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Abstract

Activating mutations in the RAS family or BRAF frequently occur in many types of human

cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK

Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast

cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To

identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human

kinases for their ability to induce anchorage-independent growth in a derivative of immortalized

human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE

cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types,

including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is

necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously

activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these

activities inhibits PAK1-driven anchorage-independent growth. These observations establish

PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and

credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling

pathways, the cooperation of which leads to malignant transformation.
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Introduction

The RAS family of small GTPases, HRAS, KRAS and NRAS, are often mutated in human

cancers rendering them constitutively active and oncogenic (reviewed in Lau and Haigis

2009). Oncogenic mutations in the RAS genes are common in selected cancer types,

including pancreatic, colon and non-small cell lung cancers. RAS activation may occur

directly through these oncogenic mutations or indirectly due to activation of RAS regulators

or effectors (reviewed in Downward 2003). Activation of growth factor signaling is a

predominant mechanism upstream of RAS that leads to its activation. In epithelial cancers,

EGFR and ERBB2 – two ErbB family tyrosine kinase receptors, commonly activate RAS

oncogenic function (Mendelsohn and Baselga 2000). Similarly, loss-of-function of a RAS-

GAP, NF1, also drives RAS downstream signaling (Bollag et al 1996).

Several alternate mechanisms that activate RAS signaling have also been described. The

RAS effector pathway PI3K is activated by mutations of the catalytic subunit PIK3CA,

amplification of the downstream target AKT or loss-of-function of PTEN (Scheid and

Woodgett 2001). Similarly, activating mutations of BRAF occur in 50% of melanomas

leading to constitutive activation of MAPK signaling (Davies et al 2002). These two

pathways play important roles in RAS-mediated cell transformation since co-inhibition of

PI3K and MAPK efficiently suppresses RAS-driven tumor growth (Engelman et al 2008,

Sos et al 2009).

Less than 5% of human breast tumors exhibit oncogenic mutations in the RAS genes (Lau

and Haigis 2009, Miyakis et al 1998). RAS signaling in breast cancer is more commonly

activated by alterations upstream or downstream of RAS. For example, the RAS pathway is

activated through ERBB2 amplification in about 20% of breast tumors (Hynes and

MacDonald 2009). Such growth factor activation in breast cancer results in a co-activation

of RAS effectors PI3K and MAPK (Neve et al 2002). Co-inhibition of these synergistic

pathways has proven more effective than single pathway inhibition for suppression of breast

tumorigenesis (Hoeflich et al 2009, Mirzoeva et al 2009). Moreover, co-activation of these

RAS effectors is common in breast cancer. Activating mutations in PIK3CA are found in

25–30% of breast tumors while loss-of-function of PTEN by mutation or loss of protein

activates the PI3K pathway in 5–30% of human breast tumors (Bachman et al 2004, Freihoff

et al 1999, Hennessy et al 2005, Miron et al 2010). In contrast, oncogenic mutations in

MAPK pathway components have not been reported. Therefore, alternative mechanisms that

activate MAPK signaling to promote breast oncogenesis remain to be defined.

To identify genes that activate or substitute for MAPK activation in breast cancer, we

performed a kinase-focused screen in a human mammary epithelial cell transformation

model that is dependent on oncogenic RAS. Expression of oncogenic HRAS (HRASV12) in

human mammary epithelial cells immortalized with the catalytic subunit of telomerase and

SV40 early region exhibit anchorage-independent growth and tumorigenesis (Elenbaas et al

2001). In this transformation model, simultaneous expression of myristoylated-AKT1 and an

activated allele of MEK1 (MEK1S218D/S222D, MEKDD) can substitute for oncogenic HRAS.

Using HMLE cells expressing MEKDD, we previously found IKBKE as a kinase oncogene

amplified in 30% of human breast cancers, and CSNK1E as a transforming gene that also

acts as a synthetic lethal partner with activated β-catenin (Boehm et al 2007, Kim et al

2010). To identify genes that activate MAPK signaling and cooperate with active PI3K

pathway, we screened for oncogenes in HMLE cells expressing myr-AKT1 (HMLEA). We

identified p21-activated kinase 1 (PAK1) as an amplified kinase capable of inducing potent

mammary cell transformation through the coordinate regulation of MAPK and MET

signaling.
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Results

Kinome focused gain-of-function screen for kinases that promote anchorage-independent
growth of immortalized human mammary epithelial cells

To identify oncogenes that activate the MAPK pathway in mammary epithelial cells, we

expressed an open reading frame (ORF) library composed of kinases in HMLEA cells.

Specifically, we pooled 597 myristoylation- and Flag-epitope-tagged kinases, introduced

them into HMLEA cells and measured anchorage-independent growth (Figure 1A).

