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Introduction

For a statistical experiment LeCam [3] introduced the concept of a sufficient
sublattice (in the M-space of the experiment) thus replacing the usual measure
theoretic notion of sufficiency by a vector lattice framework. In this note it is
pointed out that the sufficient sublattices are exactly the fixed spaces of the sub-
semigroups of the semigroup of all measurewise experiment-preserving positive
operators on the M -space of the experiment. So reduction of an experiment by
sufficiency and reduction by invariance coincide. We derive the same result for
pairwise sufficient subfields and sufficient subfields under suitable conditions on
the experiment. Some examples which concern the semigroup of operators
arising from measurewise experiment-preserving point transformations are given.
This is related to Basu'’s [1] work.

1. Sufficient sublattices and invariance

Let £=(X, A, L) be an experiment, i.e. X is a set, A is a o-field on X
and £ a non-empty set of probability measures on (X, A). The band L(E)
generated by 2 in the space ca(X, ) of all bounded signed measures on (X, A)
is called the L-space of the experiment & and its topological dual L(€)’, denoted
by M(&), is called the M-space of € ([3]). M(E) has a unit e defined by <e, m>
=m(X) for every meL(&). Let T(E) denote the semigroup of all positive linear
operators V': M(E)—>M () which satisfy Ve=e and {Vu, P>=<{u, P> for every
usM(E), P€P. The semigroup of all measurable maps g: X— X such that
gP="P for every P€ %, denoted by T(€), and the group T,(£€) of all bijective
and bimeasurable elements of 73(€) are of special interest. We shall identify
g€ T(E) with the operator VeT(£) given by Vu, m)=<u,gm), uc M(&),
meL(€). Let .L(M(E),) denote the space of all o(M (&), L(E))-continuous linear
operators on M{(E) equipped with the topology of pointwise convergence. Then
T(&) is a subset of L(M(E),) ([3] Lemma 2). One easily verifies the following
property of T(&E).

Lemma 1. T(E) is a compact convex semigroup in L(M(E),).
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A semigroup S in L(M(E),) is called mean ergodic if the semigroup co(S)~
has a zero element by which is meant an element ® such that ®V=V®= for
every V'eco(S)™, where co(S)~ denotes the closed convex hull of S. For KC P,
let Ex=(X, A, K) and put D(€)={KCP: & is dominated}.

Lemma 2. Each subsemigroup of T(E) is mean ergodic.

Proof. Let S be a subsemigroup of T(£). The adjoint V': L(€)—L(E) of
Ve S with respect to the duality {M(E), L(€)) is a transition, that is, V' is posi-
tive and V'm(X)=m(X) for every me L(€), and V'P=P holds for every PEP.
The adjoint semigroup S'={V"': V& .S} is a semigroup in the space _L(L(€)) of
all continuous linear operators on L(€) equipped with the topology of pointwise
convergence. Let KeD(£). Since L(Ex) coincides with the closure of

{meca(X, A): there exists n= Cx such that |m| <n} ,

where Cy denotes the convex cone generated by K, we obtain V'L(€x)CL(Ek)
forevery VES. For V€S, let Vi denote the restriction of V' to L(€x). Then
Sk={V%: VES} is a semigroup in the space L(L(Ex)) being equipped with
the topology of pointwise convergence. The band L(Ex) can be generated by a
probability measure ng of the from ng=3] ¢, P, where ¢ is a prior distribution
on K with countable support. Since Vi ng=nyg for every VES, the semigroup
S% is mean ergodic ([8] Korollar 2.3). Let ®% denote the zero element of
co(Sk).

In view of the uniqueness of the zero element it is clear that ®%,|L(E,)=
Pf, if K,CK,eD(E). Since

L) = L&
©) KELZJ)(é,)(K)

([6] Lemme 1), we may define a map ®': L(E)—L(E) by ®'m=>Dim if
meL(Ex), K&€D(€). Then &' is a continuous linear projection satisfying
Q' V' =V'® =’ for every VE S and ®'m&co(S'm)~ for every me L(E), since
the operators ®@%, K& D(E), have the corresponding properties (see [11] IT1.7.2).
This implies that @’ is a zero element of co(S’)” ([8] Theorem 1.2). Hence, the
semigroup S’ is mean ergodic and then this also holds for the adjoint semigroup
S"=S.

