
Pairwise Interaction Tensor Factorization
for Personalized Tag Recommendation

Steffen Rendle
∗

Department of Reasoning for Intelligence
The Institute of Scientific and Industrial Research

Osaka University, Japan
rendle@ar.sanken.osaka-u.ac.jp

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL)

Institute for Computer Science
University of Hildesheim, Germany

schmidt-thieme@ismll.uni-hildesheim.de

ABSTRACT
Tagging plays an important role in many recent websites.
Recommender systems can help to suggest a user the tags
he might want to use for tagging a specific item. Factor-
ization models based on the Tucker Decomposition (TD)
model have been shown to provide high quality tag recom-
mendations outperforming other approaches like PageRank,
FolkRank, collaborative filtering, etc. The problem with TD
models is the cubic core tensor resulting in a cubic runtime
in the factorization dimension for prediction and learning.

In this paper, we present the factorization model PITF
(Pairwise Interaction Tensor Factorization) which is a spe-
cial case of the TD model with linear runtime both for learn-
ing and prediction. PITF explicitly models the pairwise
interactions between users, items and tags. The model is
learned with an adaption of the Bayesian personalized rank-
ing (BPR) criterion which originally has been introduced for
item recommendation. Empirically, we show on real world
datasets that this model outperforms TD largely in run-
time and even can achieve better prediction quality. Besides
our lab experiments, PITF has also won the ECML/PKDD
Discovery Challenge 2009 for graph-based tag recommenda-
tion.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Tag recommendation, Tensor factorization, Personalization,
Recommender systems

∗Steffen Rendle is currently on leave from the Machine
Learning Lab, University of Hildesheim, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

1. INTRODUCTION
Tagging is an important feature of the Web 2.0. It allows

the user to annotate items/ resources like songs, pictures,
bookmarks, etc. with keywords. Tagging helps the user to
organize his items and facilitate e.g. browsing and search-
ing. Tag recommenders assist the tagging process of a user
by suggesting him a set of tags that he is likely to use for an
item. Personalized tag recommenders take the user’s tagging
behaviour in the past into account when they recommend
tags. That means each user is recommended a personalized
list of tags – i.e. the suggested list of tags depends both
on the user and the item. Personalization makes sense as
people tend to use different tags for tagging the same item.
This can be seen in systems like Last.fm that have a non-
personalized tag recommender but still the people use dif-
ferent tags. In [18] an empirical example was shown where
recent personalized tag recommenders outperform even the
theoretical upper-bound for any non-personalized tag rec-
ommender.

This work builds on the recent personalized tag recom-
mender models using factorization models. These models
like Higher-Order-Singular-Value-Decomposition (HOSVD)
[22] and Ranking Tensor Factorization (RTF) [18] are based
on the Tucker Decomposition (TD) model. RTF has shown
to result in very good prediction quality. The drawback
of using full TD is that the model equation is cubic in
the factorization dimension. That makes TD models using
a high factorization dimension unfeasible for midsized and
large datasets. In this paper, we present a new factoriza-
tion model that explicitly models the pairwise interactions
between users, items and tags. The advantage of this model
is that the complexity of the model equation is linear in the
number of factorization dimensions which makes it feasible
for high dimensions. In statistics, another approach for ten-
sor factorization with a model equation of linear complexity
is the canonical decomposition (CD) [1] – aka parallel factor
analysis (PARAFAC) [2]. We will show that our model is a
special case of both CD and TD. Our experimental results
also indicate that our pairwise interaction model clearly out-
performs the CD model in prediction quality and slightly in
runtime. Furthermore for learning tag recommender mod-
els in general, we adapt the Bayessian Personalized Ranking
optimization criterion (BPR-Opt) [17] from item recom-
mendation to tag recommendation.

In all, our contributions are as follows:

1. We extend the Bayessian Personalized Ranking op-
timization criterion (BPR-Opt) [17] to the task of

81

Figure 1: The observed data in a tagging system forms a ternary relation S between users U , items I and
tags T . On the right side, the cube’s slices per user are placed next to each other. Note that only positive
observations are made; there are no explicit observations of negative tagging events.

tag recommendation and provide a learning algorithm
based on stochastic gradient descent with bootstrap
sampling. This optimization criterion and learning
algorithm is generic and not limited to factorization
models like TD.

2. We provide the factorization model PITF with a linear
prediction/ reconstruction runtime. We show the re-
lationship to the general Tucker Decomposition (TD)
model and the canonical decomposition (CD; aka PA-
RAFAC).

3. Our experiments indicate that our method BPR-PITF
outperfoms the best quality method RTF-TD largely
in runtime as the runtime drops from O(k3) to O(k) —
where k is the factorization dimension. Moreover, the
quality of BPR-PITF is comparable to RTF-TD on the
Bibsonomy dataset and even outperforms RTF-TD on
the larger Last.fm dataset.

