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Abstract Suppose that individual payoffs depend on the network connecting them.
Consider the following simultaneous move game of network formation: players
announce independently the links they wish to form, and links are formed only under
mutual consent. We provide necessary and sufficient conditions on the network link
marginal payoffs such that the set of pairwise stable, pairwise-Nash and proper equi-
librium networks coincide, where pairwise stable networks are robust to one-link
deviations, while pairwise-Nash networks are robust to one-link creation but multi-
link severance. Under these conditions, proper equilibria in pure strategies are fully
characterized by one-link deviation checks.
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1 Introduction

When individual payoffs depend on an underlying network of bilateral links, self-
interested players may want to manipulate the network structure to their advantage.
A model of network formation needs to specify how players set up links with each
other, together with a network equilibrium concept compatible with this process. In
recent years, different network formation procedures and network stability concepts
have been proposed. This paper aims at building a bridge between these concepts. We
relate pairwise-stability, a prominent network equilibrium concept due to Jackson and
Wolinsky (1996), to proper equilibrium, a non-cooperative refinement due to Myerson
(1978).

By definition, pairwise stable networks are robust to one-link deviations. Such
deviations are either promoted by single players in isolation (in the case of link-
cutting), or at the coordinated initiative of pairs of players (in the case of link-creation).
Pairwise-stability is a weak equilibrium notion, often thought of as a necessary condi-
tion for network stability,1 and it is independent from any procedure of network forma-
tion. It was introduced initially to highlight the inherent tension between stability and
efficiency in a network context. Pairwise-stability is also extensively used for positive
purposes due to its computational (relative) simplicity, and to its ability to generate
sharp predictions in many contexts.2

Myerson (1991) proposes a normal form game of network formation. In this game,
players simultaneously announce all the links they wish to form. The resulting network
is formed by the mutually announced links. This game is simple and intuitive. But,
given that link creation requires the mutual consent of the two involved parties, a coor-
dination problem arises. As such, the game displays a multiplicity of Nash equilibria,
and very different network geometries can arise.3

To be precise, the coordination problem in the Myerson game is a consequence
of the multidimensional strategy space (players can announce any combination of
links they wish), combined with the requirement of mutual consent. If players are
allowed to coordinate bilaterally, instead, no mutually beneficial link is left aside. We
call pairwise-Nash networks the Nash equilibrium outcomes that fulfill this added
(coalitional move) requirement.4

1 Most likely, any equilibrium notion should, at least, check for one-link deviations.
2 See Jackson (2004) for an exhaustive survey on these issues.
3 For undirected networks, where link creation requires mutual consent, the empty network is always
a Nash equilibrium outcome (when nobody announces any link). Instead, for directed networks, where
arrow-pointing links need not be reciprocated, a standard Nash equilibrium analysis can narrow down
reasonably the geometry of endogenous networks. Bala and Goyal (2000), for instance, offer an analysis of
Nash directed networks for the Myerson game where payoffs correspond to (variations of) the connections’
model.
4 The set of pairwise-Nash networks is thus at the intersection of the set of Nash equilibrium outcomes
and the set of pairwise stable networks. See Goyal and Joshi (2006), Calvó-Armengol (2004) and Bloch
and Jackson (2006, 2007) for definitions and applications of pairwise-Nash networks. See also Dutta and
Mutuswami (1997) and Jackson and van den Nouweland (2005) for alternatives to pairwise stability and
Nash equilibrium that allow for coalitional moves. Dutta et al. (1998) contains an exhaustive analysis of
network formation in a cooperative set up.

123



Pairwise-stability and Nash equilibria in network formation 53

Our first result is that pairwise-stability and pairwise-Nash equilibrium are equiva-
lent when a simple condition on link marginal returns holds. This condition,
α-submodularity, involves comparing joint returns from a set of existing links with the
sum of the marginal returns from each of them. Pairwise-Nash networks are robust to
multi-link severance and single-link creation, a stronger requirement than the single-
link robustness check of pairwise stability. Under α-submodularity, robustness to uni-
lateral or multilateral link severance turn out to be equivalent, and the result follows.
We show that many existing models in the literature fulfill this condition, including
the connections model, the coauthor model, and models of information transmission
on the network.

Pairwise-Nash equilibrium lies at the crossroad of cooperative and non-cooperative
games. In particular, the process through which pairs of players coordinate their link
announcements is left unspecified. To avoid such ad hoc coalitional moves, we focus
on proper equilibrium, a Nash refinement due to Myerson (1978). In a proper equi-
librium, players best respond to perturbations of their opponents’ strategies, where
perturbations are ordered so that more costly mistakes are made with smaller proba-
bility.5

We provide conditions on link marginal payoffs such that pairwise-Nash equilibria
and proper equilibria coincide.

We first show that every pairwise-Nash network is also proper under two conditions.
The first one, weak link-responsiveness, states that the returns to any group of current
links are never zero. This is a mild requirement. Network payoffs with exogenous
parameters are generically weakly link-responsive. The second condition, β-strong
supermodularity, compares the joint returns from a set of new links to the sum of
the marginal returns from each of them. In fact, β-supermodularity is only required
for a particular set of links. We impose this condition for the links absent from the
network such that one player gains from adding this new link whereas the other loses.
This condition thus trivially holds in the complete network, where all possible links
are already formed, and in networks where neither player consents in creating an
absent link. More generally, this property holds for a variety of models, including the
connections model and the model of information transmission.6

We also show that every proper equilibrium network is a pairwise-Nash network
when payoffs are strongly link-responsive. Strong link-responsiveness differs from the
weak version outlined above. Given a network it requires that no player is indifferent
to a change in his set of direct links, whether due to formation, link removal, or a
combination of both. We impose this condition only on Nash equilibrium networks,
not on the set of all possible networks. We also provide an example with strongly
link-responsive payoffs for which a perfect equilibrium network is not pairwise-Nash,
thus the need to resort to properness.

The paper is organized as follows. Section 2 describes networks, payoffs and defines
α-submodularity and β-strong supermodularity. Section 3 introduces network forma-

5 Ordered mistakes differ by, at least, one order of magnitude. This hierarchy of mistakes distinguishes
properness from trembling-hand perfection.
6 In particular, this shows that α-convexty and β-strong supermodularity are perfectly compatible with one
another. Recall that α-submodularity refers to current links, while β-supermodularity refers to new links.
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tion games and stability concepts. Section 4 contains the main results, and Sect. 5
develops some examples. We discuss possible extensions in Sect. 6. The proofs of the
main results are gathered in Sect. 7. An Appendix gathers extra material.

2 Network payoffs

Networks Let N = {1, . . . , n} be the set of players who may be involved in a network.
A network7 g is a list of pairs of players who are linked to each other. We denote the
link between two players i and j by i j , so i j ∈ g indicates that i and j are linked in
the network. Let gN be the set of all subsets of N of size 2. The network gN is referred
to as the complete network. The set G = {

g ⊆ gN
}

denotes the set of all possible
networks on N . The set of i’s direct links in g is Li (g) = { jk ∈ g : j = i or k = i}
and Li (g

N \g) = {i j : j �= i and i j /∈ g} is the set of i’s direct links not in g. That is,
i j /∈ g is equivalent to i j ∈ Li (g

N \g).
Let g + i j denote the network obtained by adding the link i j to the network g and

g − i j denote the network obtained by deleting the link i j from the network g. More
generally, for every collection of links � ⊆ Li (g), g − � is the network obtained from
g by eliminating all the links in �, while for every collection of links � ⊆ Li (g

N \g),
g + � is the network obtained from g by adding all the links in �.

Network payoffs A network payoff function is a mapping u : G → R
N that assigns

to each network g a payoff ui (g) for each player i ∈ N .

Link marginal payoffs Let g ∈ G. For all i, j ∈ N such that i j ∈ g:

mui (g, i j) = ui (g) − ui (g − i j)

is the marginal payoff to i from the link i j in g. More generally, let � ⊆ Li (g). The
joint value to i of � is:

mui (g, �) = ui (g) − ui (g − �).

Consider now some link i j /∈ g. Then, mui (g + i j, i j) is the marginal payoff
accruing to i from the link i j being added to g. More generally, consider a collection
of i’s links absent from g, � ⊆ Li (g

N \g). The joint value to i of these new links is
mui (g + �, �) = ui (g + �) − ui (g).

α-submodularity in own current links

Definition 1 Let α ≥ 0. The network payoff function u is α-submodular in own
current links on A ⊆ G if and only if:

mui (g, �) ≥ α
∑

i j∈�

mui (g, i j), (1)

for all g ∈ A, i ∈ N and � ⊆ Li (g).

7 We adopt the network and link notation from Bloch and Jackson (2006).
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The condition for α-submodularity states that the joint returns from a group of links
already in the network is higher than the sum of the marginal returns of each single
link, scaled by α. The case α = 1 corresponds to submodularity.8

Note that α-submodularity is a property that applies to marginal returns from exis-
ting links only. The condition does not rule out that joint returns from groups of links
are less than the sum of marginal returns of single links, as long as the former is
non-negative. It is less restrictive than submodularity.

If the single marginal link payoffs from existing links on a network g are negative,
then it is possible to find an α > 0 that satisfies (1). The condition is restrictive when
the single link marginal payoffs are non-negative. In that case, α-submodularity boils
down to a condition on the sign of joint returns from groups of links.