Macroscopic colonies formed by HMLEA cells expressing kinase pools or controls were

counted at 2 wks. We found that pool #9 formed numerous colonies (Figure 1B). When the

27 kinases in pool #9 were individually tested for anchorage-independent growth of

HMLEA cells, we found that the PAK1 induced robust colony formation (Figure 1C). We

also observed that myristoylation of PAK1 was unnecessary to induce anchorage-

independent growth (Supplemental Figure 1A) and, we used non-myristoylated PAK1for

subsequent validation and characterization studies. Expression of PAK1 sufficed to induce

anchorage-independent growth of HMLEs (Figure 1D). Thus, our observations establish that

PAK1 can transform immortalized human mammary epithelial cells, unlike prior studies

carried out in breast cancer cell lines, where PAK1 enhanced anchorage-independent colony

formation (Vadlamudi et al 2000). Our findings in HMLEA cells also indicate that PAK1

also cooperates with other oncogenic alterations to induce cell transformation.

PAK1 amplifications in human breast cancer

The observation that PAK1 induces cell transformation suggested that PAK1 could function

as an oncogene. To assess the frequency of PAK1 amplification in human cancer, we

analyzed a large set of human cancer samples in Tumorscape, a dataset that includes whole

genome analyses of somatic copy number alterations in a collection of 3131 human samples,

including 243 breast tumor samples and cancer cell lines (Beroukhim et al 2010). We found

that PAK1 is amplified in 33% of breast samples (Figure 2A) as well as a smaller fraction of

non-small cell lung, ovarian, small cell lung, melanoma and esophageal squamous cancers.

These findings confirm and extend smaller scale studies that focused on chromosome 11q13

mainly, but not exclusively, in ovarian cancer (Bekri et al 1997, Bostner et al 2007, Brown

et al 2008, Chattopadhyay et al 2010, Kim et al 2006, Lambros et al 2005, Schraml et al

2003, Tu et al 2011). Overall, we found that 16% of all cancers in the Tumorscape exhibited

amplification of the locus that contains PAK1.

To confirm that PAK1 amplifications occur in breast cancer, we performed fluorescence in-

situ hybridization (FISH) and found normal copy number in breast cancer cell lines that did

not show evidence of PAK1 amplification (EFM19, SKBR3). In contrast, when we

examined metaphase spreads derived from breast cancer cell lines that exhibit amplification

of PAK1 (SUM52, SUM190), we found clear evidence of PAK1 copy number gain (Figure

2B). The average number of PAK1 signals per nucleus was greater than the chromosome 11

centromere reference signals in SUM52 and SUM190 lines (Figure 2C). The PAK1 FISH

signal in the four cell lines correlated with the respective PAK1 copy number in

Tumorscape. Furthermore, PAK1 copy number in the four cell lines directly correlated with

expression both at the RNA and protein levels (Figure 2D).

Using the Genomic Identification of Significant Targets In Cancer (GISTIC) algorithm

(Beroukhim et al 2007) in Tumorscape samples, we found that PAK1 lies on an

amplification peak on chromosome 11q distinct from a neighboring peak containing CCND1

(Figure 2E). CCND1 is amplified in 42% of all samples in Tumorscape while 43% of those

that exhibit PAK1 amplification also carry CCND1 amplification. These observations

strongly suggest that amplifications of PAK1 and CCND1 are independent events.
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We also analyzed The Cancer Genome Atlas (TCGA) for PAK1 copy number gain in

human cancer samples. We found that 30% of breast invasive adenocarcinoma samples

showed significant PAK1 amplification (Q-value 8.04E-39). Together, the observations

show that PAK1 is amplified in a significant fraction of human breast tumors and tumor-

derived cell lines.

We then investigated whether cell lines that harbor PAK1 amplifications required PAK1

expression for proliferation or anchorage-independent colony formation to establish that

PAK1 is one target of the second amplicon on chromosome 11q. We failed to find changes

in population-doubling times in SUM52 cells expressing PAK1- or lacZ-specific shRNAs or

in HMLE cells expressing control vector or PAK1, indicating that PAK1 expression level

does not affect proliferation (Figure 3A). In contrast, suppression of PAK1 by two different

PAK1-specific shRNAs in SUM52 and SUM190 lines compromised anchorage-independent

growth (Figure 3B). Importantly, in cell lines (SKBR3, EFM19) that do not harbor PAK1

amplification, suppression of PAK1 failed to affect anchorage-independent growth (Figure

3C). These observations demonstrate that cell lines that exhibit amplification and

overexpression of PAK1 depend on it for anchorage-independent growth, strongly indicating

that one target of the second 11q amplicon is PAK1.

