3

1 1 1

1 1 1

1 1 1

2

6

4

3

7

5
þ
1

3
#
1

2

( )L
2 #1 #1

#1 2 #1

#1 #1 2

2

6

4

3

7

5

:

Then, we find

hpjT
½A(
T

n#1
¼

1

9
1 1 1½ ( þ

1

9
#
1

2

( )n#1

2 # 1 # 1½ (;

with the final result that

QsðnÞ ¼ 3hpjT
½A(
T

n#1
T

½A(
j1i

¼
1

3
þ
2

3
#
1

2

( )n

; ð33Þ

QcðnÞ ¼ 3hpjT
½A(
T

n#1
T

½B(
j1i

¼
1

3
#
1

3
#
1

2

( )n

ð34Þ

and

QaðnÞ ¼ 3hpjT
½A(
T

n#1
T

½C(
j1i

¼
1

3
#
1

3
#
1

2

( )n

: ð35Þ

For q ¼ 1=2, we see thatQcðnÞ andQaðnÞ are identical, but this

is not generally the case as one can check for other values of q

in equations (31) and (32).

Fig. 5 shows a graph of the TM’s eigenvalues in the complex

plane as q is varied. Notice that there is an eigenvalue at 1 for

all values of q. This is a generic feature, and we always find

such an eigenvalue. The other two eigenvalues start at the

other two cube roots of unity for q 2 f0; 1g and, as q ! 1=2,

they migrate to the point #1=2 and become degenerate when

q ¼ 1=2. It is this degeneracy that requires the special treat-

ment given in this section.

It is interesting that even the Fair Coin Hägg-machine

produces structured CFs. This is because, even though the

allowed transitions of the underlying ABC-machine are

randomized, not all transitions are allowed. For example, if we

start with an A ML, the next ML has a zero probability of

being an A, a 1=2 probability of being a B, and a 1=2 prob-

ability of being a C. Then, the next ML has a rebounding 1=2

probability of being an A while the probability of being either

a B or C is each only 1=4. So, we see that the underlying

process has structure, and there is nothing we can do, given the

physical constraints, to make the CFs completely random.

When we can compare our expressions for CFs at q ¼ 1=2

to those derived previously by elementary means (Guinier,

1963; Varn, 2001), we find agreement. Note however that

unlike in these earlier treatments, here there was no need to

assume a recursion relationship.

Figs. 6 and 7 show QsðnÞ versus n for the IID process with

q ¼ 0:1 and q ¼ 0:3, respectively, as computed from equation
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Figure 5
TM’s eigenvalues in the complex plane for the IID process as q is varied.
Note that there is always an eigenvalue at 1.

Figure 6
QsðnÞ versus n for q ¼ 0:1 the IID process.

12 By inspection, we can verify that this decomposition still yields T
0
as the

identity matrix and T
1
¼ T , as must be the case. More interestingly, the

decaying deviation from the asymptotic matrix is oscillatory.
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(30). In each case the CFs decay to an asymptotic value of 1=3,

although this decay is faster for q ¼ 0:3. This is not surprising,

as one interpretation for the IID process with q ¼ 0:1 is that of

a 3Cþ crystal interspersed with 10% random deformation

faults.

5.2. Random growth and deformation faults in layered 3C

and 2H CPSs: the RGDF process

Estevez-Rams et al. (2008) recently showed that simulta-

neous random growth and deformation stacking faults (SFs) in

2H and 3C CPSs can be modeled for all values of the fault

parameters by a simple HMM, and this is shown in Fig. 8. We

refer to this process as the Random Growth and Deformation

Faults (RGDF) process.13As has become convention (Warren,

1969; Estevez-Rams et al., 2008), ( refers to deformation

faulting and ) refers to growth faults.

The HMM describing the RGDF process is unlike any of

the others considered here in that on emission of a symbol

from a state, the successor state is not uniquely specified. For

example, U!
0
U and U!

0
V; i.e., being in state U and emitting

a 0 does not uniquely determine the next state. Such repre-

sentations were previously called nondeterministic (Hopcroft

& Ullman, 1979), but to avoid a conflict in terminology we

prefer the term nonunifilar (Ephraim & Merhav, 2002; Ellison

et al., 2009). Since "-machines are unifilar (Crutchfield &

Young, 1989; Shalizi & Crutchfield, 2001), the HMM repre-

senting the RGDF process is not an "-machine. Nonetheless,

the techniques we have developed are applicable: CFs do not

require unifilar HMMs for their calculations, as do other

properties such as the entropy density.

