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Summary

Increasingly, data collected by scientists in different fields are in the form of trajecto-

ries or curves. These curves can often be viewed as realizations of a composite process

driven by both amplitude and time variation. We consider the situation where func-

tional variation is dominated by time variation, and develop a curve-synchronization

method that uses every trajectory in the sample as a reference to obtain pairwise

warping functions in a first step. These initial pairwise warping functions are then

used to create improved estimators of the underlying individual warping functions in

a second step. A truncated averaging process is used to obtain robust estimation of

individual warping functions. The method compares well with other available warp-

ing approaches and is illustrated with Berkeley growth data and gene expression data

for multiple sclerosis.

Some key words: Alignment; Curve registration; Functional data analysis; Gene ex-

pression profiles; Multiple sclerosis; Time warping.

1. Introduction

Functional data have become very popular in many scientific fields, leading to the

development of functional data analysis (Ramsay & Silverman, 2005). A challenge
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is raised by the possibility of confounding between amplitude and time variation

when observed trajectories share the same underlying amplitude function, but each

evolves on its own time-scale. For example, growth velocity curves, see Fig. 1, of

the Berkeley growth study (Ramsay & Silverman, 2002) exhibit a similar growth

pattern throughout, but the velocity peaks occur at different times for each child.

Traditionally, the cross-sectional mean is used to represent group profiles. However,

because of the variation in the timing of growth spurts or of peaks in microarray gene

expression profiles (Kaminski & Bar-Joseph, 2006), the cross-sectional mean may give

an inaccurate summary of the underlying functional shapes.

A solution to this problem is to recognize time warping and to include it in the sta-

tistical modelling of functional data. Time warping can be viewed as a transformation

that maps each trajectory from an internal trajectory-specific clock to absolute time

(Liu & Müller, 2005). Warping was first used to synchronize speech signals (Sakoe &

Chiba, 1978), and subsequently Gasser & Kneip (1992, 1995) proposed a landmark

registration method that aligns continuous curves by matching locations of individual

landmarks to the average location across the entire sample. This method works very

well when all the observed curves have clearly identifiable common features. However,

it is not easy to define features common to every curve, especially with noisy data.

Visual inspection of the entire dataset and manual identification of the landmarks

in each curve is usually required, making this method impractical for large datasets.

Another well-known curve registration method is the Procrustes method (Ramsay &

Li, 1998) that iteratively aligns each curve to the current cross-sectional mean of the

sample and therefore relies heavily on the initial cross-sectional mean.

Other recent developments in curve registration and warping include self-modelling

warping (Gervini & Gasser, 2004); nonparametric maximum-likelihood warping

(Rønn, 2001; Gervini & Gasser, 2005); functional convex synchronization (Liu &

Müller, 2004); dynamic time warping (Wang & Gasser, 1997, 1999), and a synchro-

nization method based on a novel definition of moments of curves (James, 2007).
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Here, we introduce a version of pairwise time synchronization that makes full use

of information across samples and can be used to provide a robust structural mean

estimator.

2. Models and Methods

2.1. Time-warped functional data

Let Y1, Y2, ..., Yn denote n continuous curves, defined on a closed real interval

T = [0, T ]. These curves are observed at discrete time points tj, j = 1, ..., m, and

the observed data for each curve are (tj, yij). The model for yij is

yij = Yi(tj) + ǫij = Xi{h−1
i (tj)} + ǫij, tj ∈ T , (1)

where the error terms ǫij are independently distributed random noise with E(ǫ) = 0

and E(ǫ2) = σ2 < ∞, and X is a random function defined on T with independent

realizations Xi. The time-synchronized random functions Xi are modelled as

Xi(t) = µ(t) + δZi(t), for t ∈ T , (2)

where µ is a fixed function and Zi are independent random trajectories, which are

realizations of a process Z with E{Z(t)} = 0 and E{Z2(t)} < ∞ for t ∈ T . The

coefficient δ is assumed to be a small constant that converges to 0 with increasing

sample size. The functions hi : T 7→ T in model (1) are time-synchronization or

warping functions, corresponding to realizations of a random synchronization function

h. The inverse mapping h−1 describes the internal time scale of a trajectory.

The random warping functions h are assumed to satisfy the conditions of common

endpoints, i.e. h(0) = 0, h(T ) = T , strict monotonicity, i.e. h(t1) < h(t2), for

0 ≤ t1 < t2 ≤ T , and average identity, i.e. E{h(t)} = t, for t ∈ T . The monotonicity

condition requires all warping functions to comply with the fact that time is always

moving forward and ensures that h is invertible.

2.2. Modelling warping functions

In the proposed method, the warping functions h are modeled by piecewise-linear

functions. More general splines could be considered and this assumption is primarily
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made to ensure easy implementation of the constraints such as monotonicity. The

linear splines also work well in practice. The corresponding warping functions are

defined as the linear interpolation of p pre-selected equidistant knots (a1, ..., ap), where

aj = Tj/(p + 1), j = 1, ..., p, for a fixed p ≥ 1. If τj = h(aj), the warping function h

is

h(t) =





τ1t/a1, for 0 ≤ t < a1,

(τj − τj+1)(t − aj)/(aj − aj+1) + τj, for aj ≤ t < aj+1, j = 1, ..., p − 1,

(τp − T )(t − T )/(ap − T ) + T, for ap ≤ t ≤ T .

