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Abstract

Spatial verification is a key step in boosting the perfor-

mance of object-based image retrieval. It serves to elimi-

nate unreliable correspondences between salient points in a

given pair of images, and is typically performed by analyz-

ing the consistency of spatial transformations between the

image regions involved in individual correspondences. In

this paper, we consider the pairwise geometric relations be-

tween correspondences and propose a strategy to incorpo-

rate these relations at significantly reduced computational

cost, which makes it suitable for large-scale object retrieval.

In addition, we combine the information on geometric rela-

tions from both the individual correspondences and pairs

of correspondences to further improve the verification ac-

curacy. Experimental results on three reference datasets

show that the proposed approach results in a substantial

performance improvement compared to the existing meth-

ods, without making concessions regarding computational

efficiency.

1. Introduction

In this paper we address the challenge of improving the

efficiency and reliability of image matching in an object-

based image retrieval scenario. Under object-based image

retrieval, further referred simply to as “object retrieval”,

we understand the problem of finding images that con-

tain the same object(s) or scene elements as in the query

image, however, possibly captured under different condi-

tions in terms of rotation, viewpoint, zoom level, occlu-

sion or blur. Many object retrieval approaches and meth-

ods [9, 22, 13, 1, 27] have been proposed in recent literature,

largely inspired by the pioneering work of Sivic and Zisser-

man [24] and built on the bag-of-features (BOF) principle

for image representation. An analysis of the state-of-the-art

reveals that these approaches and methods are typically cen-

tered around the idea of detecting and verifying correspon-

dences between salient points in a given pair of images. The

initial set of correspondences are detected based on matches

Figure 1: (a) Three correspondences found for two images,

(b) global rotation and scale relations between images en-

coded in the transformation of the matched salient points

from individual correspondences, (c) rotation and scale re-

lations between vectors formed by pairwise salient points

involved in the correspondences. Transformations in cases

(b) and (c) are closely related to each other and can be used

to emphasize each other for spatial verification.

between visual feature statistics measured in different im-

ages around found salient points. The correspondence ver-

ification step then serves to filter out unreliable correspon-

dences. This verification is typically a spatial (geometric)

one and involves geometric constraints to secure consis-

tency of transformation of different image points. Spatial

verification is the key to achieve high precision for object

retrieval, especially when searching in large, heterogeneous

image collections [24, 21].

A common way of verifying the initial correspondences

is to apply a geometric matching. Geometric matching

can be done either explicitly, by iteratively building an op-

timized transformation model and fitting it to the initial

correspondences (e.g., RANSAC-based model fitting ap-



proaches [21, 7]), or implicitly, e.g., by verifying the consis-

tency of the image points involved in the correspondences in

the Hough transform space [14, 2]. Compared to these ap-

proaches, pairwise relative geometric relations between the

correspondences have not been frequently exploited for spa-

tial verification. This may be due to the fact that the typical

number N of initially detected correspondences is usually

large, resulting in high computational complexity of pair-

wise comparisons, which can be modeled as O(N2). This

complexity makes exploitation of pairwise relations less at-

tractive when operating on large image collections. Ex-

ploiting these pairwise geometric relations could, however,

further improve the performance of image matching as it

brings valuable additional information about local object or

scene constraints of the correspondences into the matching

process. As illustrated in Figure 1, the geometric relations

in terms of rotation and scaling between vectors formed by

a pair of correspondences are closely related to the global

geometric relations between images that are encoded in the

transformation of the image regions surrounding the salient

points. Our goal in this paper is therefore twofold. First,

we aim at generating the conditions under which pairwise

geometric relations can be applied for spatial verification of

correspondences at a reasonable computational cost. Sec-

ond, we aim at maximizing the benefit of involving these

relations for improving the object retrieval performance.

