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PAIRWISE SYMMETRY CONDITIONS FOR VOTING EQUILIBRIA 

Steven A. Matthews 

It is common knowledge that characterizations of majority 

rule equilibria in multidimensional spaces take the form of pair-

1 wise symmetry conditions on utility gradients. Plott [1967] , the 

initial investigator of these conditions, shows that if exactly 

one utility gradient at an interior point is zero and the number 

of people is odd, then the point is an equilibrium if and only if 

the set of nonzero gradients can be partitioned into pairs of 

exactly opposing vectors. This degree of symmetry seems unlikely 

to occur. Hence it must be concluded that this type of equilibrium 

does not usually exist. 

However, the condition that all nonzero gradients must 

be paired is necessary only for equilibria at which only one 

gradient is zero. One object of this paper is to derive necessary 

conditions that do not 1! priori restrict the number of zero

gradients. These more general conditions are determined also for 

the more general case of A-majority rule, in which a coalition is 

winning only if it constitutes more than a fraction A of the voters.
2 

The amount of pairwise symmetry required for equilibrium is still 

restrictive, however, unless many gradients are zero or A is near one. 

Conditions necessary for equilibrium may be less 

restrictive for equilibria contained in the boundary of a feasible 

set. Since often the feasible set is a proper subset of the space, 
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such equilibria are certainly worthy of investigation. Plott (1967] 

makes an initial step in this direction by investigating situations 

in which the feasible set is a half-space and the equilibrium is 

contained in the defining hyperplane. His conditions are genera-

lized here by allowing the equilibrium to be contained in the 

boundary of any convex feasible set, as well as by allowing more 

than one gradient to "point out" of the feasible set and by consi-

dering A-majority rule. We find that the type of pairwise 

symmetry required at boundary equilibria is of a lesser degree 

than that required at interior equilibria. But the symmetry still 

appears restrictive unless (1) the boundary is highly ·pointed at 

the equilibrium, (2) many gradients are zero or "point out" of the 

feasible set, or (3) A is near one. 

A fundamental characteristic of majority rule is that if 

two people with diametrically opposed preferences are removed from 

the set of voters, then any equilibrium remains an equilibrium. 

The votes 0£ the two i11dividuals merely "cancel each other out. "

This basic fact is what causes pairwise symmetry conditions to be 

necessary for equilibrium, as the subsequent proofs are designed 

to show. All the symmetry conditions are derived as corollaries 

to theorems stating that various sets of individuals that "disagree" 

in some sense can be deleted without upsetting equilibrium. 

This intuitive approach results in relatively concise proofs. 

Sufficient conditions involving pairwise symmetries on 

gradients are important because properties of pairs are relatively 

easy to verify. The ones derived in section 3 generalize those of 
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Plott (1967] , McKelvey and Wendell (1976] , and Slutsky (1978] by 

allowing the point to be on the boundary of a convex feasible set, 

by'allowing more than one gradient at the point to be zero or to 

"point out" of the feasible set, and by allowing for A-majority 

rule. 

1. PRELIMINARIES

The set of feasible alternatives is a convex subset V of 

a Euclidean space w: Denote by x a particular point of V, not

necessarily in the interior. Let the set of voters be denoted by 

N = {l, 2, . . . , n}. Each voter has a differentiable utility function 

defined on W. The gradient of the utility function of voter i 

3evaluated at x is denoted by ui 
E W. We are to investigate

pairwise symmetries in the set {u1 . .. , un} of gradients associated

with x being a voting equilibrium. 

The cone of feasible directions in which x can shift is 

F = {v E W I 3 a > O � x + av . e V}.

Observe that F is a convex cone that includes the origin. If 

x E interior(V), then F = W, whereas x E boundary (V) implies 

that F is contained in a halfspace. 

Much of the subsequent discussion concerns the dual of F, 

F* {y 8 w I v • y � 0 v v 8 F} = D.

Notice that D is a clo8ed convex cone containing the origin, and 

that D = {U} if and only if F = W. If ui E D then v • ui � 0

for all v E F, so that voter i is "happy" with x in the sense of 

not marginally benefiting by any feasible shift of x.



4 

Define also a cone 

E {y £ w I y ¢ D, -y £ D}.

E is a convex cone without the origin that may be empty. 

In particular, E = 0 whenever D = {O} or D is a subspace of

positive dimension. If ui £ E, then i is "unhappy" with x in the

sense that v • ui � 0 for any v £ F, and there exists v £ F such

that v • u. > O. 
1 

Examples of possible cones F, D, and E are illustrated 

in figure 1. In the figure and hereafter a cone generated by 

vectors y1, . • •  , Yt is defined by

Also, if M = {i1, . • •  , il} c N, the notation C (M) C (ui , • • •  , ui )
1 l 

will be used for convenience. 

Define for any cone C the following derived cones: 

c+ {y £ w y • c > 0 'tJ c £ c}

c {y £ w y • c < 0 'tJ c £ c}

co = {y £ w I y • c = 0 'tJ c £ c}

let 
+ and 0 denoteWithout fear of ambiguity, for any v £ w v , v ' v 

+ C (v)
- 0 + and v - half spaces and v0 isC(v) , , and C (v) • Then v are 

a subspace. Observe that ui £ + v implies that v • ui > o, so that

voter i benefits if x shifts in direction v. For any subsets 

Mc N and C c W, let 
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and let S (C) = SN (C) . + Hence SM (v ) is the number of voters in M

who benefit by a shift in direction v. For convenience we also 

adopt the convention that if an upper case letter denotes a subset 

of voters, then the corresponding lower case letter denotes their 

number, e. g., n = jN j and Mc N implies m = j M j .