(3)

If we set a0 = 0, ap+1 = T , and require that τj−1 < τj, j = 1, ..., p + 1, then

τ0 = h(a0) = 0, and the common endpoint and strict monotonicity contraints will

be satisfied. Noting that (3) can be equivalently expressed as h(t) =
∑p+1

j=1 τjAj(t),

where Aj(t) = Bj(t)−Cj+1(t), j = 1, ..., p+1, are linear basis functions, with Bj(t) =

(t − aj−1)1[aj−1,aj)/(aj − aj−1), and Cj+1(t) = (t − aj+1)1[aj ,aj+1)/(aj+1 − aj), Cp+2 =

0, j = 1, ..., p + 1, we obtain with Θ = (τ1, ..., τp+1)
T and A(t) = {A1(t), ..., Ap+1(t)}T

that

h(t) = ΘTA(t). (4)

The parameter space of the coefficient vectors of the warping functions (4) is

Ω = {Θ ∈ T p+1| Θ = (τ1, ..., τp+1)
T, 0 < τ1 < ... < τp+1 ≡ T},

with corresponding family of warping functions W = {h : T 7→ T | h = ΘTA, Θ ∈ Ω}.
The norms of Θ ∈ Ω and of h ∈ W are ‖Θ‖ = (

∑p+1
j=1 τ 2

j )1/2 and ‖h‖ = {
∫
T

h2(t)dt}1/2.

The model in (4) reduces the problem of estimating the entire function h to estimating

the p spline coefficients.

2.3 Pairwise and global warping

For a pair of curves Yi and Yk, the pairwise-synchronization or warping function

gik is a transformation of the time scale of curve Yi towards that of Yk, defined by

gik(t) = hi{h−1
k (t)}. (5)
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Similarly, the pairwise-warping function of curve Yk towards Yi is gki(t) = hk{h−1
i (t)}.

We assume that the gik can also be represented by (4), such that gik(t) = ΘT
gik

A(t), for

suitable coefficient vectors Θgik
, 1 ≤ i, k ≤ n. Initially, we consider the estimation of

pairwise warping functions when the entire trajectories Yi, i = 1, ..., n, are observed.

Estimation based on observed discrete data will be discussed in §2.5. Additional

assumptions are as follows.

Assumption 1. The Zi are independent, such that E{Zi(t)} = 0 for t ∈ T , and the

Zi are independent of hi, i = 1, ..., n.

Assumption 2. The Zi are twice continuously differentiable on T , and there exists

0 < C < ∞ such that E{Zi(t)
2} < C, E{Z ′

i(t)
2} < C and E{Z ′′

i (t)2} < C, for all

t ∈ T .

Assumption 3. The mean function µ is a bounded and twice continuously differ-

entiable function with
∫
T

µ′′(t)2dt < ∞. For any nondegenerate interval To ⊆ T ,

0 <
∫
To

µ′(t)2dt < ∞.

Assumption 4. For any t1, t2 ∈ T and t1 < t2, there exist 0 < ω1 < ω2 < ∞ and

ω1ω2 ≤ 1 such that ω1 ≤ {g(t1) − g(t2)}/(t1 − t2) ≤ ω2, for any g ∈ W . This

assumption prevents plateaus and abrupt jumps in the pairwise warping functions

and their inverse functions.

A preliminary estimator of Θgik
can be obtained by minimizing a distance measure

between curves Yi and Yk with respect to Θ ∈ Ω; that is

Θ̃gik
= arg min

Θ∈Ω
Cλ(Yi, Yk, Θ),

Cλ(Yi, Yk, Θ) = E
(∫

T

[
{Yi(Θ

TA(t)) − Yk(t)}2 + λ{ΘTA(t) − t}2
]
dt

∣∣Yi, Yk

)
, (6)

where λ ≥ 0. The penalty term λ{ΘTA(t) − t}2 is introduced to regularize the

estimator and to avoid shape distortion. Consequently, a preliminary estimator of

the pairwise warping function can be obtained by g̃ik(t) = Θ̃T
gik

A(t).

One can replace Yi and Yk in (6) by their derivatives. An example for synchro-

nization in the first derivative is provided in §4.1. In the pairwise synchronization
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step, each curve Yk in the sample serves as template for all other curves in turn. The

resulting g̃ik, i = 1, ..., n, then lead to the global warping function estimate hk for

curve Yk, as described below. Constructing global warping from pairwise information

within a simple time-shift framework has been considered in Leng & Müller (2006).

Since hk corresponds to a map between an individual-specific warped time to

absolute time, we refer to hk as a global warping function. For s = h−1
k (t), t ∈ T ,

one has hi(s) = hi{h−1
k (t)}. Because warping functions are assumed to have average

identify, E[hi{h−1
k (t)}

∣∣hk] = h−1
k (t), and, as gik(t) = hi{h−1

k (t)} (5), we find that

h−1
k (t) = E{gik(t)

∣∣hk}, motivating estimators

h̃−1
k (t) =

1

n

n∑

i=1

g̃ik(t) (7)

for the inverse global warping functions; by simple inversion, one obtains the corre-

sponding h̃k and aligned curves Y ∗
i (t) = Yi{h̃i(t)}.