Proposition 1 Suppose g is a network such that for all i j ∈ g, mui (g, i j) ≥ 0. The
network payoff function u is α-submodular in own current links on g if and only if for
all i ∈ N and all � ⊆ Li (g), mui (g, �) ≥ 0.9

β-strong supermodularity in own new links

Definition 2 Let u a network payoff function, g ∈ G a network, i ∈ N a player,
and � ⊆ Li (g

N \g) a collection of i’s direct links not in g. Let β > 0. Then, ui is
β-strongly supermodular in own new links on � at g if and only if � = ∅, or � �= ∅

and:

ui (g + � − �′) − ui (g) ≤ β
∑

i j∈�

mui (g + i j, i j), (2)

for all � ⊆ �, � �= ∅ and �′ ⊆ Li (g).10

Let first �′ = ∅. Then, the left-hand side of (2) is mui (g+�, �), that is, the returns to
player i in the network g of adding the links �. Condition (2) states that the joint value
from adding these links is lower than the sum of the marginal returns from adding
each single such link, scaled by β. The case β = 1 corresponds to supermodularity,
the dual of submodularity defined above.

Let now �′ �= ∅. Then, (2) compares the sum of single-link marginal values for
links not in the network yet to the joint returns of adding these links at once, while
simultaneously cutting any possible subset of i’s current links.

If the single marginal link payoffs from links in � are positive, then it is possible
to find a β > 0 that satisfies (2). The condition is restrictive when the single link
marginal payoffs from those links are negative. In that case β-supermodularity boils
down to a condition on the sign of joint returns from adding new links while cutting
existing links.

8 See, e.g., Bloch and Jackson (2006) for a similar definition. Actually, we borrow the notation for marginal
link payoffs from them. α-submodularity is closely related with payoff convexity defined in Gilles and
Sarangi (2005). Their condition follows directly from α-submodularity.
9 The result follows from the definition.
10 Note that ui (g + � − �′) − ui (g) = mui (g + �, �) − mui (g, �′).
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In (2) the comparison between payoffs is not quantitative, but only signwise.
β-supermodularity does not rule out that joint returns from groups of links are more
than the sum of marginal returns of single links, as long as the former has the same
sign as the latter. It is less restrictive than supermodularity.

3 Network equilibrium

In what follows, we first define pairwise-stability, due to Jackson and Wolinsky (1996),
and often interpreted as a necessary condition for network equilibrium.11 We then for-
mulate a simultaneous move game of network formation due to Myerson (1991). This
game is simple and intuitive, but generally displays a multiplicity of Nash equilibria.
As a partial remedy, we define pairwise-Nash equilibrium, a variation of Nash equili-
brium where players are allowed to deviate by pairs. Finally, we recall the definitions
of perfect equilibrium (Selten 1975) and proper equilibrium (Myerson 1978), two
Nash equilibrium refinements for normal form games.

Pairwise-stability Pairwise stable networks are robust to one-link deviations, where
link severance is unilateral, while link creation is bilateral and under mutual consent
of the two involved players.

Definition 3 A network g ∈ G is pairwise stable with respect to the network payoff
function u if and only if for all i, j ∈ N , if i j ∈ g then both mui (g, i j) ≥ 0 and
mu j (g, i j) ≥ 0, while if i j /∈ g then mui (g+ i j, i j) > 0 implies mu j (g+ i j, i j) < 0.

We denote by P S(u) the set of pairwise stable networks with respect to u.
We comment on the relationship between pairwise-stability and α-submodularity

in own current links.
Suppose, first, that u is α-submodular on P S(u). For any g ∈ P S(u), by pairwise-

stability, the right-hand side of (1) is non-negative for all i ∈ N and all � ⊆ Li (g).
Then for all i ∈ N and all � ⊆ Li (g), mui (g, �) ≥ 0. In words, when network payoffs
are α-submodular on P S(u), no player would be better off by cutting any subset of
her existing links simultaneously in a pairwise stable network.

Conversely, suppose that for all g ∈ P S(u), all i ∈ N and all � ⊆ Li (g),
mui (g, �) ≥ 0. Then, u is 0-submodular on P S(u).

On pairwise stable networks, α-submodularity in payoffs is thus equivalent to che-
cking that no player wants to cut multiple links.

A normal form game of network formation This game is due to Myerson (1991).12

The set of players is N . All players i ∈ N simultaneously announce the direct links
they wish to form.

Formally, Si = {0, 1}n−1 is i’s set of pure strategies. Let si = (si1, . . . si,i−1,

si,i+1, . . . sin) ∈ Si . Then, si j = 1 if and only if i chooses a direct link with j �= i

11 See also Jackson and Watts (2002) for a dynamic foundation of pairwise-stability.
12 To quote Myerson: “Now consider a link-formation process in which each player independently writes
down a list of players with whom he wants to form a link (…) and the payoff allocation is (…) for the graph
that contains a link for every pair of players who have named each other.” (p. 448)
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(and thus si j = 0, otherwise). We assume that mutual consent is needed to establish a
direct link, that is, i j is created if and only if si j s ji = 1.

Let S = S1 × · · · × Sn . A pure strategy profile s = (s1, . . . , sn) ∈ S induces an
undirected network g (s).

Pairwise-Nash equilibrium A pure strategy profile s∗ = (s∗
1 , . . . , s∗

n

)
is a Nash equi-

librium of the game of network formation if and only if ui (g (s∗)) ≥ ui
(
g
(
si , s∗−i

))

for all i ∈ N and all si ∈ Si . The predictive power of Nash equilibrium is weak for
the game of network formation. For instance, the empty network is always a Nash
equilibrium.13 Building upon pairwise-stability, we further require that any mutually
beneficial link be formed at equilibrium. Pairwise-Nash equilibrium networks are
robust to bilateral commonly agreed one-link creation, and to unilateral multi-link
severance.

Definition 4 A network g ∈ G is a pairwise-Nash equilibrium network with respect
to the network payoff function u if and only if there exists a pure Nash equilibrium
strategy profile s∗ that supports g, that is, g = g(s∗), and, for all i, j ∈ N , if i j /∈ g,
then mui (g + i j, i j) > 0 implies mu j (g + i j, i j) < 0.

In other words, g is a pairwise-Nash equilibrium network if it is both pairwise
stable and a pure strategy Nash equilibrium outcome. We denote by P N E(u) the set
of pairwise-Nash equilibrium networks with respect to u.

Mixed Strategies Let �i = �({0, 1}n−1) be i’s set of mixed strategies for the
Myerson game of network formation, where �({0, 1}n−1) denotes the set of probabi-
lity distributions over {0, 1}n−1. A product of n−1 independent Bernoulli distributions
is an example of a mixed strategy. More generally, a mixed strategy σi ∈ �i is a joint
(multivariate Bernoulli) distribution that allows for rich correlation patterns in indivi-
dual link announcements. In particular, given a mixed strategy σi , i announces a link
with j with the following marginal probability:14

µ
σi
i j = Pr σi {si j = 1} =

∑

{s∈{0,1}n−1;si j =1}
σi (s).

Let � = �1 × · · · × �n . A mixed strategy σ = (σ1, . . . , σn) ∈ � generates a
probability distribution over G, a random graph.15 Given σ ∈ � and g ∈ G, let pσ (g)

be the probability that the network g is formed when the mixed strategy profile σ is

13 When nobody announces any link.
14 Note that, for n ≥ 3, the collection of such marginal probabilities does not define univocally a mixed
strategy. Fréchet (1951) gives an early and thorough account of the relationship between joint distribu-
tions (here, mixed strategies on the collection of all link announcements) and marginals (here, single link
probabilities) when n = 3.
15 See Jackson and Rogers (2006) for a relation between random graphs and individual incentives.
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played. Then the expected utility of player i is:

Eui (σ ) =
∑

g∈G
ui (g).pσ (g).

Perfect equilibrium We now define perfect equilibrium, a Nash equilibrium refine-
ment. Let σ ∈ � be a mixed strategy profile. We say the σ is completely mixed if and
only if for all i ∈ N and all si ∈ Si , we have σi (si ) > 0.

Definition 5 Let ε > 0. A strategy profile σε is an ε-perfect equilibrium if it is a com-
pletely mixed strategy profile and, for all i ∈ N and all si , s′

i ∈ Si , if Eui (si , σ
ε−i ) >

Eui (s′
i , σ

ε−i ), then σε
i (s′

i ) < ε.

A strategy profile σ ∈ � is a perfect equilibrium if there exists a sequence of strictly
positive trembles {εt }t∈N with limit 0, and a sequence of εt -perfect equilibrium strategy
profiles {σεt }t∈N with limit σ .

In a perfect equilibrium, players best respond to their opponents’ ε-deviations from
the equilibrium strategies.

Proper equilibrium

Definition 6 A strategy profile σ ∈ � is a proper equilibrium if there exists a sequence
of strictly positive trembles {εt }t∈N with limit 0, and a sequence of εt -perfect equili-
brium strategy profiles {σεt }t∈N with limit σ , such that, for all i ∈ N , all si , s′

i ∈ Si ,
and all t ∈ N:

Eui (si , σ
εt−i ) > Eui (s

′
i , σ

εt−i ) implies that σ
εt
i (s′

i ) ≤ εt · σ
εt
i (si ). (3)

This refinement is due to Myerson (1978). In a proper equilibrium, players best
respond to perturbations of their opponents’ strategies, where costly mistakes are
made with smaller probability. This hierarchy of mistakes differentiates properness
from perfection. Myerson (1978) shows that every finite game in normal form has a
proper equilibrium. We denote by P RE(u) the set of proper equilibrium networks in
pure strategies with respect to u.16

4 The results

We first provide necessary and sufficient conditions on the payoff function u for the set
of pairwise stable networks and the set of pairwise-Nash equilibrium networks to coin-
cide. We latter identify conditions under which the set of pairwise-Nash equilibrium
networks and proper equilibrium networks coincide.