The preceding lemma is the key to the characterization of sufficient sub-
lattices by invariance. According to LeCam [3], a o (M (&), L(E))-closed vector
sublattice H of M(&E) containing e is called sufficient for € if there exists a
positive linear projection II of M(€) onto H such that I T(£). The pro-
jection IT is uniquely determined by H ([3] Prop. 9). It is called the sufficient
projection for H. For SCT(£), let

Ms; = {ucM(E): Vu=u for every Ve&S}
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be the space of all fixed points of S in M(€) and for HC M (&), let
TH)={VeTE): Vu=wu forevery ucH}.

Then T'(H) is a compact convex subsemigroup of 7'(€) and Ms=M,s5-. Put
H(E)=Mre).

Theorem. For a subset H of M(E) the following statements are equivalent :
(1)  H is a sufficient sublattice for €.
(i) H=Mgj for some subsemigroup S of T(E).
(ii) H=Mre).
In particular, H(E) is the smallest sufficient sublattice for €.

Proof. (i) => (ii) is obvious.

(i) = (i). Clearly, M is a o (M(E), L(E))-closed vector subspace of
M (&) containing e. In order to show that Mj is a sublattice, take e M; and
VesS. Then ut>u implies Vu*>Vu=u and therefore Vutzu*. Since
{Vut—ut, P>=0 for every PE X and L(£) coincides with the closure of

{meca(X, A): there exists nC such that |m|<n} ,

where C denotes the convex cone generated by P, this yields <Vut—u*, m>=0
for every me L(&). Thus Vut=u*, and M; is a sublattice. If @ denotes the
zero element of the semigroup co(S)~ whose existence is established in Lemma 2,
then @ is a linear projection of M (&) onto Mj (see [11] II1.7.2) and by Lemma 1,
oeT(©).

(i)« (iii). For every subsemigroup S of T'(£) we have Mg=Mzquyg).

Thus it is demonstrated that in this framework the (maximal) sufficiency
reduction of an experiment is the same as the (maximal) invariance reduction.
Several other characterizations of sufficient sublattices one can find in [4] Chap.
5, Sect. 3.

Remark 1. The map S+ Mg defines a bijection between the set of sub-
semigroups of T(€) of the form T(H), HCM(E), and the set of sufficient
sublattices for &. This follows from the preceding theorem in view of
T(Mpu)=T(H). Furthermore, if H is a sufficient sublattice for £ then the
sufficient projection for H coincides with the zero element of the semigroup
T(H).

RemMARK 2. From Lemma 2 and [11] ITL.7.2 it follows that

M(E) = H(EYDM(E),

where My(€) denotes the o (M(E), L(E))-closed linear hull of the set {Vu—u:
uesM (&), VeT(€)}. Furthermore, let L, (€) denote the minimal L-space of &,
i.e. L,(&) is the closed vector sublattice of L(€) generated by &. This space is
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of some interest in the theory of experiments (see [4]). Using [11] Cor. 1, p. 120,
it js easy to see that L,,(£) coincides with the space of all fixed points in L(€) of
the adjoint semigroup of 7T(£). Arguing as above one obtains

LE) = LOSLLE),

where Ly(E) denotes the closed linear hull of the set {V'm—m: mcL(E),
veTE@)}.

ReEMARK 3. Let ex T(€) denote the set of extreme points of T'(€). Ac-
cording to Lemma 1 and the Krein-Milman theorem, T(£)=co(ex T(€))~. This
yields H(E)=M,, r&)-

2, Pairwise sufficient subfields and invariance

We now use the correspondence between sufficient sublattices and pairwise
sufficient subfields. Let B be a sub-o-field (subfield for short) of (4. For

Kc @, let 3 denote the subfield generated by B and the K-null sets in A.