We pursue the goal specified above by a novel pair-

wise geometric matching method that consists of three main

steps. We first propose a one-versus-one (‘1vs1’) matching

strategy for the initial correspondence set to handle the re-

dundancy of one-to-many correspondences, which is a typ-

ical result of detecting correspondences between two im-

ages [13] [2]. By removing this redundancy, a new, sig-

nificantly reduced correspondence set is generated. Then,

similarly to [17, 14], we reduce this set even further, by

deploying Hough voting in the scaling and rotation trans-

formation space. After these two steps, a large fraction of

original correspondences are filtered out, which enables us

to exploit pairwise geometric relations for spatial verifica-

tion at a significantly reduced computational cost. Finally, a

simple pairwise weighting method is devised to incorporate

both the global geometric relations derived from individual

correspondences and the local pairwise relations of pairs of

correspondences. As we will show by experimental results

in Section 6, our proposed method makes the spatial verifi-

cation of correspondences more tractable in case of a large

image collection, but also more reliable, which leads to an

overall significant improvement of the object retrieval per-

formance compared to state-of-the-art methods.

2. Related Work and Contribution

The existing work addressing the problem of verifying

the geometric consistency within a set of correspondences

can be grouped in two main categories. The first category

comprises the methods exploiting individual point corre-

spondences for spatial verification, while the methods from

the second category exploit multiple correspondences for

this purpose. We briefly analyze the representative methods

from these categories and position our contribution with re-

spect to them.

2.1. Exploiting individual correspondences

Model-based methods. For two images capturing the same

object, a limited number of correspondences can be de-

ployed to estimate the geometric model transforming the

points of one image into those of the other image [11]. Once

the model is obtained, each correspondence can be assessed

in how it fits this model. The key challenge here is how to do

model estimation in the presence of noisy correspondences.

One of the classical methods to pursue this challenge is

RANSAC [10]. Over the years, several attempts have been

made to improve its efficiency. For example, Chum et al. [7]

managed to significantly speed up the model estimation by

adding a generalized model optimization step when the new

maximum of inliers is reached. This results in less iter-

ations needed for model estimation to converge. Philbin

et al. [21] exploited local appearance of matched image

points to generate model hypotheses using a single corre-

spondence, which significantly reduces the amount of pos-

sible model hypotheses. Different from RANSAC-based

methods, Lowe [17] applied Hough transform to the geo-

metric transformation space to find groups of consistently

transformed correspondences prior to estimating the trans-

formation model. In contrast to these model-based methods,

which typically need complex iterative model optimization,

we are targeting a more lightweight, model-free method.

Model-free methods. As an alternative to the methods

discussed above, one can also implicitly verify the corre-

spondences with respect to their consistency in the Hough

transformation space. Avrithis and Tolias [2] exploited

the relative geometric relations, i.e., scaling, orientation

and location, between the local appearance of the matched

points. Each correspondence generates one vote in the 4-

dimensional transformation space and is then weighted by

pyramid matching to capture its consistency with other cor-

respondences. Jégou et al. [14] used the scaling and orienta-

tion relations between matched points to find the correspon-

dences that agree with the dominant transformation found

in the transformation space. Similarly, Zhang et al. [28] ex-

ploited the translation between matched points using Hough

voting in a 2-dimensional translation space. Shen et al. [23]

also exploited the translation using Hough voting. However,

instead of using only the original query object, they applied

several transformations with different rotations and scales to

the query object, and searched for the best possible transla-

tion of these transformed query objects against a collection



image. In this way, rotation and scaling invariance can be

added to the system. Our proposed method belongs to this

category of model-free approaches. However, in contrast to

most of the existing work in this direction, which focuses

on individual correspondences, we are considering the pair-

wise relations between correspondences as well.

2.2. Exploiting multiple correspondences

In contrast to rich previous work focusing on individual

correspondences, the information encoded in groups of cor-

respondences has remained less exploited for spatial verifi-

cation. Some related methods implicitly encode the spatial-

order information of the correspondences. Wu et al. [26]

bundled the local features according to their location and

captured the relative order consistency of the correspon-

dences along the X- and Y-coordinates in each image. As

this simple way of capturing order consistency cannot sup-

port complex geometric transformations, it is primarily suit-

able for problems of near-duplicate detection. Compared to

this, Cao et al. [4] encoded the spatial-order relation be-

tween local features by ordering them in a set of linear and

circular directions, so rotation can be handled as well. In-

stead of relying on the ordering of the correspondences, we

deploy a more subtle information for spatial verification,

namely the rotation and scaling relations between the vec-

tors formed by salient points involved in correspondences.