PAK1 kinase activity in anchorage-independent growth

PAK1 regulates signaling pathways through both kinase-dependent and kinase-independent

mechanisms (reviewed in Dummler et al 2009). We evaluated the requirement for PAK1

kinase activity in cell transformation by expressing wild-type PAK1 and its previously

characterized kinase-deficient mutant, PAK1K299R (Tang et al 1997). We found that wild-

type PAK1, but not PAK1K299R, formed robust anchorage-independent colonies in HMLE

(Figure 4A).

Prior work has shown that the kinase activity of PAK1 can be assessed by the status of

phosphorylation at several internal sites. PAK1 phosphorylation at T423 relieves

autoinhibitory conformation, allowing auto-phosphorylation at S144 to maintain kinase

activity (reviewed in Bokoch 2003). We evaluated the effect of overexpressing PAK1 on

PAK1 kinase activity by assessing the phosphorylation status of PAK1 itself as well as its

reported phosphorylation targets. Using HMLE cells expressing a control vector, PAK1 or

PAK1K299R, we found that wild-type PAK1 but not PAK1K299R was phosphorylated at both

T423 and S144 sites (Figure 4B). However, comparison of total and phosphorylated PAK1

levels indicates that a fraction of PAK1 in HMLE-PAK1 cells may remain in an

autoinhibitory conformation. Nevertheless, we found that the phosphorylation levels of three

PAK1-specific substrates; RAF1S338, MEK1S298 and MerlinS518, were enhanced in HMLE-

PAK1 (Figure 4C; Coles and Shaw 2002, Xiao et al 2002, Zang et al 2002, Zang et al 2008).

The elevated phosphorylation levels of PAK1 itself as well as its substrates exclusively in

HMLE-PAK1 cells confirm that a greater portion of the wild-type PAK1 is in its active

conformation and hence, catalytically active, compared to PAK1K299R. These findings

establish that the kinase activity of PAK1 is necessary for the transformation of mammary

epithelial cells. Moreover, PAK1 induced phosphorylation of RAF1, MEK1 and Merlin

suggests that these pathways may contribute to PAK1-driven transformation.

MAPK signaling and PAK1-driven anchorage-independent growth

Phosphorylation of RAF1S338 and MEK1S298 prime the activation of the MAPK pathway by

facilitating phosphorylation of MEK1 at its activation loop and subsequent phosphorylation

of ERK1/2. PAK1 expression in HMLE not only increased phosphorylation of RAF1S338

and MEK1S298, two critical upstream members of the MAPK pathway, but also increased

phosphorylation of the downstream effectors, ERK1/2T202/Y204 (Figure 4C, 5A).
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Conversely, suppression of PAK1 in SUM52 repressed phosphorylation of RAF1S338 and

ERK1/2T202/Y204, thus indicating regulation of the MAPK pathway by PAK1 (Supplemental

Figure 2A).

In consonance with this observation, suppressing RAF1 in two PAK1-dependent cell lines,

HMLE-PAK1 and SUM52 suppressed phospho-ERK1/2 levels and compromised

anchorage-independent growth (Supplemental Figure 2B; Figure 5B). Furthermore, when

we treated SUM52 and EFM19 with U0126, a MEK1/2-specific inhibitor (Favata et al

1998), SUM52 formed dramatically fewer colonies, whereas EFM19 cells, which exhibit no

PAK1 copy number gain, were largely unaffected (Figure 5C). We also found that U0126

inhibited ERK1/2T202/Y204 phosphorylation as well as the ability of HMLE-PAK1 to form

colonies in a dose-dependent manner (Figure 5C). Together, these genetic and

pharmacologic studies indicated that the activation of RAF-MEK-ERK MAPK signaling

was essential for PAK1-induced anchorage-independent growth.

Prior work has implicated PAK1 in the regulation of RAS signaling. Even in the presence of

oncogenic RAS, loss of PAK1 function or inhibition of PAK1 activators inhibited colony

formation (Appledorn et al 2010, Tang et al 1997). Similarly, we found that PAK1

suppression by shRNAs partially inhibited anchorage-independent growth of HMLE

expressing HRASV12 (HMLER), reinforcing the role of PAK1 in RAS-driven

transformation. We however did not observe any difference in total or phosphorylated levels

of PAK1 between HMLE and HMLER cells (Figure 5D; Supplemental Figure 3A). Hence,

we conclude that PAK1 gain-of-function activates MAPK pathway, a RAS effector, which

is necessary for PAK1-driven anchorage-independent growth. Moreover, amplification

resulting in overexpression of PAK1 is an alternate mechanism by which MAPK signaling

may be activated in human breast tumors without activating mutations in other components

of the RAS-RAF-MAPK pathway.