Put B= ﬂ( ).Q(K). Then B is pairwise sufficient if and only if B is pairwise
KeD(&
sufficient for €. A pairwise sufficient subfield B is said to be smallest pairwise

sufficient for & if BCC for any other pairwise sufficient subfield C. Here we

stress that “‘smallest” refers to the partial order < defined by B<C iff BcC.
Let ¢ denote the canonical map of the space B(X, A) of all measurable bounded
real valued functions on X into M(E) given by

i(w), my = S udm, meL(&).

The o (M(£), L(E))-closure of i{(B(X, B)), denoted by Hg, is a vector sublat-
tice of M(€) containing e. If on the other hand H is a o (M(€), L(&))-closed
vector sublattice containing e then A(H)={4de:i(l,)€H} is a subfield of

A. Note that A(H)=JA(H). For SCT(E), put As=A(Ms). In case
Sc Ty(€) we have

As={Aded: P(ANg'4) =0 forevery gES, PeP}.
In fact, if g= S and Ve T(€) denotes the induced operator, then
Vi(la), mp = <i(La), gm> = gm(4)
= m(g ' A) = i(I;-14), m)
for every me L(&) which yields Vi(I,)=i(Il,-14), A€ A. Hence
As={AeA: i{l-1,) =i(l,) forevery g&S}.

Moreover, for u, veB(X, A), i(u)=:i(v) holds if and only if u=v P-a.e. for
every P P. This gives the above characterization of As.
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Corollary 1. (a) If B is a pairwise sufficient subfield for £ then B=As
Sfor some subsemigroup S of T(E).
(b) The following statements are equivalent :

(i)  There exists a smallest pairwise sufficient subfield for €.

(i) As is pairwise sufficient for every subsemigroup S of T(E).

(i) AT(E) is pairwise sufficient for &.
If (iii) is valid, then AT(€) is the smallest pairwise sufficient subfield for €.

Proof. (a) Hg is a suffiicent sublattice for & ([5] Prop. I1.2.8). Hence by
the theorem, Hg—Mj for some subsemigroup S of T(&). This implies B=
J(H g)=As.

(b) (i)=> (iii). Let B be the smallest pairwise sufficient subfield for &.
By the theorem and [12] p. 240, Hg=H(E) and thus B=A(H(E))=AT(&).
This yields the assertion.

(iif) => (ii) = (i) are obvious.

If the underlying experiment & is coherent by which is meant {(B(X, A))=
M(€) one can obtain an analogous result for sufficient subfields. By [6] Lemma
4, this notion coincides with coherence in the sense of [2]; for further equivalent
conditions see e.g. [7]. Especially, dominated experiments and discrete experi-
ments (Basu-Ghosh-structures) are coherent. Note that for these experiments
B is sufficient provided B is a pairwise sufficient subfield. In particular, for
coherent experiments pairwise sufficiency of s implies sufficiency of A, be-
cause Ag=A;. Furthermore, B=B for sufficient subfields, where B=B P,
Since it is well known that for coherent experiments there exists a smallest
pairwise sufficient subfield for & (see [2] and notice that the smallest sufficient
subfield whose existence is established in [2] is smallest pairwise sufficient; see
also [6], [12]), the following corollary is an immediate consequence of Corollary 1.

Corollary 2. Suppose that £ is a coherent experiment. Then a subfield B of
A is sufficient for € if and only if B=JAs for some subsemigroup S of T(E). In
particular, AT(e) is the smallest sufficient subfield for &.

Basu [1] has shown that AT, (g) is sufficient for dominated experiments
and Trenkler [13] has proven the same fact for discrete experiments. Both
results are contained in the preceding corollary. In general, ATy(¢)(and ATy(€))
is not the smallest sufficient subfield for dominated experiments (see [1]).

The following examples may serve as illustrations of the properties of ATy(&)
and MT,¢c). Note that in all examples MT(8)=MTy¢) holds. The first ex-
ample provides an experiment & such that H(E)F=M71,¢e) and ATLe) is not
pairwise sufficient for £&. We remark that the latter fact disproves a result of
Petit [9] (second part of Théoréme 3).

