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Abstract

A multi-view image sequence provides a much richer

capacity for object recognition than from a single image.

However, most existing solutions to multi-view recognition

typically adopt hand-crafted, model-based geometric meth-

ods, which do not readily embrace recent trends in deep

learning. We propose to bring Convolutional Neural Net-

works to generic multi-view recognition, by decomposing

an image sequence into a set of image pairs, classifying

each pair independently, and then learning an object classi-

fier by weighting the contribution of each pair. This allows

for recognition over arbitrary camera trajectories, without

requiring explicit training over the potentially infinite num-

ber of camera paths and lengths. Building these pairwise

relationships then naturally extends to the next-best-view

problem in an active recognition framework. To achieve

this, we train a second Convolutional Neural Network to

map directly from an observed image to next viewpoint.

Finally, we incorporate this into a trajectory optimisation

task, whereby the best recognition confidence is sought for

a given trajectory length. We present state-of-the-art results

in both guided and unguided multi-view recognition on the

ModelNet dataset, and show how our method can be used

with depth images, greyscale images, or both.

1. Introduction

Consider the scenario in Figure 1. What trajectory

should the camera move around the object in order to

achieve the highest recognition confidence in a given time?

For practical tasks, recognition from a multi-view image

sequence is a more realistic setting than the single-image

recognition tasks typically addressed in computer vision,

and controlling a camera actively for efficient recognition

has great significance in real-world applications, where time

or power constraints become realities. For example, a robot

rotating an object before its eyes, or a mobile robot seman-

tically mapping a room, benefit from efficient solutions.

Traditionally, multi-view object recognition has been

achieved by building up compositions of hand-crafted fea-

tures shared across viewpoints, and finding correspon-
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to Image Pairs

Object Label

Next View

Figure 1: We propose a method for multi-view object recog-

nition, by decomposing an image sequence into a set of im-

age pairs. Training on these pairs then allows for recog-

nition and trajectory planning, without the need to train di-

rectly over the infinite possible number of camera paths that

may exist.

dences between a test image and the learned models [23,

36, 28]. However, recent trends in Convolutional Neural

Networks (CNNs) [21, 34] have seen attention in single-

view object recognition move away from these explicit,

hand-modelled, geometric solutions, and towards end-to-

end learning ideologies which inject fewer assumptions into

the learned object models. Recently, the introduction of the

ModelNet dataset of 3D CAD meshes [39] provided data

of sufficient magnitude for training deep networks with im-

ages covering the full sphere of viewpoints over an object,

enabling view synthesis without the need for laborious man-

ual labelling of each image [16]. It was subsequently shown

that rendering these meshes as synthetic greyscale images,

and classifying objects in a view-based manner with a CNN

architecture acting over a fixed trajectory, achieved state-

of-the-art results for multi-view recognition [35]. However,

extending this to generalised recognition over trajectories of
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arbitrary paths and lengths is not readily adopted by tradi-

tional CNN architectures, due to the need for fixed-length

input data.

1.1. CNNs for Generalised MultiView Recognition

One solution to multi-view recognition with CNNs

would be to simply concatenate all observed images into

a single input to a network. However, this would require

intractable training due to the large size of each input, but

more importantly, due to the need to train over every possi-

ble path of all possible lengths, which is of potentially infi-

nite scale. We propose to address this by relaxing the joint

model over images and decomposing an image sequence

into a set of pairs, one for every pair of images across the se-

quence. Pairwise representations of full distributions have

been popular in computer vision for learning distributions

of local features [19] and parts [10], and we migrate this

idea from the image space domain to the temporal domain.

Given this decomposition, a CNN is then trained on a fixed-

length input consisting of the image pair, together with the

relative pose between the associated viewpoints. To achieve

classification of the full sequence, an ensemble framework

is adopted, with weighting to increase the contribution of

those image pairs which cover a more informative set of

poses.

The problem then shifts to active recognition, with the

aim of determining along which trajectory the camera

should move, in order to achieve the best recognition ac-

curacy in a given number of images. This is often presented

as a Next-Best-View (NBV) prediction, where the mutual

information is determined between the class probability dis-

tribution and each potential next view. However, this typi-

cally requires learning a generative model of the object and

synthesising new views as an intermediate step. We propose

to learn NBV prediction with a more powerful discrimina-

tive model, training a second CNN to map directly from an

observed image to the rotation angle over which the camera

should subsequently move.

