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Pairwise Data Clustering
by Deterministic Annealing

Thomas Hofmann, Student Member, IEEE, and Joachim M. Buhmann, Member, IEEE

Abstract—Partitioning a data set and extracting hidden structure from the data arises in different application areas of pattern

recognition, speech and image processing. Pairwise data clustering is a combinatorial optimization method for data grouping which

extracts hidden structure from proximity data. We describe a deterministic annealing approach to pairwise clustering which shares

the robustness properties of maximum entropy inference. The resulting Gibbs probability distributions are estimated by mean–field

approximation. A new structure-preserving algorithm to cluster dissimilarity data and to simultaneously embed these data in a

Euclidian vector space is discussed which can be used for dimensionality reduction and data visualization. The suggested

embedding algorithm which outperforms conventional approaches has been implemented to analyze dissimilarity data from protein

analysis and from linguistics. The algorithm for pairwise data clustering is used to segment textured images.

Index Terms—pairwise data clustering, maximum entropy method, multidimensional scaling, exploratory data analysis

——————————   ✦    ——————————

1 INTRODUCTION

ODERN information and communication technology
confronts us with massive amounts of data. The pri-

mary goal of pattern recognition is to extract hidden struc-
ture from data in order to generate a compact data repre-
sentation and to enable symbolic data processing concepts.
One of the basic problems in pattern recognition is con-
cerned with the detection of clusters in data sets. The po-
tential applications of clustering algorithms cover a wide
range from data compression of video and audio signals to
structure detection and automatic inference engines in ma-
chine learning and artificial intelligence. We will describe a
stochastic optimization approach to data clustering which
relies on the well-known robustness of maximum entropy
inference [1], [2], [3]

1
.

The problem of optimally partitioning a data set arises in
two different forms dependent on the data representation
as vectorial or proximity data. A partitioning approach
known as central clustering derives a set of reference or
prototype vectors which quantize a set of vectorial data
with minimal quantization error [6], [7]. Data compression
is achieved by transmission and storage of the indices of
reference vectors rather than the original data vectors. The
second approach to data clustering, referred to as pairwise
data clustering [8], partitions a set of data into clusters in
which the data are indirectly characterized by pairwise
comparisons instead of explicit coordinates. The character-

1. Data clustering is viewed as a partitioning problem throughout this
paper and not as a density estimation problem of a mixture model [4], [5] in
the sense of parametric statistics.

istics of the data set are hidden in these pairwise relations
or proximity values which frequently violate the require-
ments of a distance measure, i.e., the triangular inequality
does not necessarily hold, the self-dissimilarity may not
vanish and the proximity values might be negative. The
grouping of proximity data is mathematically formulated
as a combinatorial optimization problem which we solve
with a minimization heuristic called deterministic annealing.
Sets of relational data are abundant in many applications,
e.g., in molecular biology, psychology, linguistics, econom-
ics and image processing.

Data clustering as a problem in pattern recognition and
statistics belongs to the class of unsupervised learning
problems. There is a large body of literature available on
this topic and the reader is referred to the text books of
Duda and Hart [8] and of Jain and Dubes [4] for an over-
view. The method of deterministic annealing is described in
various papers mostly in the literature on neural networks
[9], [10], [11], [12] and on computer vision [13], [14], [15].
Deterministic annealing applied to central clustering has
been discussed by Rose et al. in a series of papers [16], [17],
[18], [19]. A solution of the deterministic annealing proce-
dure for vector quantization with different rate constraints
was suggested in [20], [21]. This work, as well as Chou et al.
[22], emphasized the design question of how large the code
book should be chosen dependent on prespecified costs per
code vector.

The remainder of this paper is structured in the follow-
ing way: We discuss the advantage of a maximum entropy
based search heuristic in Section 2. A discussion of cost
functions for central and pairwise data clustering is pre-
sented in Section 3. Approximation techniques to calculate
expectation values for the data assignments are discussed
in Section 4. The widely used estimation technique called
mean–field approximation is derived by variational tech-
niques and, alternatively, by an expansion for small fluc-
tuations. An extension of pairwise data clustering to data
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visualization is described in Section 5. The results of central
clustering (Section 3) are employed to simultaneously
group and embed proximity data in a low dimensional
Euclidian space. Simulation results of clustering problems
in molecular biology and linguistics, a performance com-
parison between deterministic annealing and a conven-
tional, gradient descend technique for clustering as well as
an application of pairwise data clustering to image seg-
mentation are summarized in Section 6.

2 STOCHASTIC OPTIMIZATION

BY MAXIMUM ENTROPY INFERENCE

2.1 Simulated Annealing

In seminal papers Kirkpatrick et al. [23] and, independ-
ently, 

(
Cerny  [24] have proposed the stochastic optimization

strategy Simulated Annealing. By analogy to an experimental
annealing procedure where the stability of metal or glass is
improved by heating and cooling, solutions for an optimi-
zation problem are heated and cooled in simulations to find
one with very low costs. The search for good solutions is
implemented by a Markov process which stochastically

samples the solution space � of an optimization problem.
The optimization problem is characterized by a cost func-
tion � : ,W Wa � w Œ  denoting an admissible solution of

the optimization problem. A new solution is accepted or
rejected according to the Metropolis algorithm, i.e., new
solutions with decreased costs are always accepted and
solutions with increased costs are accepted with an expo-
nentially weighted probability, i.e.,

P w w
old new if 

else.
Æ =
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-
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with D� � �∫ -w w
new olde j e j . The parameter T is called

the computational temperature. The philosophy of simu-
lated annealing is to gradually reduce the temperature
during the search process, thereby forcing the system into
solutions with low costs. Mathematically, the stochastic
search process for the optimal solution is a random walk in
the solution space. Cost differences between neighboring
states act as a force field. The effect of the temperature can
be interpreted as a random force with an amplitude pro-
portional to T. Valleys and peaks with a cost difference less
than T are smeared out and vanish in the stochastic search.
A Markov process with a transition matrix (1) converges to
an equilibrium probability distribution [25]