With these definitions in hand, an equilibrium concept 

can be defined. Let A be a fixed fraction 0 � A < 1. Then we

want x to be an equilibrium provided no coalition of size greater 

than An can marginally benefit by a feasible shift of x. So define 

x to be quasi-undominated (q .. !��) provided

and define x to be strictly quasi-undominated (s. q. u. d. )  provided 

v £ F => S (v+) < An.

Notice that x is q,u. d. if x is s. q. u. d. Conversely, x is s. q. u. d. 

if x is q. u. d. and An is nonintegral, which is the case when n is 

odd and A =  1/2, the majority rule case studied by Plott [1967] . 

Two alternative concepts of equilibrum for x are local 

undominance, which requires the existence of a neighborhood U of x

such that no point in U n V is unanimously preferred to x by a

coalition of size greater than An, and globa� undominance, which 

requires x to be locally undominated in every neighborhood U c W. 

When there is a finite number of voters, each with a differentiable 

utility function, global undominance implies local undominance. 



implies quasi-undorninance. The reverse implications require 

utility functions to first be locally pseudoconcave (see 

appendix B of chapter II) and then pseudoconcave (Kats and 

Nitzan [1976)). The reader is referred to the cited references 

for these results, and to Sloss [1973), McKelvey and Wendell 

[1976), and Slutsky [1978) for further discussions of the rela-
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tionship between quasi-undominance and other equilibrium concepts. 

Hence attention here can be focused solely upon quasi-undominance. 

It will be convenient for the determination of quasi-

undominance to test only directions contained in the relative 

interior of F. Lemma 2 below justifies this procedure. It also 

allows us to assume henceforth that F is a closed convex cone, so 

that D* = F** � F.4

Lemma 1: Let Mc N and v E: w. Then there exists a neighborhood

Proof: Follows from the continuity of an inner product and the 

finiteness of M. 

Lemma 2: Let Mc N and $ > O. If SM (v+) � $ for all v contained

in the relative interior of F, then SM (v+
) � $for all v E: closure(F).

Proof: Since F is convex, every neighborhood of any v E: closure (F) 

contains points in the relative interior of F. Hence the result 

follows from lemma 1. 

Henceforth, without looo of generality, 11e assune F is closed. 
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The basic feature of majority rule we wish to exploit is 

that if the number of people who prefer alternative a1 to a2 is not

a majority, and Q c N is a set that can be partitioned into pairs 

with strictly opposite preferences on {a1, a2},  then when Q is

deleted, the number of voters preferring a1 to a2 is still not a

majority. More generally, if the number of people preferring a1

is less than An, then when Q is deleted, the number of people who 

prefer a1 is less than An -l/2q. Now, our general method will be

to show that the deletion of coalitions analogous to Q will 

leave x quasi-undominated, in some sense, in the remaining set of 

voters. But if K = N - Q, the above reasoning indicates that only 

SK (v+) � An -l/2 (n-k) can be guaranteed by S (v+) � An. Hence we

shall say that x is q.u.d. in K c N provided

v E: F => 

where Ak is defined by

Ak =A + (A -l/2) (n/k - 1),

Similarly, x is s.q.u.d. in K provided 

v E: F => 

We now prove a simple proposition to illustrate the 

meaning of quasi-undominance in subsets of N. Say that a pair 

{i,j} E: N strongly disagree provided ui ¢ D, uj ¢ D, and

v • ui > 0 <=> v • uj < 0

for all v E: W. Observe that i and j strongly disagree if and only
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if there is a ray r c W not intersecting D such that ui E r and

uj E -r. Thus, if D contains no line, i and j strongly disagree

exactly when ui and u
j are a pair of gradients exactly opposing

each other in the sense of Plott (1967] . We show that removing 

or adding pairs of strongly disagreeing voters preserves quasi-

undominance. The following lemma is useful. 

Lemma 3: Let Tc W be a subspace, and let v ET, v f O. Suppose

0 Q c N and ui ¢ T for each i E Q. If U is a neighborhood of v, 

then there exists V E U 0 T such that V • ui f 0 for all i E Q.

Proof: 
I Q U � U 0 T is an open set of T. If ui ¢ T , then

T ¢ 0 0 ui' so that dim(T 0 ui) < dim (T), Hence for each i E Q, 

T 0 0 
ui is a nowhere dense subset of T. Since a countable union

of nowhere dense sets cannot contain an open set (Baire1s theorem), 

I 
U 0 T = U 

Therefore there exists v E U 0 T such that V ' ui f 0 for each i E Q.

Proposition 1: Let Q be a subset of N that can be partitioned into 

strongly disagreeing pairs, and let K = N - Q. Then x is (s.)q.u.d. 

in K iff x is (s. )q. u.d.