Finally, we extend our NBV prediction to a full

trajectory-optimisation framework, where we consider all

possible images that can acquired along a trajectory as con-

tributions, rather than simply following a sequence of NBV

images as is often employed. To achieve this, we train a

third CNN in a similar manner to the above NBV CNN, but

training for regression to a recognition confidence score for

all possible next viewpoints, rather then classification for

the overall best viewpoint. As the image sequence evolves,

all unvisited viewpoints accumulate scores based on the

newly-observed images, and the optimum trajectory is cho-

sen as the one which maximises the summation of these

scores.

1.2. Contributions

In this paper, we present three key technical contribu-

tions all based on powerful CNN learning:

1. Multi-view object recognition over arbitrary camera

trajectories by training only on image pairs,

2. Discriminatively-trained Next-Best-View prediction

directly from an input image to the next viewpoint,

3. Trajectory optimisation by considering the impact of

all observable images along the sequence.

All three contributions achieve state-of-the-art results in

their respective benchmarks on the ModelNet dataset [39].

2. Related Work

View-Based Multi-View Recognition In its simplest

form, the view-based approach aims to add viewpoint tol-

erance to a 2D image of an object, such as with viewpoint-

invariant local descriptors [27, 29] or deformation-tolerant

global descriptors [6]. Given training images across multi-

ple viewpoints, a more stable set of features can be found

by tracking those which are shared across multiple views

and clustering images accordingly [23], or by learning their

relative 2D displacements as the viewpoint changes, both

with hard constraints for rigid bodies [17, 18] and flexible

constraints for deformable bodies [11, 10]. To add further

fidelity to the true underlying object geometry, these 2D im-

age elements can also be embedded within an implicit 3D

model [36, 22, 28]. If multiple views are available at testing,

images can be combined and treated as a single, larger im-

age [31], an approach which can also be addressed in two

stages, by processing the individual images first to reduce

the search space [5].

Recently, CNN architectures have been extended to al-

low for recognition from image sequences using a single

network, by max pooling across all viewpoints [35], or by

unwrapping an object shape into a panorama and max pool-

ing across each row [33]. However, both these methods as-

sume that a fixed-length image sequence is provided during

both training and testing, and hence are unsuitable for gen-

eralised multi-view recognition.

Shape-Based Multi-View Recognition Rather than

modelling an object as a set of views with 2D features,

an explicit 3D shape can be learned from reconstruction

[37] or provided by CAD models [39], and subsequently

matched to from depth images [13], 3D reconstructions [1],

or partial reconstructions with shape completion [12, 39].

Shape descriptors include distributions of local surface

properties [14, 32], spherical harmonic functions over voxel

grids [24], and 3D local invariant features [25]. Recently,
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CNNs have been applied to 3D shapes by representing

them as 3D occupancy grids, and building generative [39]

or discriminative [26] networks.

As of now however, CNNs with 2D view-based methods

[35] have outperformed their counterpart 3D voxel-based

methods [39, 26], and we therefore adopt the 2D approach

in our work. However, it is not yet clear whether this greater

performance arises from the superior abundance of 2D im-

age data for pre-training deep networks, or the naturally

more efficient representation of 2D than 3D in standard

CNN architectures.

Active Recognition Methods for active recognition typi-

cally learn a generative model of the object, predict the ob-

ject appearance from unvisited viewpoints, and select views

based on a measure of entropy reduction. [38] modelled

objects as a 3D cloud of SIFT features, moving the camera

to the view which would reveal the greatest number of fea-

tures which have not yet been observed. A similar method

was proposed in [2] for guided mapping and robot naviga-

tion. The incorporation of active recognition into a Random

Forests framework was presented in [8], whereby each de-

cision tree encodes both object classification and viewpoint

selection. Recently, the ShapeNets framework of [39] pro-

posed to model objects as a voxel grid, and learn a gener-

ative model based on Convolutional Deep Belief Networks

to allow for view synthesis from unseen viewpoints.