2. RELATED WORK

2.1 Personalized Tag Recommender
Personalized tag recommendation is a recent topic in rec-

ommender systems. FolkRank, an adaption of PageRank,
was introduced by Hotho et al. [5]. FolkRank generates high
quality recommendations [8] outperforming several baselines
like most-popular models and collaborative filtering [7]. Re-
cently, factorization models based on Tucker Decomposition
(TD) have been introduced to tag recommendation. In [22]
a Higher-Order-Singular-Value-Decomposition (HOSVD) is
used – which corresponds to a TD model optimized for
square-loss where all not observed values are learned as 0s.
In [18] a better learning approach for TD models has been
introduced, that optimizes the model parameters for the
ranking statistic AUC (area under the ROC-curve). The
optimization of this model is related to our proposed BPR
optimization for tag recommendation because both optimize
over pairs of ranking constraints. But in contrast to the
AUC optimization in [18], we optimize for pair classifica-
tion. A discussion of the relationship of AUC optimization
and the BPR pair classification can be found in [17] which
is also the basis of the BPR framework that we adapt for
tag recommendation.

2.2 Non-personalized Tag Recommender
There is also much work (e.g. [3, 21]) on non-personalized

tag recommenders – i.e. for a certain item they recommend
all users the same tags. As discussed in the introduction,
we think that personalization is important as users tend to
use different tags even when they get the same suggestions.
Besides this in [18] it was empirically shown for our sce-
narios that methods like Folkrank and RTF outperform the
theoretical upper bound for any non-personalized tag rec-
ommender.

2.3 Tensor Factorization Models
Factorization models for tensors are studied in several

fields for many years. A general model is the Tucker de-
composition [23] on which the tag recommenders in [22, 18]
are based. A special case of Tucker decomposition is the
canonical decomposition (CD) [1] also known as the parallel
factor analysis (PARAFAC) [2]. We discuss both TD and
CD/PARAFAC in section 5 and show the relation to our fac-
torization model. A popular approach for learning TD mod-
els is HOSVD [12]. In [18] it has been shown that for tag rec-
ommendation HOSVD results in low prediction quality and
that other optimization criteria achieve better recommenda-
tions. For the related task of item recommendation, there is
a detailed comparison in [17] comparing BPR-optimization
to regularized sparse least-square matrix factorization like
in [6, 16]

2.4 Pairwise Interaction Model
We have introduced our method for task 2 of the ECML/

PKDD Discovery Challenge [19] where it scored first place
outperforming all other approaches in prediction quality. An
overview of our approach for the challenge has been pre-
sented in the workshop proceedings [19]. This paper dif-
fers from [19] by providing a more detailed and general
overview: (1) We show the relations to other approaches
like the TD based approaches RTF and HOSVD as well as
the CD model. (2) We empirically compare our approach
to state-of-the-art methods on other tag recommendation
datasets. (3) This paper also introduces the related CD
model to tag recommendation and shows its prediction qual-
ity.

82

Figure 2: From the observed data S, pairwise preferences DS of tags can be inferred per post (user/ item
combination). On the bottom there are examples for four posts: (u1, i1) (blue), (u1, i3) (red), (u3, i3) (yellow)
and (u3, i4) (green). E.g. for post (u1, i3), the following positive constraints can be inferred: t1 >u1,i3 t2,
t1 >u1,i3 t3, t1 >u1,i3 t5, t4 >u1,i3 t2, t4 >u1,i3 t3, t4 >u1,i3 t5. For posts without any observed tag (like (u1, i1)), no
constraints can be inferred.

3. PERSONALIZED TAG RECOMMENDA-
TION

Personalized tag recommendation is the task of recom-
mending a list of tags to a user for annotating (e.g. de-
scribing) an item. An example is a music website where a
listener (user) wants to tag a song (item) and the system
recommends him a list of keywords that the listener might
want to use for this song. For inferring the recommendation
list, a personalized tag recommender can use the historical
data of the system, i.e. the tagging behaviour of the past.
E.g. the recommender can make use of the tags that this
user has given to other (similar) items in the past – or more
general of similar tags that similar users haven given to sim-
ilar items.

3.1 Formalization
For the formalization of personalized tag recommendation,

we use the notation of [18]: U is the set of all users, I the
set of all items and T the set of all tags. The historical
tagging information is given by S ⊆ U × I × T . As this
is a ternary relation over categorical variables, it can be
seen as a three-dimensional tensor (see figure 1) where the
triples in S are the positive observations in the past. For
tag recommendation, we are interested in recommending for
a given user-item pair (u, i) a list of tags. Following [7], we
call such a combination (u, i) a post and we define the set of
all observed posts PS:

PS := {(u, i)|∃t ∈ T : (u, i, t) ∈ S}
PS can be seen as a two-dimensional projection of S on the
user/item dimension using the OR operation.

Recommendation of tags for a given post (u, i) can be
formulated as a ranking problem and thus as predicting a

total order >u,i⊂ T ×T over tags. That means each ranking
>u,i has to satisfy:

∀t1, t2 ∈ T : t1 �= t2 ⇒ t1 >u,i t2 ∨ t2 >u,i t1 (1)

∀t1, t2 ∈ T : t1 >u,i t2 ∧ t2 >u,i t1 ⇒ t1 = t2 (2)

∀t1, t2, t3 ∈ T : t1 >u,i t2 ∧ t2 >u,i t3 ⇒ t1 >u,i t3 (3)

where (1) is totality, (2) is antisymmetry and (3) is tran-
sitivity. All of the models presented in this paper predict
a scoring function Ŷ : U × I × T → R which can be used
to derive an order that trivially satisfies antisymmetry and
transitivity. If the scoring function gives an identical score
for two different tags and the same user-item combination,
we place randomly one of the tags before the other – this
ensures totality.