Inspecting Fig. 8, the RGDF Hägg-machine’s TMs are seen

to be [equations (1) and (2) of Estevez-Rams et al., 2008]

T
½0( ¼

() ()

() ()

! "

and T
½1( ¼

() ()

() ()

! "

;

where ( 2 ½0; 1( and ( . 1# (, such that (þ ( ¼ 1, and

) 2 ½0; 1( and ) . 1# ), such that )þ ) ¼ 1. There are eight

SSCs and, if at least one of them has WSSC ðmod 3Þ 6¼ 0, the

Hägg-machine is mixing. The self-state transitions each

generate a nonvanishing WSSC ðmod 3Þ, so for the Hägg-

machine to be nonmixing, these transitions must be absent.

Indeed, there are only two SSCs that have vanishing winding

numbers, and these are ½U ð0ÞVð1Þ( and ½U ð1ÞVð0Þ(. These, and only

these, SSCs can exist if ) ¼ 0 and ( 2 f0; 1g. Thus, the Hägg-

machine is nonmixing only for the parameter settings ) ¼ 1

and ( 2 f0; 1g, which corresponds to the 2H crystal structure.

From the Hägg-machine, we obtain the corresponding TMs

of the ABC-machine for (; ) 2 ð0; 1Þ by the rote expansion

method (x3.3):

T
½A(

¼

0 0 0 0 0 0

() 0 0 () 0 0

() 0 0 () 0 0

0 0 0 0 0 0

() 0 0 () 0 0

() 0 0 () 0 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

T
½B(

¼

0 () 0 0 () 0

0 0 0 0 0 0

0 () 0 0 () 0

0 () 0 0 () 0

0 0 0 0 0 0

0 () 0 0 () 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

and

T
½C(

¼

0 0 () 0 0 ()

0 0 () 0 0 ()

0 0 0 0 0 0

0 0 () 0 0 ()

0 0 () 0 0 ()

0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

and the orientation-agnostic state-to-state TM:

T ¼ T
½A(

þ T
½B(

þ T
½C(
:

Explicitly, we have:

T ¼

0 () () 0 () ()

() 0 () () 0 ()

() () 0 () () 0

0 () () 0 () ()

() 0 () () 0 ()

() () 0 () () 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

T ’s eigenvalues satisfy detðT # %IÞ ¼ 0. Here, with a . (),

b . (), c . () and d . (), we have
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Figure 7
QsðnÞ versus n for q ¼ 0:3 the IID process.

13 Estevez-Rams et al. (2008) give a thorough and detailed discussion of the
RGDF process, and readers interested in a comprehensive motivation and
derivation of the RGDF process are urged to consult that reference.
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detðT # %IÞ ¼ %# ðbþ dÞð Þ
2
#ðaþ cÞ

2
# $

, %2 þ %ðbþ dÞ þ ac# bd# a2 # c2 þ b2 þ d2
# $2

¼ 0;

from which we obtain the eigenvalues: % ¼ bþ d/ ðaþ cÞ

and % ¼ 1
2 ðbþ dÞ / 1

2 4ðaþ cÞ
2
# 3ðbþ dÞ

2
þ 12ðbd# acÞ

# $1
2.

To get back to (’s and )’s, we note that aþ c ¼ ), bþ d ¼ ),

ac ¼ )2(( and bd ¼ )
2
((. It also follows that

bþ dþ aþ c ¼ 1, bþ d# ðaþ cÞ ¼ )# ) ¼ 1# 2) and

bd# ac ¼ ((ð)
2
# )2Þ ¼ ((ð1# 2)Þ ¼ ((ð)# )Þ. Hence,

after simplification, the set of T ’s eigenvalues can be written

as

#T ¼ 1; 1# 2);# 1
2 ð1# )Þ / 1

2 *
1=2

& '

; ð36Þ

with

* . 4)2 # 3)
2
þ 12((ð)# )Þ ð37Þ

¼ #3þ 12(þ 6)# 12(2

þ )2 # 24()þ 24(2): ð38Þ

Except for measure-zero submanifolds along which the

eigenvalues become extra degenerate, throughout the para-

meter range the eigenvalues’ algebraic multiplicities are:

a1 ¼ 1, a1#2) ¼ 1, a#1
2ð1#)þ*1=2Þ ¼ 2 and a#1

2ð1#)#*1=2Þ ¼ 2.