However, these methods do not take into account the im-

ages acquired along a sequence towards the chosen next

view. In [20], this was incorporated during active object

reconstruction by visiting a sequence of actively-selected

views, but reconstructing the object based on the entire im-

age sequence that is observed between the views. For recog-

nition, Partially Observable Markov Decision Processes

(POMDPs) [9] have seen success in optimising a trajectory

for a particular task, although these require generative mod-

elling rather than direct discriminative learning as we pro-

pose in our method. Finally, recurrent CNNs have recently

been shown to be effective for active recognition from im-

age sequences [15], and we believe that this approach has

exciting future potential.

3. Multi-View Object Recognition

3.1. Dataset

We train and test our proposed methods on the Model-

Net dataset of 3D CAD meshes [39], which provides multi-

view training data of sufficient scale for training deep net-

works. As in [39, 35], we discretise viewpoints into distinct

steps, but whereas in these works rotations are constrained

to being around the gravity vector, we relax this and allow

rotations around the object’s full viewing sphere to enable

recognition from arbitrary camera trajectories. The camera

pose is defined in spherical coordinates {r, θ, φ}, where r is

fixed and θ and φ are divided into 30◦ steps, and the camera

is pointed towards the object’s centroid. Camera paths then

visit viewpoints along the viewing sphere with θ and φ ei-

ther decreasing or increasing by one step, or remaining the

same, between viewpoints. For every viewpoint, we render

a greyscale image of the object object as with [35], together

with a depth image for dual-modality imaging.

For comparisons with [39, 35], we also assume each

object to be aligned in its canonical orientation as defined

in the ModelNet dataset, although augmenting the training

data by rotating models as necessary would allow for relax-

ation of this prior assumption. As with these works, we also

assume the pose of the camera to be known with respect to

the object’s viewing sphere, whereas in practice this would

be achieved by visual tracking or reconstruction, or by use

of robot kinematics or other external sensors. Training and

testing models are provided as CAD meshes and free from

occlusion or clutter, although in practice a detection and

segmentation task would precede our pipeline.

3.2. Pairwise Learning

Our proposed multi-view object recognition method re-

quires computing the probability over class labels given a

sequence of M views. To allow for flexibility of camera

trajectories over all possible paths and lengths, we decom-

pose a sequence into a set of N = M(M−1)
2 view pairs,

denoted w1...wN . Here, every new view acquired along

a sequence forms a new view pair with all existing views

in the sequence, and the task then becomes to compute a

recognition score over all classes, f(y|w1...wN ).
The data for each view pair wi is composed of three ele-

ments: the image x1i from the first view, the image x2i from

the second view, and the relative camera pose ψi between

the two views, such that wi = {x1i , x
2
i , ψi}. For object

recognition from a view sequence, we classify each view

pair independently, and then weight the contribution from

each, discussed further in Section 3.3. In this way, each

view pair wi is processed with a weak classifier, with an as-

sociated weight λi, and a strong classifier then computes the

weighted average of these for a final distribution of scores

over class labels:

f(y|w1...wN ) =

i=N∑

i=1

λi p(y|wi) . (1)

To compute the class probability distribution p(y|wi) for

each view pair, we designed a CNN architecture, denoted

CNN-1 (see Figure 2), to predict an object class based on

the provided view pair. This architecture was inspired by

the Siamese CNN [4], which consists of two CNN’s run-

ning in parallel, each taking in one image from the pair,

and with weights shared across both networks. Whilst this
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architecture is typically used to enforce similarity or dis-

similarity between the outputs of the two networks, we use

it to reduce the number of parameters to be learned, rather

than concatenating the two images into a single input vector

and training a larger network. Not only does this allow for

efficient training, but also a fair comparison with the state-

of-the-art [35] because we are not adding additional capac-

ity to the network, as this has been shown to dramatically

improve classification performance [34].

For the convolutional layers of CNN-1, we follow [35]

and adopt the VGG-M network [3] with five convolutional

layers and three fully-connected layers. The final convolu-

tional layers from the two images are concatenated, together

with a vector using one-hot encoding to represent the rela-

tive camera pose between the two views. Depending on the

available imaging modality, the framework can be used with

greyscale or depth images, or both. When both are used, we

also concatenate the outputs of the convolutional layers for

both modalities. Finally, three fully-connected layers are

added after this concatenation, with classification loss com-

puted using softmax and cross-entropy.
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Figure 2: Our CNN-1 architecture for classification of a

view pair, for use with greyscale images, depth images, or

both.