Often the number of predicted tags should be restricted.
We therefore also define the list of the Top-N tags as:

Top(u, i, N) :=
N

argmax
t∈T

ŷu,i,t (4)

with N being the number of tags in the target list.

3.2 Data Analysis
The main problem in data mining/ machine learning from

data of a tagging system is that there are only observations
S of positive tagging events (see figure 1). That means the
system observes what tags a user likes to give for an item but
not which tags he does not like to give. For applying machine
learning (e.g. optimizing a objective criterion) usually also
examples of such negative events are necessary. A common
approach [22, 6, 16] is to place all triples that are not in S
– i.e. (U × I × T) \S – in the negative class. This approach
has several drawbacks which is discussed in detail in [18] for
the task of tag recommendation.

83

Instead, we propose to infer pairwise ranking constraints
DS from S like in [18, 17]. The idea is that within a post
(u, i), one can assume that a tag tA is preferred over another
tag tB iff (u, i, tA) has been observed and (u, i, tB) has not
been observed. An example is given in figure 2. In total, the
training data DS for pairwise constraints is defined as:

DS := {(u, i, tA, tB) : (u, i, tA) ∈ S ∧ (u, i, tB) �∈ S}
The main advantage of our approach is, that the rankings
>·,· that should be predicted in the future are treated as
missing values (see the ‘?’s figure 2). Other approaches like
[22] learn that all these tags are not liked – i.e. they should
have the same preference score 0. A more detailed discussion
can be found in [17] for the related task of item recommen-
dation.

4. BAYESIAN PERSONALIZED RANKING
(BPR) FOR TAG RECOMMENDATION

In the following, we derive the optimization criterion BPR-
Opt and the learning algorithm LearnBPR for tag recom-
mendation that will later on be used to optimize the fac-
torization models. Please note that both the optimization
criterion and the learning algorithm are generic and are not
limited to factorization models. The analysis of this section
is closely related to the original derivation of BPR-Opt and
LearnBPR that we have introduced in [17] for the related
problem setting of item recommendation.

4.1 BPR Optimization Criterion
The problem of finding the best ranking >u,i⊂ T × T

for a given post (u, i) can be formalized as maximizing the
following probability:

p(Θ| >u,i) ∝ p(>u,i |Θ) p(Θ)

where Θ are the model parameters. Assuming independence
of posts, this leads to the maximum a posterior (MAP) es-
timator of the model parameters:

argmax
Θ

Y
(u,i)∈U×I

p(>u,i |Θ) p(Θ) (5)

Next, we will analyse p(>u,i |Θ) in detail and show how
it can be estimated from the observed data. First of all,
we assume pairwise independence of p(tA >u,i tB|Θ) and
p(tC >u,i tD|Θ) where tA �= tC and tB �= tD. And as
tA >u,i tB is a Bernoulli experiment, we can write:Y

(u,i)∈U×I

p(>u,i |Θ)

=
Y

(u,i,tA,tB)∈U×I×T2

p(tA >u,i tB|Θ)δ((u,i,tA,tB)∈DS)

· (1− p(tA >u,i tB |Θ))δ((u,i,tB,tA)∈DS)

with the indicator function δ:

δ(b) :=

(
1 if b is true,

0 else

As the target function has to be a total order, this can be
simplified to:Y

(u,i)∈U×I

p(>u,i |Θ) =
Y

(u,i,tA,tB)∈DS

p(tA >u,i tB |Θ) (6)

Next, we derive an estimator for p(tA >u,i tB |Θ) by plugging

in a model Ŷ : U × I × T 2 → R that relies on the model
parameters Θ:

p(tA >u,i tB|Θ) := σ(ŷu,i,tA,tB (Θ)) (7)

where σ is the logistic function σ(x) := 1
1+e−x . To shorten

notation, we will write ŷu,i,tA,tB for ŷu,i,tA,tB (Θ).1 In total,
we have:Y

(u,i)∈U×I

p(>u,i |Θ) =
Y

(u,i,tA,tB)∈DS

σ(ŷu,i,tA,tB) (8)

For the prior p(Θ), we assume that the model parame-
ters are drawn from a Normal distribution Θ ∼ N(0, σ2

ΘI)
centered at 0 and with σΘ being the model specific variance
vector.

Filling this into the MAP estimator (5), we get the opti-
mization criterion BPR-Opt for Bayesian Personalized Rank-
ing:

BPR-Opt := ln
Y

(u,i,tA,tB)∈DS

σ(ŷu,i,tA,tB) p(Θ)

=
X

(u,i,tA,tB)∈DS

ln σ(ŷu,i,tA,tB)− λΘ||Θ||2F

where λΘ is the regularization constant corresponding to σΘ.
A more detailed discussion of BPR for the related problem

of item recommendation can be found in [17]. There also the
relationship to AUC optimization (like in [18]) is shown.