16 We want to establish necessary and sufficient conditions such that the set of pairwise stable, pairwise-
Nash and proper equilibrium networks coincide. Given that both pairwise-stability and pairwise-Nash
networks are only defined for pure strategies (that is, deterministic networks), we restrict attention to proper
equilibria in pure strategies, but then, existence is not warranted. See Jackson and Watts (2001) for a
perspective on the existence of pairwise stable networks.
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Pairwise stable and pairwise-Nash equilibrium networks

Theorem 1 P S(u) = P N E(u) if and only if u is α-submodular on P S(u), for some
α ≥ 0.

The proof derives from the simple observation that, when payoffs are α-submodular
on P S(u) for some α ≥ 0, if a player does not benefit from severing any single link,
then he does not benefit from cutting any group of links simultaneously. Robustness to
unilateral and robustness to multilateral link severance are equivalent when marginal
payoffs from existing links satisfy (1) on some particular set.

Note that α-submodularity for some α ≥ 0 on P S(u), implies α′-submodularity
for any α > α′ > 0. We can simply write,

Corollary 1 P S(u) = P N E(u) if and only if u is 0-submodular on P S(u).

Although Theorem 1 and Corollary 1 both characterize the equivalence between
P S(u) and P N E(u), it is often easier in practice to establish α-submodularity of a
given network payoff for some particular α > 0 than 0-submodularity. For instance, in
Sect. 5 we consider the connections model (Jackson and Wolinsky 1996) and a model
of information transmission (Calvó-Armengol 2004). In both cases gross network
benefits and link costs are additively separable, and marginal link costs are constant.
Then 1-submodularity of network payoffs is equivalent to 1-submodularity of gross
network benefits, which we establish in Claims 1 (connections) and 3 (information
transmission).

Pairwise-Nash and proper equilibrium networks We now define link-responsive net-
work payoffs functions. We first start with a weak notion of link-responsiveness.

Definition 7 (weak link-responsiveness) The network payoff function u is weakly
link-responsive on g if and only if for all i ∈ N and all � ⊆ Li (g) such that � �= ∅,
we have mui (g, �) �= 0.

Weak link-responsiveness states that no link removal is innocuous for the
players directly involved. Network payoff functions that depend on some exogenous
set of parameters (e.g., a constant marginal-link cost) are generically weakly link-
responsive.17

We now strengthen this notion.

Definition 8 (strong link-responsiveness) The network payoff function u is strongly
link-responsive on g if and only if for all i ∈ N , all � ⊆ Li (g) and all �′ ⊆ Li

(
gN \g)

such that g + �′ − � �= g, we have ui (g + �′ − �) − ui (g) �= 0.

The strong version of link-responsiveness requires that no player is indifferent
to a change in his set of direct links, whether due to formation, link removal, or a
combination of both.

We finally define the set of links absent from a given network g that generate a
conflict of interest for the involved parties.

17 This is the case, for instance, for the model of information transmission.
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Definition 9 For all network payoff functions u, network g ∈ G, and player i ∈ N ,
let:

νi (g, u) = {i j /∈ g : mui (g + i j, i j) < 0 and mu j (g + i j, i j) > 0
}
.

This is the set of i’s direct links not in g with negative marginal returns to i but
positive marginal returns to the candidate partner.

We are now ready to state the equivalence between pairwise-Nash and proper equi-
librium networks.

Theorem 2 Let u be a network payoff function.

(a) Let g ∈ P N E(u). If u is weakly link-responsive on g and β-strongly super-
modular for some β > 0 in own new links on νi (g, u), for all i ∈ N, then
g ∈ PRE(u).

(b) Let g ∈ PRE (u). If u is strongly link-responsive on g, then g ∈ PNE (u).

The proof of the theorem is given in the next section. It consists of two proposi-
tions. The first one shows that strong link-responsiveness is enough for any proper
equilibrium network to be also a pairwise-Nash equilibrium network. The proof is
by contradiction. Consider a proper equilibrium network that is not pairwise stable,
and a proper equilibrium strategy that supports it.18 Then, in this network, we can
find a mutually beneficial link that is not formed, and that is not announced by either
of the involved parties. We modify the proper equilibrium strategy by imposing that
these two involved players announce this mutually beneficial link. These are the only
link announcements that are modified. Consider a sequence of ε-proper equilibrium
strategy profiles that converge to the proper equilibrium strategy. Using the order of
magnitude of mistakes ranking in (8), we show that in this sequence of strategy profiles
the modified strategy asymptotically payoff dominates the initial one, a violation of
properness.

Strong link responsiveness is sufficient for a proper equilibrium network to be
pairwise-stable, but moreover it is necessary for the general result. In the appendix
we provide an example where strong link responsiveness is violated and a proper
equilibrium network fails to be pairwise-stable.

Imposing weak link-responsiveness, the second proposition shows that β-strong
supermodularity on νi (g, u) is sufficient to sustain pairwise-Nash equilibrium net-
works as a proper equilibrium outcome. Given g ∈ P N E(u), we establish the result
through a fixed-point argument on a suitably restricted strategy space.

β-strong supermodularity and weak link responsiveness are sufficient for a pairwise-
Nash network to be supported by a proper equilibrium. Moreover, β-strong supermo-
dularity is necessary for the general result. In the appendix we provide an example
where β-strong supermodularity is violated and a pairwise-Nash network can not be
supported by a proper equilibrium.

Suppose now that every missing link from some network g yields negative marginal
returns to both parties, that is, both mui (g + i j) < 0 and mu j (g + i j, i j), for all

18 Note that a proper equilibrium is a Nash equilibrium.
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i j /∈ g. For this network, νi (g, u) = ∅, for all i ∈ N . The β-strong supermodularity
requirement is then equivalent to requiring that no link cutting is beneficial, that is,
for all i ∈ N and all � ∈ Li (g), mui (g, �) < 0, a condition that is trivially fulfilled at
any Nash equilibrium. We can thus conclude the following.

Corollary 2 Consider some network payoff function u weakly link-responsive on some
g ∈ G such that both mui (g + i j, i j) < 0 and mu j (g + i j, i j) < 0, for all i j /∈ g.
Then, g ∈ P N E(u) implies that g ∈ P RE(u).

In the complete network, there is no room for extra links. Thus, a weakly link-
responsive network payoff function is also strongly link-responsive. Besides, β-strong
supermodularity is trivially satisfied in this case. Altogether, we obtain the following.

Corollary 3 Suppose network payoff function u is weakly link-responsive on the com-
plete network gN . Then gN is a pairwise-Nash equilibrium network if and only if it is
a proper equilibrium network.

5 Examples

In what follows, we first show with an example that perfect equilibrium outcomes need
not be pairwise-Nash, even when the conditions in Theorem 2 hold. This justifies the
need to resort to proper equilibrium, a refinement that differs from perfection by
imposing a hierarchy on trembles related to the relative cost values associated with
these mistakes.

Example (perfect equilibrium networks need not be pairwise-Nash) Let N = {1, 2, 3}
and consider the network payoffs defined below:

�−3 �−3

�
2

�
�
�

�
�

�

gV

�−2 �−2

�
1

�
�
�

gVI

�−2 �−2

�
1

�
�

�

gVII

�−1 �−1

�
2

�
�
�

�
�

�

gVIII

�0 �0

�
0

gI

�0 �−1

�
1

�
�

�

gII

�−1 �0

�
1

�
�
�

gIII

�1 �1

�
0

gIV

Denote by 1 the player at the top, and by 2 and 3 the players at the bottom, and
let S1 = {(s12, s13) ∈ {0, 1}2}, S2 = {(s21, s23) ∈ {0, 1}2} and S3 = {(s31, s32) ∈
{0, 1}2}.
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The only two Nash equilibrium networks are gI and gIV.19 Clearly, the network
payoff function u is strongly link-responsive: any unilateral link addition to gI and any
unilateral link addition/removal to gIV for any player in isolation has a strict impact on
payoffs. So, by Theorem 2, any proper equilibrium network is also a pairwise-Nash
equilibrium network. This inclusion is tight in the following sense: gI is a perfect
equilibrium network, whereas gIV is the only pairwise-Nash equilibrium network. The
inclusion in Theorem 2(a) thus applies to proper equilibrium networks, but not to
perfect equilibrium networks.

More precisely, gI is a perfect equilibrium network for the pure strategy s∗ =
((1, 1), (0, 0), (0, 0)) in which player 1 announces all the links, and players 2 and 3
do not announce any link. This strategy s∗ is the limit of the sequence of best-replying
trembles of the perturbed game, where:

σε
1 ((0, 0)) = σε

1 ((1, 0)) = σε
1 ((0, 1)) = ε, σ ε

1 ((1, 1)) = 1 − 3ε, (4)

σε
2 ((1, 0)) = σε

2 ((0, 1)) = σε
2 ((1, 1)) = ε, σ ε

2 ((0, 0)) = 1 − 3ε,

σ ε
3 ((1, 0)) = σε

3 ((0, 1)) = σε
3 ((1, 1)) = ε, σ ε

3 ((0, 0)) = 1 − 3ε.

The reasons why (4) is a sequence of best-replying trembles of the perturbed game
is the following.

First, for all (s1, s−1) ∈ S, u1 (g ((1, 1) , s−1)) ≥ u1 (g (s1, s−1)), the inequality
being strict for some (si , s−1).20

Second, for all s−2 ∈ S−2, we have u2 (g ((0, 0) , s−2)) ≥ u2 (g ((1, 0) , s−2)),21

and u2 (g ((0, 1) , s−2)) ≥ u2 (g ((1, 1) , s−2)),22 with a strict inequality for some
s−2 ∈ S−2. Similarly for player 3. We are thus left to show that there exists some
ε > 0 such that Eu2

(
(0, 0) , σ ε−2

)
> Eu2

(
(0, 1) , σ ε−2

)
for all 0 < ε < ε.