PGb
w

w

w

w

w

a f a fc h
a fc h

a f c he je j

=
-

- ¢

∫ - -

¢ŒÂ
exp

exp

exp

� �

� �

� � � �

T

T

T

W

(2)

which is known as the Gibbs distribution. The quantity

� � � �c h b gc h∫ - - ¢
¢ŒÂT Tlog exp w

w W
 denotes the Gibbs free

energy. The temperature T formally plays the role of a La-
grange parameter to enforce a constraint on the expected
costs

� �∫
Œ

ÂPGb
w w

w

a f a f
W

. (3)

The Gibbs free energy �(�) is related to the expected costs
��� and to the entropy � by

� � � �P P PGb Gb Gbe j a f a f c h= - -
Œ

Â w w
w

log .=

1 1

T T
W

(4)

2.2 Deterministic Annealing

A stochastic search according to a Markov process with a
transition matrix (1) allows us to estimate expectation val-
ues of system parameters by computing time averages in a
Monte Carlo simulation, e.g., the variables of the optimiza-
tion problem are drawn according to P

Gb
(�). This random,

sequential sampling of the solution space, however, is slow
compared to deterministic optimization techniques due to
the diffusive nature of the search process. A deterministic
variant of simulated annealing, “deterministic annealing,”
analytically estimates relevant expectation values of system
parameters, e.g., the variables of the optimization problem.
We introduce the generalized free energy

~
� � �

�

P P

P P P

P
a f a f

a f a f a f a f
∫ - =

+
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Â Â

T

Tw w w w
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which has to be minimized over a (tractable) subspace of prob-

ability distributions. The inequality 
~ ~
� � � �P Pb g e j c h≥ ∫

Gb

holds since the Gibbs distribution maximizes entropy [1],

[2] for ���P kept fixed. The search space of probability den-

sities is defined in order to analytically approximate ex-
pectation values of the optimization parameters. The tem-
perature parametrizes a family of generalized free energies

with increasing complexity for T ��0, i.e., high temperature
smoothes the cost function and low temperature reveals the
full complexity of the original optimization problem, i.e.,

recovering it for T ��0. Deterministic annealing algorithms
track good solutions from high to low temperature in a
similar way to cooling in simulated annealing. We will dis-
cuss this technique in detail in Section 4.

Why should we consider a stochastic or deterministic
search strategy based on principles from statistical physics?
The fundamental relationship between statistical physics
and robust statistics has been established by Jaynes [1], [2],
[3] who postulated the principle of maximum entropy in-
ference. Maximizing the entropy yields the least biased in-
ference method being maximally noncommittal with respect to
missing data. In the context of data clustering the missing
information are the assignments of data to clusters. Another
important argument in favor of the maximum entropy
method stresses the robustness of this inference technique.
Tikochinsky et al. [26] have proven that the maximum en-
tropy probability distribution is maximally stable in terms
of the L2 norm if the expected cost ��� is lowered or raised
by changes of the temperature. The family of Gibbs distri-
butions for a given cost function possesses the optimality
property to induce the least variations if ��� is reduced.
Using concepts from differential geometry, the family of
Gibbs distributions parameterized by the temperature
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forms a trajectory in the space of probability distributions
which has minimal length [27]. We conclude from these
facts that a stochastic search heuristic which starts with a
large noise level and which gradually reduces stochasticity
to zero should be based on the family of Gibbs distributions
with decreasing temperature. This strategy guarantees
maximal robustness with respect to noise.

3 COST FUNCTIONS FOR DATA CLUSTERING

3.1 Central Clustering

The most widely used nonparametric technique for finding
data prototypes is central clustering or vector quantization.
Given a set of d-dimensional data vectors � = {xi � �

d
 : i �

{1, …, N}}, central clustering poses the problem of deter-
mining an optimal set of d-dimensional reference vectors or
prototypes � = {y� � �

d
 : ���� {1, …, K}}. To specify a data

partition we introduce Boolean assignment variables M and
a configuration space �,

M = Œ=
=
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Mi� � 1 if the data point xi is assigned to reference vector y�,

while Mi���� 0 otherwise. The solution space is defined as

the set of admissible configurations in (7) with the con-

straints M ii

K

nn
= "

=Â 1
1

,  assuring that each data point is

represented by a unique reference vector y�����. The qual-

ity of a set of reference vectors is assessed by the objective
function for central clustering which sums up the average

distortion error �(xi, y�) between a data vector xi and the

corresponding reference vector y�, i.e.,

� �cc
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An appropriate distortion measure �(xi, y�) depends on

the application domain, with the most common choice be-

ing the squared Euclidian distance �(xi, y�) � ��xi − y���
2

between the data vector and its reference vector. Applica-
tions with a topological ordering of the reference vectors as
for source-channel coding demand a distortion measure
which considers the topological organization of the refer-

ence vectors, e.g., � x y x yi i

K
T, ,a an nn

c h ∫ -
=Â

2

1
 where

T�� specifies the probability that index � is confused with

index � due to transmission noise. Distortions with a low-
dimensional, topological arrangement defining a chain or a
two-dimensional grid are very popular such as self-
organizing topological maps in the area of neural comput-
ing [28], [29]. The number of clusters can be limited by ad-
ditional rate distortion constraints, e.g., Shannon entropy or
penalties for small clusters, rather than postulating a fixed
number K [21].

Stochastic optimization of the cost function (8) requires
us to determine the probability distribution of assignments
M. The maximum entropy principle, originally suggested
by Rose et al. [16] for central clustering, states that the as-
signments are distributed according to the Gibbs distribution
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As pointed out in Section 2, the free energy �(�
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since the sum over assignments is constrained by
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.   The cost function �
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 which is linear in Mi�

yields a factorized Gibbs distribution
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for predefined reference vectors � = {y�}. This Gibbs distri-
bution can also be interpreted as the complete data likeli-
hood for mixture models with parameters �.