4.2 BPR Learning Algorithm
Secondly, we derive a learning algorithm to optimize the

model parameters Θ of ŷu,i,tA,tB for BPR-Opt. In gen-
eral, optimizing BPR-Opt is very time consuming, as DS

is very large. The size of DS is in O(|S| |T |). E.g. for
the examples of our evaluation section this would be about
3, 299, 006, 344 quadruples for the ECML/PKDD Discovery
Challenge 09 and 449, 290, 590 quadruples for our Last.fm
subset. Thus computing the full gradients is very slow and
normal gradient descent is not feasible. Also stochastic gra-
dient descent where the quadruples are traversed in a sorted
way like per post or per user will be slow – an example
for this can be found in [17]. Instead, the BPR algorithm
draws quadruples randomly from DS. This is motivated by
the observation that many quadruples overlap in three di-
mensions – i.e. for a post (u, i) with the positive tags t1
and t2, DS includes the cases (u, i, t1, t3), . . . , (u, i, t1, t|T |)
and (u, i, t2, t3), . . . , (u, i, t2, t|T |). This means that drawing
a case randomly and performing stochastic gradient descent
on the drawn case will also help many other related cases.
In all, our generic learning algorithm LearnBPR for opti-
mizing BPR-Opt for tag recommendation is shown in figure
3. The gradient of BPR-Opt given a case (u, i, tA, tB) with
respect to a model parameter θ is:

∂

∂θ

`
ln σ(ŷu,i,tA,tB − λΘ||Θ||2F

´
∝ (1− σ(ŷu,i,tA,tB)) · ∂

∂θ
ŷu,i,tA,tB − λθθ

1Throughout this work, we use models where ŷu,i,tA,tB :=
ŷu,i,tA − ŷu,i,tB . But for BPR-Opt and LearnBPR this
limitation is not necessary and thus we discuss the more
general form of ŷu,i,tA,tB .

84

That means, to apply LearnBPR to a given model, only the
gradient ∂

∂θ
ŷu,i,tA,tB has to be computed. In the next sec-

tion, we derive our factorization models and also show their
gradients for optimization w.r.t. BPR-Opt with LearnBPR.

1: procedure LearnBPR(DS, Θ)
2: initialize Θ
3: repeat
4: draw (u, i, tA, tB) uniformly from DS

5: Θ← Θ + α ∂
∂Θ

`
lnσ(ŷu,i,tA,tB)− λΘ||Θ||2F

´
6: until convergence
7: return Θ̂
8: end procedure

Figure 3: Optimizing tag recommender models for
BPR with bootstrapping based stochastic gradient
descent. With learning rate α and regularization λΘ.

5. FACTORIZATION MODELS
Factorization models are a very successful model class for

recommender systems. E.g. many of the best performing
models [10, 11] on the Netflix Challenge2 for rating predic-
tion are based on matrix factorization. Also for the related
task of item prediction, factorization models are known [20,
6, 16, 17] to outperform models like k-nearest-neighbour col-
laborative filtering or the Bayesian models URP [15] and
PLSA [4]. Also for tag recommendation recent results [18,
22] indicate that factorization models generate high qual-
ity predictions outperforming other approaches like Folkrank
and adapted Pagerank [7]. In contrast to factorization mod-
els in two dimensions (matrix factorization), in tag recom-
mendation there are many possibilities for factorizing the
data. To the best of our knowledge, in tag recommenda-
tion only models based on Tucker decomposition have been
analyzed yet [18, 22].

In the following, we describe three factorization models for
tag recommendation: Tucker decomposition (TD), Canoni-
cal decomposition (DC) and our pairwise interaction tensor
factorization model (PITF) (see figure 4). We will show for
each model how it can be learned with BPR and the rela-
tionships to the other models.

All of our factorization models predict a scoring function
Ŷ : U×I×T → R which can be seen as a three-dimensional
tensor Y where the value of entry (u, i, t) is the score ŷu,i,t.
That means for ranking within a post, we sort the tags with
respect to ŷu,i,t. And thus for applying BPR optimization,
we set:

ŷu,i,tA,tB := ŷu,i,tA − ŷu,i,tB

5.1 Tucker Decomposition (TD) model
Tucker Decomposition [23] factorizes a higher-order cube

into a core tensor and one factor matrix for each dimensions.

ŷTD
u,i,t :=

X
ũ

X
ĩ

X
t̃

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i · t̂t,t̃ (9)

or equivalently as tensor product (see figure 4):

Ŷ TD := Ĉ ×u Û ×i Î ×t T̂ (10)

2http://www.netflixprize.com/

with model parameters:

Ĉ ∈ R
ku×ki×kt , Û ∈ R

|U|×ku

Î ∈ R
|I|×ki , T̂ ∈ R

|T |×kt

For learning such a TD model with BPR-Opt, the gradi-

ents ∂Ŷ TD

∂Θ̂
are:

∂ŷTD
u,i,t

∂ĉũ,̃i,t̃

= ûu,ũ · îi,̃i · t̂t,t̃

∂ŷTD
u,i,t

∂ûu,ũ
=

X
ĩ

X
t̃

ĉũ,̃i,t̃ · îi,̃i · t̂t,t̃

∂ŷTD
u,i,t

∂îi,̃i
=

X
ũ

X
t̃

ĉũ,̃i,t̃ · ûu,ũ · t̂t,t̃

∂ŷTD
u,i,t

∂t̂t,t̃

=
X

ũ

X
ĩ

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i

An obvious drawback of TD is that the model equation is a
nested sum of degree 3 – i.e. it is cubic in k := min(ku, ki, kt)
and so the runtime complexity for predicting one triple (u, i, t)
is O(k3). Thus learning a TD model is slow even for a small
to mid-sized number of factorization dimensions.