3.3. Learning the weights

Together with the two images, CNN-1 receives the rela-

tive pose of the view pair, and we use this to condition the

classifier on how confident its output is likely to be. For

example, a pair of images captured from two viewpoints at

opposite ends of the viewing sphere may be more likely to

be classified correctly than images from two adjacent view-

points, because the former observes a greater coverage of

the object and hence reveals more informative data upon

which to make a classification decision.

We use cross entropy to measure the classification confi-

dence for each relative pose, which computes the similarity

between the ground truth distribution and the network’s out-

put distribution, a richer indicator than simply the classifica-

tion error. For each relative pose ψj in the discretised view-

ing sphere, the weight λj is learned by averaging the cross

entropy over all training image pairs whose viewpoints are

separated by ψj . Then, all viewpoints in the sequence are

weighted accordingly in Equation 1 to give greater impor-

tance to those view pairs which are likely to be classified

correctly. Although the output class distribution of each pair

already implicitly exhibits a measure of confidence based

on the entropy, this additional weighting acts as a regulari-

sation by injecting prior knowledge of how easily different

viewpoint pairings can be separated, independently of the

image content.

4. Active Object Recognition

4.1. NextBestView Prediction

Given one view of an object, predicting the next view to

move the camera to enables an active approach to recogni-

tion, by maximising the classification accuracy over a given

number of views. Previous works [39] typically address

this by building a generative model of the object, predict-

ing the observable image content from all other viewpoints,

and choosing the view which, if observed, would reduce the

class distribution entropy the most. We propose to solve this

in a discriminative end-to-end manner, by training a second

CNN, denoted CNN-2 (see Figure 3), which directly outputs

the best viewpoint to move to for any given input image. In

this way, NBV prediction is trained in a direct and discrimi-

native manner, with end-to-end learning which bypasses the

intermediate step of generative prediction.

As with CNN-1, this network is based on the VGG-M

network [3], with 5 convolutional and 3 fully-connected

layers. However, rather than outputting a distribution over

class labels as with CNN-1, the final layer consists of one

node for every relative pose along the viewing sphere. To

train CNN-2, every training image xk is paired with all

other images from that same object, and the view pair is

processed with CNN-1 to give a class distribution. Then,

the view pair is chosen which yields the highest output for

the ground truth class. The relative pose associated with this

view pair, together with image xk, then forms a training pair

for CNN-2. During testing, a single view is passed through

CNN-2, and the output node with the highest value deter-

mines the relative pose for the camera’s next movement. A

series of NBV movements can then be created by iterating

this procedure sequentially.

4.2. Trajectory Optimisation

Although this NBV prediction offers a simple solution to

active recognition, it does not consider the images that could
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Figure 3: Our CNN-2 architecture for classifying the next-

best-view given an input view, based on greyscale images,

depth images, or both. This is also our CNN-3 architecture,

where the output is a regression to predicted cross entropies

over all viewpoints.

be acquired whilst the camera is moving towards the next

view, and hence is not a globally-optimum solution. Rather

than traversing a sequence of NBVs, recognition efficiency

can be maximised by following a path which benefits from

the contribution of all observable images over the trajec-

tory. Our proposed heuristic is that the optimum trajectory

is one whose summation of predicted cross entropies, over

all view pairs in the sequence, is smaller than for all other

possible trajectories. In this way, we aim to contribute a

high classification confidence to Equation 1 for every view

pair, rather than only for the view pair formed from the first

and last image, as is the case with CNN-2.

This is achieved as follows. For the current trajectory, let

us denote the sequence of observed views as the set v ∈ V .

We then maintain a distribution g(u) over all unobserved

views u ∈ U on the viewing sphere, where gu indicates the

cost of visiting view u in the current trajectory. gu is defined

as the sum of predicted cross entropies based on CNN-1, for

all view pairs formed between u and the set V . As each new

view is observed and added to the sequence, g(u) is updated

to reflect the scores based on the newly formed view pairs.