2.4 Estimation

If only discrete and possibly noisy measurements are available for the trajectories,

one may use weighted local linear regression (Fan & Gijbels, 1996) for presmoothing.

If observations (yi1, ..., yim) for the ith trajectory are recorded at tj = Tj/m, the

weighted local linear fits are the minimizers of

m∑

j=1

K(
t − tj

b
)[yij − {α0 + α1(tij − t)}]2, (8)

with respect to α0, α1, leading to estimates Ŷi(t) = α̂0(t). We require two more

assumptions.

Assumption 5. The bandwidth sequence b satisfies b → 0 and mb → ∞ as m → ∞.

Assumption 6. The nonnegative kernel function K is Lipschitz continuous with sup-

port [−1, 1].

Replacing Yi in (6) with the fitted curves Ŷi, we obtain

Ĉλ(Yi, Yk, Θ) =

∫

T

[
{Ŷi(Θ

TA(t)) − Ŷk(t)}2 + λ{ΘTA(t) − t}2
]
dt,
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Θ̂gik
= arg min

Θ∈Ω
Ĉλ(Yi, Yk, Θ), (9)

and the resulting estimated pairwise warping functions

ĝik(t) = Θ̂T
gik

A(t). (10)

Theorem 1. Under Assumptions 1-6, for any 1 ≤ i, k ≤ n and with bandwidths

b = bopt ∼ m−1/5 as m → ∞, the constrained minimizer Θ̂gik
(9) obtained from yij

satisfies

‖Θ̂gik
− Θgik

‖ = O{(δ2 + λ)1/2} + Op(m
−1/5), 1 ≤ i, k ≤ n, (11)

and the estimated pairwise warping functions ĝik (10) satisfy

sup
t∈T

|ĝik(t) − gik(t)| = O{(δ2 + λ)1/2} + Op(m
−1/5), 1 ≤ i, k ≤ n. (12)

Estimators for the inverse warping functions h−1
k are then obtained as

ĥ−1
k (t) =

1

n

n∑

i=1

ĝik(t), k = 1, ..., n, (13)

and for hk(t) by exchanging the coordinates.

Corollary 1. Under Assumptions 1-6, the estimated warping functions ĥk, k =

1, ..., n, satisfy

sup
t∈T

|ĥk(t) − hk(t)| = O{(δ2 + λ)1/2} + Op(m
−1/5), k = 1, ..., n. (14)

A more robust alternative to (13) can be obtained through a truncated averaging

procedure in which only the pairs whose distance after pairwise synchronization is

smaller than a threshold are used in the estimation of the global warping function hk.

This idea is implemented by

ĥ−1∗
k (t) =

n∑

i=1

ĝik(t)1{dpw(Ŷi,Ŷk)<Dkr}∑n
i=1 1{dpw(Ŷi,Ŷk)<Dkr}

, (15)

where dpw(Ŷi, Ŷk) =
[ ∫

T
{Ŷi(ĝik(t)) − Ŷk(t)}2dt

]1/2
, 1 ≤ i, k ≤ n, and Dkr

is the

rth quantile of Dk = {dpw(Ŷ1, Ŷk), ..., dpw(Ŷn, Ŷk)}, k = 1, ..., n, for a suitably chosen
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0 < r < 1. A good empirical choice for the threshold is r = 0.9. In all implementations

of pairwise synchronization, we use the above version (15).

In applications, different curves might have different amplitude scales. In such sit-

uations, a more realistic model for the data would be yij = αiXi{h−1
i (tj)}+ ǫij, where

αi are random amplitudes. A simple approach in this setting is to normalize the func-

tions before the synchronization step. We adopt the sup-norm ‖Y ‖∞ = supt∈T |Y (t)|
to obtain normalized trajectories Y̆i(t) = Yi(t)/‖Yi‖∞. A viable approach for accel-

erating the necessary computations compared to the full pairwise synchronization is

to select a random subset of partner functions for a given function. The pairwise

synchronization and averages (7) and (15) are then computed based on these subsets

only. This subset method exacts a price in terms of slower convergence, but will

reduce the computing burden substantially, especially for larger sample sizes n.

Corollary 1 also implies consistency of estimated synchronized curves. From (1),

based on the estimates Ŷi and ĥk above, the estimate for the ith time-synchronized

curve Xi becomes

X̂i(t) = Ŷi{ĥi(t)}. (16)

Under the basic assumptions and adopting the necessary regularity conditions for

uniform consistency in nonparametric regression (Mack & Silverman, 1982; Müller &

Stadtmüller, 1987), and assuming in addition that b ∼ m−1/5 and ‖X(ν)
i ‖∞ = Op(1)

for ν = 1, 2, we find

‖X̂i − Xi‖∞ ≤ ‖Ŷi − Yi‖∞ + Op(1)‖ĥi − hi‖∞ = Op(δ
2 + λ1/2 + m−1/5),

i.e., the same rate as for the warping functions. This is a consequence of the uniform

rate of convergence of the smoothed trajectories ‖Ŷi − Yi‖∞ = Op(log n/(nb) + b2).