5.2 Canonical Decomposition (CD) model
The CD model (Canonical Decomposition) is a special

case of the general Tucker Decomposition model.

ŷCD
u,i,t :=

kX
f

ûu,f · îi,f · t̂t,f (11)

It can be derived from the Tucker Decomposition model by
setting Ĉ to the diagonal tensor:

ĉũ,̃i,t̃ =

(
1, if ũ = ĩ = t̃

0, else

Obviously, only the first k := min{ku, ki, kt} features are
used — i.e. if the dimensionality of the feature matrices
differ, some features are not used, as the core will be 0 for
these entries.

The gradients for this model are:

∂ŷCD
u,i,t

∂ûu,f
= îi,f · t̂t,f

∂ŷCD
u,i,t

∂îi,f
= ûu,f · t̂t,f

∂ŷCD
u,i,t

∂t̂t,f

= ûu,f · îi,f

Obviously, the CD model has a much better runtime com-
plexity as the model equation contains no nested sums and
thus is in O(k).

5.3 Pairwise Interaction Tensor Factorization
(PITF) model

Our approach explicitly models the two-way interactions
between users, tags and items by factorizing each of the three
relationships:

ŷu,i,t =
X

f

ûT
u,f · t̂U

t,f +
X

f

îTi,f · t̂I
t,f +

X
f

ûI
u,f · îUi,f (12)

85

Figure 4: Tensor Factorization models: Ĉ, Û , Î and T̂ are the model parameters (one tensor, three matrices).

In Tucker Decomposition the core Ĉ is variable and the factorization dimensions can differ. For Canonical
Decomposition and Pairwise Interactions the core is a fixed diagonal tensor. In Pairwise Interaction parts of
the feature matrices are fixed which corresponds modelling pairwise interactions.

The user-item interaction vanishes for predicting rankings
and for BPR optimization. The reason is that given a post
(u, i), both the optimization criterion BPR and the ranking
ignores any score on the user-item interaction. This results
in our final model equation that we will refer to as the PITF
(Pairwise Interaction Tensor Factorization) model:

ŷu,i,t =
X

f

ûu,f · t̂U
t,f +

X
f

îi,f · t̂I
t,f (13)

with model parameters:

Û ∈ R
|U|×k, Î ∈ R

|I|×k,

T̂ U ∈ R
|T |×k, T̂ I ∈ R

|T |×k

Again, the runtime for predicting a triple (u, i, t) is in O(k).
PITF is a special case of the CD model with dimension-

ality 2 · k where:

ûCD
u,f =

(
ûu,f , if f ≤ k

1, else

îCD
i,f =

(
1, if f ≤ k

îi,f−k, else

t̂CD
u,f =

(
t̂U
t,f , if f ≤ k

t̂I
t,f−k, else

The gradients for the PITF model are:

∂ŷu,i,t

∂ûu,f
= t̂U

t,f ,
∂ŷu,i,t

∂îi,f
= t̂I

t,f ,

∂ŷu,i,t

∂t̂U
t,f

= ûu,f ,
∂ŷu,i,t

∂t̂I
t,f

= îu,f

The complete BPR learning algorithm for PITF can be found
in figure 5.

5.4 Relation between TD, CD and PITF
We have shown the relationships of our proposed PITF

model to both the CD and TD model class. Obviously, the
expressiveness of the model classes is:

MTD ⊃MCD ⊃MPITF

At first glance, one might think that reducing the expres-
siveness leads to worse prediction quality — i.e. that quality
is traded in for e.g. runtime. But actually, our evaluation

1: procedure LearnBPR-PITF(PS, Û , Î, T̂ U , T̂ I)

2: draw Û , Î, T̂ U , T̂ I from N(μ, σ2)
3: repeat
4: draw (u, i, tA, tB) uniformly from DS

5: ŷu,i,tA,tB ← ŷu,i,tA − ŷu,i,tB

6: δ ← (1− σ(ŷu,i,tA,tB))
7: for f ∈ 1, . . . , k do
8: ûu,f ← ûu,f + α

`
δ · (t̂U

tA,f − t̂U
tB,f)− λ · ûu,f

´
9: îi,f ← îi,f + α

“
δ · (t̂I

tA,f − t̂I
tB,f)− λ · îi,f

”
10: t̂U

tA,f ← t̂U
tA,f + α

`
δ · ûu,f − λ · t̂U

tA,f

´
11: t̂U

tB,f ← t̂U
tB,f + α

`−δ · ûu,f − λ · t̂U
tB,f

´
12: t̂I

tA,f ← t̂I
tA,f + α

“
δ · îi,f − λ · t̂I

tA,f

”
13: t̂I

tB,f ← t̂I
tB,f + α

“
−δ · îi,f − λ · t̂I

tB ,f

”
14: end for
15: until convergence

16: return Û , Î , T̂ U , T̂ I

17: end procedure

Figure 5: Optimizing the PITF model with
LearnBPR.

shows that this is not always the case. The reason is that
our PI approach explicitly models a structure that might
be hard to find for the TD and CD approach. Especially,
regularization approaches like ridge regression which usually
assume that the model parameters are normally distributed
with mean zero Θ ∼ N(0, σ2

Θ I) might fail to learn the struc-
ture modeled explicitly. Thus, if a model structure is known
a priori, it might be better to model it explicitly than trying
to learn it.