Proof: Suppose x is (s. )q.u. d. Let v be contained in the 

relative interior of F. Let T be the smallest subspace containing
I I 

F. Hence there is a neighborhood U of v such that U 0 T c F.
I 

By lemma 1 there exists a neighborhood U c U such that

SK (v+) � SK (v+) for any v E U. Since ui ¢ D for each i E Q, 

ui ¢ TO for each i E Q. Hence lemma 3 implies the existence of

v E U n T c F such that v • ui f 0 for each i E Q. But Q can be 

partitioned into pairs of strongly disagreeing individuals, so that 

q/ 2, Therefore 

+ + SK (V ) :5 SK (v ) + S (v ) - q/2

� An - q/2 = Akk' 

with the second inequality strict if x is s. q. u. d. By lemma 2, this 

proves x is (s. )q.u,d. in K. Now assume x is (s. )q. u. d. in K. Let 

v E F. Then SQ (v+) :5 q/2 => S (v
+

) :5 SK (v+) + q/2 � Akk + q/2 = An

(second inequality strict if x is s. q. u. d. in K). So x is (s. )q. u. d. 

Proposition 1 actually does not lead to strong pairwise 

symmetry conditions, even for the case of an interior x. In the next 

section, symmetry conditions for an interior x are obtained easily by 

a different route. But a result analogous to proposition 2 regarding 

the deletion of pairs that disagree in a weaker sense is very useful 

for the case of a boundary x. Hence define a pair {i, j} C N to

weakly disagree provided ui ¢ D, uj ¢ D, and for any v E F, 

v • ui > 0 => v • uj < 0

and v • uj > 0 => v • ui < 0 • 

Let V be the symmetric binary relation on N denoting weak dis

agreement, so that iVj means i and j weakly disagree. If x is an 

interior point of V, then F = W and weak disagreement implies

strong disagreement. Otherwise it is possible that iVj even 

though v • ui < 0 and v • uj < 0 for some v E F. But if iVj 

and v • ui > 0 and v • u > 0, then v ¢ F; weakly disagreeingj 
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pairs can agree only on infeasible directions. The next proposition 

characterizes weakly disagreeing pairs. 

Proposition 2: If ui ¢ D and uj ¢ D, then iVj iff

C (ui, uj) n D � �. 
Proof: D and C (ui, uj) U {O} are closed convex cones. Hence if

C(ui, uj) n D = �. by a separation theorem there exists v � 0

such that v • y > 0 for all y E C (ui, uj) and v E D* = F. Hence,

since v • ui > 0 and v • uj > 0, iVj is false. Conversely,

Then 

ai > 0 and aj > O. Hence, because v • y :S 0 for all v E F, iVj.

Finally, basic necessary conditions are derived via the 

deletion of individuals who are malcontent in a different way. 

For any subspace T c W, say that voter i c N is content with.'.!'. 

provided ui E To. Let C (T) c N be the subset of N content with T.

To interpret C (T), suppose a subset of public goods is associated 

with T. Then any i e C (T) is content with the allocation of those 

particular goods at x in the sense of being indifferent to any 

proposal to change their amounts. Letting M (T) = N - C (T), each 

i e M (T) is discontented with T at x in the sense of preferring a 

change in allocation of the goods associated with T. 

Define a free subspace to be a subspace T c W for which 

Tc F. It is easy to show 

Lemma 4: 0 A subspace T is free if f D c T .

A major result of the next section is that quasi-undominance is 

preserved when M (T) is removed and T is free. Intuitively, if 

the amounts of the goods associated with T can be increased or 
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decreased freely at x, then the votes of those discontented with 

the amounts of these goods must "cancel out" for x to be in 

equilibrium. 

2. NECESSARY CONDITIONS

Theorem 1: x is (s. )q. u. d. iff x is (s. )q.u. d. in C (T) for every 

free subspace T. 

Remark 1: This theorem actually only provides a necessary condition 

for x to be (s. )q. u. d. , since T = {O} is always a free subspace and 

C ({O}) = N. Subsequently an example will be presented indicating 

that a true sufficient condition cannot be obtained by requiring T 

to be nondegenerate. 

Remark 2: The freeness of T is necessary for theorem 1. Consider 

a case with W = R
2, n = 3, A =  1/2, and with D = C(O,p) with

p = (0, 1). Let u1 = u2 = p, and u3 = (1, 0). If T is taken as the

line C (p, -p), which is not free, then C (T) = {3}. But x is clearly 

not s. q. u. d. in {3}, even though x is s. q. u. d. in {1, 2, 3}. 

Lemma 5: Suppose x is q. u. d. 
0 If v E F, a Ev , and v + a  E F, then

with the inequality strict if x is s. q.u. d. 
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Proof: By th� continuity of the inner product, there exists a 

+ neighborhood U of  v such that y • ui > 0 for all Y £ U, ui £ v • 

As F is convex, there exists 0 < o � 1 such that b v + oa £ F n U,

0 + Since b • ui > O for any ui £ v n a ,  and since x is q.u�d., we have

with the last inequality strict if x is s.q.u.d. 

Proof of.Theorem 1: (Figure 2 may be helpful.) Suppose x is q.u.d. 

and T 1 {O} is a free subspace, Let M = C (T). Since

i £ N - M <=> ui ¢ TO, lemma 3 implies the existence of  v £ T such

that v 

assume 

• ui 1 0 <=> i £ N - M. Hence n = S (v+) + S (v-) + m, We can

S (v-) :5 S (v+), switching v with -v if necessary, so that

S (v+)?: l/2 (q - m).