Following Rose et al. [16], the optimal reference vectors

yu
*o t are derived by maximizing the entropy of the Gibbs

distribution, keeping the average costs ��
cc
� fixed, i.e.,
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P
Gb

(M) is the Gibbs distribution of the assignments for a set

� of fixed reference vectors. To determine closed equations

for the optimal reference vectors yu
*  we differentiate the

argument in (13) with the expected costs kept constant. The
resulting equation
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is known as the centroid equation in signal processing. The
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angular brackets denote Gibbs expectation values, i.e.,
�f(M)� � �M�� f(M)P

Gb
(M). The reader should realize that

entropy maximization implies y� to be a centroid which is
also optimal in the sense of rate distortion theory [30].

Equations (14) and (15) are efficiently solved in an itera-
tive fashion using the expectation maximization (EM) algo-
rithm [30]. The EM algorithm alternates an expectation step
to determine the expected assignments �Mi�� with a maxi-
mization step to estimate maximum likelihood values for
the cluster centers y�. Dempster et al. [31] have proven that
the likelihood increases monotonically under this alterna-
tion scheme which demonstrates convergence of the algo-
rithm toward a local maximum of the likelihood function.
The log-likelihood is up to a factor (−T) equivalent to the
free energy for central clustering. In Section 5 we will use
the solutions of central clustering with squared Euclidian
distances to simultaneously group a data set and embed it
in the Euclidian space �

d
 by preserving the cluster struc-

ture.

3.2 Pairwise Clustering

Central clustering requires that the data can be character-

ized by feature values xi � �
d
 in a d-dimensional Euclidian

space. Frequently in empirical sciences, however, the only
available information source about a data set are compari-
sons between data pairs; these dissimilarity values are de-

noted in the following by D = Œ=
=

¥�ik i N
k N

N Nc h 1,
1,

...,
...,

.�  Clus-

tering on the basis of this data description is achievable by
grouping the data to clusters such that the sum of dissimi-
larities between data of the same cluster is minimized [4],
[8]. This criterion favors compact and coherent groups over
heterogeneous data collections. We again use the set of as-

signment variables M as defined in (6) and denote by Mi�

the indicator function of an assignment of datum i to cluster

�. To compensate for different numbers of data per cluster

the costs of a particular cluster � are normalized by the per-

centage p M Nii

N

n n=
=Â /

1
of data in that cluster. Without

this normalization, the undesirable and often detrimental
tendency can be observed that clusters with few data grow
at the expense of equally coherent clusters with many data.
The cost function for pairwise clustering with K clusters
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stresses cluster coherency. Alternative clustering costs have
been proposed [8], but have not found wide spread accep-
tance in pattern recognition applications. The constant term

�ikk

N

i

N
N/ 2

11
a f

== ÂÂ  has been subtracted in (16) to empha-

size the independence of the clustering cost function on the
absolute dissimilarity scale, i.e.,

� � � � �pc pcM Mik ik- =0c he j c he j, (17)
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form shift of the dissimilarity values by an offset �0 does

not change the clustering costs and, consequently, has no
influence on the statistics of the assignments. Another cost
function with this offset invariance is
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which, however, displays a tendency for extremely hetero-
geneous partitionings with very large and very small clus-
ters [32]. A second important property of the proposed cost
function concerns non–symmetric dissimilarities, �ik � �ki.
�

pc
 is not changed if all dissimilarities are replaced by the

arithmetic mean, �ik � (�ik + �ki)/2. For reasons of sim-
plicity, we henceforth assume symmetric �ik. Furthermore,
�

pc
 is also invariant under an arbitrary permutation of the

cluster indices ���	�(�)
2
.

An important, although often ignored consideration for

stochastic optimization problems is the scaling of the �ik

values with the number N of data. The correct scaling
should yield constant costs per data point to achieve inde-
pendence of annealing schedules and stochastic search heu-
ristics from the instance size N. In the case of completely
consistent dissimilarities, i.e., data i, k in different clusters

have large �ik and data i, k in the same clusters have small

�ik, constant costs per datum require a scaling �ik � �(1).

In the opposite case of random dissimilarity values aver-

aging effects necessitate a scaling�ik N~ .�d i  A thorough

discussion of this point can be found in the statistical phys-
ics literature of optimization problems [33].

4 MEAN-FIELD APPROXIMATION

OF PAIRWISE CLUSTERING

Following the strategy of stochastic optimization as dis-
cussed in Section 3.1 for central clustering, we estimate the
expectation values for the assignment of data to clusters at
a specified uncertainty level parametrized by the computa-
tional temperature T. Assignments M of data to clusters are
randomly drawn from the set of admissible configurations
(7) according to the Gibbs distribution

P M
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where �
pc

 are the costs for a pairwise clustering solution
(16). Contrary to the Gibbs distribution for central cluster-
ing, the data assignments M in pairwise clustering are sta-
tistically dependent and the Gibbs distribution (18) cannot
be exactly rewritten in factorized form. Each assignment
variable Mi� interacts with all other assignment variables.
These cost contributions, however, converge to averages in
the limit of large data sets and reduce the influence of cor-
relations on individual data assignments. We, therefore,

2. The permutation symmetry can be removed by adding a small pertur-

bation d
n nn

� : = R N M
ii

NK

( )
==

ÂÂ
11

 to the cost function (16) with 0 < R1(N) < …

< RK
(N), lim

N�
 R�(N) = 0, lim
N�
 N R�(N) = 
. The perturbations R�(N) favor an

indexing of the clusters according to their size (p1 > p2> … > pK
).
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approximate the average interaction of Mi� with other as-
signment variables by a mean–field �i�. The following two
sections present a variational technique and a perturbation
expansion to derive the mean–field approximation and cor-
rections to the assignment correlations. The method is,
however, not restricted to clustering problems and can be
applied to many combinatorial optimization problems.