6. EVALUATION
In our evaluation, we investigate the learning runtime

and prediction quality of our proposed PITF model. For
the runtime, we want to justify the results of the theo-
retical complexity analysis (TD is in O(k3), CD/PITF in
O(k)) by an empirical comparison of the TD model to the
CD/PARAFAC model and our PITF model. With respect
to prediction quality, we investigate empirically whether the
speedup of CD/ PITF is paid with quality – i.e. if there is
a trade-off between quality and runtime between the model
classes.

86

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Last.fm: Prediction quality vs. learning runtime

Learning runtime in days

T
op

3
F

−
M

ea
su

re

BPR−PITF 64
BPR−CD 64
RTF−TD 64

0 20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Last.fm: Prediction quality vs. learning runtime

Learning runtime in minutes

T
op

3
F

−
M

ea
su

re

BPR−PITF 64
BPR−CD 64
RTF−TD 64

Figure 6: F-Measure on top-3 list after training a model for x days/ hours. Learning a high quality TD
model (RTF-TD [18]) on a larger dataset like Last.fm takes several days. The PITF and CD models give
good prediction quality already after 20 and 40 minutes respectively.

6.1 Datasets
We use three datasets for evaluation: Bibsonomy and

Last.fm like in [7, 18] and the dataset from the ECML/
PKDD Discovery Challenge 20093. All datasets are p-cores4

– for BibSonomy the 5-core, for Last.fm the 10-core and for
the ECML/PKDD Challenge the provided 2-core. The char-
acteristics of the datasets can be found in table 1.

6.2 Evaluation Methodology
For Bibsonomy and Last.fm we use the same protocol as

described in [8, 18] – i.e. per user one post is randomly
removed from the training set Strain and put into the test
set Stest. We use the exactly same splits as in [18]. For
the ECML Challenge dataset we randomly remove overall
1, 185 posts, and put them into the test set – the reason
is that this dataset contains many users that only have 2
posts. Furthermore on ECML, we only removed such posts
that the training data remains a 2-core.

After the splits have been built, the recommenders are
trained on the test set and then the prediction quality on
the test set is measured. We use the common evaluation
scheme of F-measure in TopN-lists.

Prec(Stest, N) := avg
(u,i)∈PStest

|Top(u, i, N) ∩ {t|(u, i, t) ∈ Stest}|
N

Rec(Stest, N) := avg
(u,i)∈PStest

|Top(u, i, N) ∩ {t|(u, i, t) ∈ Stest}|
|{t|(u, i, t) ∈ Stest}|

F1(Stest, N) :=
2 · Prec(Stest, N) · Rec(Stest, N)

Prec(Stest, N) + Rec(Stest, N)

The experiments are repeated 10 times by sampling new
training/ test sets. We report the average over all runs.
The reported f-measure is the f-measure over the average
recall and average precision.
3http://www.kde.cs.uni-kassel.de/ws/dc09
4The p-core of S is the largest subset of S with the property
that every user, every item and every tag has to occur in at
least p posts.

The hyperparameters of all models are searched on the
first training split. For the RTF-TD and HOSVD model
the hyperparameters are the same as in [18]. For PITF the
hyperparameters are λ = 5e−05 and α = 0.05. For CD they
are λ = 0 and α = 0.01. The parameters of both models
were initialized with N(0, 0.01).

The runtime measurements of RTF-TD, BPR-PITF and
BPR-CD were made with C++ implementations. The ex-
periments were run on a compute cluster with 200 cores
in total. Each compute node has identical hard- and soft-
ware. Our C++ implementations use no parallelization nei-
ther over compute nodes nor within nodes – i.e. per run
only one core was used.

Furthermore, we compare to other recent tag recommender
methods: HOSVD[22], FolkRank and Adapted Pagerank [5]
as well as the upper bound for non-personalized tag recom-
menders [18].

6.3 Results

Learning runtime.
The comparison of the convergence of BPR-PITF to BPR-

CD and RTF-TD on the Last.fm dataset can be found in fig-
ure 6. Here you can see how the prediction quality improves
after training a model (k=64) for a given time span. The
left chart shows the quality over a span of 30 days. RTF-TD
needs about 12 days to achieve a prediction quality as good
as BPR-CD. Even after 30 days of training, the quality of
RTF-TD is still worse than BPR-PITF.

In contrast to this, BPR-PITF and BPR-CD converge
much faster. The right chart shows the quality over the first
two hours. BPR-PITF and BPR-CD achieve convergence
already after 20 and 40 minutes respectively. As each iter-
ation of RTF-TD takes more than 50 minutes, the progress
is very slow. When comparing BPR-PITF and BPR-CD
among each other, one can see, that BPR-PITF converges
faster. It is interesting to see that in the beginning BPR-
CD seems to need several updates (18 minutes) before the

87

dataset Users |U | Items |I | Tags |T | Triples |S| Posts |PS |
BibSonomy 116 361 412 10,148 2,522
Last.fm 2,917 1,853 2,045 219,702 75,565
ECML/PKDD Discovery Challenge 09 1,185 22,389 13,276 248,494 63,628

Table 1: Dataset characteristics in terms of number of users, items, tags, tagging triples S and posts.

quality improves reasonably. One explanation could be that
BPR-CD is searching the structure among the three-way in-
teractions whereas in BPR-PITF this is already given by the
two pairwise interactions.