This is likely to make spatial verification more reliable.

We are not the first ones exploiting pairwise geomet-

ric relations between correspondences. Carneiro and Jep-

son [6] employed a pairwise semi-local spatial similarity

to capture the pairwise relations of correspondences and

grouped them using connected component analysis based

on the pairwise similarity matrix. This work was further

combined with a probabilistic verification method in [5]

to increase the proportion of correct matches in the corre-

spondence set. Likewise, by building a pairwise similar-

ity matrix of correspondences, Leordeanu and Hebert [16]

employed a spectral method to greedily recover inliers and

find the strongly connected cluster within the correspon-

dence set. These works are related to our approach as they

all exploit the pairwise relation between correspondences.

However, these methods were designed to exploit the pair-

wise relations directly from the initial correspondences. As

discussed earlier in this paper, the complexity of spatial

verification in this case becomes too high to be applica-

ble in the case of a large image collection. Compared to

these methods, our contribution is twofold. First, we sig-

nificantly reduce the number of correspondences and in this

way make the proposed spatial verification more tractable.

Second, our pairwise geometric matching method combines

both the global geometric relations derived from individual

correspondences and the local pairwise relations of pairs of

correspondences for improved object retrieval performance.

3. Correspondence problem formulation

We start out from a standard representation of an image

using local features. This representation typically involves

detection of salient points in the image and representation

of these points by suitable feature vectors describing lo-

cal image regions around these points. For instance, in the

SIFT [17] scheme, which is widely deployed for this pur-

pose, salient points are detected by a Difference of Gaus-

sians (DOG) function applied in the scale space. The points

are then represented by local feature vectors f = [x, θ, σ,q],
where x, θ and σ stand for the spatial location, dominant

orientation and scale of the represented region around the

point, respectively, and q is the feature description of the

region. Given the images F and F̃ , and their salient points

with indexes i and m and represented by feature vectors fi
and f̃m, respectively, we define the initial set C of corre-

spondences cim between them as

C = {(fi, f̃m,Wini(cim)|Φ(fi, f̃m) = 1} (1)

Here, Φ(.) ∈ {0, 1} is the binary matching function serv-

ing to judge whether two image points capture the same

object point in the physical world. For instance, in the

BOF scheme, this function is typically computed as Φ =
δ(u(qi) − u(q̃m)), where u(qi) is the quantized cluster

center of the description vector qi of local feature fi and

where δ(.) is the Kronecker delta. Furthermore, Wini(cim)
is the weight initially assigned to a correspondence cim and

representing the proximity between two points in the local

feature space. For instance, the weight can be computed in

terms of the statistical distinctiveness of the quantized vi-

sual feature center within the image collection, e.g., using

the inverse document frequency (idf ) scheme applied in the

BOF context [24]. As an alternative, this weight can also be

computed using Hamming distance employed in the Ham-

ming Embedding scheme [13, 14].

4. Pairwise Geometric Matching

In this section we describe the three steps of our pro-

posed pairwise geometric matching method: (a) applying

the ‘1vs1’ matching constraint, (b) Hough voting and (c)

integrating global and pairwise geometric relations.

4.1. 1vs1 matching

The initial correspondence set C usually contains a large

portion of outliers, or incorrect correspondences, and can

include multiple mappings for one single point, i.e., the

burstiness phenomenon observed in [13]. However, object

matching implies that one object point in one image can

only have one corresponding point in another image. There-

fore, the final verified correspondence set should only con-

tain unique correspondences between points.



Figure 2: Illustration of two different strategies for filtering

out multiple alternative correspondences. Case (a) shows

the original correspondences. The lower point in the query

image (left image) represents a point that matches two dif-

ferent points marked with red and blue in the right image.

Case (b) illustrates the strategy by Jegou et al. [13] that

focuses on the strongest correspondences. Case (c) is the

proposed ‘1vs1’ strategy that balances filtering out of the

correspondences with preserving as many informative cor-

respondences as possible.