Moreover, the index of all eigenvalues is 1 except along * ¼ 0.

Immediately from the eigenvalues and their corresponding

indices, we know all possible characteristic modes of CF decay.

All that remains is to find the contributing amplitude of each

characteristic mode. For comparison, note that our * turns out

to be equivalent to the all-important #s2 term defined in

equation (28) of Estevez-Rams et al. (2008).

Equations (36) and (37) reveal an obvious symmetry

between ( and ( that is not present between ) and ). In

particular, T ’s eigenvalues are invariant under exchange of (

and ( – the CFs will decay in the same manner for ( values

symmetric about 1=2. There is no such symmetry between )

and ). Parameter-space organization is seen nicely in panel (c)

of Fig. 6 from Estevez-Rams et al. (2008). Importantly, in that

figure * ¼ 0 should be seen as the critical line organizing a

phase transition in parameter space. Here, we will show that

the * ¼ 0 line actually corresponds to nondiagonalizability of

the TM and, thus, to the qualitatively different polynomial

behavior in the decay of the CFs predicted by our equation

(20).

Note that since T is doubly stochastic (i.e., all rows sum to

one and all columns sum to one), the all-ones vector is not

only the right eigenvector associated with the eigenvalue of

unity, but also the left eigenvector associated with unity.

Moreover, since the stationary distribution hpj is the left

eigenvector associated with unity (recall that hpjT ¼ hpj), the

stationary distribution is the uniform distribution:

hpj ¼ 1
6 ½1 1 1 1 1 1(, i.e., hpj ¼ 1

6 h1j, for (; ) 2 ð0; 1Þ. Hence,

throughout this range, the projection operator associated with

unity is T 1 ¼
1
6 j1ih1j.

It is interesting to note that the eigenvalue of 1# 2) is

associated with the decay of out-of-equilibrium probability

density between the Hägg states of U and V – or at least

between the ABC-state clusters into which each of

the Hägg states have split. Indeed, from the Hägg-

machine: #T ¼ f1; 1# 2)g. So, questions about the relative

occupations of the Hägg states themselves are questions

invoking the 1# 2) projection operator. However, due

to the antisymmetry of output orientations emitted from

each of these Hägg states, the 1# 2) eigenvalue will

not make any direct contribution towards answering

questions about the process’s output statistics. Specifically,

hT
!ðAÞ
1#2)i ¼ 0 for all ! 2 fc; a; sg. Since a1#2) ¼ 1, the projection

operator is simply the matrix product of the right and left

eigenvectors associated with 1# 2). With proper normal-

ization, we have

T 1#2) ¼
1
6 j1# 2bih1# 2bj

with j1# 2bi ¼ ½1 1 1 # 1 # 1 # 1(T and h1# 2bj ¼

½1 1 1 # 1 # 1 # 1( where T denotes matrix transposition.

Then, one can easily check via equation (25) that indeed

hT
!ðAÞ
1#2)i ¼ 0 for all ! 2 fc; a; sg.

To obtain an explicit expression for the CFs, we must obtain

the remaining projection operators. We can always use equa-

tion (19). However, to draw attention to useful techniques, we

will break the remaining analysis into two parts: one for * ¼ 0

and the other for * 6¼ 0. In particular, for the case of * ¼ 0, we

show that nondiagonalizablity need not make the problem

harder than the diagonalizable case.

5.2.1. r = 0. As mentioned earlier, the * ¼ 0 line is the

critical line that organizes a phase transition in the ML

ordering. We also find that T is nondiagonalizable only along

the * ¼ 0 submanifold. For * ¼ 0, the 1
2 ð1# )Þ / 1

2 *
1=2

eigenvalues of equation (36) collapse to a single eigenvalue

so that the set of eigenvalues reduces to #T j*¼0 ¼

f1; 1# 2);# 1
2 ð1# )Þg with corresponding indices &1 ¼ 1,

&1#2) ¼ 1 and &#)=2 ¼ 2.

In this case, the projection operators are simple to obtain.

