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ABSTRACT 

 

The Macquarie Marshes (MM), located in semiarid northwest New South Wales (NSW), 

are a unique wetland system for its inland location, high biodiversity and important role as 

―sanctuary‖ or ―refuge‖ for flora and fauna especially colonially breeding waterbirds. 

However, the high demand for water in this semiarid area especially to support agriculture 

has led to the decline of the wetlands and their associated wildlife in particular since the 

1950s. 

     This PhD project analyses surface sediments and modern plant samples from the main 

areas of the northern and southern marshes to assess the most appropriate proxies to be 

applied to sediment cores to reveal the 'condition' of the MM. Four cores from the 

northern marshes where organic matter was better preserved were chosen to reconstruct 

the palaeoenvironmental history of the marshes. Optically stimulated luminescence (OSL) 

single-grain dating was applied to obtain the chronology; lipid biomarkers particularly  

n-alkanes and α-phellandrene were analysed to trace the vegetation change in the marshes.  

       The palaeoenvironmental history of MM in the past ~ 50 ka is reconstructed: the site 

where the modern Marshes are likely had been inundated since the late Pleistocene and 

experienced oscillations of dry/wet climate which in turn led to the change of water level 

and in response the variation of the vegetation types and abundances. The abundance of 

wetland plants was probably highest during the establishment of the marshes 8-6 ka ago. 

A dry period at about 2 ka is shown by C4 drought-tolerant plants. It is not until after 

European arrival (from the 1880s) that terrestrial plants started intruding and gradually 

replacing the wetland plants. The most striking shift of aquatic wetland plants to more 

terrestrial plants in this ecosystem occurred in the 1950s to 1970s due to water diversion 

after the construction of upstream dams. Compared to natural environmental changes, 

anthropogenic effects have a greater and irreversible impact on the well-being of the 

marshes. The fact that the MM are free from anthropogenic pollutants (i.e. pesticides from 

cotton farming and faecal contaminant from the grazing industry) indicates that water loss, 

rather than pollutants, is the main cause of the decline of the wetlands. 
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CHAPTER 1  INTRODUCTION 

 

1.1 Introduction 

        Wetlands are one of the most biologically diverse ecosystems that provide habitat for 

a wide range of plants and animals. They also play a significant role in the global carbon 

cycle and climate change. On a global scale, about 50 % of wetland area has been lost 

since the first half of the twentieth century and wetlands now occupy probably less than  

9 % of the Earth‘s land area (Zedler and Kercher, 2005). The principal forces are human 

impact and climatic variation, and in particularly since early civilisation, wetlands have 

been systematically drained and destroyed to support growing, land-hungry populations 

(Myers et al., 2013). Sediments accumulated sequentially through time in wetlands 

contain a detailed chronological record of the wetland history. Analysis of these sediments 

provides information on past environmental conditions and events that have occurred 

within the wetland ecosystem. This information will assist in the better understanding, 

management and conservation of the wetlands.  

        The Macquarie Marshes (MM) are located in a semi-arid area of Australia and are 

one of the largest floodplain wetlands in the Murray-Darling Basin. Covering a total area 

of approximately 200,000 hectares, the MM are of international and national significance 

(listed by the Ramsar Convention 1986; the National Heritage Register and the National 

Trust Register). They have the largest stand of river red gums (Eucalyptus camaldulensis) 

in northern New South Wales, the largest reed beds (Phragmites australis) of any 

wetlands in New South Wales, and the most southerly occurrence of coolibah woodland 

(E. coolibah) (Shelly, 2005).  The semi-permanent wetland vegetation provides habitats 

for fauna, in particularly colonially-breeding waterbirds (Kingsford and Thomas, 1995). 
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Along the floodplain, the MM contain 16 waterbird breeding sites, each of which can 

consist of up to 40,000 birds in the breeding season (Kingsford and Thomas, 1995; 

Kingsford and Johnson, 1998). Despite the recognition of the conservation importance, the 

MM are declining (about 40-50 % of the wetlands have been lost in the last 50 years) 

(Kingsford and Thomas, 1995). The loss of wetlands inevitably has great impact on its 

biota including colonial waterbirds, whose breeding habits are highly dependent on the 

water flow and food supply in the wetland ecosystem. As a result, the abundance and 

species richness of water-birds in the northern marshes declined over an 11-year period 

(Kingsford and Thomas, 1995).  