Merlin function in MET signaling and PAK1-mediated anchorage-independent growth

Merlin or Neurofibromatosis type 2 (NF2) is a tumor suppressor gene deleted in a subset of

patients with neurofibromatosis and is a known substrate of PAK1 (reviewed in McClatchey

2007). Merlin and PAK1 are involved in an inhibitory loop where Merlin binds to the p21-

binding domain of PAK1, inhibiting its activation and suppressing RAS-dependent

transformation (Hirokawa et al 2004, Kissil et al 2003). PAK1, on the other hand,

phosphorylates Merlin at S518, which induces translocation of Merlin away from the

membrane and inhibits its function (Kissil et al 2002, Shaw et al 2001, Xiao et al 2002).

To investigate whether PAK1 regulation of Merlin contributes to mammary cell

transformation, we examined the consequences of modulating PAK1 or NF2 expression in

human mammary epithelial cells and breast cancer cell lines. PAK1 expression in HMLE

cells, under conditions that led to anchorage-independent growth, resulted in increased

phosphorylation of MerlinS518 (Figure 4A, 4C). Conversely, suppression of PAK1 in

SUM52 not only inhibited anchorage-independent growth but also suppressed MerlinS518

phosphorylation (Figure 3B, 6A). Furthermore, shRNA-mediated suppression of NF2

induced anchorage-independent growth of HMLE, indicating a tumor suppressive function

of Merlin in breast cancer (Figure 6B). These observations demonstrate that PAK1 regulates

Merlinat an inhibitory phosphorylation site and that suppression of Merlin promotes

transformation of immortalized mammary epithelial cells.

Merlin has recently been shown to negatively regulate EGFR internalization and signaling

through membrance sequestration (Curto et al 2007). In particular, Merlin activity at the

membrane of confluent MEFs resulted in a substantial down-regulation of overall phospho-

tyrosine levels, whereas NF2−/− MEFs exhibited high phospho-tyrosine levels, indicating
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that Merlin regulates phospho-tyrosine signaling (Curto et al 2007). To investigate the role

of Merlin in membrane receptor activity, we compared phospho-tyrosine levels in HMLE

cells expressing wild-type PAK1 or the kinase-inactive mutant PAK1K299R. We found that

wild-type but not the kinase-inactive mutant of PAK1 induced an increase in total phospho-

tyrosine levels (Figure 6C). Based on this observation, we investigated EGFR

phosphorylation status in HMLE-PAK1 compared to HMLE expressing either a control

vector or PAK1K299R and found only a small increase, if any, in phosphorylation of EGFR

at sites that indicate its activation status, Y1173 and Y1068 (Figure 6D; Batzer et al 1994,

Yamauchi et al 1997). Additionally, suppression of EGFR in HMLE-PAK1 cells did not

alter colony formation, indicating EGFR may not be the appropriate target of Merlin

inhibition in this context (Supplemental Figure 4).

Prior work has indicated that NHERF1, the adaptor protein that interacts with Merlin for

EGFR inhibition is not specific to EGFR, but may associate with other growth factor

receptors (reviewed in Weinman et al 2006). We thus postulated that receptor tyrosine

kinases (RTKs) other than EGFR are affected by Merlin inhibition due to PAK1

amplification and overexpression. To identify RTKs regulated by PAK1, we performed a

multiplex antibody-based assay that measures activated TKs and associated proteins in

HMLE-PAK1 and HMLE-PAK1K299R cells regardless of their mode of activation (Du et al

2009). We found that six TKs and associated proteins exhibited at least a significant 1.5 fold

increase in phospho-tyrosine levels in HMLE-PAK1 when compared to HMLE-PAK1K299R

(Figure 6E; Du et al 2009). Confirming our prior findings, ERK2, but not EGFR, scored in

this assay. Interestingly, we found that three different MET-specific antibodies showed that

MET phospho-tyrosine levels were significantly elevated in HMLE cells expressing PAK1

compared to PAK1K299R. Together, these observations strongly suggested that PAK1-

mediated inhibition of Merlin function led to activation of MET signaling rather than EGFR

activation.

In HMLE-PAK1 cells, we found that MET was phosphorylated at Y1234/1235 and Y1003 –

sites associated with MET activation and trafficking (Figure 7A; reviewed in Trusolino et al

2010). We also found that a MET adaptor protein, GAB1 (Weidner et al 1996), and a MET

downstream effector molecule, STAT3 (Boccaccio et al 1998), were phosphorylated in

HMLE-PAK1, providing strong evidence that MET signaling was activated by PAK1

overexpression (Figure 7A). Moreover, when NF2 was overexpressed in HMLE-PAK1

cells, phosphorylation of PAK1T423 decreased slightly while that of METY1234/1235 was

eliminated (Figure 7B). Conversely, when NF2 was suppressed in HMLE cells,

phosphorylation of MET was enhanced (Supplemental Figure 5A).