As in the general case, we have
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Figure 8
RGDF process, first proposed by Estevez-Rams et al. (2008) and adapted
here from panel (c) of their Fig. 2. There is a slight change in notation. We
relabeled the states given as ‘f’ and ‘b’ by Estevez-Rams et al. (2008) as
‘U’ and ‘V’ and, instead of drawing an arc for each of the possible eight
transitions, we took advantage of the multiple transitions between the
same states and labeled each arc with two transitions. There is, of course,
no change in meaning; this instead provides for slightly tidier illustration.
Additionally, we correct a typographical error in Estevez-Rams et al.

(2008) when we relabel the transition b!
0j()

b with V !
0j()

V.
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T 1 ¼
1

6
j1ih1j

¼
1

6

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

and

T 1#2) ¼
1

6
j1# 2bih1# 2bj

¼
1

6

1 1 1 #1 #1 #1

1 1 1 #1 #1 #1

1 1 1 #1 #1 #1

#1 #1 #1 1 1 1

#1 #1 #1 1 1 1

#1 #1 #1 1 1 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

Recall that the projection operators sum to the identity:

I ¼
P

%2#T
T % ¼ T 1 þ T 1#2) þ T #)=2. And so, it is easy to

obtain the remaining projection operator:

T #)=2 ¼ I# T 1 # T 1#2)

¼
1

3

2 #1 #1 0 0 0

#1 2 #1 0 0 0

#1 #1 2 0 0 0

0 0 0 2 #1 #1

0 0 0 #1 2 #1

0 0 0 #1 #1 2

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

Note that 3hpjT
½A(

¼ 1
2 h1jT

½A(
¼ 1

2 ½1 0 0 1 0 0( and that

T
½A(
j1i ¼

0

()þ ()

()þ ()

0

()þ ()

()þ ()

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; T
½B(
j1i ¼

()þ ()

0

()þ ()

()þ ()

0

()þ ()

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

and T
½C(
j1i ¼

()þ ()

()þ ()

0

()þ ()

()þ ()

0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

Then, according to equation (20), with hT
!ðAÞ
1 i ¼ 1

3,

hT
!ðAÞ
1#2)i ¼ 0, hT

sðAÞ

#)=2
i ¼ # 1

3, hT
cðAÞ

#)=2
i ¼ hT

aðAÞ

#)=2
i ¼ 1

6,

hT
sðAÞ

#)=2;1
i ¼ 1

6 ð* þ )# )2Þ ¼ 1
6 )) and hT

cðAÞ

#)=2;1
i ¼ hT

aðAÞ

#)=2;1
i ¼

# 1
12 ð* þ )# )2Þ ¼ # 1

12 )), the CFs are

Q!ðnÞ ¼
X

%2#T

X

&%#1

m¼0

T
!ðAÞ
%;m

D E n# 1

m

( )

%n#m#1

¼ T
!ðAÞ
1

D E

þ
X

1

m¼0

T
!ðAÞ

#)=2;m

D E n# 1

m

( )

#)=2
* +n#m#1

¼
1

3
þ T

!ðAÞ

#)=2

D E

#
2

)
T

!ðAÞ

#)=2;1

D E

ðn# 1Þ

! "

#)=2
* +n#1

:

Specifically

QsðnÞ ¼
1

3
1þ 2 1þ

)

)
n

( )

#)=2
* +n

! "

ð39Þ

and

QcðnÞ ¼ QaðnÞ ¼
1

3
1# 1þ

)

)
n

( )

#)=2
* +n

! "

: ð40Þ

5.2.2. * 6¼ 0. For any value of *, we can obtain the projec-

tion operators via equation (19). In addition to those quoted

above and, in terms of the former T #)=2, the remaining

projection operators turn out to be

T #)/*1=2

2

¼ /
1

*1=2
T #)=2 T þ

)/ *1=2

2

( )

I

! "

:

Since the 1# 2) eigen-contribution is null and since
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Figure 9
QsðnÞ versus n with ( ¼ 0:01 and ) ¼ 0 for the RGDF process. This
should be compared to panel (b) of Fig. 8 in Estevez-Rams et al. (2008).
Although different means were used to make the calculations, they
appear to be identical.
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hT
!ðAÞ
1 i ¼

1

3
;

T
sðAÞ

#)/*1=2

2

. /

¼
1

6
#1/ *1=2 þ

))

*1=2

( )! "

¼ /
1

6
10

)

*1=2

( )