The cost for each unobserved view is therefore:

gu =
∑

v∈V

h(u, v) . (2)

Here, h(u, v) is the predicted cross entropy for classifica-

tion of a view pair consisting of the unobserved view u,

and the observed view v. To compute this value, we train

a third CNN, denoted CNN-3 (see Figure 3), which is iden-

tical to CNN-2 except that it is trained for regression to a

cross entropy value, rather than being trained for classifi-

cation to the next-best-view. CNN-3 maps a single input

image to a distribution of predicted cross entropies over all

viewpoints on the viewing sphere. Training pairs for this are

generated by taking each training image, forming view pairs

with all other views of that same object, and then comput-

ing the classification cross entropy with CNN-1. CNN-3 is

then trained to minimise the L2 distance between the ground

truth cross entropies and the predicted cross entropies.

We now define U+ as the set of 8 viewpoints adjacent to

the camera’s current viewpoint (∆θ = −30◦, 0, or +30◦,

∆φ = −30◦, 0, or +30◦), representing all the positions

which the camera can move to in its next step. For each

viewpoint u ∈ U+, we compute the set of trajectories Tu
over which the camera could subsequently traverse, if it

were to make its next move to u. These are found by

a simple undirected graph search, for a given final trajec-

tory length. We then assign a score s(t) to each trajectory

t ∈ Tu, by summing up the scores in the trajectory’s set of

unobserved views Ut:

s(t) =
∑

u∈Ut

gu (3)

The optimum next view u∗ is then chosen as the one

whose best trajectory has the highest score over all of the

available next views:

u∗ = argmax
u∈U+

max
t∈Tu

s(t) . (4)

In this way, at every step along the trajectory, the best

decision is taken for the next view given the available in-

formation. As the camera follows this guided trajectory, the

scores assigned to these unobserved views will change, at-

tracting the camera towards those viewpoints which, if vis-

ited, are likely to yield a high classification confidence when

processed with CNN-1.

5. Experiments

We evaluated our method on the ModelNet dataset [39],

which consists of 3D CAD meshes from everyday objects

over a range of scales. For our experiments, two subsets

were used as in [39]: ModelNet10, containing 10 object cat-

egories with 4,905 unique objects, and ModelNet40, con-

taining 40 object categories and 12,311 unique objects, both

with a testing-training split. ModelNet is the only available

dataset at this time with sufficient large-scale multi-view

coverage of objects for training or testing our networks,

and hence as with [39, 35], real-world experiments were

not possible.

Training of the three networks was then carried out by

rendering images of each model from all viewpoints on

the discretised viewing sphere, and forming the full set of

image pairs. Rendering was performed under perspective

projection, with objects scaled uniformly to fit the view-

ing window, to yield images of 512-by-512 pixels for both

greyscale and depth images. For rendering the greyscale

images, Phong shading [30] was used, and pre-training con-

ducted with the ImageNet 1k dataset [7] as with [35]. Net-

works trained for the ModelNet10 dataset were pre-trained

on ModelNet40. During testing, unless otherwise specified,

every object was tested once per viewpoint, with the trajec-
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Pair
Weighted ? ModelNet10 ModelNet40

Selection

Best No 90.1 88.2

Best Yes 90.6 88.8

All No 91.2 89.0

All Yes 91.9 89.5

Table 1: Results for different implementations of our

method over a sequence length of 6 views, for multi-view

classification with Equation 1. The first column indicates

whether all the view pairs or just the best pairs (based on λ

weighting) were used for classification with CNN-1. The

second column indicates whether or not the weighting λ

was used, compared to an equal contribution from each

view pair.

tory commencing at that viewpoint, and then the classifica-

tion accuracy for that object was the average over all these

trajectories.

5.1. Pairwise Recognition

First, we explored four different implementations of our

multi-view recognition method, with both greyscale and

depth images as input. We evaluated the performance based

on two parameters: the weighting system used in Equation

1, and the way in which view pairs are formed in a view

sequence. Table 1 shows recognition results for random tra-

jectories of 6 views, with and without learned weights for

each view pair, such that without the weighting, all view

pairs contribute equally to the final class distribution. Then,

for selection of All pairs,
M(M−1)

2 pairs were chosen for

a sequence of length M , such that every possible pair was

used during recognition. For selection of Best pairs, the

top M pairs with the greatest weight λ were chosen, such

that the number of pairwise classifications was linear rather

than combinatorial with the sequence length. Results show

the positive effect of the weighting and the inclusion of all

pairs in the sequence, with the larger number of pairs of-

fering slightly more benefit than the inclusion of weighting.