3. Simulations

In this section, the performance of the proposed pairwise synchronization is com-

pared with several other existing warping methods, including Procrustes (Ramsay

& Li, 1998), self-modelling registration (Gervini & Gasser, 2004) and nonparametric
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maximum likelihood (Gervini & Gasser, 2005) methods. In each simulation, we as-

sume n = 20 sample curves, and the reported results are based on 100 Monte Carlo

runs.

Sample curves were generated on [0, 1] according to (1); that is

yij = Xi{h−1
i (tj)} + ǫij, i = 1, ..., n, tj = j/m, j = 0, ..., m,

with m = 50. The error terms ǫij were generated independently from N(0, σ2) with

σ chosen such that the noise-to-signal ratio was 0.25. The components in (2) were

chosen as follows: the random function Z was Z(tj) = ς1j + ς2j

√
2sin(2πtj), with

ς1j ∼ N(0, 1) and ς1j ∼ N(0, 1/4) independent of each other, δ was 0.01, and the

mean shape functions were

µ1(t) = 0.88exp{−20(t − 0.7)2} − 0.5exp{−50(t − 0.45)2} + 0.6exp{−100(t − 0.3)2}

− 0.6exp{−150(t − 0.2)2} + 0.5exp{−200(t − 0.15)2} (17)

and

µ2(t) = 0.88exp{−20(t − 0.7)2} − 0.5exp{−50(t − 0.45)2} + 0.6exp{−100(t − 0.3)2}

− 0.6exp{−150(t − 0.2)2} + 0.5exp{−200(t − 0.15)2} − 2.863φ{(t − 0.8)/0.01}

− 0.5φ{(t − 0.2)/0.2}, (18)

where φ represents the density function of standard normal distribution. Both mean

functions have three peaks, µ2 providing a more difficult setting since its two early

peaks have very similar heights; see Fig. 2.

The warping functions were generated by the area under a linear combination

of cubic B -spline basis functions with equidistant knots: li(t) =
∑5

j=1 αijBj(t). To

ensure that hi(0) = 0, αi,1 was set to 0, and the other αij were randomly drawn from a

uniform distribution on the interval [0, 100], with the ith warping function generated

as hi(t) =
∫ t

0
li(s)ds/

∫ 1

0
li(s)ds. These warping functions are monotone increasing

because cubic B -spline basis functions li(t) are positive on the domain spanned by
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the knots and zero elsewhere (Eilers & Marx, 1996), and correspond to considerable

time distortion.

For the comparison of time-warping methods, we calculated two performance mea-

sures for time-synchronized curve estimates X̂i as in (16) and for estimated warping

functions ĥi, namely

FMISE =
1

n

n∑

i=1

∫ 1

0

{Ŷ ∗
i (t) − µ(t)}2dt, HMISE =

1

n

n∑

i=1

∫ 1

0

{ĥi(t) − hi(t)}2dt. (19)

For pairwise synchronization, the number of knots p and the penalty parameter λ

were fixed at 3 and 10−3 respectively. These choices seemed reasonable, and the

results for pairwise synchronization are not sensitive to the choice of p and λ, as

demonstrated in Table 1. In general, choosing the number of knots p between 3 and

5 was adequate. Too many knots not only increase the computational burden, but

may also cause shape distortion (Ramsay & Li, 1998).

For the Procrustes method, we used 5 break-points and the penalty parameter

was set to λ = 10−4, as in Ramsay & Li, (1998). The number of basis functions p was

suggested to be approximately 3 − 4 times the number of features for self-modelling

registration (Gervini & Gasser, 2004), motivating the choices 4 and 12. Finally, for

the nonparametric maximum likelihood method, the location and scale parameters

would be, ideally, chosen by maximum likelihood. However, this was not practical

because of the large number of parameters, and we choose four equidistant points as

the location parameters and (1, 1, 1, 1) as the scale parameters (Gervini & Gasser,

2005).

The mean and variance of outcome measures FMISE and HMISE are summarized

in Table 2. These deviation measures increase as the underlying mean shape function

becomes more complicated. Regardless of the shape of the mean function, the pairwise

synchronization method consistently produced results that were never inferior to those

for the other methods and sometimes considerably better. Among the other methods,

Procrustes and self-modelling registration had the next best performance.
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Overall, pairwise synchronization is seen to work very well with noisy functional

data that include large and irregular time variation. The simulation results are best

taken with a grain of salt, as they are based on comparing the various methods at

reasonable but not optimal parameter choices.

4. Applications

4.1. Berkeley growth study

An important goal in growth studies is to obtain a good estimate of normal growth

patterns. As is well known by now, the cross-sectional mean often fails adequately

to reflect important growth features, as a result of time variation among individuals.

Ramsay & Li (1998) and Gervini & Gasser (2004, 2005) were able to obtain better

growth profile estimation by synchronizing growth curves before taking the cross-

sectional average. We applied the proposed pairwise synchronization method to the

Berkeley growth data (Tuddenham & Snyder, 1954), and compared the results with

those for the Procrustes method, self-modelling registration, nonparametric maximum

likelihood and cross-sectional mean.