*1=2 0 )
* +

and

T
cðAÞ

#)/*1=2

2

. /

¼ T
aðAÞ

#)/*1=2

2

. /

¼
1

12
10 *1=2 þ

))

*1=2

( )! "

¼ 0
1

12
10

)

*1=2

( )

*1=2 0 )
* +

;

the CFs for * 6¼ 0 are

Q!ðnÞ ¼
X

%2#T

%n#1
X

x02AP

hpjT
½x0 (T %T

½!̂!ðx0Þ(j1i

¼
1

3
þ

X

%2f
#)/*1=2

2 g

T
!ðAÞ
%

D E

%n#1: ð41Þ

Specifically, for ! ¼ s

QsðnÞ ¼
1

3
þ
1

6
1#

)

*1=2

( )

*1=2 # )
* + #)þ *1=2

2

( )n#1

#
1

6
1þ

)

*1=2

( )

*1=2 þ )
* + #)# *1=2

2

( )n#1

¼
1

3
1þ 1#

)

*1=2

( )

#)þ *1=2

2

( )n

þ 1þ
)

*1=2

( )

#)# *1=2

2

( )n! "

;

ð42Þ

and we recover equation (29) of Estevez-Rams et al. (2008).

Estevez-Rams et al. (2008) recount the embarrassingly long

list of recent failures of previous attempts to analyze organi-

zation in RGDF-like processes. These failures resulted from

not obtaining all of the terms in the CFs, which in turn stem

primarily from not using a sufficiently clever ansatz in their

methods, together with not knowing how many terms there

should be. In contrast, even when casually observing the

number of HMM states, our method gives immediate knowl-

edge of the number of terms. Our method is generally

applicable with straightforward steps to actually calculate all

the terms once and for all.

Figs. 9, 10, 11 and 12 show plots of QsðnÞ versus n for the

RGDF process at different values of ( and ). The first two

graphs, Figs. 9 and 10, were previously produced by Estevez-

Rams et al. (2008) and appear to be identical to our results.

The second pair of graphs for the RGDF process, Figs. 11 and

12, show the behavior of the CFs for larger values of ( and ),

but with the numerical values of each exchanged (0:1 , 0:2).

The CFs are clearly sensitive to the kind of faulting present, as

one would expect. However, each does decay to 1=3, as they

must.

438 P. M. Riechers et al. " Correlation functions Acta Cryst. (2015). A71, 423–443

research papers

Figure 12
QsðnÞ versus n with ( ¼ 0:2 and ) ¼ 0:1 for the RGDF process.

Figure 10
QsðnÞ versus n with ( ¼ 0:01 and ) ¼ 0:01 for the RGDF process.
Comparison with panel (d) of Fig. 8 in Estevez-Rams et al. (2008) shows
an identical result.

Figure 11
QsðnÞ versus n with ( ¼ 0:1 and ) ¼ 0:2 for the RGDF process.
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5.3. Shockley–Frank stacking faults in 6H-SiC: the SFSF

process

While promising as a material for next-generation elec-

tronic components, fabricating SiC crystals of a specified

polytype remains challenging. Recently Sun et al. (2012)

reported experiments on 6H-SiC epilayers (1200 mm thick)

produced by the fast sublimation growth process at 2048 K.

Using high-resolution transmission electron microscopy, they

were able to survey the kind and amount of particular stacking

faults present. In the Hägg notation 6H-SiC is specified by

000111, and this is written in the Zhdanov notation as (3,3)

(Ortiz et al., 2013). Thus, unfaulted 6H-SiC can be thought of

as alternating blocks of size-three domains.Ab initio super-cell

calculations by Iwata et al. (2003) predicted that the Shockley

defects (4,2), (5,1), (9,3) and (10,2) should be present, with the

(4,2) defect having the lowest energy and, thus, it presumably

should be the most common. Of these, however, Sun et al.

(2012) observed only the (9,3) defect [given there as (3,9)]

and, at that, only once. Instead, the most commonly observed

defects were (3,4), (3,5), (3,6) and (3,7), appearing nine, two,

two and three times, respectively, with isolated instances of

other stacking-fault sequences. They postulated that combined

Shockley–Frank defects (Hirth & Lothe, 1968) could produce

these results. The (3,4) stacking sequences could be explained

as external Frank stacking faults, and the other observed faults

could result from further Shockley defects merging with these

(3,4) SFs. We call this process the Shockley–Frank Stacking

Fault (SFSF) process.