To achieve this, one can formulate an assignment prob-

lem, where one can minimize the overall distance between

two point sets by using the Hungarian algorithm with the

computing time in O(N3) for set with N features [15]. As

finding optimal matches is time consuming, one can aim

at an approximate solution. For instance, Jégou et al. [13]

proposed to choose the strongest match per point first and

then discard all the other matches associated with matched

points. However, as can be seen from Figure 2 (case (b)),

this strategy may result in insufficient number of matches

for geometric check. In order to generate a more robust so-

lution, we devise the ‘1vs1’ matching strategy and apply it

to the initial correspondence set C.

As illustrated by the case (c) in Figure 2, in our approach

we focus on preserving as many correspondences as possi-

ble to maximally inform the assessment of the relation be-

tween two images. We first start from the point that orig-

inally has fewest matching correspondences assigned (i.e.,

potential unique matches), select the one with the highest

weight, and then discard other matches that contain points

belonging to this selected correspondence. We continue this

process until no more points need to be processed. In this

way, we generate a correspondence set C1vs1 that serves as

input for further steps.

4.2. Hough voting

We now depart from the set C1vs1 and follow the strat-

egy from [17, 14] to apply a Hough voting scheme in search

for dominant ranges of the target transformation parame-

ters, specifically for the rotation and scaling, in the transfor-

mation space. Then, we further reduce the number of cor-

respondences by filtering out those that are not consistently

transformed within these ranges.

Each correspondence, cim, stands for a transformation

from point i in image F to point m in image F̃ . The rotation

and scaling relations for this correspondence are denoted,

respectively, by

θ = θm − θi, σ = σm/σi (2)

Each correspondence gives a vote in the 2-dimensional

rotation-scaling transformation. The dominant ranges of

these two transformation parameters, denoted as Bϑ and

Bς , emerge as the corresponding ranges of the largest bin

in the 2-dimensional voting histogram. The correspon-

dences with votes falling in this largest bin are considered

to most reliably reveal the transformation between two im-

ages. They form the set CR&S , which serves as input into

the last step of the proposed method.

4.3. Integrating global and pairwise geometric re­
lations

We start out from the correspondences included in the

set CR&S and assess the match between images F and F̃
based on pairwise geometric relations between the corre-

spondences. These pairwise geometric relations are derived

from the rotation and scaling relations between the corre-

sponding vectors connecting the correspondences in the two

images. Given the correspondences, cg and ch, which con-

nect point i in image F to point m in image F̃ , and point

j in image F to point n in image F̃ , respectively, we can

generate vector vij = xi − xj in image F and vector

ṽmn = xm − xn in image F̃ . The pairwise geometric

relations between the two vectors in terms of rotation and

scaling can then be defined as

θgh = arccos(
vij · ṽmn

||vij || · ||ṽmn||
) · sgn(vij × ṽmn)

σgh =
||ṽmn||

||vij ||

(3)

where θgh and σgh are the counterclockwise rotating angle

and the scaling factor from vij to ṽmn, respectively.

Each correspondence cg is then weighted by its pair-

wise rotation and scaling consistence with other correspon-

dences:

WPG(cg) =
∑

ch∈CR&S ,h 6=g

f(θgh, σgh) (4)

where

f(θgh, σgh) =

{

1, if θgh ∈ Bϑ, σgh ∈ Bς

0, otherwise
(5)

We note that the weights computed using Eq.4 combine

together the information on geometric relations obtained



from individual correspondences, as imposed by the rota-

tion and scale range limits Bϑ and Bς in Eq.5, and from the

pairs of correspondences, as indicated by vector relations

in Eq.3. The final matching score between two images is

obtained as the sum of the weights WPG(cg) of all corre-

spondences from the set CR&S :

S(F, F̃ ) =
∑

cg∈CR&S

WPG(cg) (6)

5. Experimental Setup

5.1. Object Retrieval Framework

We evaluate our proposed pairwise geometric matching

method in an object retrieval context. For this purpose, we

implemented an object retrieval system based on the classi-

cal bag-of-feature-based scheme [24] and considering re-

cent advances in realizing this scheme [14, 13, 22]. To

make the system scalable to large image collections, we

implemented it using a Map-Reduce-based structure on a

Hadoop-based distributed server1.