The worse empirical runtime results of RTF-TD in com-
parison to BPR-CD and BPR-PITF match to the theoreti-
cal runtime complexity analysis of the model equations (see
section 5). Furthermore, learning for both BPR-CD and
BPR-PITF can be easily parallelized because quadruples of
two draws usually share no parameters – in contrast to this,
all entries in RTF-TD share the core tensor which makes it
more difficult to parallelize RTF-TD.

Prediction quality.
Secondly, we compare the prediction quality of BPR-PITF

to competing models. In figure 8, a comparison to BPR-CD,
RTF-TD, Folkrank, Pagerank and HOSVD on Bibsonomy
and Last.fm is shown. In general, the factorization models
result in the best prediction quality – only on the very small
Bibsonomy dataset Folkrank is competitive.

When comparing the two factorization models with linear
runtime in k – i.e. CD and PITF – one can see that BPR-
PITF achieves on all datasets a higher prediction quality
than BPR-CD. At first, this might be surprising because
CD is more general and includes PITF. It seems that BPR-
CD is unable to find the pairwise structure of PITF and to
do regularization at the same time. An indication for this
is that for CD the ‘best’ regularization parameter found by
grid search is λ = 0.

Next, we compare the prediction quality of the pairwise
interaction model to full Tucker decomposition. On the
small Bibsonomy dataset, on small TopN-lists (1,2,3) RTF-
TD outperforms BPR-PITF whereas on larger lists, the dif-
ference vanishes. In contrast to this on the larger Last.fm
dataset BPR-PITF outperforms RTF-TD on all list sizes.
These results indicate that the learning speedup of BPR-
PITF models to RTF-TD does not come to the prize of lower
prediction quality. Rather, BPR-PITF can even outperform
RTF-TD in quality on larger datasets.

Finally, figure 9 shows the prediction quality of BPR-
PITF with an increasing number of factorization dimensions
from 8 to 256. As you can see, on all three datasets the
prediction quality does not benefit from more than 64 di-
mensions.

ECML / PKDD Discovery Challenge 09.
In addition to the lab experiments, our BPR-PITF model

took also part in task 2 of the ECML/PKDD Discovery
Challenge 09 and achieved the highest prediction quality.
Figure 7 shows the final results5 listing the first six ap-
proaches. This evaluation in a tag recommender challenge
organized by a third party shows that BPR-PITF is able to
create high quality predictions.

5http://www.kde.cs.uni-kassel.de/ws/dc09/results

Rank Method Top-5 F-Measure

1 BPR-PITF + adaptive list size 0.35594
- BPR-PITF (not submitted) 0.345
2 Relational Classification [14] 0.33185
3 Content-based [13] 0.32461
4 Content-based [25] 0.32230
5 Content-based [9] 0.32134
6 Personomy translation [24] 0.32124

.

Figure 7: Official results (top-6) from the ECML/
PKDD Discovery Challenge 2009.

Our approach at the ECML/PKDD Challenge had two
additions to the BPR-PITF presented in this paper: (1) In
the challenge, the recommender could benefit from suggest-
ing lists with less than 5 tags – thus we estimated how many
tags to recommend. Even without this enhancement for the
challenge, our approach would still have the best score with
0.345. (2) We ensembled many BPR-PITF models to reduce
variance in the ranking estimates. On our holdout test this
improved the result only a little bit [19].

7. CONCLUSION AND FUTURE WORK
In this work we have presented a new factorization model

for tag recommendation, that explicitly models the pairwise
interactions (PITF) between users, items and tags. We have
shown the relationships of our model to the Tucker decom-
position (TD) and the Canonical descomposition (CD/PA-
RAFAC). The advantage of our PITF model is the linear
runtime in the factorization dimension whereas TD is cubic.
Furthermore we have adapted the Bayesian Personalized
Ranking (BPR) framework including the BPR optimization
criterion and the BPR learning algorithm from the related
field of item recommendation to tag recommendation. This
BPR framework for tag recommendation is generic and not
limited to optimizing our proposed models. Finally, we have
empirically shown that our model PITF largely outperforms
RTF-TD in learning runtime and achieves better prediction
quality on datasets of large scale. The empirical comparison
was done on lab experiments and on the ‘ECML/ PKDD
Discovery Challenge 2009’, that PITF has won.

In future work, we want to investigate other regularization
approaches for TD and CD/PARAFAC models that might
be able to learn a ‘better’ model structure than our pairwise
interaction model.

Acknowledgments
We would like to thank Christoph Freudenthaler for fruitful
discussions and helpful comments on this work. Steffen Ren-
dle is supported by a research fellowship of the Japan Society
for the Promotion of Science (JSPS). This work is partially
co-funded through the European Commission FP7 project
MyMedia (www.mymediaproject.org) under the grant agree-
ment no. 215006.