To determine the contribution of MET signaling to PAK1-induced anchorage-independent

growth, we treated HMLE-PAK1 and SUM52 with the MET inhibitor PHA-665752, which

inhibits MET signaling through GAB1 (Christensen et al 2003). We found that PHA-665752

inhibited anchorage-independent growth of both HMLE-PAK1 and SUM52 in a dose-

dependent manner (Figure 7C; Supplemental Figure 6A).

When we introduced MET- or GAB1-specific shRNAs in HMLE-PAK1 and SUM52, we

found that suppression of MET or GAB1 compromised anchorage-independent growth of

both cell lines that are dependent on PAK1 for transformation (Figure 7D; Supplemental

Figure 6B, 6C). These observations demonstrate that PAK1 regulates MET activity by

modulating Merlin and that MET signaling through GAB1 is required for PAK1-driven

anchorage-independent growth.

Inhibition or activation of MET signaling in HMLE derivatives by pharmacologic or genetic

methods did not alter phospho-ERK1/2 levels (Supplemental Figures 5A, 5B), indicating
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that MAPK activation and MET regulation through Merlin are independent events regulated

by PAK1 (Figure 8).

Discussion

MAPK pathway activation is common in breast cancers (reviewed in Santen et al 2002). In

some cases, this activation is driven by amplification of ERBB2. However, a substantial

proportion of breast cancers with normal ERBB2 copy number also show activation of

MAPK signaling. Here we used an experimental model of mammary epithelial cell

transformation to search for kinases that transform these cells in a MAPK-dependent manner

We screened 597 kinase-related ORFs and found PAK1 as a kinase whose expression

induced anchorage-independent colony formation in HMLE cells. Based on these

observations, we concluded that PAK1 is a transforming kinase, which cooperates with

other oncogenic alterations, such as PI3K activation, to enhance transformation.

In parallel, we analyzed two publicly available datasets of human tumor samples and cancer

cell lines and found that PAK1 is amplified in 30–33% of human breast tumors. Although

prior studies have reported amplifications of 11q13-q14, we used two largest collections of

copy number data in human tumors currently available (Tumorscape, TCGA) to confirm that

PAK1 is amplified in a substantial portion of breast and other epithelial cancers. We further

showed that breast cancer cell lines harboring PAK1 amplification are dependent on its

expression for transformation but not proliferation. These observations substantiate PAK1 as

the target gene in one of the two 11q13-14 amplicons and further define PAK1 as a bona

fide breast cancer oncogene.

Through similar transformation and copy number analyses of group I PAKs, we found that

PAK1 and PAK3, but not PAK2, promoted colony formation of HMLE cells. However, we

failed to find significant amplification of PAK3 in Tumorscape (Supplemental Figure 1B,

data not shown). Hence, among its closest family members, PAK1 shows strongest

oncogenic characteristics.

PAK1 is known to regulate several signaling pathways. We have found that PAK1-induced

activation of both MAPK and MET signaling are essential for PAK1-driven cell

transformation. Although PAK1 also regulates LIMK1/2, the suppression of LIMK1/2 failed

to affect anchorage-independent growth (data not shown). Furthermore, PAK1, as an

effector of the small GTPases; RAC1 and CDC42, may regulate invasion or metastasis in

some cellular contexts. Our observations, however, implicate PAK1 as an oncogene that

induces transformation in breast and possibly other cancers. In addition, we found that two

signaling pathways – MAPK and Merlin-MET, were coordinately regulated by PAK1 to

drive anchorage-independent growth. Using both genetic and pharmacologic manipulations,

we showed that anchorage-independent growth induced by PAK1 requires independent

activation of MAPK as well as MET signaling. We have also observed that activation of the

MAPK pathway by PAK1 is not specific to HMLE or SUM52 cells but also occurs in

HMECs only expressing hTERT (HME), in which case, the expression of PAK1 also

enhances phosphorylation of ERK1/2 and transforms them (Supplemental Figure 7). Since

we and others have found that PAK1 expression is necessary for RAS induced cell

transformation, our observations also suggest that amplification of PAK1 is an alternative

mechanism of activating MAPK signaling in human breast cancers.

Prior work showed that the tumor suppressor Merlin regulates EGFR signaling. However,

we failed to find any evidence using both focused and unbiased assays that PAK1-mediated

regulation of Merlin induced alterations in EGFR function. Instead we found that PAK1

expression leads to activation of MET signaling, which was required for anchorage-
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independent growth. These findings established the contribution of MET signaling to PAK1-

dependent transformation and demonstrated that Merlin regulates multiple RTK signaling

cascades in a similar manner.