For the remaining implementations of our method, weight-

ing was used together with the full set of view pairs.

5.2. MultiView Recognition

We then compared our method against two recent com-

peting methods: ShapeNets [39] and Multi-View CNN

(MVCNN) [35], together with a baseline which we call View

Voting. For ShapeNets, we used code provided by the au-

thors, and we implemented our own version of MVCNN

as per the publication details, achieving similar to their

quoted results. For the View Voting method, we trained

a CNN with 5 convolutional layers and 3 fully-connected

layers, similar to CNN-1, to classify views independently

based on the image alone. A voting system was then em-

ployed to combine the classification outputs of each view.

We explored three implementations of our method: using

only greyscale images, using only depth images, and then

using both image modalities. With the competing meth-

ods, ShapeNets was implemented with depth images and

MVCNN was implemented greyscale images, as per their

original descriptions, and View Voting was implemented

with greyscale images.

Table 2 shows recognition results for view sequences at

an elevation of 30◦ from the ground plane, constrained to

rotations about the gravity vector, as was the experimen-

tal setting in [39, 35]. Our method outperforms all other

methods, and the combination of both greyscale and depth

images achieves a small boost in performance over single

image modality. As was presented in [35], rendering 2D

images in a view-based manner achieves much better recog-

nition results than the generative volumetric approach of

ShapeNets. However, the capacity of ShapeNets for shape

completion provides a strength that view-based methods

cannot. The MVCNN method achieves the second-best re-

sults for sequences covering 360◦, but for shorter sequences

the performance degrades dramatically. This illustrates the

unsuitability of their method for arbitrary sequence lengths,

owing to testing and training requiring the same sequence

length. We note that our method achieves comparable per-

formance to MVCNN with only half the number of views.

In our implementation of MVCNN, we trained on the full

360◦ set of images regardless of the length of the testing se-

quence, although this could likely be improved by training

on varying sequence lengths. However, once the constraint

of moving only about the gravity vector is removed, this

would become intractable.

Table 3 then shows recognition results for arbitrary view

sequences, where we exclude MVCNN due to its inabil-

ity to generalise in this way. Our method here was pro-

vided with both greyscale and depth images. We implement

each method with two variations of how the next view along

the sequence is selected. Random chooses the next view

randomly from the adjacent views, and Straight follows a

straight path around the viewing sphere from the beginning

to the end of the sequence, similar to the results in 2 ex-

cept that the sequence direction is randomly selected rather

than being constrained around the gravity vector. Again, our

method achieves state-of-the-art recognition results, and we

note that results are slightly lower than those in Table 2 due

to the suitability of viewpoints at an elevation of 30◦ for

common household objects in their canonical orientation.

Choosing a straight path rather than a random path increases

recognition accuracy, due to the tendency of random walks

to revisit old viewpoints, or remain within a local region and

hence fail to explore the object sufficiently.
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ModelNet10 ModelNet40

3 views 6 views 12 views
Average

3 views 6 views 12 views
Average

Method Image (60◦) (180◦) (360◦) (60◦) (180◦) (360◦)

View Voting Greyscale 87.2 89.5 90.1 88.9 85.7 87.3 88.1 87.0

ShapeNets [39] Depth 79.2 82.5 83.1 81.6 72.0 75.7 77.4 75.0

MVCNN [35] Greyscale 84.5 89.8 92.2 88.8 82.3 88.1 89.5 86.6

Ours

Greyscale 88.5 91.4 92.8 90.9 86.2 88.8 90.7 88.6

Depth 85.2 87.6 90.0 87.6 83.0 87.0 89.9 86.6

Greyscale + Depth 88.8 91.9 93.2 91.3 87.0 89.5 91.1 89.2

Table 2: Recognition results over different sequence lengths, from trajectories constrained to rotations about the gravity

vector, at an elevation of 30◦. Numbers represent the percentage of correctly-classified objects from the test set.