Inspired by these observations, we ask what causal-state

structure could produce such stacking sequences. We suggest

that the "-machine shown in Fig. 13 is a potential candidate,

with + 2 ½0; 1( as the sole faulting parameter. (Here, we must

insist that only a thorough analysis, with significantly more

data, such as that obtainable from high-resolution transmis-

sion electron microscopy or a diffraction pattern, can properly

reveal the appropriate causal-state structure. The SFSF

process is given primarily to illustrate our methods.) For

weakly faulted crystals (+ ’ 0), as seems to be the case here,

there must be a causal-state cycle that gives the 6H structure,

and we see that the causal-state sequence [S7S6S4S0S1S3]

does that. Indeed, if the fault parameter + were identically

zero, then this "-machine would give only the 6H structure.

Sun et al. (2012)’s observations suggest that deviations from

6H structure occur (almost) always as additions to the size-

three 0 or 1 domains. The self-state transitions on S7 and S0

have just this effect: after seeing three consecutive 1’s (0’s),

with probability +, the current domain will increase in size to

four. And, likewise, with probability +, size-four domains will

increase to size-five domains. Thus, with decreasing prob-

ability, the faults (3,4), (3,5) . . . can be modeled by this "-

machine. Notice that the causal architecture prevents domains

of any size less than three, which is consistent with the bulk of

the observations by Sun et al. (2012).14 Also, this "-machine

does predict (4,4) sequences, which Sun et al. (2012) observed

once. Thus, qualitatively, and approximately quantitatively,

the proposed "-machine largely reproduces the observations

of Sun et al. (2012).

We begin by identifying the SSCs on the HMM, the "-

machine shown in Fig. 13. We find that there are three, [S7],

[S0( and [S7S6S4S0S1S3]. We calculate the winding numbers

to be W ½S7 ( ¼ 1, W ½S0 ( ¼ #1 and W ½S7S6S4S0S1S3( ¼ 0. The first

two of these SSCs vanish if + ¼ 0, giving a nonmixing Hägg-

machine. Thus, for + 6¼ 0 the Hägg-machine is mixing and we

proceed with the case of + 2 ð0; 1(.

By inspection we write down the two 6-by-6 TMs of the

Hägg-machine as

T
½0( ¼

+ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 + 0

0 0 0 0 0 1

1 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and

T
½1( ¼

0 + 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 + 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

where the states are ordered S0, S1, S3, S7, S6 and S4. The

internal-state TM is their sum:
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Figure 13
Hägg-machine for the SFSF process, inspired by the observations of Sun
et al. (2012). We observe that there is one faulting parameter + 2 ½0; 1(
and three SSCs. Or, equivalently three causal-state cycles, as this graph is
also an "-machine. The three SSCs are [S7], [S0] and [S7S6S4S0S1S3].
The latter we recognize as the 6H structure if + ¼ 0. For large values of +,
i.e., as + ! 1, this process approaches a twinned 3C structure, although
the faulting is not random. The causal-state architecture prevents the
occurrence of domains of size-three or less.

14 They did observe a single (3,2) sequence (see their Table I), and the SFSF
process cannot reproduce that structure. Additional causal states and/or
transitions would be needed to accommodate this additional stacking
structure. One obvious and simple modification that would produce domains
of size two would be to allow the transitions S3 !

0

S6 and S4 !
1

S1 with some
small probability. However, in the interest of maintaining a reasonably clear
example, we neglect this possibility.
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T ¼

+ + 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 + + 0

0 0 0 0 0 1

1 0 0 0 0 0

2

6

6

6

6

6

6
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7

7

7

7

7

7

5

:

Since the six-state Hägg-machine generates an (3, 6 ¼) 18-

state ABC-machine, we do not explicitly write out the TMs of

the ABC-machine. Nevertheless, it is straightforward to

expand the Hägg-machine to the ABC-machine via the rote

expansion method of x3.3. It is also straightforward to apply

equation (15) to obtain the CFs as a function of the faulting

parameter +. To use equation (15), note that the stationary

distribution over the ABC-machine can be obtained via

equation (9) with

hpHj ¼
1

6# 4+
1 + + 1 + +½ (

as the stationary distribution over the Hägg-machine.