The Berkeley growth data contain height measurements for 54 girls and 38 boys,

with 31 measurements taken between the ages of 1 and 18 years. Of special interest

is the instantaneous rate of change in height, that is, the velocity of the growth

curve. The functional representation of height for each individual was obtained with

a B -spline smoothing program from Ramsay & Silverman (2002, pp. 98-99), and the

velocity curves by taking the first-order difference quotients of the smoothed growth

curves. We report here the results for the 54 girls, whose velocity curves are plotted

in Fig. 1. It is evident that all girls went through two growth spurts at different

ages; a minor early peak, the so-called mid-growth spurt, followed by the prominent

pubertal spurt. Ramsay & Silverman (2002) applied the Procrustes method to these

data, using 5 break points and penalty parameter 0.5, and we adopted the same

parameter values when implementing the proposed pairwise synchronization method.

Gervini & Gasser (2005) applied self-modelling registration to the Zürich longitudinal
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growth study with 4 components and 12 basis functions. These numbers also worked

well for the Berkeley growth data. However, the parameters of the nonparametric

maximum likelihood estimation method used in the Zürich growth study (Gervini &

Gasser, 2004) performed poorly for this dataset. After trying various possible choices,

we found that selecting location parameters (6, 12) and scale parameters (1, 1) worked

reasonably well.

Comparing and evaluating various warping methods, we obtained the deviations

between the resulting mean growth curves and the landmark registration mean curve

(Kneip & Gasser 1992; Gasser & Kneip, 1995). Landmark registration serves as a

benchmark for these data, as the growth velocity curves of the 54 girls are well struc-

tured with two well-defined peaks. As an overall measure of the difference between

estimated mean growth curve and this benchmark we used the integrated square er-

ror ISE =
∫
{Ȳwarp(t) − ȲLM(t)}2dt, where Ȳwarp is the average of all warped curves

and ȲLM is the benchmark result. Pairwise warping synchronization produces the

smallest integrated square error, ISE = 0.82, followed by self-modelling registration,

ISE = 1.19. The cross-sectional mean has the largest error, ISE = 11.90, as expected,

and it also fails to capture the details of the pubertal spurt. The values of ISE of the

Procrustes method and the nonparametric maximum likelihood method are 6.76 and

5.75, respectively, which are relatively large.

The estimated growth profile of the pairwise synchronization method deviates

relatively little from the benchmark as can be seen from Fig. 3. The profile of self-

modelling registration is also not far from the benchmark. The Procrustes method

performs better around the pubertal spurt than the cross-sectional mean, but its on-

set timing is not very accurate, a deficiency shared by the nonparametric maximum

likelihood method. In conclusion, all warping methods considered recover the two

growth spurts and improve on the cross-sectional mean. Pairwise synchronization

outperforms the other methods by producing a growth profile that closely resem-

bles the benchmark in both intensity and timing of important growth events, and is

12



associated with the smallest value of ISE.

4.2. Multiple sclerosis data

Multiple sclerosis is an autoimmune disease in the central nerve system that often

results in neurological disabilities (Zamvil & Steinman, 2003). To shed light on the

mechanisms of a popular therapy, INF-β, at the genomic level, Weinstock-Guttman

et al. (2002) conducted an experiment in which eight patients with active relapsing

multiple sclerosis were treated with INF-β-1a. Peripheral blood samples were obtained

from patients just before and at 1, 2, 4, 8, 24, 48, 120 and 168 hours after the

treatment. The expression levels of 4324 gene probes in the blood samples were

measured at these nine time-points for every patient. Weinstock-Guttman et al.

(2003) investigated the expression patterns of a set of candidate genes, with the goal

of identifying key genes that show a response to treatment, and subsequently Liang

et al. (2005) refined the methodology to filter out nonresponsive genes. In both

studies, the expression profile of each gene was estimated by averaging information

across patients. While some of these gene expression trajectories display similar

amplitude response patterns, indicating a common baseline expression coupled with

time variation across patients, see Fig. 4 (a) and (b), others vary more widely across

patients, see Fig. 4 (c) and (d), with no clearly discernible pattern of variation.

Particularly in the first situation, we expect that estimation of an overall expression

profile will benefit from a preliminary time-warping step.

Applying the proposed pairwise synchronization to gene expression profiles mea-

sured for each of 8 patients, using 24 genes that are known to be INF-stimulated, we

calculated the between-patient variation before, VARb, and after, VARa, warping:

VARb =
1

8

8∑

i=1

[Ŷi(t) − ave{Ŷ (t)}]2, VARa =
1

8

8∑

i=1

[X̂i(t) − ave{X̂(t)}]2, (20)

where ave{Ŷ (t)} =
∑8

i=1 Ŷi(t)/8, and ave{X̂(t)} =
∑8

i=1 X̂i(t)/8, Ŷi are the smoothed

observed curves (8) and X̂i are the time synchronized trajectory estimates (16). After

pairwise synchronization, the patient response profiles are found to be more synchro-

13



nized, see Fig. 4 (e)-(h), and indeed the between-patient variation of the warped data

becomes much smaller, especially for genes sharing similar baseline expression pro-

files, see Table 3. On average, there is a 39% reduction of between-patient variation

after warping. The gene that shows the greatest relative reduction is Hs.274382, an

interferon-inducible double-stranded RNA dependent gene, which is related to protein

kinase, with a 92% reduction.

The reduced variation leads to improved gene expression profile estimation, which

in turn may aid subsequent analysis such as identifying genes that are responsive to

treatment. Moreover, the magnitude of between-patient variation before, VARb, and

after, VARa, warping can be used to study the response behavior of different genes.