4.1 Mean–Field Approximation
as Minimization of KL-Divergence

A mean–field approximation of the Gibbs distribution
P

Gb
(�

pc
) neglects the correlations between the stochastic

variables in the pairwise clustering cost function �
pc

 and
determines the “most similar” factorized distribution
within an �–parametrized family of distributions P

0
(�). The

distribution P
0
(�* ) which represents most accurately the

statistics of the original problem is specified by the mini-
mum of the Kullback–Leibler divergence to the original
Gibbs distribution, i.e.,

� �
�

* arg min .= � �P P0a f e je jGb pc
(19)

In the pairwise clustering case we define an approxi-
mating family of distributions introducing potentials
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N K  for the effective interactions, where

�in  represents the partial costs for assigning datum i to

cluster �. Summing up the partial costs we arrive at a fam-
ily of cost functions without correlations between the as-
signments, i.e.,
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The linearity in the assignments of (20) reflects the fact that
we assume statistical independence between the assign-
ments, i.e., they are distributed according to a factorized
Gibbs distribution P

Gb
(�

0
) � P

0
(�).

An equivalent minimization condition for the free en-
ergy can be derived from (19) by the following algebraic
transformations
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The averaging brackets ��� denote the average with respect
to P
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). Since the KL–divergence is always positive and
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) we obtain the well-

known upper bound first derived by Peierls [34]:

�(�
pc

) � �(�
0
) + ��

pc
 − �

0
�.

In summary, the optimal mean–fields �
*  

result from a
variational approach to minimizing the upper bound (22)
on the free energy and thus to minimizing the KL-
divergence (19). The upper bound can be interpreted as the
generalized free energy (5) which is defined in the re-

stricted space of factorized probability distributions for M.
The minimization of the upper bound on the free energy

yields the “optimal” potentials �in
*  for assigning datum i to

cluster �:

∂

∂

n

n

n n

n n�

� �

� �
i

i i

i i

K

� � � �0 0 0

1

e je j

m r

+ - =

fi ∫ " Œ

=

pc

*

* ~
, . . . , , (23)

with

~

.

�i

jj
j i

N

ii k ik

j

ll
l i

N jkj
j i

N
k
k i

N

M

M
M

M

n

n

n

n

n

∫
+

+ -

F

H

G
G
G

I

K

J
J
J

L

N

M
M
M
M

O

Q

P
P
P
P

=
π

=
π

=
π

=
π

Â

Â
ÂÂ

1

1

1

2

1

2

1

1

11� � �
(24)

The resulting optimal (with respect to (21)) assignments are
given by
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The technical details can be found in Appendix A. The
reader should note that the potentials �in

*  do not depend on
the variables (�Mi1 �, ..., �MiK�).

We introduce an approximation which neglects terms of

order �(1/N) to simplify the potentials �in
* . The approxi-
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of large N. To simplify the presentation further, we assume
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“optimal” potentials
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depend on the given distance matrix, the averaged assign-
ment variables and the cluster probabilities. The following
algorithm estimates the assignment probabilities �Mi�� and
the optimal potentials �in

*  (defined in (26)) iteratively.

Algorithm I

INITIALIZE �in
* (0)

 and �Mi��
(0)

 randomly;

temperature T � T0;

WHILE T > TFINAL
t � 0;

REPEAT

E-like step: estimate �Mi��
(t+1)

as a function of �i
t

n
*a f;

M-like step: calculate �i
t

n
* +1a f

for given �Mi��
(t+1)

;

t � t + 1;

UNTIL all {�Mi��
(t)

, �i
t

n
*a f} satisfy (26);
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T � �T; �Mi��
(0) 

� �Mi��
(t)

; �in
* 0a f

 � �i
t

n
*a f;

The algorithm decreases the temperature exponentially

(0 < �� < 1) and alternates the estimation of data assign-
ments for given potentials (E-like step) with an estimate of
potentials for given assignments. This estimation procedure

can be carried out sequentially or in parallel�
3
 For the as-

signments in the E-like step and the potentials in the M-like
step. A sequential version where the E-like step and the M-
like step are performed for a randomly selected datum i

converges to a local minimum (with respect to (�i1, ... �iK))

of the upper bound of the free energy, since �i
t

n
* +1a f is

uniquely determined by Mk

t

k
k i

N

n

+

=
π

1

1

a f
{ } , which have no

explicit dependency on �i
t

n
* +1a f. The upper bound in (22)

plays the role of a Lyapunov function for the update dy-

namics of the potentials �i
t

n
* +1a f [32]. The sequential update

scheme has been implemented in the clustering experi-
ments (see Section 6). The outer loop of the algorithm re-
duces the temperature in an exponential fashion, i.e., we

choose T � �T. Other choices such as linear annealing
schedules to lower the temperature could be used as well
and they might yield superior optimization results since the
search process is extended by a slower temperature reduc-
tion.

4.2 Equations for Expected Data Assignments

The variational approach with a family of factorized distri-
butions implicitly assumes that correlations between as-
signments can be neglected. A direct estimate of the aver-
age assignments allows us to check how well this assump-
tion holds and what estimation errors are introduced by the
underlying independence hypothesis. The detailed deriva-
tions of the equations (27), (28), and (29) are summarized in
Appendix B. The true expected assignments are given by

M
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i
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nn

=
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exp
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exp
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(27)

~
�ia  being defined in (24). The fraction exp

~
/-�i Tae j

/ exp
~

/-Â �i Tnn
e j  in (27) implements a partition of unity.

The system of the N � K equations (27) is computationally
intractable since we have to carry out the averaging of the
partition of unity over an exponential number of assign-
ment configurations. The smoothness of a transition from
one cell of the partition to a neighboring cell is controlled
by the inverse temperature 1/T.