Let v £ F. 0 v can be expressed as v = a +  b, where a £ T , b £ T.

For any p £ D, p • a = p • (V - b)

of T implies p £To. Hence a £ D* 

p • v � O, since the freeness

F. T being free also implies

v £ F, so that v + a  £ F by the convexity of F. Applying lemma 5, 

we now have 

0 + + because our choice of  v implies S (v n a )= SM (a ), (This

inequality is strict if x is s.q.u.d,) Finally, since 

i £ M => ui £ TO=> v • ui = a • ui, we obtain

Putting the pieces together leads to 
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with the first inequality strict i f  x is s.q.u.d. The theorem is 

proved. 

Corollary 1: Let T be a free subspace and M = C (T). If x is 

q.u.d. and v £ F, then 

+ - 0 SM (v.) - SM (v ) :5 SM (v ) + (2A - l)n,

with the inequality strict if x is s.q.u,d. 

Proof: + Theorem 1 implies SM (v ) :5 An - l/2 (n - m), so the

for m. 

Corollary 2 (Generalized Plott Theorem 1): 

Suppose x is an interior point of V and r is a ray without the origin. 

If x is q.u.d. then 

(i) l s (r) - S (-r) I :5 S (O) + (2A - l)n

(ii) S (O) � (1 - 2A)n,

with both inequalities strict if x is s.q.u.d. I f  Q is a maximal 

subset of  N that can be partitioned into disagreeing pairs, then 

n = q + S (O) whenever either one of  the following holds: 

(iii) x is q,u.d. and S (O) < 1 - (2A - l)n

(iv) x is s.q.u.d. and S (O) � 1 - (2A - l)n.

Proof: T = rO is a free subspace, since F = W.

i £ M <=> ui £ -r U {O} U r. Hence for any v £ r, 

Letting M = C (T), 

+ SM (v ) = S (r),

S (O), Applying corollary 1 first to v 

and then to -v now results in (i). Expression (i) implies (ii) 
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when r is chosen so that no gradients are contained in r or -r. 

If either (iii) or (iv) hold, then (i) implie8 ls (r) - S (-r)I = 0 

for all rays r. This implies n = q + S (O), since 

n - q - S (O) = E l s (ri) - S (-ri)I, where I indexes the lines
iE! 

-ri u {O} u r that contain nonzero gradients.i 

Remark 3: Corollary 2 states the complete pairwise symmetry 

required o f  the set of  utility gradients at interior equilibria. 

2 The simple example of  figure 3, which has W = R , n = 5 and 

A = 1/2, indicates that (i) and (ii) are only necessary conditions, 

since S (v+) = 3. The example also serves to show that x being

s.q.u.d. in C (T) for every free, nondegenerate T does not imply 

that x is q.u.d., as xis s.q.u.d. in all the subsets content with 

nondegenerate subspaces: {1,2}, {1,2,3}, {1,2,4}, {1,2,5}. 

Remark H: A converse of corollary 2 is true. Specifically, if Q c N

can be partitioned into weakly disagreeing pairs and n = q + S (O), 

then x is q.u.d. if S (O) ?: (1 - 2A)n and x is s.q.u.d. if

S (O) > (1 - 2A)n. This follows easily from the observation that
+ + S (v ) = SQ (v ) � q/2 for any feasible direction v £ F. This

converse is true of any D and is generalized in section 3.

Theorem 1 is only the first step in proving symmetry 

conditions hold at boundary equilibria. However, it does imply 

necessary lower bounds on S (D) � S (E) in important cases. This is 

15 

not unexpected, since the vote of  an individual in D "cancels" the 

vote of  an individual in E for any feasible direction, just as the 

votes of individuals whose gradients are contained in opposing rays 

cancel. Hence one expects an analog of (i) in corollary 2 to bound 

S (D) - S (E). But an example will be presented subsequently showing 

this is not always true. First, the following corollary provides 

a sufficient condition for S (D) - S (E) to be bounded below. 

Corollar:y 

C (T) = {i 

with the 

Proo f: 

3: Suppose T is a free subspace such· that 

£ N I ui £ D U E}. I f  x is q.u.d., then

S (D) - S (E) ::: (1 - 2A)n,

inequality strict if  x is s.q,u.d. 

Let M = C (T), Let v £relative interior (F), which

exists because F is convex. Hence if  TF is the smallest subspace

containing F, there is a neighborhood U of  v such that

u n TF c F. Let Q = {i £ N I ui £ E}. For each i £ Q there exists

0 v £ F such that v • ui > O, so that ui ¢ TF. Hence lemma 3 implies

the existence o f  v £ U n TF c F such that v • ui > 0 for all i £ Q.

+ 0 There fore S (E) = SM (v ) and S (D) = SM (v-) + SM (v ), implying

S (D) - S (E) � (1 - 2A)n by corollary 1.

Remark 5: I f  DUE is a subspace, then the hypothesis of  

corollary 3 is satisfied for T = (Du E)o. One case is D

E = �. for which the result is merely (ii) of corollary 2.