Genes with large VARa, such as Hs.1279, Hs.79322, Hs.14623 and Hs.83795, see Table

3, tend to be more heterogeneous in their response patterns, see Fig. 4. Genes with

large before warping variation VARb but small after warping variation VARa, such

as Hs.833, Hs.241510 and Hs.62661 usually maintain similar baseline expression pat-

terns across different patients and most of the observed between-patient variation is

probably due to time variation. There are also genes displaying little variation both

before and after warping, for example, Hs.80645, Hs.146360 or Hs.174195. These

genes responded similarly in different patients in terms of both baseline profiles and

expression timings. In the most extreme case, genes with very heterogenous baseline

profiles, see Fig. 4, may even have increased variation after warping, as exemplified

by genes Hs.1279 and Hs.79322. This example demonstrates the potential of the pair-

wise synchronization method for microarray clinical studies. Aligned curves provide

better estimates of gene response to treatment, and, by differentiating shape and

time variation, one may gain a better understanding of the response patterns of gene

expression.
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Appendix

Auxiliary results and proofs

Lemma A1. For any h, h∗ ∈ W that satisfy µ{h(t)} = µ{h∗(t)} where µ : S 7→ R
satisfies Assumption 3, it holds that

h(t) = h∗(t). (A1)

Proof The domain S can be divided into two non-overlapping subsets, Sa = {s ∈
S |µ−1{µ(s)} = s} and Sb = S \Sa. Since h(t) is a one-to-one map, the domain T can

be divided into non-overlapping subsets Ta and Tb such that Ta = {t ∈ T |h(t) ∈ Sa}
and Tb = {t ∈ T |h(t) ∈ Sb}. For any h, h∗ ∈ W that satisfy µ{h(t)} = µ{h∗(t)}, one

can verify (A1) separately on Ta and Tb.

Lemma A2. For any 1 ≤ i, k ≤ n, the coefficient vector Θgik
for gik is also the

unique constrained minimizer of Cµ(hi, hk, Θ), where

Cµ(hi, hk, Θ) = E
(∫

T

[
µ{h−1

i (ΘTA(t))} − µ(h−1
k (t))

]2
dt

∣∣Yi, Yk

)
,

subject to the constraints

I(Θ) = τp+1 − T = 0, Jj(Θ) = τj−1 − τj + β ≤ 0, j = 1, ..., p + 1. (A2)

Proof Since Cµ(hi, hk, Θ) ≥ 0 and Θgik
∈ Ω, then Θgik

is a constrained local min-

imizer of Cµ(hi, hk, Θ). According to the Kuhn-Tucker condition (Kuhn & Tucker,

1951), there exist γ ≥ 0, ξj ≥ 0, for j = 1, ..., p + 1, and a Lagrangian lµ(hi, hk, Θ) =

Cµ(Yi, Yk, Θ) + γI(Θ) +
∑p+1

j=1 ξjJj(Θ). A constrained local minimizer of Cµ(Yi, Yk, Θ)

must satisfy ∇lµ(hi, hk, Θ) = 0 and
∑p+1

j=1 ξjJj(Θ) = 0. From the Euler-Lagrange

equation (Sagan, 1992), Assumption 4 and equation (3), lµ(hi, hk, Θ) = Cµ(Yi, Yk, Θ),

and the necessary condition can be simplified to µ[h−1
i {ΘTA(t)}] − µ{h−1

k (t)} =

0, for j = 1, ..., p + 1. One then shows by contradiction that Θgik
is the unique

minimizer using the simplified necessary condition.
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Lemma A3. Suppose l0 : Ω 7→ R and lε : Ω 7→ R are continuous functions that

satisfy supΘ∈Ω |lε(hi, hk, Θ) − l0(hi, hk, Θ)| ≤ ε. In addition, assume that l0(hi, hk, Θ)

has an unique minimizer at Θ0 and that for any (p + 1)-dimensional ball B̺(Θ0)

surrounding Θ0, there exists c > 0 such that

|l0(hi, hk, Θ) − l0(hi, hk, Θ0)| > c‖Θ − Θ0‖2, for Θ ∈ B̺(Θ0).

Then it holds for Θε =arg min
Θ∈Ω

lε(hi, hk, Θ) that

‖Θε − Θo‖ = O(ε1/2) as ε → 0.

A variant of this result can be found in Facer & Müller (2003) and the proof is omitted.

Lemma A4. Under Assumptions 1-4, for any 1 ≤ i, k ≤ n, the minimizer Θ̃gik
=

arg min
Θ∈Ω

Cλ(Yi, Yk, Θ), subject to the constraints in (A2), satisfies

‖Θ̃gik
− Θgik

‖ = O{(δ2 + λ)1/2}, (A3)

and thus the estimated pairwise warping function g̃ik satisfies

sup
t∈T

|g̃ik(t) − gik(t)| = sup
t∈T

|g̃ik(t) − hi{h−1
k (t)}| = O{(δ2 + λ)1/2}.