Local descriptors and visual words: we use Hessian-

affine detector [18] to detect salient points and compute

SURF descriptors [3] for these points. As described in [2,

1], the bag-of-feature-based system performs differently de-

pending on whether the visual words vocabulary is trained

on an image set with or without test data, i.e., whether the

vocabulary is specific or generic. To mimic the situation in a

real retrieval system, we use a separate set of 50k randomly

selected images from Flickr to learn the generic vocabulary

set with exact k-means and use it in all experiments.

Weighting the initial correspondences and calculating

initial ranking score: As indicated in Section 3, the ini-

tial set of correspondences can be weighted using different

methods. We deploy two common weighting schemes:

(1) BOF: We use the square of the inverse document fre-

quency (idf ) of the visual word associated with a correspon-

dence as the matching weight. The initial ranking score for

the retrieved images is obtained as the sum of the weights

of all correspondences, divided by the L2 norm of the bag-

of-feature vector.

(2) HE: We employ the Hamming Embedding (HE)-based

method proposed in [13] to weight the matched features

based on the Hamming distance between their signatures.

When calculating the initial ranking score, the burst weight-

ing scheme developed in [13] is employed to handle the

burstiness phenomenon in the initial ranking phase.

Multiple assignment (MA): To take into account the quan-

tization noise introduced by a bag-of-feature image repre-

sentation, we adopted the method from [13] to assign a de-

scriptor to multiple visual words and applied it on the query

side only to reduce the computational cost.

1This work was carried out on the Dutch national e-infrastructure with

the support of SURF Foundation.

5.2. Experimental protocol

We assess the proposed method through a comparative

experimental analysis and by following similar protocol

and criteria as in [2]. We use the precision-recall curve

to evaluate the pairwise image matching performance and

use mean average precision (mAP) to evaluate the improve-

ment in object retrieval using the proposed spatial verifica-

tion method. In the experiments, we use three variants of

our implemented object retrieval system based on the two

weighting schemes introduced in Section 5.1: (1) BOF,

with a generic vocabulary of 100K, as also deployed in [2],

(2) HE, with a generic vocabulary of 20K and with 64-bit

Hamming signature and (3) HE+MA, which is equivalent to

HE combined with multiple assignment. This is the same

setting as in [13]. We further denote our proposed pair-

wise geometric matching method as (PGM) and its three

steps described in sections 4.1, 4.2 and 4.3 as 1vs1, HV

and PG, respectively. We refer to the three system real-

izations incorporating PGM as BOF+PGM, HE+PGM and

HE+MA+PGM.

We compare these system realizations with state-of-the-

art methods both integrally and by adding individual steps

one by one in order to assess the contribution of each step to

the overall object retrieval performance. We use three state-

of-the-art methods as baselines that we refer to as HPM [2],

SM [16] and FSM [21]. With respect to HPM, we do the

comparison directly by integrating the binary code of [2]

into our system. As this binary code does not support Ham-

ming embedding, we only integrate it into the BOF set-

ting, which is referred to as BOF+HPM. Regarding SM and

FSM, as there were no original implementations available

for them, the comparison is only indirect, using the experi-

mental results reported in [2] that were obtained on the same

datasets as in this paper.

5.3. Datasets

We conduct the experiments on three publicly available

datasets commonly used in the related work, namely Ox-

ford [21], Holidays [12] and Barcelona [25]. To mimic

the large-scale image retrieval scenario, we follow the same

strategy used in [13, 2] to add distractors to dataset images.

We crawled 10 million geo-tagged photos from Flickr for

this purpose. These distractors are distributed all around

the world, except for Oxford and Barcelona regions.

6. Experiments

6.1. Impact of the parameters

We start our series of experiments by evaluating the im-

pact of two main parameters, namely the bin sizes of ro-

tation and scale used in Hough voting, on the system per-

formance. These parameters control the trade-off between



filtering out the mismatches and remaining tolerant to non-

rigid object deformations. We evaluate these parameters in

the object retrieval scenario using the HE+MA system im-

plementation. Based on the results in Table 1, we choose the

bin size of 30 degrees for rotation and 0.2 for logarithmic

scale as best performing across the two datasets and adopt

these parameter values for all subsequent experiments.

Table 1: mAP comparison of PGM on Oxford and Holidays

datasets with different bin sizes for rotation and scale.