{O}, 

Another case is D + C (O,p), E = C (-p), which occurs when V is 



uniquely supported by a hyperplane at x . I f  D U E is not a

subspace, the hypothesis may not be satisfied, and the bound 

on S (D) - S (E) can be violated if dim (W) > 2. An example with 

dim (W) = 3, n = 9, and A = 1/2 is shown in figure 4. There, 

none o f  {u1, • • •  ,u6} are in Eu D, {u7,u8} CE, and u9 £ D·

x is s.q.u,d., since directions v in the corners of  F get 

S (v+) = 4 < 9/2 votes and directions in the middle o f  F get

only 2 votes. But S (D) - S (E) = -1 � O.

Pairwise symmetries at boundary equilibria will be 

implied by the following theoren1. It re fers to situations in 
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which x is (s.)q.u.d. in a coalition whose members' gradients are 

contained in a two dimensional aubspace. This occurs when x is 

(s.)q.u.d, and a subspace T of  dimension dim (W) - 2 E: 0 is free,

for then the gradients of members of  C (T) are in the two dimen-

0 sional subspace T and x is (s,)q.u.d. in C (T) by theorem 1.

Hence, for example, theorem 2 \</ill be shown to imply necessary

pairwise symmetries when x �s contained in the boundary o f  V and 

V is uniquely supported at x by a hyperplane, since in this case

many subspaces o f  dimension dim (W) - 2 are free. 

Theorem 2: Let T be a two dimensional subspace and 

M = {i £ N I ui £ T}. Let Q be a max imal subset of M that can be

partitioned into weakly disagreeing pairs, and let K = M - Q. Then

x is (s.)q.u .d. in K if x is (s.)q.u.d. in M .  
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Remark 6: This theorem differs from the analogous proposition 1 

concerning strongly disagreeing pairs by referring to only a two-

dimensional subspace and by requiring Q to be maximal. Neither 

additional hypothesis can be eliminated. Figure S (a) depicts a 
2 situation with n = S, A = 1/2, W = R , D 

By proposition 2, 2VS, 3VS, and 2V4. I f  Q 

C (O, p), and x s.q.u.d. 

{3,S} U {2,4} is

deleted, x is s.q.u.d. in {l}, but Q {2,S} cannot be deleted 

because x is not s.q.u.d. in {1,3,4}. This shows Q must be taken 

max imal. In figure S (b), n = 7, A= 1/2, W = R3, and D = C (O,p).

All gradients except u4 and us are in the plane of the figure, with

us receding behind and u4 coming up off  the page. The gradients
0 u3, u4 and us are all·slightly lower than the plane p seen in

cross-section as H. Hence C = 

-p. The only disagreeing pair 

+ + + u3 n u4 II us is a narrow cone containing

is {6,7}. I f  {6,7} is deleted, then 
+ s { } (-p )1, .. . ,s 3 and x is not q.u.d. in {l, • . •  ,S}, But, as 

u! 11 C = u; II C � �. x is a.q.u.d. in {1, • • •  7}. Hence, figure S (b)

shows T must be assumed two dimensional in theorem 2, 

Lemma 6: Let T, M, Q and K be defined as in theorem 2. Suppose
I 

T II D � {O} and T II D contains no line. Then there exists Q C Q

such that q = q/2 and C(K u Q) n D = �. where K = {i £ K I ui ¢ D}.

Proof: Let r £ T II D be a nondegenerate ray containing the origin.

For any nonzero v £ T let a (v) be the angle measured counterclockwise

from r to v, ·.�Lth the convention 0 :S CT (v) < 21T. Number the members

of Q as 1,2, ... ,q so that i < j implies a (ui) $ a (u
J
), as in figure 6.

Because Q can be partitioned into weakly disagreeing pairs, a tedious 
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but straightforward argument that we omit establishes that iV (i + q/2) 

for each 1 � i S q/2. Let o (•) be defined by O (i) = i + q/2, so that

iVo (i) for i � i � q/2.

Let AC Q u K. Because T n n  contains no line and ui ¢ D

for any i £ Q u K, it can be shown that dim (T) = 2 implies

C (A) n D = ¢ <=> C (A) n r = ¢. Thus we need only establish the

existence of  Q c Q such that q = q/2 and C (K u Q) n r = ¢.

Now consider C (K). Let a £  K satisfy a (u
a
) � a (ui) for

A 

all i £ K and let b £ K satisfy a (ub) � a (ui) for all i £ K. Then

c(K) n r f ¢ <=> a (ub) - a (ua) 2: n <=> C (ua,ub) n r f ¢. But then

C (K) n r  f ¢ implies aVb, contrary to the maximality of  Q. Hence
C (K) n y = ¢ and C (K) = C (ua,ub).

Suppose C (Ku{l}) n r = ¢. Then, since a (ub) - a (u1) < n, 

a (uq/2) - a (u1) < n, and a (ub) - a (ua) < n, we have

max{a(ub), a (uq/2)} - min{a (ua), a ( u1)} < n. 

Therefore C (K u {1, ..• 'q/2}) n r = ¢, and the lenuna is proved.