 

        Factors affecting the health and permanence of the marshes can be considered as: 

  Natural 

• The MM are located in a dry area subjected to irregular climatic patterns, surviving 

by means of water carried to the MM by the permanent Macquarie River (headwaters to 

the SE). The rainy season in the Macquarie River headlands and MM area, usually 

occurred during autumn (although this pattern has also changed in recent years due to 

climate change). The marshes formed during the mid-Holocene (Climatic Optimum), and 

apparently have been healthy until human colonisers arrived ~ 170 years ago (Herron et 

al., 2002), though long-term data show that aridity has been increasing in the Australian 

continent for the last 500 ka (Bowler, 1978). 

        Anthropogenic  

• The first settlers and livestock grazing arrived in the area around 1840 AD and the 

flows that originally reached the MM have been diverted in particular after the 

construction of Burrendong Dam in 1960 and Windamere Dam in the early 1980s; 
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• Land-use has been converted to agriculture by clearing natural vegetation, creation 

of artificial channels, and the use of marsh land to cultivate annual crops (cotton). The 

diverted water is subject to greater evaporation and thus less water reaches the marshes 

when flooding occurs (Kingsford and Thomas, 1995; Kingsford and Johnson, 1998; 

Roshier et al., 2002); 

•  The effect of the use of fertilisers and pesticides in the cotton farming areas 

adjacent to the marshes, which may have adverse consequences on the health of any 

waterbody and the biota living within, has barely been explored (Brock, 1998); and, 

• Increasing global temperatures by human activities (increased production of CO2), 

produces irregular seasonal patterns, irregular periods of drought/floods, which increases 

the pressure on agricultural methods and threatens the MM.   

        Previous studies of the MM are mainly based on contemporary and recorded data and 

can only indicate the recent environmental history (past ~170 years) (e.g. Brock, 1998; 

Kingsford and Johnson, 1998; Kingsford, 2000; Roshier et al., 2002; Kingsford and Auld, 

2003; Kingsford and Auld, 2005; Hogendyk, 2007). This is the timescale when human 

activities have had a greater impact on the natural environment. In order to obtain 

information on the natural long-term variability and response mechanisms of the 

environment beyond historically documented records and to compare the anthropogenic 

and natural processes of environmental change in the marshes, palaeoenvironmental data 

are of great importance. However, there are very few studies on the palaeoenvironment of 

the Macquarie Marshes and these are restricted to the southern marshes and are largely 

geomorphological (Ralph, 2008; Yonge and Hesse, 2009; Ralph and Hesse, 2010; Ralph 

et al., 2011).  
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        The work in this thesis complements the work of a multidisciplinary team led by 

Prof. Allan Chivas and Dr Adriana García, dedicated to reconstruct the past ecology of the 

MM (using proxies such as macrophytes, charophytes, diatoms, pollen, charcoal, dating, 

geochemistry and geomorphology). The broader objective is to reconstruct the past 

environments and disentangle natural versus anthropogenically induced changes that 

occurred in the area in particular after European arrival in order to contribute information 

for the preservation and management of the MM. Results in this area are presented in a 

paper published in Aquatic Botany (Appendix B).  

 

1.2 Aims  

        This thesis seeks  

 To obtain an accurate chronology of sediment cores using dating techniques (e.g. 

optically stimulated luminescence dating) not previously applied to the northern MM; 

 To investigate the proxies of lithology, sedimentology, mineralogy and geochemistry 

(in particular organic geochemical proxies) and to choose the most appropriate 

palaeoecological proxies for tracing past vegetation types, waterbird colonial events, 

fires and chemical pollution; and,  

 To assemble the experimental results from both chronology and mainly organic 

geochemistry to elucidate the history of the MM concerning 

－ the frequency of drought/flood cycles 

－ the changes in water level 

－ the changes of biodiversity (i.e. variation of wetland vegetation, establishment and 

decline of waterbird colonies ) with focus on the vegetation 

－ the effect of land clearing and farming 
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－ the impact of anthropogenic pollution  

        The work will provide a palaeoenvironmental reconstruction and explore the changes 

between the undisturbed and modern environments (i.e. diversion of water for irrigation, 

deforestation due to large-scale cotton farming, etc.). 