The eigenvalues of the Hägg TM can be obtained as the

solutions of detðT# %IÞ ¼ ð%# +Þ
2
%4 # +2 ¼ 0. These include

1, # 1
2 + / ð+2 þ 2+ # 3Þ

1=2
, and three other eigenvalues

involving cube roots. Their values are plotted in the complex

plane in Fig. 14 as we sweep through +.

The eigenvalues of the ABC TM are similarly obtained as

the solutions of detðT # %IÞ ¼ 0. The real and imaginary parts

of these eigenvalues are plotted in Fig. 15. Note that #T

inherits #T as the backbone for its more complex structure,

just as #
T
2 #T for all of our previous examples. The

eigenvalues in #T are, of course, those most directly respon-

sible for the structure of the CFs.

The SFSF process’s CFs are shown for several example

parameter values of + in Figs. 16, 17, 18 and 19 calculated

directly from numerical implementation of equation (15). As

the faulting parameter is increased from 0:01 ! 0:5, the CFs

440 P. M. Riechers et al. " Correlation functions Acta Cryst. (2015). A71, 423–443

research papers

Figure 14
The six eigenvalues of the Hägg-machine as they evolve from + ¼ 0
(thickest blue markings) to + ¼ 1 (thinnest red markings). Note that the
eigenvalues at + ¼ 0 are the six roots of unity. Unity is a persistent
eigenvalue. Four of the eigenvalues approach 0 as + ! 1. Another of the
eigenvalues approaches unity as + ! 1. The eigenvalues are nondegene-
rate throughout the parameter range except for the transformation event
where the two eigenvalues on the right collide and scatter upon losing
their imaginary parts.

Figure 15
The 18 eigenvalues of the ABC-machine as they evolve from + ¼ 0
(thickest blue markings) to + ¼ 1 (thinnest red markings). Note that the
eigenvalues at + ¼ 0 are still the six roots of unity. The new eigenvalues
introduced via transformation to the ABC-machine all appear in
degenerate (but diagonalizable) pairs. In terms of increasing +, these
include eigenvalues approaching zero from /1, eigenvalues taking a left
branch towards zero as they lose their imaginary parts, and eigenvalues
looping away and back towards the nontrivial cube roots of unity.

Figure 16
QsðnÞ versus n for the SFSF process with + ¼ 0:01. This specimen is only
very weakly faulted and, hence, there are small decay constants giving a
slow decay to 1=3.
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begin to decay more quickly. However, for + ¼ 0:9, the

correlation length increases as the eigenvalues, near the

nontrivial cube roots of unity, loop back towards the unit

circle. The behavior near + ¼ 0:9 suggests a longer-ranged and

more regularly structured specimen, even though there are

fewer significant eigen-contributions to the specimen’s struc-

ture. Indeed, the bulk of the structure is now more apparent

but less sophisticated.

6. Conclusion

We introduced a new approach to exactly determining CFs

directly from HMMs that describe layered CPSs. The calcu-

lation can be done either with high numerical accuracy and

efficiency, as we have shown in the CF plots for each example,

or analytically, as was done for the IID and RGDF processes.

The mathematical object that assumes central importance

here is the HMM. While we appreciate the value that studying

CFs and, more generally, pair distribution functions brings to

understanding material structure, pairwise correlation infor-

mation is better thought of as a consequence of a more

fundamental entity (i.e., the HMM) than one of intrinsic

importance. This becomes clear when we consider that the

structure is completely contained in the very compact HMM

representation. More to the point, all of the correlation

information is directly calculable from it, as we demonstrated.

In contrast, the task of inverting correlation information to

specify the underlying organization of a material’s structure,

i.e., its HMM, is highly nontrivial. Over the past century

considerable effort has been expended to invert diffraction

patterns, the Fourier transform of the CFs, into these compact

structural models.15 The work of Warren (1969), Krishna and

coworkers (Sebastian & Krishna, 1984; Sebastian & Krishna,

1987a,b,c; Sebastian et al., 1987), Berliner & Werner (1986)

and that of our own group (Varn et al., 2002, 2007, 2013a,b), to

mention a few, all stand in testament to this effort.

Although the presentation concentrated on CFs in layered

CPSs, the potential impact of the new approach is far wider.