The identification of PAK1 as a breast cancer oncogene provides one mechanism by which

the MAPK pathway is activated in breast cancers that do not harbor amplifications of

ERRB2 or oncogenic mutations in the RAS-RAF-MEK-ERK pathway. Although ERBB2

expression has been shown to correlate with PAK1 activation, (Arias-Romero et al 2010),

indicating that they function in the same pathway, co-amplification of ERBB2 and PAK1

may not entirely be redundant. ERBB2 amplification can lead to activation of other RAS

effector pathways in addition to MAPK while PAK1 amplification also activates MET

signaling pathway through Merlin inhibition.

Our studies using previously characterized kinase-dead PAK1 mutant allele (K299R)

showed that PAK1 kinase activity is required for transformation and establish PAK1 as a

target for small molecule inhibition in cancers that harbor PAK1 amplification. Our

observations further indicate that breast cancer cell lines such as SUM52 and SUM190 that

harbor PAK1 amplification and exhibit corresponding expression levels are best examples of

cell lines that show oncogenic addiction to PAK1. Conversely, although HMLER cells did

not show overexpression or elevated activity of PAK1, they were dependent on PAK1 for

transformation indicating that PAK1 can also behave as an essential gene in RAS-driven

cancers. In sum, we present evidence of PAK1 function as a driving oncogene, a cooperating

oncogene as well as an essential non-oncogene that mediates transformation of mammary

cells through regulation of multiple signaling pathways.

Materials and Methods

Cell lines and reagents

HMLE derivatives were cultured in Clonetics MEGM (Lonza, Basel, Switzerland). SUM52

and SUM190 were obtained from Stephen Ethier and cultured in a 50:50 mixture of MEGM

and DMEM/F12 (Invitrogen Carlsbad, CA, USA) 10% inactivated fetal calf serum (IFS,

Sigma Aldrich, St. Louis, MO, USA). SKBR3 and EFM19 were cultured in RPMI or RPMI

(−) phenol red (Invitrogen), respectively, with 10% IFS. All media contained Penicillin/

Streptomycin (Cellgro, Manasas, VA, USA).

pBabe-Puro-Flag-PAK1K299R was derived by site-directed mutagenesis of pBabe-Puro-

Flag-PAK1 using QuikChange®IIXL (Stratagene, Santa Clara, CA, USA). Primer

sequences are shown in Supplemental Table 1. Retroviral and lentiviral production was

carried out as previously described (Boehm et al 2005, Moffat et al 2006). Infections were

modified to incorporate spins at 1178 × g (2250 rpm) for 30 min at 25°C. U0126

(EMDBiosciences, Gibbstown, NJ, USA) and PHA-665752 (Tocris, Ellisville, MO, USA)

were reconstituted in DMSO and added to cells while seeding in soft agar. ShRNAs were

obtained from The RNAi Consortium (TRC) at the Broad Institute; the corresponding

reference numbers are as follows: shPAK1#1-TRCN0000195500, shPAK1#2-

TRCN0000025258, shNF2#1-TRCN0000039974, shNF2#2-TRCN0000010397, shRAF1#1-

TRCN0000195502, shRAF1#2-TRCN0000196969, shMET#1-TRCN0000199327,

shMET#2-TRCN0000009850, shGAB1#1-TRCN0000074283, shGAB1#2-

TRCN0000074285.

Pooled human kinase ORF screen

The second-generation pBabe-Puro-Myr-Flag kinase open reading frame (ORF) library was

developed by the Center for Cancer Systems Biology at the Dana-Farber Cancer Institute

and TRC (Johannessen et al 2010). This ORF library consists of 597 kinase-related ORFs
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that were pooled at equal DNA amounts in random order into 22 pools, each containing 25–

27 ORFs. HMLEA was infected with virus produced from the DNA pools. Cells were then

selected for puromycin resistance at 1 μg/ml. pBabe-Puro-MEKDD diluted 1:25 with pBabe-

Puro, and the parental vector pBabe-Puro were used as positive and negative controls,

respectively. HMLEA expressing the pools or controls were seeded in 0.3% Noble agar

(Sigma Aldrich) in 6-well plates, 6 replicate wells/pool, and assayed for colony formation.

Bottom agar consisted of DMEM with 0.6% Noble agar, 8% IFS and Antibiotic-

Antimycotic (Invitrogen). Colony formation was assessed after 2 wks when images of each

well were taken at 6.25X magnification on Olympus SZX9 microscope with Olympus

Qcolor 3 camera using Magnafire or Q Capture and analyzed with ImageJ software.

Macroscopic colonies (>100 sq.pixels, or 0.004 μ) with the circularity of 0.5–1 were

counted. Median colony number of the pools was calculated and those that scored 1.5

standard deviations (SD) above median were selected for further study. Colonies >50

sq.pixels (0.002 μ) with the circularity of 0.8–1 were counted in all colony formation assays

post-screening.