Note that, when link announcements are
(
(0, 0) , σ ε−2

)
, the only possible networks

that can be formed are gI and gII. Given that player 2 gets a payoff equal to zero in both
cases, Eu2

(
(0, 0) , σ ε−2

) = 0. Instead, when link announcements are
(
(0, 1) , σ ε−2

)
,

four different networks may form, namely, gI, gII, gIV and g VII. The network gIV is
formed with probability ε+2ε2, while the network g VII arises with probability ε−2ε2.
Therefore, Eu2

(
(0, 1) , σ ε−2

) = −ε + 6ε2 < 0 for all ε < 1/6.
Next, we apply our results to the connections model and the coauthor model, both

due to Jackson and Wolinsky (1996), and to a model of information transmission due
to Calvó-Armengol (2004).

19 gI is a Nash equilibrium network for the following Nash equilibrium pure strategy profiles s =
(s1, s2, s3) : ((0, 0), (0, 0), (0, 0)) , ((1, 1), (0, 0), (0, 0)) , ((1, 0), (0, 0), (0, 0)) , ((0, 1), (0, 0), (0, 0)).
gIV is a Nash equilibrium network for the following Nash equilibrium strategy profile: ((0, 0), (0, 1), (0, 1)).
20 Indeed, notice that u1 (gVIII) > max{u1 (gI) , u1 (gII) , u1 (gIII)}, and u1 (gV) > max{u1 (gIV) ,

u1 (gVI) , u1 (gVII)}.
21 Indeed, notice that u2 (gI) > u2 (gIII) , u2 (gII) > u2 (gVIII) , u2 (gIV) > u2 (gVI) and u2 (gVII) > u2 (gV).
22 Indeed, notice that u2 (gIV) > u2 (gVI) and u2 (gVII) > u2 (gV).
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Example (connections model) This model is due to Jackson and Wolinsky (1996).
Given some δ, c ∈ (0, 1), define:

ui (g) =
∑

j∈N

δdi j (g) − cni (g),

where ni (g) = |Li (g)| and di j (g) is the geodesic distance between i and j on g.23 We
have the following result.

Claim 1 The connections model is 1-submodular in own current links on G.

Invoking Theorem 1, we can thus conclude that the set of pairwise stable and
pairwise-Nash equilibrium networks coincide for the connections model.

Next, note that the connections model is generically weakly link-responsive. This
is because the set of cost values c for which some of the link marginal payoffs for
some player are zero is finite, and thus of Lebesgue measure zero on (0, 1).

Jackson and Wolinsky (1996) characterizes the cost ranges for which the star net-
work and the complete network are pairwise stable. Consider first the star network.
The star encompassing all players is pairwise stable if and only if δ − δ2 < c < δ.
Besides, on this cost range, the peripheral players in the star get a negative return
from any direct link with one another. Applying Corollary 2, we can thus conclude
that the stars encompassing n ≥ 4 players are proper equilibrium networks when
δ − δ2 < c < δ. Consider now the complete network. It is pairwise stable if and only
if c < δ − δ2. Invoking Corollary 3 we conclude that the complete network is a proper
equilibrium network on c < δ − δ2.

Example (coauthor model) This model is due to Jackson and Wolinsky (1996). Net-
work payoffs are given by:

ui (g) =
(

1 + 1

ni (g)

)∑

i j∈g

1

n j (g)
,

if |Li (g)| ≥ 1, and ui (g) = 0, otherwise.

Claim 2 The coauthor model is 1-submodular in own current links on PS (u).

By Theorem 1, the set of pairwise stable and pairwise-Nash equilibrium networks
thus coincide. By Corollary 3, the complete network, which is pairwise stable (and
pairwise-Nash), is also proper.

Instead, Theorem 2 cannot be used. Pairwise stable networks in the coauthor model
consist of a sequence of fully connected networks such that, if we order this sequence
by components’ sizes, the square of the size of any component is smaller than the next
size in this sequence.24 But coauthor payoffs decrease with the connectivity of one’s
contacts. Then, any player in a component gains by cutting any current links within his

23 That is, the length of the shortest path in g between i and j.
24 See Proposition 4 in Jackson and Wolinsky (1996).
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component, and rewiring with any player in a component of smaller size. Such links,
though, are not formed because it is not in the interest of the players in the components
of smaller size to consent to this rewiring process, implying that condition (2) does
not hold.

Example (information transmission) This model is due to Calvó-Armengol (2004).
Network payoffs are given by:

ui (g) = 1 −
∏

i j∈g

p ji − cni (g),

where p ji ∈ (0, 1), for all i, j ∈ N .

Claim 3 The information transmission model is 1-submodular in own current links
on G

By Theorem 1, the set of pairwise stable and pairwise-Nash equilibrium networks
thus coincide.

6 Discussion

The Myerson game of network formation is a very simple and intuitive normal form
game. It has been fruitfully used to analyze the formation of directed networks (Bala
and Goyal 2000). But a number of major coordination problems arise when dealing
with undirected networks. In the preceding literature, the formation of undirected
networks has been studied using cooperative concepts such as pairwise-stability or
pairwise-Nash equilibrium (Jackson 2004, Bloch and Jackson 2007).

We single out simple conditions on network payoffs such that pairwise stable net-
works do, in fact, coincide with a Nash equilibrium refinement for the Myerson game,
the proper equilibrium. Our results can thus be read as providing a non-cooperative
grounding to pairwise stability. Conversely, given the relative simplicity to find out
pairwise stable networks in some cases, our results also provide a means to single out
proper equilibrium networks of a normal form game with a multidimensional strategy
space.

Our analysis also connects the computational issues in networks and game theory.
Computing an agent’s best-response profile is NP-hard for Nash equilibrium in the
Myerson game, but polynomial-time solvable for pairwise stability. The same tradeoff
exists for verifying that a network is an equilibrium.25

Theorem 2 shows that looking for pure strategy proper equilibrium in the Myerson
game of network formation is equivalent to finding a pairwise-Nash network that
has β-strong supermodular payoffs. We do not provide a result on the computational
complexity of checking for β-strong supermodularity, but we show that it gives us
proper equilibrium networks. Yamamoto (1993) provides a finite-time algorithm to
find a proper equilibrium of a finite game. A relevant question is whether our results

25 We thank a referee for pointing this out.
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can help improve his algorithm so as to find a proper equilibrium of the Myerson game
in polynomial time.

To some extent, our analysis also sheds light on the extensive form approach to net-
work formation (and corresponding extensive form equilibrium refinements). Indeed,
van Damme (1984) and Mailath et al. (1997) establish the equivalence between proper
equilibria of a normal form game and the quasi-perfect equilibria of any extensive form
equivalent of this normal form. This equivalence result, together with Theorems 1 and
2, relates pairwise stable networks to the quasi-perfect equilibria of an extensive form
game where players decide their link announcements sequentially.

7 Main proofs

Proof of Theorem 1 First, it is clear that P N E(u) ⊆ P S(u). Hence, if PS(u) = ∅,
the result follows. Suppose now that P S(u) �= ∅, and let g∗ ∈ P S(u). Define:

φ(g∗, u) ∈ min
{
mui (g

∗, i j) : i j ∈ g, i ∈ N
}
.

Pairwise-stability implies that φ(g∗, u) ≥ 0. Suppose that for some α ≥ 0, u is
α-submodular in own current links on P S(u). Then, (1) implies that for all i ∈ N and
all � ⊆ Li (g∗), mui (g

∗, �) ≥ α |�| φ(g∗, u) ≥ 0, where |�| is the cardinality of �.
Moreover, by definition of pairwise-stability, for all i, j ∈ N such that i j /∈ Li (g∗),
if mui (g

∗ + i j, i j) > 0, then mu j (g
∗ + i j, i j) < 0. Therefore, g∗ ∈ P N E(u).

Now, suppose that there exists g∗ ∈ P S(u) such that, for all α ≥ 0, (1) does not
hold for g∗. Then, there exist i ∈ N and � ⊆ Li (g∗) such that mui (g

∗, �) < 0,
implying that g∗ /∈ P N E(u). 
�
Proof of Theorem 2 We decompose the proof in two parts. Proposition 2 establishes
that g ∈ P RE(u) implies g ∈ PNE(u) when u is strongly link-responsive on g.
Proposition 3 then shows that g ∈ PNE(u) implies that g ∈ PRE(u) if u is weakly
link-responsive on g, and β-strongly supermodular in own new links on νi (g, u), for
all i ∈ N , and for some β > 0. 
�
Proposition 2 Let g ∈ P RE (u). If u is strongly link-responsive on g, then g ∈
P N E (u).

Proof Let u be strongly link-responsive on g∗ ∈ P RE(u). We prove that in a pure
strategy proper equilibrium s∗, if mui (g

∗ + i j, i j) > 0 then s∗
i j = 1, for all i ∈ N .

This implies that in a proper equilibrium network no absent link is mutually beneficial.
Hence, all proper equilibrium networks, which are Nash networks by definition, are
also pairwise-Nash.

Let g∗ ∈ PRE(u), and let s∗ be a pure strategy proper equilibrium that supports it.
Then, g∗ = g(s∗). Let {σεt }t∈N be a sequence of completely mixed strategy profiles
such that limt→+∞ εt = 0, limt→+∞ σεt (s∗) = 1, and {σεt }t∈N satisfies (8).