Naively interchanging the averaging brackets with the
nonlinear function in (27) yields the equations (25), (26); a
refined mean–field approach which is known as the TAP
approach [35] models the feedback effects in strongly dis-
ordered clustering instances more faithfully than the naive
approach. The refined expected assignments are

3. Experimentally, we observed oscillation for the parallel �i
t

n
*a f  update

as it is known from parallel update of neural networks.
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where ��� denotes the Kronecker delta. The corrections 
~
hia

are also called cavity fields.
The question about the range of validity of (28) is subtle,

and it has been studied extensively in the statistical physics
of disordered systems [33]. Empirically, we can measure
average values of the assignments by Monte Carlo simula-
tion. These estimates are inserted into (28) or into (25),
which yields residual errors, i.e., the difference between the
right and the left side of both equations. The residual errors
determine the quality of the TAP approximation compared
to the naive mean field approximation. According to our
Monte Carlo experiments with matrices of Gaussian dis-
tributed random dissimilarity values (N = 1,200), the TAP
equations (28) estimate the average assignments �Mi�� with
a reduced residual error of up to 50% less compared with
the naive mean field approximation. The difference reaches
a maximum for temperatures near the phase transition
point, i.e., when degenerate clusters split into separate
clusters. The naive mean–field equation is superior in the
low temperature range. Furthermore, we observed that the
improvements achieved by the TAP equations can be neg-
lected for small problems (N < 100) because of the N ���

asymptotics.

5 PAIRWISE CLUSTERING AND EMBEDDING

Grouping data into clusters is an important concept in dis-
covering structure. Apart from partitioning data into
classes, the data analyst often relies on visual inspection of
data to recognize correlations and deviations from ran-
domness. The task of embedding given dissimilarity data D
in a d-dimensional Euclidian space, a prerequisite for visual
inspection, is known as multidimensional scaling [8], [36].
Usually, multidimensional scaling is formulated as an op-
timization problem for the coordinates {xi} with costs

�
�

�

mds x
x x

i
i k ik

iki k

N

Nm rd i =
- -F

H
GG

I

K
JJ

=

Â
1

2

2 2

1
$

.
,

(30)

The so-called stress function �
mds

 was introduced by

Kruskal in [37]. �
mds

 with a constant normalization $�ik = 1

measures the absolute stress and $� �ik ik=  penalizes rela-

tive stress.

5.1 Mean Field Approximation
of Pairwise Clustering by Central Clustering

In this section, we establish a connection between the clus-
tering and the multidimensional scaling problem. The strat-
egy of combining data clustering and data embedding in a
Euclidian space is based on a variational approach to
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maximum entropy estimation as discussed in Section 4.1.
The coordinates of data points in the embedding space are
estimated in such a way that the statistics of the resulting
cluster structure matches the statistics of the original pair-
wise clustering solution. The relation of this new principle for
structure preserving data embedding to standard multidi-
mensional scaling is summarized in the following diagram:

� � � � �

� � � �

� �

ik ik ik

i k i i

m r m re j m re je j

e j e j

{ } m re j m re je j

Æ Æ

B B F
H

I
K

- Æ Æ

pc Gb pc

mds Gb cc Gb pc

cc Gb cc

M P M

P P

x x M x P M x
2

.

Multidimensional scaling offers the left path from dissimi-
larities to coordinates whereas we advocate the right path.
The variational approach to mean–field approximation in-
volved in the right path requires us to specify a
parametrized family of factorized Gibbs distributions. We
choose the factorized Gibbs distributions (12) based on the
cost function for central clustering �

cc
(M|{xi}) and use the

embedding coordinates {xi} as the variational parameters.
This approach is motivated by the identity

M
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M M
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with
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= =
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N

x
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(32)

which yields a correct approximation for pairwise cluster-
ing instances with �ik = ��xi – xk��

2
.

Suppose we have found a stationary solution of the
mean–field equations (25), (26). For the clustering problem

it suffices to consider the mean assignments �Mi� � with the

parameters �in
*  being auxiliary variables. The identity (31)

allows us to interpret these variables as the squared dis-
tance to the cluster centroid under the assumption of
Euclidian data. In the multidimensional scaling problem

the coordinates xi are the unknown quantities. If we restrict

the potentials �iu  to be of the form ��xi − y���
2
 with the cen-

troid definition (32) we have specified a new family of ap-
proximating distributions defined in (12) with parameters

{xi � �
d
 : 1 � i � N}. The effective dimensionality of the pa-

rameter space is min{d, (K − 1)} � N instead of (K − 1) � N,
which is a significant reduction, especially in the case of

low–dimensional embeddings (d � K). The criterion for
determining the embedding coordinates is

∂

∂xi

� � � �cc pc cce j + - = 0, (33)

which approximately yields the coordinates

K x y y yi i i

K

i i
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M Mª - -
F
H
G

I
K
J

= =

Â Â
1

2
1

2

1
u

n

n n n m

m

m�* ,e j (34)

K yy y y y yi
T
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T

i i

K

M= -FH IK =
=

Â, .n n

n 1

(35)

Details of the derivation are summarized in Appendix C.
The coordinates {xi} and {y�} are determined by iteratively
solving (34) according to the following algorithm:

Algorithm II: Structure Preserving MDS

INITIALIZE xi
0a f
, yn

0a f
 and �Mi��

(0) 
�(0,1)

randomly;

temperature T � T0;

WHILE T > TFINAL
t = 0;

REPEAT

E-like step: estimate �Mi��
(t+1)

 as a

function of x yi , ;nm r
M-like step:

REPEAT

calculate xi
t+1a f

 given �Mi��
(t+1)

yn
t+1a f

.

update yn
t+1a f

 to fulfill the

centroid condition;

UNTIL convergence;

t � t + 1;

UNTIL convergence;

T � �T; �Mi��
(0)

� �Mi��
(t)
;  xi

0a f
 �  xi

ta f
;  yn

0a f
 �  yn

ta f
;

To understand the properties of the algorithm we have
to recollect the key idea for deriving the mean–field ap-
proximation. The statistics of the approximating system
with the cost function �

cc
 has to be optimally adjusted to

the statistics of the original system. This fact implies that we
are not able to determine the variational parameters in the
limit of fixed statistics, e.g., in the limit of zero temperature.
As can be easily seen, equations (34) is singular for T = 0 and
asymptotic results require us to apply l’Hospital’s Rule.