First, we note that it was necessary to make several assump-

tions about the geometry of the stacking process, i.e., the

number of possible orientations of each ML and how two MLs

can be stacked, in order to demonstrate numerical results and

make contact with previous work. These assumptions however

in no way limit the applicability: any set of stacking rules over

a finite number of possible positions is amenable to this

treatment. Second, it may seem that starting with a HMM is

unnecessarily restrictive. It is not. Given a sample of the
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Figure 17
QsðnÞ versus n for the SFSF process with + ¼ 0:1. With increasing +, the
CFs approach their asymptotic value of 1=3 much more quickly.

Figure 19
QsðnÞ versus n for the SFSF process with + ¼ 0:9. The slower CF decay
suggests that the process is now less disordered than the + ¼ 0:5 case.
Notice that this CF is large for nmod ð3Þ ¼ 0, indicating strong
correlation between MLs separated by a multiple of three MLs. This is
the kind of behavior that one expects from a twinned 3C crystal.

Figure 18
QsðnÞ versus n for the SFSF process with + ¼ 0:5. Here, the specimen is
quite disordered, and the CFs decay quickly.

15 We have not explicitly made the connection here, but almost all previous
models of planar disorder can generically be expressed as HMMs.

electronic reprint



stacking process from (say) a simulation study, there are

techniques that now have become standard for finding the "-

machine, a kind of HMM, that describes the process. The

subtree-merging method (Crutchfield & Young, 1989) and

causal-state splitting reconstruction (Shalizi et al., 2002) are

perhaps the best known, but recently a new procedure based

on Bayesian inference has been developed (Strelioff &

Crutchfield, 2014). Finally, a HMM may be proposed on

theoretical grounds, as done with the RGDFand SFSF HMMs

in our second and third examples. And, for the case when a

diffraction pattern is available, there is "-machine spectral

reconstruction theory (Varn et al., 2002, 2007, 2013a,b). We

anticipate that HMMs will become the standard representa-

tion for describing layered structures.

The approach presented here should also be viewed in the

larger context of our recent research thrusts. While crystal-

lography has historically struggled to settle on a formalism to

describe disordered structures, we propose that such a

framework has been identified, at least for layered materials.

Based in computational mechanics, chaotic crystallography

(Varn & Crutchfield, 2015) employs information theory as a

key component to characterize disordered materials.

Although the use of information theory in crystallography has

been previously proposed by Mackay and coworkers (Mackay,

1986, 2002; Cartwright & Mackay, 2012), chaotic crystal-

lography realizes this goal. Additionally, using spectral

methods in the spirit of x4.2, information- and computation-

theoretic measures are now directly calculable from "-

machines (Crutchfield et al., 2013; Riechers & Crutchfield,

2015). And importantly, a sequel will demonstrate how spec-

tral methods can give both a fast and efficient method for

calculating the diffraction pattern of layered CPSs or analy-

tical expressions thereof (Riechers et al., 2014).

APPENDIX A

Transition matrices, projection operators and bra–ket
notation

The substochastic symbol-labeled transition matrices of a

HMM sum to give our probability-conserving right-stochastic

(i.e., all rows sum to one) state-to-state transition matrix

T ¼
P

x2A T
½x(
. All eigenvalues of this matrix lie on or within

the unit circle in the complex plane. We use a bra–ket notation

to easily identify bras h)j as row vectors and kets j)i as column

vectors. A special set of kets are right eigenvectors of T . The

right eigenvectors satisfy

T jki ¼ %jki

for % 2 #T . A corresponding set of bras are left eigenvectors

of T . The left eigenvectors satisfy

hkjT ¼ %hkj

for % 2 #T . In general, unlike the special case in quantum

mechanics, the left eigenvectors are not merely the conjugate

transpose of the right eigenvectors. Projection operators play

a prominent role in the development of our results. For the

general case, they can be obtained from equation (19).

However, in the simplest case of a projection operator of a

nondegenerate eigenvalue, the projection operator can simply

be expressed as

T % ¼
1

hkjki
jkihkj;

where the denominator is simply a normalizing factor. The

only normalization convention we impose is that j1i repre-

sents the right eigenvector associated with unity of all ones

and hpj is the left eigenvector associated with unity normalized

in probability. This normalization allows T 1 ¼ j1ihpj and

consistent interpretation of unconditioned probabilities:

PrðwÞ ¼ hpjT
½w(
j1i. Further useful results and discussion of

the mathematical machinery can be found in Riechers &

Crutchfield (2015).
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