For a contradiction, suppose that there exists i j /∈ g such that both mui (g
∗ +

i j, i j) > 0 and s∗
i j = 0. Given that s∗ is also a Nash equilibrium strategy and that

i j /∈ g∗, then s∗
j i = 0, as otherwise s∗

i j = 0 could not be part of a best-response
strategy by player i .
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Let s′
i be the strategy of player i that differs from s∗

i only in its j th coordinate,
meaning that s∗

i j = 0 but s′
i j = 1, while s′

ik = s∗
ik , for all k �= j . In s′

i , player i
announces exactly the same links as in s∗

i plus an extra link with player j . This extra
link is not reciprocated by player j in s∗

j .
Define s′

j accordingly.
For all t ∈ N, we have:

Eui (s
′
i , σ

εt−i ) − Eui (s
∗
i , σ

εt−i ) =
∑

s−i ∈S−i

σ
εt−i (s−i )

[
ui (g(s′

i , s−i )) − ui (g(s∗
i , s−i ))

]
.

(5)

For all s−i such that s ji = 0, g(s′
i , s−i ) = g(s∗

i , s−i ), and thus ui (g(s′
i , s−i )) =

ui (g(s∗
i , s−i )). Therefore,

Eui (s
′
i , σ

εt−i ) −Eui (s
∗
i , σ

εt−i ) =
∑

s−i ∈S−i :si j =1

σ
εt−i (s−i )

[
ui (g(s′

i , s−i )) −ui (g(s∗
i , s−i ))

]
.

Let s−i ∈ S−i with s ji = 1. Note that i j /∈ g(s∗
i , s−i ) while g(s′

i , s−i ) =
g(s∗

i , s−i ) + i j . Hence, the two networks g(s∗
i , s−i ) and g(s′

i , s−i ) differ only in the
link i j , which exists in the latter, but not in the former. Define

G(s∗
i ) = {g(s∗

i , s−i ) : s−i ∈ S−i , s ji = 1}.

We can write:

Eui (s
′
i , σ

εt−i ) − Eui (s
∗
i , σ

εt−i ) =
∑

g∈G(s∗
i )

τεt (g) mui (g + i j, i j), (6)

where

τεt (g) =
∑

s−i ∈S−i :s ji =1
g(s∗

i ,s−i )=g

σ
εt−i (s−i ), for all g ∈ G(s∗

i ).

Lemma 1 τεt (g) ∈ o
(
τεt (g

∗)
)
, for all g ∈ G(s∗

i ), g �= g∗.

Proof of Lemma 1 By definition, τεt (g)∈o
(
τεt (g

∗)
)

is equivalent to limt→+∞ τεt (g)/

τεt (g
∗) = 0, for all g ∈ G(s∗

i ), g �= g∗.26 This is implied by properness, as detailed
below.

26 Note that limt→+∞ σ
εt−i (s−i ) = 0, for all s−i ∈ S−i such that s ji = 1. Therefore, limt→+∞ τεt (g) =

0, for all g ∈ G(s∗
i ), including g = g∗. Establishing that τεt (g) ∈ o

(
τεt (g

∗)
)
, for all g ∈ G(s∗

i ), g �= g∗is
thus equivalent to showing that the rate of convergence to zero of τεt (g), g �= g∗ is at least one order of
magnitude higher than that of τεt (g

∗).

123



Pairwise-stability and Nash equilibria in network formation 67

For each k ∈ N , we partition the strategy set Sk into two disjoint sets S+
k and S−

k
where:

{
S+

k = {sk ∈ Sk : uk(g(sk, s∗−k)) ≥ uk(g
∗)}

S−
k = {sk ∈ Sk : uk(g(sk, s∗−k)) < uk(g

∗)} .

It is plain that Sk = S+
k ∪ S−

k and that S+
k ∩ S−

k = ∅. Given that s∗ is a Nash
equilibrium strategy supporting g∗, we have uk(g(sk, s∗−k)) = uk(g

∗), for all sk ∈ S+
k .

Given that u is strongly link-responsive on g∗, we then have g(sk, s∗−k) = g∗, for all
sk ∈ S+

k .
Note that s′

j ∈ S+
j and that s∗

k ∈ S+
k , for all k ∈ N .

Each player’s expected payoff is continuous in the vector of other players’ (comple-
tely) mixed strategies. Besides, Sk is finite and limt→+∞ σεt = s∗. We thus conclude
that there exists tk such that, for all t ≥ tk , all s+

k ∈ S+
k and all s−

k ∈ S−
k , we have

uk(g(s+
k , σ

εt−k)) > uk(g(s−
k , σ

εt−k)). Given that {σεt }t∈N is a sequence of completely
mixed strategy profiles that satisfy (8), we obtain the following result.

Claim 4 For all k ∈ N , there exists some integer tk such that, for all t ≥ tk , all
s+

k ∈ S+
k and all s−

k ∈ S−
k we have σ

εt
k (s−

k ) ≤ εt .σ
εt
k (s+

k ).

Define now:

G′ = {g ∈ G(s∗
i ) : g �= g∗, g = g(s j , s∗− j ), s j ∈ S j , s ji = 1}.

In words, G′ is the set of networks derived from g∗ under s∗ where only player
j makes a mistake (including always the announcement of the link i j). Define also
G′′ = G′\G(s∗

i ) ∪ {g∗}. The set G′′ covers all the networks derived from g∗ under s∗
where at least some other player (besides j) makes a mistake.

Clearly, G(s∗
i ) = G′ ∪ G′′ ∪ {g∗}, and G′ ∩ G′′ = ∅. Let g ∈ G′. Define S−1

−i (g) =
{s− j ∈ S− j : s ji = 1, g

(
s∗

i , s−i
) = g}. This is the set of all pure strategy profiles that

support g and where j announces the link i j . Then, τεt (g) =∑s−i ∈S−1
−i (g)

σ
εt−i (s−i ).

Let
(

s j , s∗−i− j

)
∈ S−1

−i (g). Such a strategy profile exists by definition of G′. We

have g = g
(

s∗
i , s j , s∗−i− j

)
= g

(
s j , s∗− j

)
. By definition of G′, g �= g∗. Strong link-

responsiveness then implies that s j ∈ S−
j . Recalling that s′

j ∈ S+
j , we conclude from

Claim 4 that σ
εt
j (s j ) ∈ o

(
σ

εt
j (s′

j )
)

. Noting that σ
εt−i (s−i ) = σ

εt
j (s j )σ

εt−i− j (s−i− j ) for

all s−i ∈ S−i , we obtain σ
εt−i (s j , s∗−i− j ) ∈ o

(
σ

εt−i (s
′
j , s∗−i− j )

)

More generally, let s̃−i = (s̃ j , s̃−i− j
) ∈ S−1

−i (g). We distinguish two cases.
First, suppose that s̃ j ∈ S−

j . Then, we deduce mutatis mutandis that σ
εt
j (̃s j ) ∈

o
(
σ

εt
j (s′

j )
)

. Given that limt→∞ σ
εt−i− j (s

∗−i− j ) = 1 ≥ limt→∞ σ
εt−i− j (s−i− j ) for

arbitrary s−i− j , we can write that σ
εt−i− j (̃s−i− j ) ∈ O

(
σ

εt−i− j (s
∗−i− j )

)
. Therefore,

σ
εt−i ( s̃−i ) ∈ o

(
σ

εt−i (s
′
j , s∗−i− j )

)
.
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Second, suppose that s̃ j ∈ S+
j . By strong link-responsiveness, this is equivalent to

g
(

s̃ j , s∗− j

)
= g∗. Therefore, j ′s link announcements in s̃−i alone do not suffice to

generate g = g
(
s∗

i , s̃−i
)
. Still, the network g

(
s∗

i , s̃−i
) ∈ G′ differs from g∗.27 It thus

is the case that s̃k �= s∗
k for some k ∈ N , k �= i , k �= j . But, by definition, all networks

in G′ can be obtained from g∗ by j’s mistakes alone. Therefore, there exists some k,
k �= i , k �= j whose link announcement s̃k �= s∗

k changes g∗ in a way that could also be
achieved by j’s mistakes alone. The only network changes due to unilateral mistakes
are link severance. Therefore, there exists k such that jk ∈ g∗ but jk /∈ g

(
s̃k, s∗−k

)
.

This, in turn, implies that s̃k ∈ S−
k . By Claim 4, σ

εt
k (̃sk) ∈ o

(
σ

εt
k (s∗

k )
)
. Again, noting

that σ
εt−i−k (̃s−i−k) ∈ O

(
σ

εt−i−k(s
∗−i−k)

)
, we conclude that σ

εt−i ( s̃−i ) ∈ o
(
σ

εt−i (s
∗−i )
)
.

We have thus shown that for all g ∈ G′ and all s̃−i ∈ S−1
−i (g), either σ

εt−i ( s̃−i ) ∈
o
(
σ

εt−i (s
′
j , s∗−i− j )

)
or σ

εt−i (̃s−i ) ∈ o
(
σ

εt−i (s
∗−i )
)
. But both (s′

j , s∗−i− j ), s∗−i ∈ S−1
−i (g∗).

Therefore, τεt (g) ∈ o
(
τεt (g

∗)
)
, for all g ∈ G′.

Let g ∈ G′′.
Let s̃−i ∈ S−1

−i (g). Recall that in G′′ at least two players make a mistake. Therefore,

there exist ĝ ∈ G′ and ŝ−i ∈ S−1
−i (̂g), such that σ

εt−i ( s̃−i ) ∈ O
(
σ

εt−i ( ŝ−i )
)
, and the

conclusion follows. 
�
We are now ready to establish Proposition 2.
The mixed strategy profiles {σεt }t∈N have full support, implying that τεt (g) �= 0,

for all g ∈ G(s∗
i ) and t ∈ N. We then deduce from (6) that

Eui (s
′
i , σ

εt−i ) > Eui (s
∗
i , σ

εt−i )

is equivalent to

mui (g
∗ + i j, i j) +

∑

g∈G(s∗
i ),g �=g∗

τεt (g)

τεt (g
∗)

mui (g + i j, i j) > 0. (7)

By assumption, mui (g
∗ + i j, i j) > 0. By Lemma 1, we then conclude that there

exists some integer T such that Eui (s′
i , σ

εt−i ) > Eui (s∗
i , σ

εt−i ), for all t ≥ T . But
then, given that σεt is an εt -proper equilibrium, there exists some integer T ′ such that
σ

εt
i (s∗

i ) ≤ εt σ
εt
i (s′

i ), for all t ≥ T ′, which in turn implies that limt→+∞ σ
εt
i (s∗

i ) = 0.
This is a contradiction. 
�
Proposition 3 Let g ∈ P N E(u). If u is weakly link-responsive on g and β-strongly
supermodular in own new links on νi (g, u), for all i ∈ N, then g ∈ P RE(u).