ModelNet10 ModelNet40

Method View Selection 3 views 6 views 12 views Average 3 views 6 views 12 views Average

View Voting
Random 85.5 87.2 87.6 88.3 84.0 85.8 87.0 85.6

Straight 86.1 88.8 89.9 88.3 84.3 87.0 88.1 86.5

ShapeNets [39]
Random 76.0 81.6 82.2 79.9 70.0 74.4 77.2 73.9

Straight 77.0 81.9 82.2 80.4 70.2 74.5 77.2 74.0

Ours
Random 86.8 87.8 91.0 88.5 86.1 88.4 90.1 88.2

Straight 88.6 91.2 93.0 90.9 86.7 89.3 91.0 89.0

Table 3: Recognition results over different sequence lengths, from unconstrained trajectories. Numbers represent the per-

centage of correctly-classified objects from the test set.

5.3. Active Recognition

We then evaluated the performance of our NBV and tra-

jectory optimisation extensions to multi-view recognition,

and we compared against the NBV method of ShapeNets

[39]. Our method here was provided with both greyscale

and depth images. For both our method and ShapeNets,

we implemented two strategies for view selection. NBV

Global chooses the next-best-view from the entire viewing

sphere, and NBV Adjacent chooses the next-best-view from

the views adjacent to the current view. The Optimised im-

plementation of our method is that which incorporates all

images along the trajectory rather than just the start and end

positions, as in Section 4.2. For all implementations, if the

selected viewpoint was one which had already been visited,

then the highest-scoring of all the unvisited viewpoints was

selected. Table 4 shows that our method achieves the best

recognition performance, and whilst the global NBV im-

plementation sees best recognition accuracy, our Optimised

implementation, which would be used in reality due to its

greater practical efficiency, achieves a close second.

Figure 4 plots the recognition accuracy on Model-

Net40 against view sequence length for our method and

ShapeNets, with each under active and random trajecto-

ries and following adjacent viewpoints. Even without tra-

jectory optimisation, our method significantly outperforms

ShapeNets, and we see that our trajectory optimisation
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Figure 4: Recognition accuracy for different view sequence

lengths on ModelNet40.

maintains an advantage over random viewpoint selection,

for a range of sequence lengths. Finally, Figure 5 visualises

some image sequences which our method observes under

optimised trajectories. We note that the chosen trajectory

often passes over the top, or beneath, the object, showing

how the constraint of MVCNN to rotations around the grav-

ity vector is sub-optimal.

3819



Method View Selection ModelNet10 ModelNet40

3 views 6 views 12 views
Average

3 views 6 views 12 views
Average

(60◦) (180◦) (360◦) (60◦) (180◦) (360◦)

ShapeNets [39]
NBV Global 79.2 82.0 82.9 81.3 71.1 75.6 77.2 74.6

NBV Adjacent 78.7 81.0 82.4 80.7 70.7 74.2 77.2 74.0

Ours

NBV Global 90.4 92.8 94.0 92.4 88.5 91.5 92.0 90.7

NBV Adjacent 88.8 91.6 93.5 91.3 87.2 89.5 91.4 89.4

Optimised 88.9 91.9 93.9 91.6 87.4 90.1 91.8 89.8

Table 4: Recognition results over different sequence lengths, for unconstrained trajectories, using trajectory optimisation

methods. Numbers represent the percentage of correctly-classified objects from the test set.

Figure 5: Example greyscale images observed from our optimised trajectories with the ModelNet10 dataset.

6. Conclusions

In this paper, we have presented a new method for multi-

view object recognition over unconstrained camera trajecto-

ries, using greyscale images, depth images, or both modal-

ities combined. We have shown that decomposing an im-

age sequence into a set of view pairs enables training in a

tractable manner for any trajectory over the viewing sphere

of an object. Experiments show that our method outper-

forms the voxel-based generative ShapeNets method, to-

gether with the Multi-View CNN method, and we achieve

state-of-the-art recognition on the ModelNet dataset. We

have also shown how our pairwise method can extend to

next-best-view prediction by learning discriminatively in an

end-to-end manner, and this can then be incorporated into

a trajectory optimisation scheme to achieve the best camera

path for recognition over a given sequence length.
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