Similarly, the lenuna is proved if C (K u {q}) n r = ¢. Furthermore,

letting Qi= {i, i+l, • . •  ,o (i-1)}, the lenuna is proved if

C (K u Qi) n r = ¢ for any 1 < i 5 q/2. Hence it remains to consider

the case where C(K U {l}), C (K U {q}), and C (K U Qi) for 1 < i 5 q/2

all intersect r. 

Now, C(K u {l}) n r f ¢ implies lVb and C (K u {q}) n r = ¢

implies aVq. For 1 < i � q/2, C (K u Q.) n r f ¢ implies iVb or
l 

aV (o (i-1)) or iV (o (i-1)). Let i0 be the maximal 1 � i � q/2 such that

iVb. Let jO be the minimal i0 < j � q/2 + 1 such that aV (o (j-1)).
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Then substitution of  

{10
,b} u {i0+1, o (i0)} u . ..  u {j0

-1, o (j0-2)} u {a, o (j0-1)}

for {i
0
, o (i0)} u {i0+1, o (i0+1)} u • • .  u {j0

-1, o (j
0
-1)}

in the partition Q = {l, 0 (1)} u ... u {q/2, o (q/2)} yields a

partition of  Q u {a,b} into weakly disagreeing pairs. This

contradiction of  Q maximal finishes the proo f. 

Proof of  Theorem 2: Case 1: T n D = {O}. In this case each weakly

disagreeing pair in Q is strongly disagreeing and the theorem follows 

by proposition 1. Case 2: T n D = T. Then Q = ¢ and the theorem is

trivial. Case 3: T n D f T contains a line l. Because dim (T) = 2,

there exists nonzero v £ T such that l = v0• Since D is convex,

T n D = v0 or T n D = v0 u v+ (switching v and -v i f  necessary).

0 + I f  T n D = v u v and ui,uj ¢ D for some i,j £ M, then

C (ui,uj) n D = ¢. Hence Q = ¢ and the theorem is trivial if

0 + 0 T n D = v U v . I f  T n D = v , then for any i,j £ M,

iVj <=> C (ui,uj) n v0 f ¢. Hence all of {ui I i £ K} and half o f

{ui i £ Q}  are contained.in one halfspace (v+ or v-). Therefore

there exists Q C Q such that q = q/2 and C (K u Q) n D = ¢.

By lemma 6, such a Q also exists for the remaining Case 4:

T n D f ¢ and T n D contains no line, Therefore we must prove the

theorem for cases 3 and 4 assuming such a Q exists. But then

C (K u Q) is a closed, convex and pointed cone not intersecting the

convex closed cone D, so a separation theorem implies the existence 
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o f v £ D*
A A + F such that C(Ku Q) C v ,  Hence, since x is q.u.d. in M, 

� + Q �A m An - l/2(n-q-k).m 

This implies, as Q q/2, that k � An - l/2(n-k) = Akk, with the

inequality strict i f  x is s.q.u.d. in M. Since SK(v+) � k for all

v £ F, x is (s.)q.u.d. in K. 

Corollary 4 (Generalized Plott Theorem 2): Suppose D = C(O,p1,p2),

with p1 and p2 nonzero but not necessarily distinct. Let T be a

two dimensional subspace containing D, M = {i £ N I ui £ T}, Q a

maximal subset of  M that can be partitioned into weakly disagreeing

pairs, and K = {i £ M - Q I ui ¢ D}. Then if  x is q.u.d.,

A 

(i) k � S(D) + (2A - l)n

(ii) m - S(D) - S(E) � q � m - 2S(D) - (2A - l)n,

with the inequality in (i) and the second inequality in (ii) strict 

if  x is s,q, u.d, Furthermore, i f  Q is the maximal subset of N that 

can be partitioned into weakly disagreeing pairs, and p1 = ± p2, then

n = q + S(D) + S(E) if

(iii) x is q.u.d. and S(D) - S(E) < 1 - (2A-l)n 

or 

(iv) x is s.q. u.d. and S(D) - S(E) � 1 - (2A-l)n. 

Proof: 0 0 Since 'f contains D, M = C (T ) and T is a free subspace.

By theorem 1, x is (s.)q.u.d. in M. Hence by theorem 2, x is

(s.)q,u.d. in M - Q. Also, for D = C(O,p1,p2), cases 3 or 4 of
A 

the Proo f of  theorem 2 apply, so that k �An - l/2(n - k), where 

k = k + S(D), Hence (i) follows, The second inequality in (ii)

follows from (i) by substituting m - q - S(D) for kin (i). 

The first inequality in (ii) holds because E U D c T and no 
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i £ M with ui £EU D can weakly disagree with anybody. By (ii),

q = m - S(D) - S(E) i f  either (iii) or (iv) hold. I f  also 

P1 = ± P2, then all n gradients are contained in the union of  a

finite number o f  two dimensional subspaces that each contain D. 

Summing over these subspaces consequently yields n = q + S(D) + S(E)

i f (iii) or (iv) holds and p1 = ± p2.

Remark 7: Observe the analogy between corollaries 2 and 4. 

Expression (i) in corollary 2 puts a bound on the minimal set o f  

people whose gradients are in a one dimensional subspace 

containing D � {O} that does not contain a disagreeing pair. 