ExampLE 1. Let X=(—1,0)U(0, 1) and A4 be the Borel-field of X. Let
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P=P U, with P,={P,, P,} and P,={(€,+&_,)/2: x&(0, 1)}, where P, and
P, denote the Lebesgue measures on (0, 1) and (—1, 0), respectively. Since
L(&)=L(E2)PL(E®,) holds and L(E@,) can be identified with LY(Q) and L(E®,)
with the band of discrete signed measures on the power set P (X) of X, we obtain

M(&) = L*(Q) X B(X)
with B(X)=B(X, P(X)) and Q=(P,+P,)/2. We claim that
T(E) = THE)={idy Iy —idy Ipe: ASA, A = — 4, Q(A°) = 0} .

Let T, denote the right side of the second equality and let g=idy I[,—idy [ o<
T,. Then g?=idy, hence g is bijective. Moreover,

gT'B=(ANB)UA‘N(—B)) = (ANB)U(—(4°NB))

holds for every BE, hence T,CT,£). To prove the inclusion Ty(E)C Ty,
note first that for g&Ty(€), we have (€,4-6.,)/2=(E,.+E(-»)/2 which yields
{gx, g(—x)} = {x, —x} for every x=X. Setting A= {x=X: gx=x}, this implies
A=—A4 and g=idy I,—idy 1,:. Since

A= ({g<0}n(—-1L0)U({g>0;N(0, 1)),

Ae A holds, and gP;=P,, i=1,2, implies Q(4A)=0. Thus g&T; and our
claim is proved. If g&T,(&) and Ve T(E) denotes the induced operator, then
for every fe L(Q), u€B(X)

<V, w)y m-my) = L(f, u), gmy+gmsp
= <frgm>+<u gm> = |  am-{ uog am,
= {(f, uog), m;+m,y for every meL(E@), meL(E€w,),

hence V(f, u)=(f, uog). (Note that we did not make notational distinction be-
tween m,&L(€®,) and its uniquely determined extension to P(X).) Further-
more, uog=u for every g& T,(€) holds if and only if u=u,, where u,(x)=(u(x)-+
u(—x))/2 for every x&X. This yields

Mrye) = L*(Q)X {u€B(X): u =u} ,
hence
Are) = {A€A: A= —A4},

because {(1,)=(I4, I,) for every A€ A. By Exemple 2 of [6], ATHe€) is not
pairwise sufficient for £. Define a map ®: M(£)—»M(€) by

D(f,u) = (Sfdpl I(o,1)+Sfsz V[ ETRAR
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Clearly, ®=T(€). Furthermore, for V=(V, V,)eT(€), we have for every
feL~(Q), ue B(X)

[ Vi w dp = <v (1,0, P> = <) P> = [ fap,i=1,2

and
(Vo f, () = <V (f, w), (6, +€-.)/2>
= {(f, u), (€:1E€-,)[20>=u,(x)

for every x& X, hence (V,(f, #)),=u,. This yields ®V=® for every Ve T(€),
that is, @ is a left zero of T(&). Since T(€) is mean ergodic by Lemma 2, it
follows that @ is the zero element of T(&). Thus it follows from Remark 1 that

H(E) = M) = L*(Q|B)X {ucB(X): u = u}
with B={¢, X, (0, 1), (—1, 0)}.

A slight modification of the preceding example yields an experiment &
such that H(E)=MT4¢c) and AT,€) is not pairwise sufficient for &.

ExampLE 2. Replace &, in the preceding example by the set of all pro-
bability measures which are absolutely continuous with respect to Q. Then
M(&) and T,(€) remain unchanged. But now the sufficient projection II for
MT4e) given by II(f, u)=(f,u,) is the zero element of T'(€). Indeed, for
V=(V,, V,)eT (&), we have for every fe L=(Q), ucB(X)

[rrwar= SfdP

for every probability measure P which is absolutely continuous with respect to
O, hence Vy(f,u)=f. This implies that II is a left zero of T(£) and thus,
again by Lemma 2, it is the zero element of 7(€). From Remark 1 follows
H(E)=Mr4e).

Next we give an experiment & such that H(E)=MTy&), AT,€) is pairwise
sufficient, but it is not sufficient for £&. In particular, ATy&) is the smallest
pairwise sufficient subfield for & by Corollary 1.