Proof We first introduce some notation. Let g ∈ G. Let 0 < ε < 1. For all i ∈ N ,
define �̃ε

i = {σi ∈ �i : σi (si ) ≥ ε2n−1
/2n−1, for all si ∈ Si }.

Let now 0 < δ < 1. For all i ∈ N , let

�δ
i (g) = �

δ,1
i (g) ∩ �

δ,2
i (g) ∩ �

δ,3
i (g) ,

27 Recall that, by definition, g∗ /∈ G′.
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where the sets �
δ,k
i (g), k = 1, 2, 3 are defined as follows.

First, �
δ,1
i (g) = {σi ∈ �i : if si ∈ Si is such that si j = 0 for some i j ∈ g,

then σi (si ) ≤ δ}. Second, �
δ,2
i (g) = {σi ∈ �i : if si ∈ Si is such that si j = 1 and

mui (g + i j, i j) < 0 for some i j /∈ g, then σi (si ) ≤ δ}. To define �
δ,3
i (g) is more

involved.
Let si ∈ Si such that si j = 1 for some i j ∈ νi (g, u). We define the following pure

strategy announcement s0
i (g, si , i j) for player i :

s0
ik (g, si , i j) =

⎧
⎨

⎩

1, if ik ∈ g or k = j
0, if ik /∈ g, ik /∈ νi (g, u) but muk(g + ik, ik) < 0
sik, otherwise.

Among all the links mistakenly announced under si , only the link i j is still announced
under s0

i (g, si , i j).

Let then �
δ,3
i (g) = {σi ∈ �i : if si ∈ Si is such that ∃i j /∈ g, i j ∈ νi (g, u) and

si j = 1, and ∃k �= j such that either ik ∈ g and sik = 0, or ik /∈ g, mui (g+ik, ik) < 0
and sik = 1, or both, then σi (si ) ≤ δσi

(
s0

i (g, si , i j)
)}.

For player i, let s̃i be so that

s̃i j =
{

1, if i j ∈ g,

0, if i j /∈ g.

Then for all i and all k = 1, 2, 3, the pure strategy s̃i ∈ �
δ,k
i (g). Hence, for all i,

�δ
i (g) �= ∅.

Notice that the restrictions on the strategies in the definition of both �̃ε
i and �δ

i (g)

are weak linear inequalities, so that �̃ε
i , �δ

i and �̃ε
i ∩ �δ

i are all compact and convex
sets, for all i ∈ N .

Given some network g, and some σ−i ∈ �̃ε−i ∩ �δ−i (g), we now consider the
following best-response correspondence:

rg
i (σ−i ) = {σi ∈ �̃ε

i : σi (si ) ≤ εσi
(
s′

i

)
, for all si , s′

i ∈ Si such that

Eui (si , σ−i ) < Eui
(
s′

i , σ−i
)}.

Clearly, rg
i (·) is convex-valued, compact-valued and upper-hemicontinuous.

Given a σ−i ∈ �̃ε−i ∩ �δ−i (g), define ρ
g
i (σ−i ) = rg

i (σ−i ) ∩ �δ
i (g). By definition,

ρ
g
i : �̃ε

i ∩�δ
i (g) → �̃ε

i ∩�δ
i (g). Given that �δ

i (g) is convex, compact, and given the
properties of rg

i enunciated above, we deduce that ρ
g
i is convex and compact-valued,

and upper-hemicontinuous.
We now show that ρ

g
i (σ−i ) is not empty-valued when σ−i ∈ �̃ε−i ∩ �δ−i (g).

Fix one such σ−i . For each si ∈ Si , let γ σ−i (si ) ≥ 0 be the number of strategies
s′

i ∈ Si such that Eui (si , σ−i ) < Eui
(
s′

i , σ−i
)
. By definition, γ σ−i : Si → N is a

single-valued function, and γ σ−i (si ) = 0 if and only if si is a best-response to σ−i .
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Define now the following strategy σ̂
σ−i
i :

σ̂
σ−i
i (si ) = εγ σ−i (si )

∑

s′
i ∈Si

εγ σ−i (s′
i)

≥ ε2n−1

2n−1 , for all si ∈ Si .

Therefore, by definition, σ̂
σ−i
i ∈ �̃ε

i and σ̂
σ−i
i ∈ rg

i (σ−i ). If we can show that
σ̂

σ−i
i ∈ �̃ε

i ∩ �δ
i (g) for some δ > 0, then we will be able to conclude that σ̂

σ−i
i ∈

�̃ε
i ∩ �δ−i (g), and thus σ̂

σ−i
i ∈ ρ

g
i (σ−i ).

To establish the existence of such a δ > 0, we need two intermediate results.

Lemma 2 Let g∗ ∈ P N E (u) and σ−i ∈ �̃ε−i ∩ �δ−i (g∗). Suppose that, for some
si ∈ Si , we have Eui

(
s′

i , σ−i
)

< Eui (si , σ−i ), for all s′
i ∈ Si , Then, there exists a

δ > 0 such that, for all i j ∈ g∗ we have si j = 1, while for all i j /∈ g∗ such that
mui (g∗ + i j, i j) < 0, we have si j = 0.

Proof of Lemma 2 Let si ∈ Si be such that there exists i j ∈ g∗ for which si j = 0,
or there exists i j /∈ g∗ for which both si j = 1 and mui (g∗ + i j, i j) < 0.28 For a
contradiction, suppose that there exists σ−i ∈ �̃ε−i ∩�δ−i (g∗) such that, for all δ > 0,
we have Eui

(
s′

i , σ−i
) ≤ Eui (si , σ−i ), for all s′

i ∈ Si . We distinguish three cases.
Case 1: Player i cuts a link. There exists i j ∈ g∗ for which si j = 0. Let �1 (si ) =

{i j ∈ g∗ : si j = 0}. Clearly, �1 (si ) �= ∅. Let s′
i be given by:

s′
i j =

{
1, if i j ∈ g∗,
0, if i j /∈ g∗.

Given that the strategy space is finite, there exists ξ ∈ N, ξ �= 0, such that
Pr{g (si , σ−i ) = g∗ − �1 (si )} ≥ 1 − ξδ, for all σ−i ∈ �̃ε−i ∩ �δ−i (g∗). But,
given that g (si , σ−i ) = g∗ − �1 (si ) implies that g

(
s′

i , σ−i
) = g∗, and given that

ui (g∗) > ui (g∗ − �1 (si )), we can conclude that there exists δ > 0 such that
Eui

(
s′

i , σ−i
)

> Eui (si , σ−i ).
Case 2: Player i cuts no links, but announces a missing link which harms her but

benefits the other node. There does not exist i j ∈ g∗ for which si j = 0. Assume that
there exists i j /∈ g∗ for which si j =1, mui (g∗+i j, i j) < 0 and mu j (g∗ + i j, i j) > 0.

Let �2 (si ) = {i j /∈ g∗ : mui (g∗ + i j, i j) < 0, mu j (g∗ + i j, i j) > 0, si j = 1}.
Clearly, �2 (si ) �= ∅.

Let s′
i be given by:

s′
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

si j , if i j /∈ g∗ and mui (g∗ + i j, i j) > 0,

si j , if i j /∈ g∗, mui (g∗ + i j, i j) < 0 and mu j (g∗ + i j, i j) < 0,

0, if i j /∈ g∗, mui (g∗ + i j, i j) < 0 and mu j (g∗ + i j, i j) > 0,

1, if i j ∈ g∗.

28 With strategy si , player i is cutting a link i j ∈ g∗ or announcing a new link i j /∈ g∗ that gives a negative
marginal payoff.
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Then, given that σ−i ∈ �δ−i (g∗), there exists ξ ∈ N, ξ �= 0, such that:

Pr{g (si , σ−i ) = g∗ + �′, for some �′ ⊆ �2 (si ) , �′ �= ∅}
Pr{g (si , σ−i ) �= g∗ + �′: for all �′ ⊆ �2 (si ) ∩ g (si , σ−i ) , �′ �= ∅} ≥ 1 − ξδ.

By definition of s′
i , we know that g (si , σ−i ) = g∗ +�′ implies that g

(
s′

i , σ−i
) = g∗

for all �′ ⊆ �2 (si ). Also, if g (si , σ−i ) is such that there exists no �′ ⊆ �2 (si ) ∩
g (si , σ−i ) , �′ �= ∅, then g (si , σ−i ) = g

(
s′

i , σ−i
)
. Due to β-strong supermodularity,

we thus have ui
(
g∗ + �′) < ui (g∗), for all �′ ⊆ �2 (si ) , �′ �= ∅, implying that there

exists δ > 0 such that Eui
(
s′

i , σ−i
)

> Eui (si , σ−i ).
Case 3: Player i cuts no links, but announces a missing link which harms her

and the other node. Assume now that neither the conditions enumerated in Case 1
nor in Case 2 hold. Suppose si is such that there exists i j /∈ g∗ for which si j =
1, mui (g∗ + i j, i j) < 0 and mu j (g∗ + i j, i j) < 0. Let �3 (si ) = {i j /∈ g∗ :
mui (g∗ + i j, i j) < 0, mu j (g∗ + i j, i j) < 0, si j = 1}. By assumption, �3 (si ) �= ∅.
Let s′

i be given by:

s′
i j =

⎧
⎨

⎩

si j , if mui (g∗ + i j, i j) > 0,

0, if mui (g∗ + i j, i j) < 0,

1, if i j ∈ g∗.