Proof Since Θ̃gik
is a minimizer of a constrained optimization problem, for suitable

κ ≥ 0, ζj ≥ 0, j = 1, ..., p + 1, the Lagrangian is

lλ(hi, hk, Θ) = Cλ(Yi, Yk, Θ) + κI(Θ) +

p+1∑

j=1

ζjJj(Θ), (A4)

where I(Θ) and J(Θ) are defined in (A2). The minimizer Θ̃gik
has to satisfy

∇lλ(hi, hk, Θ̃gik
) = 0 and

∑p+1
j=1 ζjJj(Θ̃gik

) = 0. From Lemma A2, one may conclude

that supΘ∈Ω

∣∣lλ(hi, hk, Θ) − lµ(hi, hk, Θ)
∣∣ = O(δ2 + λ), because of

∑p+1
j=1 ζjJj(Θ) ≤

0, Assumptions 1 and 2, and
∫
T
{ΘTA(t) − t}2dt ≤ T 3/3. From Lemma A3,

‖Θ̃gik
−Θgik

‖ = O{(δ2 +λ)1/2}. Finally, because supt∈T |Aj(t)| ≤ 1, for j = 1, ..., p+1,

sup
t∈T

|g̃ik(t)− hi{h−1
k (t)}| = sup

t∈T
|(Θ̃gik

−Θgik
)TA(t)| ≤ ‖Θ̃gik

−Θgik
‖ = O{(δ2 + λ)1/2}.

16



Lemma A5. Under Assumptions 1-6 and for bandwidth b = bopt ∼ m−1/5 as m → ∞,

it holds that

sup
g∈W

∣∣∣E
(∫

T

[
Ŷ 2

i {g(t)} − Y 2
i {g(t)}

]
dt

∣∣Yi

)∣∣∣ = Op(m
−1/5). (A5)

Proof Let V =
∫

K2(t)dt, B =
∫
{K(t)t2/2}dt, V 6= 0 , B 6= 0, and assume that

both V and B are bounded. Results about variance and bias for weighted local linear

regression (Müller, 1987) lead to

var{Ŷi(t)
∣∣Yi} = (mb)−1

{
σ2V + o(1)

}
= Op{(mb)−1}. (A6)

Using properties of the smoothing weights lj(t), the bias term becomes

E{Ŷi(t) − Yi(t)|Yi} ≤
{ m∑

j=1

l2j (t)
}1/2

E
[ m∑

j=1

{Yi(tj) − Yi(t)}21t∈[tj−b,tj+b]|Yi

]1/2
= Op(b),

since Yi(t) is uniformly Lipschitz continuous of order 1, and E{Yi(tj) − Yi(t)|Yi}2 ≤
C ′(tj − t)2, where C ′ is a constant. Let Tj = [aj, aj+1], j = 0, ..., p, and Sj be

the images of Tj under the map g ∈ W . For any t ∈ Tj, there exists a unique

s ∈ Sj such that t = g−1(s) and dt = [g′{g−1(s)}]−1ds. Using (A6), one finds

that supg∈W

∫
T

var[Ŷi{g(t)}
∣∣Yi]dt = Op{1/(mb)} = Op(m

−4/5), as b = m−1/5 and

supg∈W

∑p
j=0

∫
Sj

[g′{g−1(s)}]−1ds is bounded according to Assumption 4. Similarly,

supg∈W

∫
T

E2{Ŷi(g(t)) − Yi(g(t))
∣∣Yi}dt = Op(m

−2/5). We then find that

sup
g∈W

∫

T

(
var[Ŷi{g(t)}

∣∣Yi] + E2[Ŷi{g(t)} − Yi{g(t)}
∣∣Yi]

)
dt = Op(m

−2/5),

sup
g∈W

∫

T

(E[Yi{g(t)}|Yi]
2)1/2(E[Ŷi{g(t)} − Yi{g(t)}|Yi]

2)1/2dt = Op(m
−1/5).

The result follows by combining the last two bounds, and observing that the left-hand

side of (A5) is bounded by

2 sup
g∈W

∫

T

(E[Yi{g(t)}|Yi]
2)1/2(E[Ŷi{g(t)} − Yi{g(t)}|Yi]

2)1/2dt

+ sup
g∈W

∫

T

var[Ŷi{g(t)}
∣∣Yi] +

(
E[Ŷi{g(t)} − Yi{g(t)}

∣∣Yi]
)2

dt.

Lemma A6. Under Assumptions 2-6, for bandwidths b = bopt ∼ m−1/5, it holds that

sup
g∈W

∣∣∣E
[∫

T

Ŷi{g(t)}Ŷk(t) − Yi{g(t)}Yk(t)dt
∣∣Yi

]∣∣∣ = Op(m
−1/5).
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The proof is similar to that of Lemma A5 and is omitted.

Proof of Theorem 1 Observe that Θ̂gik
, the constrained minimizer of Ĉλ(Yi, Yk, Θ), also

minimizes l̂λ(Yi, Yk, Θ) = Ĉλ(Yi, Yk, Θ) + κI(Θ) +
∑p+1

j=1 ζjJj(Θ), and that, according

to the proof of Lemma A4, Θ̃gik
minimizes lλ(hi, hk, Θ), defined in (A4). According to

Lemmas A5 and A6, supΘ∈Ω

∣∣∣l̂λ(hi, hk, Θ)− lλ(hi, hk, Θ)
∣∣∣ = Op(m

−1/5), which together

with Lemma A3 implies that ‖Θ̂gik
−Θ̃gik

‖ = Op(m
−2/5). Then with (A3) one obtains,

for the left-hand side of (11),

‖Θ̂gik
− Θgik

‖ ≤ ‖Θ̂gik
− Θ̃gik

‖ + ‖Θ̃gik
− Θgik

‖ = Op(m
−2/5) + O{(δ2 + λ)1/2}.