88

2 4 6 8 10

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

BibSonomy

Top n

F
−

M
ea

su
re

BPR−PITF 128
BPR−CD 128
RTF−TD 128
FolkRank
PageRank
HOSVD

2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

Last.fm

Top n

F
−

M
ea

su
re

BPR−PITF 64
BPR−CD 64
RTF−TD 64
FolkRank
PageRank
HOSVD
npmax

2 4 6 8 10

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

ECML/PKDD Discovery Challenge

Top n

F
−

M
ea

su
re

BPR−PITF 256
BPR−CD 256

Figure 8: The tensor factorization models (RTF-
TD, BPR-CD, BPR-PITF) achieve the best pre-
diction quality outperforming other approaches like
FolkRank, PageRank and HOSVD. On the larger
datasets Last.fm and ECML/Discovery Challenge 09
the BPR-PITF model has the highest quality.

2 4 6 8 10

0.
30

0.
35

0.
40

0.
45

0.
50

BibSonomy

Top n

F
−

M
ea

su
re

BPR−PITF 256
BPR−PITF 128
BPR−PITF 64
BPR−PITF 32
BPR−PITF 16
BPR−PITF 8

2 4 6 8 10

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Last.fm

Top n

F
−

M
ea

su
re

BPR−PITF 256
BPR−PITF 128
BPR−PITF 64
BPR−PITF 32
BPR−PITF 16
BPR−PITF 8

2 4 6 8 10

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

ECML/PKDD Discovery Challenge

Top n

F
−

M
ea

su
re

BPR−PITF 256
BPR−PITF 128
BPR−PITF 64
BPR−PITF 32
BPR−PITF 16
BPR−PITF 8

Figure 9: Quality comparison of BPR-PITF with
an increasing number of factorization dimensions.
On Last.fm and the Challenge dataset, there is no
further improvement with more than 64 dimensions.

89

8. REFERENCES
[1] J. Carroll and J. Chang. Analysis of individual

differences in multidimensional scaling via an n-way
generalization of eckart-young decomposition.
Psychometrika, 35:283–319, 1970.

[2] R. A. Harshman. Foundations of the parafac
procedure: models and conditions for an ’exploratory’
multimodal factor analysis. UCLA Working Papers in
Phonetics, pages 1–84, 1970.

[3] P. Heymann, D. Ramage, and H. Garcia-Molina.
Social tag prediction. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 531–538. ACM, 2008.

[4] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[5] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and
ranking. In Y. Sure and J. Domingue, editors, The
Semantic Web: Research and Applications, volume
4011 of Lecture Notes in Computer Science, pages
411–426, Heidelberg, June 2006. Springer.

[6] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining (ICDM
2008), pages 263–272, 2008.

[7] R. Jaeschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Proceedings of
the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases
(PKDD), Warsaw, Poland, 2007.

[8] R. Jaeschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in social bookmarking systems.
AICOM, 2008.

[9] S. Ju and K.-B. Hwang. A weighting scheme for tag
recommendation in social bookmarking systems. In
Proceedings of the ECML-PKDD Discovery Challenge
Workshop, 2009.

[10] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434, New York, NY, USA, 2008. ACM.

[11] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 447–456, New York,
NY, USA, 2009. ACM.

[12] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl., 21(4):1253–1278, 2000.

[13] M. Lipczak, Y. Hu, Y. Kollet, and E. Milios. Tag
sources for recommendation in collaborative tagging
systems. In Proceedings of the ECML-PKDD
Discovery Challenge Workshop, 2009.

[14] L. B. Marinho, C. Preisach, and L. Schmidt-Thieme.
Relational classification for personalized tag
recommendation. In Proceedings of the ECML-PKDD
Discovery Challenge Workshop, 2009.

[15] B. Marlin. Modeling user rating profiles for
collaborative filtering. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16, Cambridge, MA, 2004. MIT
Press.

[16] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In IEEE International Conference on Data
Mining (ICDM 2008), pages 502–511, 2008.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
25th Conference on Uncertainty in Artificial
Intelligence (UAI 2009), 2009.

[18] S. Rendle, L. B. Marinho, A. Nanopoulos, and
L. Schmidt-Thieme. Learning optimal ranking with
tensor factorization for tag recommendation. In KDD
’09: Proceeding of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, New York, NY, USA, 2009. ACM.

[19] S. Rendle and L. Schmidt-Thieme. Factor models for
tag recommendation in bibsonomy. In Proceedings of
the ECML-PKDD Discovery Challenge Workshop,
2009.

[20] J. D. M. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
ICML ’05: Proceedings of the 22nd international
conference on Machine learning, pages 713–719, New
York, NY, USA, 2005. ACM.

[21] Y. Song, L. Zhang, and C. L. Giles. A sparse gaussian
processes classification framework for fast tag
suggestions. In CIKM ’08: Proceeding of the 17th
ACM conference on Information and knowledge
management, pages 93–102. ACM, 2008.

[22] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos.
Tag recommendations based on tensor dimensionality
reduction. In RecSys ’08: Proceedings of the 2008
ACM conference on Recommender systems, pages
43–50, New York, NY, USA, 2008. ACM.

[23] L. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279–311, 1966.

[24] R. Wetzker, A. Said1, and C. Zimmermann.
Understanding the user: Personomy translation for
tag recommendation. In Proceedings of the
ECML-PKDD Discovery Challenge Workshop, 2009.

[25] N. Zhang, Y. Zhang, and J. Tang. A tag
recommendation system based on contents. In
Proceedings of the ECML-PKDD Discovery Challenge
Workshop, 2009.

90