Then, given that σ−i ∈ �δ−i (g∗), there exists some number ξ ∈ N, ξ �= 0, such
that:

Pr{g (si , σ−i ) = g∗ + i j , for some i j ∈ �3 (si )}
Pr{g (si , σ−i ) �= g∗ + i j : for all i j ∈ �3 (si ) ∩ g (si , σ−i )} ≥ min

{
1 − ξδ,

1

δ

}
.

By definition of s′
i , we know that g (si , σ−i ) = g∗+i j implies that g

(
s′

i , σ−i
) = g∗.

Also, if g (si , σ−i ) is such that there exists no i j ∈ g (si , σ−i ), then g (si , σ−i ) =
g
(
s′

i , σ−i
)
. By construction, we thus have ui (g∗ + i j) < ui (g∗), implying that there

exists δ > 0 such that Eui
(
s′

i , σ−i
)

> Eui (si , σ−i ). 
�

Lemma 3 Let g∗ ∈ P N E (u) and σ−i ∈ �̃ε−i ∩�δ−i (g∗). Suppose that, for some si ∈
Si , there exists i j /∈ g∗, i j ∈ νi (g, u) such that si j = 1, and there exists some k �= j
such that either ik ∈ g∗ and sik = 0, or ik /∈ g∗, mui (g

∗ + ik, ik) < 0 and sik = 1, or
both. Then, there exists a δ > 0 such that Eui (si , σ−i ) < Eui

(
s0

i (g∗, si , i j) , σ−i
)
.

Proof of Lemma 3 Let si and s0
i (g, si , i j) defined as in Lemma 2. Again, we distin-

guish three cases.
Case 1: Player i cuts a link. There exists j ∈ N such that i j ∈ g∗ and si j = 0. Let

then �1 (si ) = {i j ∈ g∗ : si j = 0}. Clearly, �1 (si ) �= ∅. For all σ−i ∈ �̃ε−i ∩�δ−i (g∗),
there exists ξ ∈ N, ξ �= 0, such that Pr{g (si , σ−i ) = g∗ − �1 (si )} ≥ 1 − ξδ. But,
given that g (si , σ−i ) = g∗ − �1 (si ) implies that g

(
s0

i (g∗, si , i j) , σ−i
) = g∗, and

given that ui (g∗) > ui (g∗ − �1 (si )), we conclude that there exists δ > 0 such that
Eui

(
s0

i (g∗, si , i j) , σ−i
)

> Eui (si , σ−i ).
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Case 2: Player i cuts no links, but announces a missing link which harms her
but benefits the other node. si ∈ Si is such that there exists no j ∈ N such that
i j ∈ g∗ and si j = 0. But, there exists i j /∈ g∗ for which si j = 1, mui (g∗ + i j, i j) <

0 and mu j (g∗ + i j, i j) > 0. Define �2 (si ) = {i j /∈ g∗ : mui (g∗ + i j, i j) <

0, mu j (g∗ + i j, i j) > 0, si j = 1}. Clearly, �2 (si ) �= ∅. Then, given that σ−i ∈
�δ−i (g∗), there exists ξ ∈ N, ξ �= 0, such that:

Pr{g (si , σ−i ) = g∗+�′, for some �′ ⊆�2 (si ) , �′ �= ∅}
Pr{g (si , σ−i ) �=g∗+�′: for all �′ ⊆ �2 (si )∩g (si , σ−i ) , �′ �= ∅} ≥ (1−ξδ)

(
1−δn) .

We know that g (si , σ−i ) = g∗ + �′ implies that g
(
s0

i (g∗, si , i j) , σ−i
) = g∗,

for all �′ ⊆ �2 (si ). Also, if g (si , σ−i ) is such that there exists no �′ ⊆ �2 (si ) ∩
g (si , σ−i ) , �′ �= ∅, then g

(
s0

i (g∗, si , i j) , σ−i
) = g (si , σ−i ). Due to β-strong super-

modularity, we thus have ui
(
g∗ + �′) < ui (g∗), for all �′ ⊆ �2 (si ) , �′ �= ∅, implying

that there exists δ > 0 such that Eui
(
s0

i (g∗, si , i j) , σ−i
)

> Eui (si , σ−i ).
Case 3: Player i cuts no links, but announces a missing link which harms her and

the other node. Assume now that neither the conditions enumerated in Case 1 nor in
Case 2 hold. Suppose si is such that there exists some i j /∈ g∗ for which si j = 1,
mui (g∗ + i j, i j) < 0 and mu j (g∗ + i j, i j) < 0. Define now �3 (si ) = {i j /∈ g∗ :
mui (g∗ + i j, i j) < 0, mu j (g∗ + i j, i j) < 0, si j = 1}. By assumption, �3 (si ) �= ∅.
Let s′

i be given by:

s′
i j =

⎧
⎪⎨

⎪⎩

si j , if mui (g∗ + i j, i j) > 0,

0, if mui (g∗ + i j, i j) < 0,

1, if i j ∈ g∗.

Then, given that σ−i ∈ �δ−i (g∗), there exists ξ ∈ N, ξ �= 0, such that:

Pr{g (si , σ−i ) = g∗ + i j , for some i j ∈ �3 (si )}
Pr{g (si , σ−i ) �= g∗ + i j : for all i j ∈ �3 (si ) ∩ g (si , σ−i )} ≥ min

{
1 − ξδ,

1

δ

}
.

By definition of s′
i , we know that g (si , σ−i ) = g∗ + i j implies that

g
(
s0

i (g∗, si , i j) , σ−i
) = g∗. Also, if g (si , σ−i ) is such that there exists no i j ∈

�3 (si ) ∩ g (si , σ−i ), then g (si , σ−i ) = g
(
s0

i (g∗, si , i j) , σ−i
)
. By construction, we

have ui (g∗ + i j) < ui (g∗), implying that there exists δ > 0 such that Eui (s0
i (g∗, si ,

i j), σ−i ) > Eui (si , σ−i ). 
�
We are now ready to establish Proposition 3.
By Lemmas 2 and 3, there exists δ > 0 such that σ̂

σ−i
i ∈ �̃ε

i ∩ �δ
i (g∗). By

Kakutani’s fixed point theorem, ρ
g∗
i is non-empty and has a fixed point, which is an

ε-proper equilibrium. We take a sequence of {εt }t∈N such that �̃
εt
i ∩ �δ (g∗) →

�δ (g∗). The corresponding sequence of εt -proper equilibria converges to a proper
equilibrium σ ∗. By Lemma 2, g (σ ∗) = g∗, and thus g∗ ∈ P RE (u). 
�
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Appendix

Proof of Claim 1. Let i j ∈ g. First, note that for all k ∈ N , dik(g) ≤ dik(g − i j).
Define:

χ(g, i j) = {k ∈ N : dik(g) < dik(g − i j)}.
In particular, j ∈ χ(g, i j). Then,

mui (g, i j) =
∑

k∈χ(g,i j)

[
δdik(g) − δdik (g−i j)

]
− c.

For l ∈ N , l �= j , let il ∈ g. Define χ(g, i j, il) = {k ∈ N : dik(g) < dik(g − i j −
il)}. Then,

mui (g, i j + il) =
∑

k∈χ(g,i j,il)

[
δdik (g) − δdik(g−i j−il)

]
− 2c.

Note the following.
First, χ(g, i j) ∪ χ(g, il) ⊂ χ(g, i j, il). Indeed, for all k ∈ χ(g, i j), we have

dik(g) < dik(g − i j) ≤ dik(g − i j − il). Idem for χ(g, il).
Second, χ(g, i j) ∩ χ(g, il) = ∅. Indeed, let k ∈ χ(g, i j) ∩ χ(g, il). Then, both l

and j are on (two different) shortest paths in g between i and k. Consider the shortest
path in g between i and k that crosses through l. This path still exists in g−i j , implying
that dik(g) = dik(g − i j), in contradiction with k ∈ χ(g, il).

Third, δdik(g) −δdik (g−i j−il) ≥ δdik(g) −δdik (g−i j), as dik(g− i j) ≤ dik(g− i j − il).
Similarly for δdik (g) − δdik (g−il).

Altogether, this implies that mui (g, i j + il) ≥ mui (g, i j) + mui (g, il). 
�
Proof of Claim 2. Let g ∈ P S (u) for the co-author model. Then, g is formed of
internally completely connected components (Jackson and Wolinsky 1996). Let i ∈ N
and consider the component of g to which i belongs. If ni (g) is the number of i’s direct
contacts in the network, then the size of this component is ni (g) + 1. To simplify
notation, we write ni instead of ni (g). Assume that i is not isolated, so that ni ≥ 2.
Then,

mui (g, i j) = 1

ni
, for all i j ∈ g.

Therefore, given some � ⊆ Li (g), we have:

∑

i j∈�

mui (g, i j) = |�|
ni

.
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Instead,

mui (g, �) = ni − |�| + 1

ni − |�|
|�|
ni

− |�|
ni (ni − |�|) = |�|

ni
.


�
Proof of Claim 3. First, note that for the information transmission network payoffs
we have:

mui (g, �) =
⎡

⎣1 −
∏

j :i j∈�

p ji

⎤

⎦
∏

j :i j∈g\�
p ji − c |�| , for all � ∈ Li (g) .