The derived system of transcendental equations given by
(15) with quadratic distortions, by (34) and by the centroid
condition explicitly reflects the dependencies between the
clustering procedure and the Euclidian representation. Si-
multaneous solution of these equations leads to an efficient
algorithm which interleaves the multidimensional scaling
process and the clustering process, and which avoids an arti-
ficial separation into two uncorrelated data processing steps.

6 RESULTS

We demonstrate the properties of the proposed clustering
Algorithms I and II by three classes of experiments:

i) benchmark optimization experiments compare deter-
ministic annealing with a greedy gradient descent
method and a linkage algorithm for pairwise cluster-
ing in Section 6.1;

ii) simultaneous pairwise clustering and embedding is
performed on artificial and real-world data in Sec-
tion 6.2;

iii) pairwise clustering as a segmentation technique for
textured images is discussed in Section 6.3.
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Fig. 1. Histograms of clustering costs for a protein data set (a) and a
random clustering instance (b). The gray and white bins denote the
results of optimization with deterministic annealing and gradient de-
scent, respectively. The Mean Average Dissimilarity Linkage solution
has costs of �

pc
 = 759.1.

6.1 Benchmark Experiments
for Deterministic Annealing

The theoretical derivations of the deterministic annealing
Algorithms I and II are motivated by the known robustness
properties of maximum entropy inference. To test this
claim, a large number of randomly initialized clustering
experiments has been performed on (i) dissimilarities taken
from protein sequences and on (ii) dissimilarities which
were randomly drawn from a uniform distribution on
[0, 1.0]. The dissimilarity values between pairs of protein
sequences are determined by a sequence alignment pro-
gram which takes biochemical and structural information
into account. In essence, the alignment program measures
the number of amino acids which have to be exchanged to
transform the first sequence into the second. The sequences
belong to different protein families like hemoglobin, myo-
globin and other globins. The protein dissimilarities, sorted
according to a clustering solution with N = 226, K = 9 clus-
ters, are displayed in Fig. 3. The two cases, dissimilarities
from protein sequence comparisons and random dissimi-
larities, span the spectrum between ordered and random
clustering instances. The benchmark clustering experiments
are designed to validate the claim that superior clustering
results are achieved by deterministic annealing compared
to standard clustering techniques based on gradient de-
scent. The histograms of 1,000 clustering runs with different
initializations are summarized in Fig. 1 for (a) the protein
dissimilarity data (K = 9) and for (b) the random data
(N = 100, K = 10). Deterministic annealing clearly outper-
formed the conventional gradient descent method in the
random case with even the worst deterministic annealing
solution being better than the best gradient descent solu-
tion. In the case of the protein data the average costs of a
deterministic annealing solution is in the best one percent
of the gradient descent solutions, e.g., an average determi-
nistic annealing solution is better than the best out of 100
gradient descent solutions. The standard Mean Average
Dissimilarity Linkage algorithms (MADL), also known as
Ward’s method (see [4], Sec. 3.2.7), yields a clustering result
with costs � � �  = 759.1 compared to the best
(experimentally achieved) result with � � �  = 730.9. All ex-
periments support our claim that deterministic annealing
yields substantially better solutions for comparable com-
puting time.

Fig. 2. Embedding of 20-dimensional data into two dimension: (a) pro-
jection of the data onto the first two principle components; (b) cluster
preserving embedding with Algorithm II. Only 10% of the data are
shown.

Fig. 3. Similarity matrix of 226 protein sequences of the globin family
(a): dark gray levels correspond to high similarity values. Clustering
with embedding in two dimensions (b); clustering of MDS embeddings
found by global (c) or local (d) stress minimization.

6.2 CLUSTERING AND EMBEDDING RESULTS

The properties of the described algorithm for simultaneous
Euclidian embedding and data clustering are illustrated by
two different experiments:

1) Clustering and dimension reduction of inhomogene-
ously distributed data.

2) Clustering of real-world proximity data from protein
sequences.

The capacity for finding low dimensional representa-
tions for high dimensional data is demonstrated with a data
set drawn from a mixture of 20 Gaussians in 20 dimensions.
The centers of the Gaussians are randomly distributed on
the unit sphere. The covariance matrices are diagonal with
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values being randomly drawn from the set {0.1, 0.2, 0.4}.
The best linear projection according to principal component
analysis is shown in Fig. 2a. The positions of the data points
are denoted by the letters which name the respective mix-
ture component. Other linear projection methods like pro-
jection pursuit [38] yield comparable results since no direc-
tion is distinguished in the data generation procedure. Si-
multaneous clustering and embedding by Algorithm II
distributes the data in two dimension with approximately
the same group structure as in the high dimensional space.
All but cluster (A) are preserved and well separated. A few
data points are assigned to the wrong cluster. The algo-
rithm selects a representation in a completely unsupervised
fashion and preserves the “essential” structure present in
the grouping formation and in the topology of the data set.
This procedure for dimension reduction is weakly related
to the idea of principal curves [39] or principal surfaces.