 

1.3 Research approach 

        Chapter 2 summarises the studies of the MM in the fields of geology and hydrology, 

ecology and planning, as well as its history. It presents an overall picture of the Macquarie 

Marshes and their significance as a wetland ecosystem with diversity of flora and fauna. 

Most importantly, it reviews the techniques applied to study environmental change in the 

MM and raises the issues that this thesis will try to address with techniques not previously 

applied to the marshes.  

        Chapter 3 begins with the sampling campaign and methods. It describes the location, 

documented history and contemporary environment (including geological setting, 

vegetation types, etc.) of the sampling sites. A preliminary study of the lithology, 

sedimentology, mineralogy and general geochemistry of the sediment samples is also 

presented in this chapter. In addition, the isotope chemistry of modern plants was studied 

as references to the sediment samples. These data offer general information on: the main 

source of the sediments (in particular the source of organic matter), the difference between 

the northern and southern marshes ecosystems, how this wetland ecosystem has responded 

to environmental changes and how such processes have been recorded in the sediments. 

The physical and geochemical proxies were also assessed for their robustness to indicate 

environmental change and for their application as palaeoecological proxies.  
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        Accurate and reliable chronology has always been a key element in 

palaeoenvironmental studies. Chapter 4 explores the application of optically stimulated 

luminescence dating technology to date the MM sediments with a broad age span and 

provide chronological continuity. Detailed information concerning sample preparation, 

instrumental analysis and age calculation using several age models are presented in this 

chapter.  

        Chapter 5 tests and extends the findings of Chapter 3 by applying specific organic 

markers to obtain more information on the organic sources and assesses their contributions. 

Specific organic compounds indicative of the biota (i.e. wetland vegetation, colonial 

waterbirds) were sought in modern plants and surface sediment samples and accordingly 

applied to sediment cores for a palaeoenvironmental reconstruction of the MM. Some 

organic compounds indicative of pollution sources were also analysed to assess the 

contamination (if any) in this Nature Reserve wetland.  

        Chapter 6 summarises and discusses the findings from Chapters 3, 4 and 5. 

Suggestions for future work are also presented in this chapter. 
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CHAPTER 2  REGIONAL SETTING AND EVOLUTION 

 

This chapter reviews previous studies concerning the Macquarie Marshes in the fields of 

geology and hydrology, ecology and planning, as well as their history. The review 

presents a picture of the Macquarie Marshes and attributes, and their significance as a 

wetland ecosystem with diversity of flora and fauna.  

 

2.1 Geomorphic setting  

The Macquarie Marshes (Figure 2.1, Page 9) are a wetland covering more than 220,000 ha 

in north-west NSW within the lower Macquarie River catchment. They are at the lower 

end of an alluvial fan system -- Macquarie River system which rises above Bathurst in the 

Central Tablelands area. These Marshes are one of the largest floodplain wetlands in 

Australia. 

      The Macquarie Marshes were formed as a result of complete breakdown of the 

Macquarie River, influenced by the degree of topographic confinement produced by 

surrounding palaeoalluvial ridges (Yonge and Hesse, 2009). The discontinuous drainage 

networks occur in two well-defined areas (known as the northern and southern Macquarie 

Marshes) that lie in sequence and are joined by short natural and reformed channelised 

reaches (Yonge and Hesse, 2009). The geomorphology of the marshes shows a complex 

array of divergent, reticulate and convergent channels with a mosaic of perennial, 

intermittent and ephemeral wetlands which are dominated by variable overbank flows and 

depositional processes (Ralph, 2008; Yonge and Hesse, 2009; Ralph and Hesse, 2010; 

Kobayashi et al., 2011). The inundation pattern produced various landforms including 
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braided swamps, lagoons, channel country and floodplains, which in turn influence the 

inundation patterns (Paijmans, 1981).  
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Figure 2.1.  Map of the Macquarie Marshes and Macquarie River catchments. Inset map shows the location within Australia and New 

South Wales. (sourced from http://en.wikipedia.org/wiki/Macquarie_River)
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This type of floodplain wetland system undergoes geomorphic and ecological changes that 

are both directly and indirectly related to natural cycles of flood and drought, and 

anthropogenic disturbance (Kingsford, 2000; Yonge and Hesse, 2009; Ralph et al., 2011). 