Expression (i) in corollary 4 puts a bound on the minimal set of  

people, whose gradients are in a two dimensional subspace containing 

a D � {o}, that does not contain a weakly disagreeing pair,

Expressions (iii) and (iv) in the two corollaries are obviously 

similar, 

Remark 8: Corollary 4(ii) indicates the pairwise symmetry that roust 

hold at boundary equilibria i f  D is at most two dimensional, since 

then iVj iff ui and uj occupy symmetrical positions about D. D is

at most two dimensional if V is uniquely supported at x by a hyper-

plane, or if F can be defined as the intersection of only two half-

spaces with boundaries containing x. The pairwise symmetry of  all 

gradients is implied by (iii) or (iv) only if  V is uniquely supported 
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at x by a hyperplane. Clearly, less symmetry is required if  V is so 

"pointed" at x that D is more than two dimensional; it seems that 

corollaries 2 and 4 indicate the only situations in which required 

symmetries involve pairs of  gradients. 

Remark 9: Notice that because D is two dimensional, (ii) o f  

corollary 4 implies the validity of S (D) - S (E) � (l-2A)n without

requiring the condition that D u E be contained in a subspace

containing only gradients in Du E, which was needed in corollary 3. 

Remark 10; A converse of corollary 4 is also true: I f  Q C  N can be

partitioned into weakly disagreeing pairs and n = q + S (D) + S (E),

then x is q.u.d. if S (D) - S (E) � (1 - 2A)n and x is s.q.u.d. if

S (D) - S (E) > (1 - 2 A)n. This follows easily from the observation

that S (v+) � 8=- (v+) + S (E) � q/2 + S (E) for any feasible v E F. Q 

This converse is true for any D and is generalized in ocction 3. 

3. SUFFICIENT CONDITIONS 

Most conditions suf ficient for quasi-undomination are not 

as general as the necessary ones and, unfortunately, require more 

notation for their derivation. However, there is one general result 

providing a necessary as well as a sufficient condition, although it 

is not o ften useful i f  F is "large". 

Theorem 3: Let {T } be a collection o f  subspaces such that a 
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FCU T . Then x is (s.)q.u.d. if  and only if  for every subspace Taa a 
that intersects F, x is (s.)q.u.d. when every person's gradient is 

projected onto Ta . 

Proo f: = ai + i i 0 Given a subspace T, write ui 0 a1, where a
0 

E T ,

a� ET. The set {a�} is the set of gradients projected onto T, and

the result follows from the fact that v • u1 > 0 if  and only i f

i v • a1 > 0 when v E F n T.

The usefulness of the criterion provided by theorem 3 is 

severely limited by the tradeof f  between checking many subspaces of 

low dimension and checking fewer subspaces of  higher dimension. To 

obtain more tractable conditions, we introduce new notation, Let 

M = {i E N ui E E U D}. For any M C M C N and for any v E F, define

� (v) 

and 

+ - 0 SM-M (v ) - SM-M (v u v )

Now we have what will prove to be a very useful result. 

Theorem 4: Let Hi_, • • •  ,� be a collection G f  subsets o f  N satiBfying

N = M1 U . .. u M.h and Mi n Mj = M for i Y, j :
h 
E nM � S (D) - S (E) + (2A-l)n,

i=l i 

Then x is q.u.d, if

and x is  s.q.u.d, if  the inequality is strict. 



Proof: Let v 

+ Now S (V ) � A.n 

E: F. 

S (v+)

Then 

:S S (E) + SN-M (v+
)

::; 

::; 

::: 

h 
S (E) + E 

i=l 

h 
S (E) + E 

i=l 

h 
S (D) + E 

i=l 

- 0 S (v u v ) 

SM -M 
i 

I\ti 
+

SM -Mi 

(v+)

h 
E SM -Mi=l i 

- 0 (v u v )

+ (2A -l)n. 

follows by substituting n - S (v+) 

vo)(v - u 

+ (2A.-l)n 

- 0 for S (v u v ) • 
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The proof that x is s.q. u.d. if strict inequality holds is identical. 

Corollary 5: Suppose x E: lnterior(V), Let Q be a maximal subset of N 

that can be partitione<l into disagreeing pairs. Then x is q. u.d. if 

n - q S 2S (O) + (2A.-l)n, and x is s.q.u. d. if n - q < 2S (O) + (2A.-l)n.

Remark 11: Observe that 

n - q - S (O) = E 
it:I 

where I indexes the lines .ti "' -ri u {O} u ri that contain nonzero

gradients. Hence the sufficient condition for x to be q.u.d. is that 

E I S (ri) - S (-r1) I ::; S (O) + (2;\.-l)n.
iE:l 

Notice the relationship to (i) in corollary 2. 

Proof of Corollary 5: In theorem 4, take M
i= {it:N l uid'.i) for each

i E: I. Since D = {O}, these Mi satisfy the hypothesis of theorem 4.

Also, nM = I S (ri) - S (-ri) I •  
i 

n - q $ 2S (O) + (2A.-l)n implies

Hence, by remark 11, 

E � � S (O) + (2A.-l)n = 

iE:I i 
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S (D) - S (E) + (2;\.-l)n. Therefore the result follows from theorem 4. 

Remark 12: The condition of corollary 5 is not necessary for x to be 

q. u. d. , as figure 7 illustrates. There, n = 9, A =  1/2, D = {O}, 

x is s.q.u. d. since max S (v+) = 4, but

= 3 f. 2 S (O). 