Fig. 3 summarizes the clustering result (K = 9) for a real–
world data set of 226 protein sequences. Families of protein
sequences are abbreviated by capital letters. The gray level
visualization of the dissimilarity matrix with dark values
for similar protein sequences shows the formation of dis-
tinct “squares” along the main diagonal. These squares cor-
respond to the discovered partition after clustering, the
resulting clustering costs being �

pc
 = 735.2. The embedding

in two dimensions (Fig. 3b) shows intercluster distances
which are in good agreement with the similarity values of
the data. The best experimentally determined solution (�

pc

= 730.9) without the embedding constraint exceeded the
quality of the solution in Fig. 3b only by 0.83 percent. The
results are consistent with the biological classification. The
labels HALL and MYTUY in Fig. 3b are individual globin
sequences which are known to play an “outlier role” in the
globin family. The corrections by the cavity fields (29) are in
the range of 10 to 20 percent of the assignment costs �i�

(18.0% for a Monte Carlo simulation at 1/T = 2.5). We have
compared the clustering solutions of Algorithm II with re-
sults of a two step procedure, i.e., first to embed the data
using Kruskal’s multidimensional scaling criterion (30) and
then to cluster the embedded data by the EM procedure of
Algorithm I. Depending on the embedding criterion as ab-
solute (Fig. 3c) or relative (Fig. 3d) stress, the visualizations
of the protein dissimilarities reveal little to almost no clus-
ter structure. This fact is reflected in high clustering costs
�

pc
 = 782.7, (833.7) for the embedding guided by absolute

and relative stress, respectively. It is obvious from Figs. 3b-
3d that simultaneous clustering and embedding by the
structure preserving MDS algorithm preserves the charac-
teristics of the original cluster structure much better than the
classical MDS techniques with subsequent central clustering.

An application of pairwise clustering to a linguistic data
set is shown in Fig. 4, in which 825 word fragments have
been compared by a dynamic programming algorithm [40].
The dissimilarity matrix is visualized on the left side. Dark
gray values denote high similarity values. The matrix is
ordered according to the determined clustering solution
with eleven clusters (K = 11). Word fragments with similar
beginning or ending have a high likelihood to be grouped
together, as can be seen from the labels in Fig. 4b. The cor-
rections by the cavity fields are again in the ten percent
range (7.7% for 1/T = 3.0).

Fig. 4. Similarity matrix for a data set with 825 word fragments (a). The
calculated clustering solution with embedding in two dimensions
(b). The labels denote the groups by common word beginnings.

6.3 Unsupervised Texture Segmentation
by Pairwise Clustering

Segmenting a digital image into homogenous regions, e.g.
regions of constant or slowly varying intensity, constant
color or uniform texture, arises as a fundamental problem
in image processing. Following Geman et al. [41] we for-
mulate texture segmentation as a grouping problem with
constraints about valid region shapes. The grouping prob-
lem is based on pairwise dissimilarities between texture
patches which correspond to pixel blocks of the image.
Three major modifications compared to [41] have been in-
troduced:

1) Dissimilarities are calculated based on a Gabor
wavelet scale–space representation.

2) The normalized pairwise clustering cost function (16)
is used as an objective function for image segmenta-
tion.

3) The presented deterministic annealing algorithm re-
places the Monte Carlo method proposed in [41].

The calculation of dissimilarity matrices from textured
images can be separated into three stages. In the first stage,
the image I is transformed in a Gabor wavelet representa-
tion. The Gabor transformation possesses a bandpass char-
acteristic and is known to display good texture discrimina-
tion properties [42], [43]. We have used four orientations at
three different scales, separated by a full octave, resulting in

L = 12 feature Images I
(l)

, 1 � l � L and the raw gray scale

image I
(0)

 = I. In a second step, the empirical feature distri-

bution function Fi
lb f  is calculated separately for every fea-

ture image I
(l)

 and every image block Bi, 1 � i � N. The

blocks Bi are centered on a regular grid and can overlap

with each other. In the third stage, pairs of empirical distri-
bution functions belonging to the same feature image are
compared using the Kolmogorov–Smirnov distance. For a

pair of blocks (Bi, Bj) the latter is defined by

D D F F F x F xik
l l

i
l

k
l

x
i

l
k

lb f b f b f b f b f b fe j a f a f∫ = - Œ, : max ; .0 1 (36)

Following the three stage procedure, a set of L + 1 inde-
pendently calculated dissimilarity matrices has been gener-
ated, which are combined with a simple maximum rule
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D Dik l L ik
l

= £ £max .0
b f  This is reminiscent of Julesz’ theory of

texture perception [44], conjecturing that a dissimilarity in a
single feature channel is sufficient to discriminate textures.
The procedure for generating dissimilarity data from im-
ages is schematically summarized in Fig. 5.

Fig. 5. Texture segmentation by pairwise clustering: local properties of
image patches, e.g., intensity differences and local frequencies, are
extracted. The respective empirical feature distribution functions are
compared with the Kolmogorov-Smirnov statistics to yield dissimilarity
values between image blocks.

Fig. 6. An image of size 512 � 512 and with five different textures (a) is
segmented by pairwise data clustering. The segmentation result by
deterministic pairwise clustering (25) is shown in (b). Segmentation
errors displayed by black pixels in (c) are located at segment bounda-
ries.

We have applied the algorithm to over a hundred ran-
domly composed texture images, one being depicted in
Fig. 6a. The resulting segmentation based on a deterministic
annealing algorithm for pairwise clustering (Fig. 6b) shows,
that the five different textures are well discriminated. The
difference image (Fig. 6c) between the resulting segmenta-
tion and the ground truth demonstrates that incorrect as-
signments are only observed in the border regions, where
statistics belonging to different textures are mixed together.
Corrections by the cavity field terms range around six to
eight percent changes in the assignments. The segmentation
was postprocessed with additional penalties for thin re-
gions as suggested in [41] to enforce local texture consis-
tency and to prevent a too large fragmentation of the tex-
ture regions. Moreover only a small fraction (<1%) of dis-
similarities calculated from 64� �� 64 blocks was actually
processed, including all pairs of adjoined blocks and a
small random neighborhood. More details on the neighbor-
hood selection, the adapted mean-field approach to sparse
clustering and performance statistics for a large number of
textured images can be found in [45] and [32].

7 DISCUSSION

The problem of grouping data can be regarded as one of the

initial, although fundamental, steps of information proc-
essing and data analysis. Concepts in artificial intelligence
as well as in pattern recognition and signal processing are
dependent on robust and reliable data clustering principles,
with robustness being mandatory with respect to unob-
servable, as well as to noisy events. In this paper, we have
developed a maximum entropy framework for pairwise
data clustering. A well-known approximation scheme from
statistical physics—the mean-field approximation—has
been derived in two different ways:

1) a variational method minimizes the Kullback–Leibler
divergence between the original Gibbs distribution
for data assignments and a parametrized family of
factorized distributions;

2) the expectation values of the data assignments are
calculated in a direct fashion.