Immunoblotting

For immunoblot analyses, samples were harvested in RIPA (Cell Signaling Technology –

CST, Boston, MA, USA) or CLB (CST) with 1 mM Phenylmethanesulfonyl fluoride

(PMSF, Sigma), protease inhibitor (Roche, Manheim, Germany) and phosphatase inhibitor

(EMD). Samples were run in 4–12% bis-tris gels (Invitrogen) in MOPS buffer (Invitrogen).

Gels were transferred using the iBlot system (Invitrogen). For drug inhibition analysis by

immunoblot, cells were treated overnight with DMSO, U0126 or PHA-665752 at the

indicated concentrations with constant total volume of DMSO with or without drug.

Antibodies used in the study were obtained from CST except for anti-EGFR, which was a

gift from Jeonghee Cho, anti-Merlin (Santa Cruz Biotechnology, Santa Cruz, CA, USA),

and 4G10 (Millipore, Temecula, CA, USA),

Quantitative RT-PCR

RNA was harvested using QiaShredder and RNeasy (Qiagen, Valencia, CA, USA). cDNA

was prepared with the help of Advantage RT-for-PCR (Clonetech, Mountain View, CA,

USA). qPCR was carried out using SYBR (Applied Biosystems, Beverly, MA, USA). The

primers used are listed in Supplemental Table 1.

Proliferation assay

SUM52 expressing shRNAs against PAK1 or lacZ or HMLEs expressing vector control or

PAK1 were plated in triplicate in a 6-well plate. Cells were counted the next day (Day 1) as

baseline and then counted and replated for 21 d or 23 d at indicated time points to calculate

population-doubling times.

Fluorescence in-situ hybridization (FISH)

FISH was carried out as previously described (Knoll and Lichter 2005). Human

chromosome 11 cep probe and BAC probe 11-381E5 (PAK1) were used. Hybridization

signals were viewed on an Olympus BX-51 fluorescent microscope system.

Luminex assay

Lysates were harvested in normal growth conditions in MEGM. The Luminex assay was

carried out for tyrosine kinases (TKs) and associated proteins as previously described (Du et

al 2009). Raw data was normalized by subtracting antibody and sample backgrounds. One or

more antibodies (analytes) against a specific TK or associated protein may be present.

Average normalized signal of triplicates for each of the 244 analytes was calculated.
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Normalized signals of 10 or higher in HMLE-PAK1 and HMLE-PAK1K299R were

considered positive. Normalized signals for analytes in HMLE-PAK1 were divided by

corresponding signals in HMLE-PAK1K299R and those with signal fold difference of 1.5 or

higher were considered significant.

Copy number analysis

Tumorscape was analyzed as described (Beroukhim et al 2010). GISTIC profile for

Tumorscape was created with all 3131 tumor samples and cancer cell lines including 243

breast samples. GISTIC profile for TCGA breast invasive adenocarcinoma was created with

507 cancer samples. Copy number profiles were created for each cancer type with up to 80

samples that show PAK1 amplification. Breast samples with a score of 0.8 (log2 copy

number ratio) or higher in Tumorscape were taken into consideration for the PAK1-CCND1

co-amplification study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human kinase expression screen in HMLEA cells
A. An ORF library containing 597 Myr-Flag-epitope tagged Kinase ORFs were organized

into 22 pools and screened for their ability to promote anchorage-independent growth of

HMLEA cells. B. The average number of macroscopic colonies formed by HMLEA cells

expressing the pools or controls at 2 wks. Vector - pBP, MEKDD 1:25 - positive control. C.

Anchorage-independent growth of HMLEA cells expressing each of the twenty-seven

kinases in Pool #9. D. Anchorage-independent growth of HMLE cells expressing vector

control or PAK1. ** p-value <0.001.
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Figure 2. PAK1 is amplified in human cancers
A. Copy number profile along chromosome 11q of human tumor samples and cancer cell

lines that exhibit highest level of PAK1 amplification divided according to cancer type:

breast, non-small cell (NSC) lung, ovarian (Ov), small cell lung (SCL), melanoma (Mel) and

esophageal squamous (Esq). PAK1 and CCND1 loci are marked. B. FISH of breast cancer

cell lines with (SUM52, SUM190) and without (EFM19, SKBR3) PAK1 amplification.