The result of Theorem 1 follows because supt∈T |Aj(t)| ≤ 1, for j = 1, ..., p + 1, and

supt∈T |ĝ(t) − g(t)| = supt∈T |(Θ̂T
gik

− ΘT
gik

)A(t)|.

Proof of Corollary 1 Using (7), (12), (13) and the generalized triangle inequality, we

obtain

sup
t∈T

|ĥ−1
k (t) − h−1

k (t)| ≤ sup
t∈T

n∑

i=1

|ĝik(t) − gik(t)|
n

= Op(m
−1/5) + O{(δ2 + λ)1/2}.

Since ĥ−1
k (t) and ĥk(t), h−1

k (t) and hk(t) are symmetric around the identity function,

(14) follows and this concludes the proof.
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Figure 1: Female growth velocity curves of 54 girls in the Berkeley growth study (grey

solid lines), the cross-sectional mean (solid line), and the landmark registration mean

(dashed line).
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Figure 2: Mean shape functions µ(t) used in two simulations: µ1(t) from equation

(17) (solid) and µ2(t) from equation (18) (dashed line).
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Figure 3: Deviations between warped mean functions and the landmark mean growth

function for pairwise synchronization (solid line), self-modelling registration (bold

solid line), nonparametric maximum likelihood estimation (dash-dot line), Procrustes

method (bold dashed line); and cross-sectional mean with no warping (dashed line).
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Figure 4: (a)-(d), smoothed and normalized expression profiles for 4 genes, measured

on eight multiple sclerosis patients at nine time points; (e)-(h), smoothed, normalized

and time-warped, using pairwise synchronization, expression profiles of these four

genes, for the same patients.
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Table 1: Simulation results in terms of synchronized function, FMISE, and warping

function, HMISE, mean integrated squared errors for pairwise synchronization under

various combinations of auxiliary parameters p and λ, using mean shape function µ1

in (17), for sample size n = 20 and 100 Monte Carlo runs.

λ 10−1 10−2 10−3 10−4

p x̄ s2 x̄ s2 x̄ s2 x̄ s2

3 FMISE 1.52 0.18 1.54 0.18 1.55 0.18 1.55 0.18

HMISE 0.52 0.45 0.53 0.45 0.53 0.46 0.53 0.46

4 FMISE 1.54 0.19 1.56 0.18 1.57 0.18 1.56 0.18

HMISE 0.52 0.45 0.54 0.47 0.54 0.47 0.54 0.46

5 FMISE 1.57 0.19 1.60 0.18 1.60 0.18 1.60 0.18

HMISE 0.53 0.47 0.55 0.49 0.56 0.48 0.56 0.49
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Table 2: Comparison of simulation results for different time warping methods: pair-

wise warping, PW, Procrustes, PRO, self-modelling registration, SR, and nonparamet-

ric maximum likelihood, NML. Shown are the mean and variance of the two deviation

measures FMISE and HMISE, for mean shape functions µ1 in (17) and µ2 in (18),

sample size n = 20 and 100 Monte Carlo runs.

PW PRO SR NML

x̄ s2 x̄ s2 x̄ s2 x̄ s2

µ1 FMISE 1.55 0.20 1.93 0.24 1.98 0.24 2.50 0.31

µ1 HMISE 0.16 0.004 0.21 0.03 0.23 0.008 0.47 0.014

µ2 FMISE 3.40 0.13 3.49 0.17 3.62 0.26 3.67 0.34

µ2 HMISE 0.19 0.01 0.18 0.01 0.23 0.01 0.39 0.02
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Table 3: Comparison of between-patient variation before, VARb, and after, VARa,

pairwise synchronization for 24 INF-stimulated genes, and the percentage of reduction

in variation.

Gene VARb VARa Ratio1 Gene VARb VARa Ratio1

Hs.833 1.13 0.56 0.51 Hs.278613 1.25 0.67 0.47

Hs.183487 0.64 0.42 0.34 Hs.86958 0.49 0.33 0.33

Hs.82030 0.63 0.25 0.60 Hs.76391 0.77 0.50 0.34

Hs.241510 0.75 0.32 0.58 Hs.80645 0.22 0.17 0.22

Hs.146360 0.34 0.09 0.75 Hs.174195 0.37 0.26 0.31

Hs.1279 2.57 3.40 -0.32 Hs.171862 1.11 0.57 0.49

Hs.21486 0.87 0.13 0.86 Hs.155530 0.79 0.69 0.13

Hs.62661 1.07 0.14 0.87 Hs.77367 0.99 0.74 0.26

Hs.20315 0.62 0.09 0.85 Hs.83795 1.26 1.15 0.08

Hs.274382 0.47 0.04 0.92 Hs.277477 0.92 0.68 0.26

Hs.926 0.80 0.27 0.66 Hs.14623 1.46 1.23 0.16

Hs.79322 1.48 2.07 -0.39 Hs.75415 1.23 1.13 0.08

1. Ratio = (VARb − VARa)/VARb.
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