Oxford Holidays

0.1 0.2 0.3 0.1 0.2 0.3

15 0.725 0.734 0.730 0.882 0.893 0.888

30 0.735 0.737 0.731 0.883 0.892 0.890

45 0.728 0.732 0.724 0.886 0.888 0.882

6.2. Pairwise image matching

To assess the PGM method, we follow the same ex-

perimental procedure as in [2], which enumerates all pairs

of images in the Barcelona dataset and classifies each im-

age pair to be relevant or irrelevant based on whether its

matching score is higher than a threshold. There are in

total 927 images in the Barcelona dataset, which form

927×927 = 859329 image pairs, and among which 74, 075
image pairs are relevant according to the ground truth. Fig-

ure 3 shows the precision-recall curves computed for vari-

ous realizations of our system. Regarding the state-of-the-

art, we compare our method directly with HPM and indi-

rectly with SM based on the results reported in [2] and us-

ing similar basic system configuration. For recall of 0.9,

BOF+PGM achieves the precision of 0.68, which is better

than 0.42 achieved by BOF+HPM or 0.2 achieved by SM.

We note that according to Figure 3, our method can achieve

even better performance (precision of 0.83 at recall 0.9) if

the best performing system variant is deployed.

6.3. Spatial verification for object retrieval

We now evaluate the proposed method in the object re-

trieval context. For each query image, top-1000 ranked im-

ages are selected to perform spatial verification. Since the

rank order of these images is adjusted based on verifica-

tion, we refer to this set of top-1000 images as the reranking

range. We first evaluate PGM against the original datasets

without distractors. According to Table 2, PGM clearly out-

performs the baselines. Figure 4 shows examples of ranked

images obtained using PGM and HPM.

Figure 5 illustrates the system performance with differ-

ent sizes of image database. The binary code of HPM needs

to keep all the index information in the memory, which in

the case of a database of 10 million images, leads to mem-

Figure 3: Precision-recall curves over all pairs of images in

the Barcelona dataset.

Table 2: mAP comparison of different spatial verification

schemes. All results are generated under the same condi-

tions: reranking on top 1K ranked photos from BOF using

SURF feature and Single Assignment on 100K vocabulary.

FSM1 HPM1 HPM PGM

Oxford 0.503 0.522 0.525 0.609

Holidays - - 0.734 0.825

Barcelona 0.827 0.832 0.888 0.900

1 The results are from [2].

Figure 4: Exemplar ranking result for PGM and HPM.

ory consumption that is too large. For this reason, HPM is

not included at this scale. The curves in the figure indicate

the improvement of the performance after adding each of

the steps of our method to the basic BOF system configu-

ration. Step-for-step improvement is not clearly evident in

the case of the HE system configuration. This is because

in this configuration the ‘burstiness’ phenomenon is han-

dled in the initial retrieval phase using burst weighting [13].

Therefore, the 1vs1 and HV steps cannot bring much addi-

tional improvement. PG, on the other hand, becomes the

key step to improve over HE.

Regarding the comparison with the best performing

baseline, HPM, we observe that BOF+PGM (cf. +PG in

Figure 5) consistently outperforms HPM at each scale. Fur-



(a) BOF&Oxford (b) BOF&Holidays (c) BOF&Barcelona

(d) HE&Oxford (e) HE&Holidays (f) HE&Barcelona

Figure 5: mAP of BOF-based and HE-based systems against different sizes of image database with fixed reranking range.

thermore, as a flat and much simplified version of HPM,

BOF+1vs1+HV (cf. +HV in Figure 5) can still achieve

comparable performance. This is mainly because, in con-

trast to detecting conflicts at the visual word level in HPM,

the proposed 1vs1 matching strategy operates at the point

level, which makes it more accurate.

In addition, we observe that the improvement of

BOF+PGM over HPM shrinks with the increasing scale of

image collection. Due to the increasing number of distrac-

tor images in this case, the number of true-matching photos

included in the (in this case fixed) reranking range is likely

to decrease. However, within this range, it becomes increas-

ingly easy to separate true matches from the false ones using

spatial verification, with the consequence that all verifica-

tion methods start performing similarly. As illustrated in

Figure 6, the improvement achieved by PGM becomes sig-

nificant again when we increase the reranking range with

increasing image collection scale.