ExampLE 3. Let X=[0,1] and A be the Borel-field of X. Let B be a
non-Borel subset of (1/2, 1] with the cardinality of the reals and a: [0, 1/2]—B a
bijective map. Let

P — {(E.+Eu0)f2: €[0, 121} U {e.: x€(1/2, INB} .
Then
M(€) = B(X).
For x]0, 1/2], define g.: X—X by
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8: = tdy Iip aiopyet-a Iig+a™ Iiyy

and let .S denote the group generated by {g.: ¥€[0, 1/2]}. Then Sisa subgroup
of T(E) and ueB(X) satisfles uwog=u for every g&S if and only if
u(a(x))=u(x) for every x=[0, 1/2]. 'This gives

M= {ucsB(X): u(a(x)) = u(x) forevery x&[0,1/2]}
and

As= N y {AcA: {x, a(x)} A4 or {x, a(x)} cA%} .
*e[o, 1/2]
Since there exists a smallest pairwise sufficient subfield for € (see [12]), As is
pairwise sufficient by Corollary 1 (it is not difficult to check this property
directly), but As is not sufficient ([10]). The sufficient projection IT for M
given by

IT u = uy I, vart+u Lope g1\ p+ttg-1 Ip

where u,(x)=(u(a(x))+u(x))/2 for every x€[0, 1/2] and u,-1(x)=(u(a"(»))+
u(x))/2 for every xEB, is a left zero of T'(£). This follows from (Vu),=u, on
[0,1/2], Vu=u on (1/2, 1]\ B, and (Vu),-1=u,-1 on B for every Ve&T(£),
uEB(X). Hence, II is the zero element of 7(€) and by Remark 1

H(8) —_ M(n) = Ms.

In particular, H(&)=M T()=M T,&) holds.

Finally, we give an experiment & such that AT(€) is pairwise sufficient and
hence the smallest pairwise sufficient subfield for &, ATye) is the smallest
sufficient subfield for &, but A T(¢)F A Ty(E)-

ExampiE 4. Let X=[0, 1], A be the Borel-field, and P={¢,: x€X} U
{P}, where P denotes the Lebesgue measure on X. Then Ty(&)=Ty(&)= {idy}
and A=A T,€) is the smallest sufficient subfield. Furthermore, B={4E:
A or A’ is countable} is the smallest pairwise sufficient subfield for £. To see
this, let A€ A and %, x;, x,€X. Then I n(s,., is a version of Ee, (I1,]19),
1=1,2, and I n(n+P(A4) Iy¢ is a version of Ee(I,|B) and of E,(I,]B) which
yields pairwise sufficiency of B. To prove that B is smallest pairwise sufficient,
it is enough to show that A€C® for every countable set AP and K={§,,:
ieN} U {P}, where C is a given pairwise sufficient subfield. Let B=AN {x;:
{EN} and let f denote a version of Ee, (I|C) for every iEN and of Ex(I5|C).
Put C={f=1}. Then BCC and {x;: ic N}\BCC", hence &,(AAC)=0 for
every i&N. Since f=0 P-a.e., we have P(AAC)=0 and hence A€C®. It
follows from Corollary 1 that AT(€)=3, but e.g. [0, 1/2]&B.

RemMARk 4. It is known that a subfield B is pairwise sufficient for £ if and
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only if the deficiency of £| B relative to £ (introduced in [3]) is equal to zero by
which is meant that there is a transition U: L(€|B)—L(€) such that U(P|PB)=
P for every PE P, where €| B=(X, B, {P|B: P=F}) ([5] Théoréme 3). To
prove the “if”” part one can argue as follows. Let R: L(€)—L(€|B) denote the
restriction to B and let S be the subsemigroup of T(€) generated by R'U’. By
the theorem, My is a sufficient sublattice. Since Hg=R'(M(E€|PB)), we see that
M;cHg. This implies that Hg is a sufficient sublattice and thus, B is pairwise
sufficient for & ([5] Prop. I1.2.8). For a more detailed discussion of the above
relation see [14], [15].
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