Therefore, establishing that

mui (g, �) ≥
∑

i j∈�

mui (g, i j)

is equivalent to showing that

1 −
∏

j :i j∈�

p ji ≥
∑

j :i j∈�

[
1 − p ji

] ∏

k:ik∈�,k �= j

pki .

This last inequality derives from the following result.

Remark Let 1 ≥ xi ≥ 0, i ∈ {1, . . . , m}. Then, 1 −∏i∈{1,...m} xi ≥ ∑m
i=1 (1 − xi )∏

j∈{1,...,m}, j �=i x j .

A proof by induction is the following. First, the inequality is trivially satisfied
when m = 2. Suppose that it holds for some m ≥ 2. We show that it still holds at
m + 1, and the induction will follow. Let x ′

1 =∏i∈{1,...m} xi and x ′
2 = xm+1. Clearly,

0,≤ x ′
1, x ′

2 ≤ 1. The inequality applied to these two values gives

1 −
⎛

⎝
∏

i∈{1,...m}
xi

⎞

⎠ xm+1 ≥
⎛

⎝1 −
∏

i∈{1,...m}
xi

⎞

⎠ xm+1 + (1 − xm+1)
∏

i∈{1,...m}
xi .

The result then follows by induction on m. 
�
Example (violation of strong link responsiveness) We provide an example where
strong link responsiveness is violated and there exists a proper equilibrium network
which is not pairwise-stable. This will show that the strong link-responsiveness is
necessary to guarantee that proper equilibrium networks are pairwise-stable.

Let N = {1, 2, 3, 4}. The strategy set of a player i is Si = {for j < k < l ∈
N \ {i}, (si j , sik, sil) ∈ {0, 1}3}. The players are labeled as below:
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� �

� �

Player 2Player 1

Player 4Player 3

In the following networks the payoff of each player is given next to the correspon-
ding node.

� �

� �

11

11

g1

� �

� �

11

00

g0

� �

��
�

��

�

20

−43

g3

� �

�
�

��

� �
�

��

�

11

−1−1
g4

� �

�
�

��

� �

02

3−4
g2

Observe that g0 is not pairwise-stable as players 3 and 4 can form a link which
benefits both.

� �

�
�

��

�
�

��

� �

12

3−5

� �

�
�

��

�
�

��

� �

21

−53

� �

��
�

��

�

21

−4−5

� �

� �

00

11

� �

�
�

��

� �

12

−5−4

We will construct the example such that player 1’s and player 2’s payoffs are
symmetric. In visual terms if two networks are mirror images of each other then
player 1’s payoff in one equals player 2’s payoff in the other. Such a symmetry will
also hold between player 3 and player 4. This construction will make the example
simpler and decrease the computational burden.

� �

�
�

�

� �

1−1

−43

� �

�
�

�

� �

−11

3−4

� �

�
�

� �
�

�� �

01

3−5

� �

��
�

��
�

��

10

−53

� �

�
�

�

� �

10

−4−5

� �

�
�

�� �

01

−5−4

For the rest of the networks each player’s payoff will depend only on her links.
Given a network g and two players i and j , let gi j be a binary valued function such
that

gi j =
{

0, if i j /∈ g,

1, if i j ∈ g.

Given a network g, the payoffs of players 1 and 2 are:

u1(g) = g13 + g14 − g12,

u2(g) = g23 + g24 − g12.
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The payoffs of players 3 and 4 are

u3(g) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if L3(g) = {13} or L3(g) = {23},
−2, if L3(g) = {13, 23} or L3(g) = {34},
−5, if L3(g) = {13, 23, 34},
1, otherwise,

u4(g) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if L4(g) = {14} or L3(g) = {24},
−2, if L4(g) = {14, 24} or L4(g) = {34},
−5, if L4(g) = {14, 24, 34},
1, otherwise.

The above payoff functions violate strong link responsiveness, because player 1 is
indifferent between having a link with player 3 or having a link with player 4. But the
weak link responsiveness is satisfied as the deletion of a single link always affects the
payoffs of the involved parties.

The strategy profile s∗ = (s∗
1 , s∗

2 , s∗
3 , s∗

4 ) such that,

s∗
1 = (0, 1, 1), s∗

2 = (0, 1, 1), s∗
3 = (1, 0, 0), s∗

4 = (0, 1, 0)

leads to g0. We will show that s∗ is a proper equilibrium, although g0 is not pairwise-
stable.

The ε-proper equilibrium σε that converges to s∗ is

σε
1 ((1, 1, 1)) = ε10, σ ε

1 ((0, 1, 0)) = ε11, σ ε
1 ((1, 1, 0)) = ε12, σ ε

1 ((0, 0, 1)) = ε13,

σ ε
1 ((1, 0, 1)) = ε14, σ ε

1 ((0, 0, 0)) = ε15, σ ε
1 ((1, 0, 0)) = ε16, σ ε

1 ((0, 1, 1)) = 1 −
i=16∑

i=10

εi

σε
2 ((1, 1, 1)) = ε10, σ ε

2 ((0, 0, 1)) = ε11, σ ε
2 ((1, 0, 1)) = ε12, σ ε

2 ((0, 1, 0)) = ε13,

σ ε
2 ((1, 1, 0)) = ε14, σ ε

2 ((0, 0, 0)) = ε15, σ ε
2 ((1, 0, 0)) = ε16, σ ε

2 ((0, 1, 1)) = 1 −
i=16∑

i=10

εi

σε
3 ((0, 1, 0)) = ε, σ ε

3 ((0, 1, 1)) = ε2, σ ε
3 ((1, 0, 1)) = ε3, σ ε

3 ((0, 0, 0)) = ε4,

σ ε
3 ((0, 0, 1)) = ε5, σ ε

3 ((1, 1, 0)) = ε6, σ ε
3 ((1, 1, 1)) = ε7, σ ε

3 ((1, 0, 0)) = 1 −
i=7∑

i=1

εi

σε
4 ((1, 0, 0)) = ε, σ ε

4 ((1, 0, 1)) = ε2, σ ε
4 ((0, 1, 1)) = ε3, σ ε

4 ((0, 0, 0)) = ε4,

σ ε
4 ((0, 0, 1)) = ε5, σ ε

4 ((1, 1, 0)) = ε6, σ ε
4 ((1, 1, 1)) = ε7, σ ε

4 ((0, 1, 0)) = 1 −
i=7∑

i=1

εi

As players 1 and 2 receive a payoff of 1 for each link they make with players 3
or 4 and incur a loss of 1 if they form a link among each other s1 = (0, 1, 1) and
s2 = (0, 1, 1) are dominant strategies for players 1 and 2, respectively.
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For player 3, it is clear that the only strategy that might be a better response to σε−3
than s∗

3 is s′
3 = (1, 0, 1). We will show that for player 3 and s′

3,

Eu3(s
∗
3 , σ ε−3) > Eu3(s

′
3, σ

ε−3).

Observe that the mistakes of players 1 and 2 have probabilities of lower orders than
mistakes of player 4. Hence while comparing Eu3(s∗

3 , σ ε−3) with Eu3(s′
3, σ

ε−3), σε
4 is

decisive and the mistakes of players 1 and 2 can be ignored.

Eu3(s
∗
1 , s∗

2 , s∗
3 , σ ε

4 ) > Eu3(s
∗
1 , s∗

2 , s′
3, σ

ε
4 ) �⇒ Eu3(s

∗
3 , σ ε−3) > Eu3(s

′
3, σ

ε−3).

A direct calculation shows that

Eu3(s
∗
1 , s∗

2 , s∗
3 , σ ε

4 ) = 0 and Eu3(s
∗
1 , s∗

2 , s′
3, σ

ε
4 ) = −4ε2 + ε3 − ε5 − 4ε7 < 0.

Then s∗
3 is the unique best response to σε−3. Due to the symmetry between players

3 and 4, it holds that for s′
4 = (0, 1, 1)

Eu4(s
∗
4 , σ ε−4) > Eu4(s

′
4, σ

ε−4).

Then s∗ is a proper equilibrium,29 although the network it supports, g0, is not
pairwise-stable.

Example (violation of β-strong supermodularity) We provide an example where a
pairwise-Nash network that violates β-strong supermodularity can not be supported
by a proper equilibrium. Let N = {1, 2, 3} and consider the network payoffs defined
below:

�−2 �−2

�
−1

�
�
�

�
�

�

�−2 �−1

�
1

�
�
�

�−1 �−2

�
2

�
�

�

�1 �1

�
−1

�
�
�

�
�

�

�0 �0

�
0

�0 �1

�
2

�
�

�

g′
�1 �0

�
1

�
�
�

g′′
�−1 �−1

�
0

29 It is straightforward to check that for arbitrarily small ε the completely mixed strategy profile σε satisfies

∀i ∈ N , ∀si , s′
i ∈ Si , Eui (si , σ

εt−i ) > Eui (s
′
i , σ

ε−i ) implies that σε
i (s′

i ) ≤ ε · σε
i (si ).

We omit the calculations.
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Denote by 1 the player at the top, and by 2 and 3 the players at the bottom, and
let S1 = {(s12, s13) ∈ {0, 1}2}, S2 = {(s21, s23) ∈ {0, 1}2} and S3 = {(s31, s32) ∈
{0, 1}2}.

For players 2 and 3 it is a dominant strategy to announce a single link with
player 1.

The only two pairwise-Nash equilibrium networks are g′ and g′′.30 But g′′ does not
satisfy β-strong supermodularity, because

u1(g
′′ + 13 − 12) − u1(g

′′) = 1 > −1 = mu1(g
′′ + 13).

In all Nash equilibria that support g′′, player 3 never announces a link with
player 1. Hence, g′′ can not be supported by a pure strategy proper equilibrium.
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