This technique allows us to correct the influence of small
fluctuations in data assignments. The variational approxi-
mation of pairwise clustering with central clustering yields
a structure preserving, multidimensional scaling algorithm
which simultaneously clusters data and embeds them in a
Euclidian space. This algorithm can be used for non-linear
dimension reduction and for visualization purposes. Re-
sults of the pairwise data clustering algorithms in analyzing
protein and linguistic data and in segmenting textured im-
ages have been reported. Benchmark clustering experi-
ments support our claim that deterministic annealing yields
substantially better results than conventional clustering
concepts based on gradient descent minimization. The out-
lined strategy for analyzing stochastic algorithms for pair-
wise clustering should be considered as a general program
for deriving robust optimization algorithms which are
based on the maximum entropy principle; analogous re-
sults for the metric multidimensional scaling problem and
for the hierarchical data clustering problem [46] will be re-
ported elsewhere.
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APPENDIX A

In this appendix, we derive the mean-field equations for the
pairwise data clustering problem by minimizing the upper
bound on the free energy given in (22) with respect to the
variational parameters �i�. Taking derivatives of the upper
bound on the free energy yields
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with
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where we have used the identities
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Inserting the derivatives gives a necessary condition for a
minimum of the upper bound on the free energy,
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The K equations (41) are only fulfilled for all values � = 1,
…, K simultaneously if

� �i i ic Kn n n∫ + " =
~

, , . . . , .1 (43)

ci being N arbitrary constants.

APPENDIX B

In this appendix, we derive the mean field equations of
data assignments and fluctuation corrections in the case of
strongly disordered clustering problems. The dissimilarities

scale asD Nik��d i. This alternative derivation is necessary

since the variational approach of Section 4.1 does not cap-
ture these fluctuations adequately, as is known from statis-
tical physics [33]. In the following, data assignments are
considered to be randomly drawn from the set of admissi-

ble configurations � according to the Gibbs distribution

P
Gb

(�
pc

(M)) see (18). Therefore, the expected assignment of

datum i to cluster � is
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where $M  denotes the set of assignments without 
r

Mi . The

partial summation over the admissible states
r

Min s c h c h c hn s= 1 0 0 0 1 0 0 0 1, , . . . , , , , . . . , , . . . , , . . . , ,  can be

carried out analytically. The first step is the separation of

the clustering costs �
p c

 in a term � i-  without any contri-

bution from 
r

Mi  and costs which are related to 
r

Mi i◊ -�  is

given by
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The summation over the admissible states 
r

Min s  yields
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~
�ia  has been defined in (42). In summary, the expected as-

signments are
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Equation (48), known as the Markov blanket identity, is
analogous to the Callen equation for Ising spins in the the-
ory of magnetic systems (see [47], Section 3.2).

A Taylor expansion of (48) in small fluctuations

D
~ ~ ~
� � �i i in n n= -  renders a closed system of equations ex-

clusively depending on the averaged assignments �Mi��.

The expected assignments are
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with f T Ti i ia n a nn

~
exp

~
/ / exp
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/ .� � �o te j e j e j= - -Â  Neglect-

ing the second order terms of the expansion we receive a

closed system of N � K transcendental equations for the
expected assignments
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The derivation of (50) tacitly assumes that the assignment
correlation function scales as
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Fluctuations of the data assignments for consistent dis-

similarities are averaged in the limit N ���, in view of the
central limit theorem. In the case of random dissimilarities
these fluctuations do not vanish for large N and they are
captured by the quadratic terms in the Taylor expansion.

We introduce an effective internal field 
~
hin  which simulates

the indirect influence of the disorder on the data assign-
ments (see Thouless, Anderson and Palmer [35]). Without
loss of generality the dissimilarity values are assumed to

have vanishing expected values, i.e., ��ik ����0. The scaling

of the dissimilarities is assumed to be �ik N��d i. This

shift of the dissimilarity values and their random nature
allows us to neglect the second term in (26) since
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The Ansatz for the expected assignments with effective

internal field is
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The term linear in 
~
hiu  (52) has to capture all fluctuation

contributions of (49). A comparison of the coefficients
yields
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Inserting the partial derivatives and dividing by M Tia /

yields
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If assumption (51) holds, the terms k lπ  in (54) vanish as

N N2 3
/ e j . An in depth discussion when the assump-

tion (51) is valid can be found in [33]. Assuming the validity
of (51), the refined mean–field equations are
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APPENDIX C

The chain rule yields the derivatives of the upper bound
(22) with respect to the variational parameters xi:
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where ��k� = �k� – ��k� and �k� = ��xk – y���
2
. The derivatives

(58) are given by

∂

∂

d
∂

∂

m

m

m

m m
m

m

�k

i

k

T

ik

i

l
l

N
l

i

M

Np Np

M

x

x y x y
x

=

- - - -

L

N
M
M

O

Q
P
P

=

Â2
1

1

e j e j . (59)

Setting (58) equal to zero, results in the exact stationary
conditions
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The left-hand side can be further reduced to an expression
explicit in xi:
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where K yy y yi
T

i i i

T
= -FH IK  is a d � d covariance ma-

trix, y y
i i

K
M=

=Â nn n1
. Note that there still exist implicit

dependencies, since y� depends on xi.

The derivatives ��Mk� �/�xi on the right hand side of (60)
can be exactly calculated, since they are given as the solu-
tions of a linear equation system with N � K unknowns for
every xi. However, to reduce the computational complexity
we perform an approximation under the assumption of
�y�/�xi � 0 , treating y� as an independent variable. Equa-
tion (61) simplifies to a vector equation for every xi:
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