Orange fluorescence indicates chromosome 11 centromere reference probe. Green

fluorescence indicates PAK1 probe. White bar = 100 μ. C. Tumorscape copy number data is

tabulated along with corresponding average number of PAK1 and reference signals from

100 nuclei per cell line. D. mRNA and protein levels of PAK1 in the four breast cancer cell

lines and HMLE cells. E. GISTIC analysis of 3131 human cancers along chromosome 11q

showing two distinct amplification peaks containing PAK1 or CCND1. The arrow indicates

a higher magnification representation of the dotted area to show PAK1 locus (Red).
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Figure 3. PAK1 amplified cell lines are dependent on PAK1 for transformation
A. Proliferation of SUM52 cells expressing PAK1- or lacZ-specific shRNAs or HMLE cells

expressing vector control or PAK1 calculated over 21 or 23 days. B–C. Effects of

suppressing PAK1 on anchorage-independent growth of breast cancer cell lines with (B:

SUM52, SUM190) or without (C: EFM19, SKBR3) PAK1 amplification. Error bars = 1 SD.

Insets indicate PAK1 protein levels. *** p-value <0.0001.
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Figure 4. PAK1 kinase activity is required for anchorage-independent growth
A. Anchorage-independent growth by HMLE expressing control vector, wild-type or kinase-

dead PAK1 (PAK1K299R). Error bars = 1 SD. ** p-value <0.003 (compared to either vector

or kinase-dead control). B. Expression level of PAK1 and its phosphorylation status at T423

and S144 in HMLE expressing vector control, PAK1 or PAK1K299R. C. Phosphorylation

levels of three PAK1 substrates; RAF1S338, MEK1S298 and MerlinS518. Corresponding total

protein levels are shown.
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Figure 5. MAPK activation by PAK1 expression is required for anchorage-independent growth
A. Phosphorylation status of the MAPK pathway downstream effectors ERK1/2T202/Y204 in

HMLE expressing a control vector, PAK1 or PAK1K299R. Total ERK1/2 levels are also

shown. B. Anchorage-independent colony formation by HMLE-PAK1 and SUM52

expressing RAF1- or lacZ-specific shRNAs. Corresponding RAF1 protein levels are shown.

C. Anchorage-independent growth of HMLE-PAK1, HMLER, SUM52 and EFM19 treated

with U0126 at the indicated doses. Representative phospho-ERK1/2T202/Y204 levels are

shown. D. Anchorage-independent colony formation by HMLER cells expressing PAK1- or

lacZ-specific shRNAs. PAK1 protein levels are shown. Error bars = 1 SD. ***p-value

<0.0001. **p-value <0.001.
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Figure 6. PAK1 expression inhibits Merlin function, subsequently upregulating phospho-tyrosine
levels
A. Phosphorylation status of MerlinS518 in SUM52 cells expressing PAK1- or lacZ-specific

shRNAs. B. Anchorage-independent colonies formed by HMLE expressing NF2-or lacZ-

specific shRNAs. Merlin protein levels are shown. ***p-value = 0.0002, **p-value =

0.0059. C–D. Immunoblots showing overall phospho-tyrosine levels (C) or phospho-

tyrosine levels of EGFR at Y1173 and Y1068 (D) in HMLE cells expressing a control

vector, PAK1 or PAK1 K299R. E. Luminex assay showing normalized phospho-tyrosine

signals of TKs and associated proteins in HMLE-PAK1 (x-axis) and the fold phospho-

tyrosine signal increase in HMLE-PAK1 when compared to HMLE-PAK1K299R (y-axis).

Each diamond (gray and black) represents individually distinct antibodies. Analytes

considered positive (>10) and showing significant (1.5) fold increase in signal are shown as

black diamonds. All labeled analytes (black diamonds) scored in lysates harvested in normal

growth conditions.
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Figure 7. MET signaling activation due to PAK1 expression promotes anchorage-independent
growth
A. Phospho-tyrosine levels of MET at Y1234/1235 and Y1003, its adaptor protein

GAB1Y307 and downstream effector STAT3Y705 in HMLE expressing a control vector,

PAK1 or PAK1K299R. Corresponding total protein levels are shown. B. Immunoblots of

HMLE-PAK1 cells expressing vector control or NF2 showing levels of Merlin,

phosphorylated MET at Y1234/1235, phosphorylated PAK1 at T423. Total protein levels

are shown. C. Anchorage-independent growth of HMLE-PAK1 and SUM52 after treatment

with PHA-665752, a MET inhibitor, at indicated doses. D. Anchorage-independent colonies

formed by HMLE-PAK1 or SUM52 expressing MET-, GAB1- or lacZ-specific shRNAs.

***p-value <0.0001, **p-value <0.002, *p-value <0.01.
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Figure 8. PAK1 simultaneously activates two distinct signaling pathways to promote
transformation
The model depicts PAK1 mechanism of action to activate the RAS-MAPK (Orange)

pathway through direct activation of RAF1 and MEK1. The second arm (Purple) shows that

PAK1 and Merlin are in an inhibitory loop, which can be pushed by PAK1 amplification

and overexpression to inhibit Merlin that leads to MET signaling activation through GAB1.

Shrestha et al. Page 21

Oncogene. Author manuscript; available in PMC 2013 January 19.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t