Remark 13: The simple sufficient condition mentioned in remark 4 

is a special case of corollary 5. 

Corollary 6: Suppose x E: boundary(V) with D = C (O, p) (p � 0). 

Let Q be a maximal subset of N that can be partitioned into weakly 

disagreeing pairs. Then x is q. u. d. if n - q S 2S (D) + (2A-l)n,

and x is s. q. u.d. if n - q < 2S (D) + (2A.-l)n.

Remark 14: Notice the relationship of this inequality to the second 

inequality in (ii) of corollary 4. 

Proof of corollary 6: Let T1, . . .  ,Th be a set of two dimensional

subspaces that collectively contain all nonzero gradients and that 

satisfy DC Ti. Let Mi= {i E: N I ui E: Ti}' and notice M1, 
.
.. �b 

satisfy the hypothesis of theorem 4. Let Qi be a maximal subset of 

Mi that can be partitioned into weakly disagreeing pairs. Then
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h 
" K" { · '! Q I ¢ D} Then as in cases 3 and 4q = ,, q1. • Let = J £ ,. . - i u . • 

i=l i 1 J 
of the proof of theorem 2, there exists vi £ F satisfying

and 

This v yields the greatest nM (v+), so that�
k

i - S(E)i.
i i i 

h 
Noticing that n - q = E (k

i - S(E)) + S(D) + S(E), we have
i=l 

h 
E n.. - n - q - S(D) - S(E) 

i=l 11i 

::; S(D) - S(E) + (2A-l)n. 

Hence theorem 4 implies corollary 6. 

We conclude with a useful theorem that can be easily applied 

if D {O} or D = C(O,p). 

Theorem 5 (Partial converse to theorem 1): 

Let T1, ... ,Th be any collection of free subspaces such th�t

C(T1) u ... u C(T
h

) = N and C(Ti) n C(Tj) = M for i f j.

q.u. d. if 

Then x is 

(i) S(D) - S(E) < l-(2A-l)n and x is q.u,d, in each C(Ti)'

and x is s.q. u. d. if 

(ii) S(D) - S(E) ::; l-(2A-l)n and x is s. q. u.d, in each CCT1).

Lemma 7: For any MC N that contains M, x is q.u.d. in M iff 

nM :S S(D) - S(E) + (2A-l)n,

and x is s.q.u.d. in M iff the inequality is strict. 
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Proof: By lemma 2, there exists v £ relative interior (F) such that 
- + > + SM(v ) - SM(v ) for all v £ F. By suitable applications of lemmas 1 

and 3, v £ relative interior (F) can be shown to imply that

V • ui > 0 for each ui £ E. Hence, aince M c M and v • ui � 0 for

all ui £ D,

Similarly, there exists v £ relative interior (F) such that

"+ > + SM-M(v ) - SM-M(v ) for any v £ F and 

,...+ "+ SM(v ) = SM-M(v ) + S(E),

Hence SM-M(v+) = SM(V+) - S(E) � SM(�+) - S(E) 

SM-M(v+) is maximized on F at v. 

Therefore, if x is q.u. d. in M then 

nM = max { sM-M(v+) - SM-M(v-
u v0)} 

v£F 

= max {s -(v+) - [m - S -(v
+) - S(D) - S(E)] }

M-M M-M 
v£F 

+ S(D) + S(E) - m· + 2 max S
M�M(v ),

v£F 

::; S(D) - S(E) - m + 2Am�

S(D) - S(E) + (2A-l)n, 
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with the inequality strict if x is s. q. u. d. in M. The other direction 

of proof is straightforward and very similar to the proof used in 

theorem 4. 

Proof of Theorem 5: Let Mi = C (Ti) and observe that M1, . . .  ,� satisfy

the hypothesis of theorem 4. Suppose (i) holds. Then by lemma 7, 

nM S S (D) - S (E) + (2A-l)n < 1.
i 

Hence, as each � is nonpositive,
i 

Therefore x is q. u. d. by theorem 4. 

n < S (D) - S (E) + (2A-l)n $ 1.Mi
h 

h 
E n S � S S (D) - S (E) + (2A-l)n.

i=l Mi 'n 

If (ii) holds, then by lemma 7, 

Therefore E n... < n.. < S (D) - S (E) + (2A-l)n and x is s. q. u. d. by
i=l Mi 

- �!h 
theorem 4. 

x 

x 
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FIGURE 7 

u2+q/2 = ua(2)



FOOTNOTES 

1. Although to my knowledge symmetry conditions for pairs of 

utility gradients have only been studied previously in three 

papers: Plott [1967], McKelvey and Wendell [1976], and 

Slutsky [1978], 

2. 

3. 

For interior equilibria, Slutsky [1978] has independently

derived pairwise symmetry conditions for A-majority rule

equilibria, His conditions are similar to some of those

derived here.

A simple generalization would be to allow W to be a 

differentiable manifold, F a convex cone in the tangent space 

TW of  W at x, and ui an element of  the dual of TW • x x 

4. For this and other results mentioned below concerning convex

cones, refer to any standard source such as Fenchel [1953]

or Rockafellar [1970].
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