In the next experiment, we compare our best perform-

ing system variant, HE+MA+PGM with other state-of-the-

art image retrieval systems in a similar setting: construct-

ing the system on generic vocabulary, employing multi-

ple assignment, using any form of spatial verification, and

without query expansion. As summarized in Table 3, our

system achieves state-of-the-art performance for image re-

trieval. The high performance achieved by [20, 19] on the

Oxford dataset is mainly due to use of superior features,

which can efficiently represent unrotated photos. This gain

is, however, at the cost of worse performance for rotated

photos, e.g., on the Holiday dataset. We note that we did

not add query expansion [9, 8] and incremental spatial veri-

fication scheme [8] into our system, as they usually require

re-calculating the correspondences for the new expanded

query. We believe, however, that the proposed pairwise geo-

metric matching method is compatible with these schemes.

Table 3: mAP comparison of different image retrieval sys-

tem on generic vocabulary with spatial verification on top

200 (SP200) or top 1000 (SP1000) ranked photos.

SP Oxford Holidays

Jégou et al. [13] 200 0.685 0.848

Philbin et al. [22] 200 0.598 -

HE+MA+PGM 200 0.691 0.892

Perd’och et al. [20] 1000 0.725 0.769

Mikulı́k et al. [19] 1000 0.742 0.749

HE+MA+PGM 1000 0.737 0.892

6.4. Run time efficiency

In the last experiment, we evaluate the run time effi-

ciency of our system. To do this, we conduct spatial verifi-

cation against all database images. We first analyze the ef-



(a) BOF&Oxford (b) BOF&Holidays (c) BOF&Barcelona

Figure 6: mAP of BOF-based system against 1M image database with different reranking ranges.

(a) 1vs1 (b) HV (c) 1vs1 and HV

Figure 7: Distribution of the percentage of selected matches after 1vs1 and HV steps, taken individually and together.

Table 4: Computing time and mAP comparison of PGM and

HPM with spatial verification against all database images.

Oxford Holidays Barcelona

Time1 mAP Time1 mAP Time1 mAP

PGM 2.2 0.635 1.2 0.825 1.1 0.900

HPM 2.8 0.527 1.7 0.734 0.85 0.888

1 average matching time per pair of images in ms.

fect of the two filtering steps, 1vs1 amd HV, on reducing the

size of the correspondence set. As illustrated in Figure 7,

for about 60% of the image pairs, only 20% of matches re-

mained to be checked after these two filtering steps, which

dramatically reduces the influence of the pairwise operation

on the overall run time. To evaluate the overall run time ef-

ficiency, we implement a toy version of our system in Java

in a single-thread fashion to be comparable with the avail-

able binary code from HPM, and test it on a 2.3GHz 8-core

processor. As summarized in Table 4, PGM achieves com-

parable run time efficiency, while significantly improving

the performance. We also evaluate the query time of the

entire retrieval system with spatial verification on top-1000

ranked images in the BOF setting. PGM achieves 2.7s, 1.6s

and 0.7s for Oxford, Holidays and Barcelona datasets, re-

spectively. In contrast, HPM consumes 2.9s, 2.7s and 0.7s.

7. Discussion

The results presented in the previous section indicate

the suitability of the proposed pairwise geometric match-

ing method as a solution for large-scale object retrieval at

an acceptable computational cost. The superiority of PGM

compared to the state-of-the-art solutions becomes evident

in a context in which a high number of outliers in the initial

correspondences generated by BOF and errors in detected

features’ scale, rotation and position hinder the fit of a spe-

cific model (e.g., RANSAC). PGM encodes not only scale

and rotation information derived from the local points, but

also their locations. This is achieved by using global scale

and rotation relations to enforce the local consistency of ge-

ometric relations derived from the locations of pairwise cor-

respondences. By mapping locations of points to pairwise

rotation and scale, the approach is more tolerant to the de-

tection noise. At the same time, using a number of filtering

steps, PGM significantly reduces the number of correspon-

dences that must be considered, which makes it possible for

PGM to maintain high image matching reliability at a sub-

stantially reduced computational cost.
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