In particular, avulsion and channel breakdown are driven by the characteristic nature of 

the dense in-channel vegetation which chokes the streams and leads to in-channel 

aggradation, reduced fluvial efficiency and frequent overbank flows (Yonge and Hesse, 

2009). Geomorphic changes are usually manifest through processes of sediment erosion, 

reworking and deposition, leading to channel and floodplain evolution that affects 

flooding and drives wetland vegetation and habitat changes (Ralph et al., 2011). Ralph and 

Hesse (2010) investigated the downstream hydrogeomorphic changes in the Macquarie 

Marshes and found that channel width-to-depth ratio decreases in the middle reaches and 

then increases, while channel sinuosity increases until immediately upstream of the main 

wetlands and rapidly declines as straight channels enter areas of extensive channel 

breakdown. The same authors also found that floodplain width is greatest on the alluvial 

plain, allowing a broader area of floodplain wetlands to develop and that floodplain 

connection is greatest where floodouts and wetlands form in the marshes.  

 

2.2 Climatic setting  

The Macquarie Marshes are located in a semi-arid area with low rainfall, hot summers and 

cold winters (Wen et al., 2012). The median precipitation for the Macquarie Marshes is 

300-400 mm a-1 (Kingsford and Thomas, 1995), less than half that of the upper catchment 

of the Macquarie River (965 mm a-1 Bureau of Meteorology 2007). This relatively low 

rainfall is coupled with a high evaporation rate of 1800 mm a-1 which reduces inputs to the 

lower Macquarie River and favours sediment deposition (Kingsford and Auld, 2003; 
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Yonge and Hesse, 2009). The temperatures in the Macquarie Marshes recorded in the 

Water Resources Commission‘s report in 1979 range from 4 °C (average daily minimum 

temperature) in winter to 35 °C (average daily maximum temperature) in summer 

(Kingsford and Thomas, 1995). 

      On the larger timescale, the interannual and interdecadal climate trends in the 

Macquarie Marshes are strongly related to El Niño Southern Oscillation (ENSO) and 

Interdecadal Pacific Oscillation (IPO), and affect the seasonal and annual variability of 

river discharge (Ralph and Hesse, 2010).   

        

2.3 Hydrologic setting and changes 

The Macquarie Marshes depend on water from the Macquarie River, not on local rainfall 

(Kingsford and Thomas, 1995). The dominant force shaping the current marshes has been 

the history of water flow (Brock, 1998). However numerous studies show that flows to the 

marshes have been severely impacted by the construction of Burrendong Dam (storage 

capacity: 1,188 × 109 L) above Wellington in 1967 and again since the construction of 

Windamere Dam (storage capacity: 368 × 109 L) near Wellington in 1984 (Brock, 1998; 

Kingsford and Auld, 2005). Over a 60-year period, annual average flows to the wetlands 

have decreased by 200,000 ML (ML = 1 million litres = ―Olympic-size swimming pool‖) 

(Finkel and Normile, 2012). Thomas et al. (2011) applied remote sensing techniques to 

map inundated areas and found that the marshes became drier between 1979 and 2006, 

despite no corresponding change in annual catchment or local rainfall. The study also 

showed that the inundation patterns are highly spatially variable with high frequency of 

inundation occurring mostly in the northern region of the marshes (Thomas et al., 2011).  
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            The flood regime is also the dominant force influencing the marshes‘ watertable 

(Brock, 1998). Brereton (1994) established that the watertable varies from 2-3 m below 

the surface in near permanent wetlands, and up to 5-7 m in ephemeral wetlands inundated 

only in large floods.  

 

2.4 Ecological setting and changes 

The Macquarie Marshes are typical inland floodplain wetlands that when flooded increase 

the concentration of inorganic nutrients and dissolved organic matter, and the abundance 

of plankton in the water column (Robertson et al., 1999; Wetzel, 2001; Kobayashi et al., 

2009). Thus they support a diverse aquatic biota (Kingsford and Thomas, 1995; 

Kingsford, 2000). During dry periods, inundated areas of the floodplains diminish and 

flow in the river channels may be insufficient to inundate the floodplain (Kobayashi et al., 

2011). An ecological modelling study by Wen et al. (2012) also demonstrated that both 

rainfall and inflow, which were projected to be more intense under potential future climate 

change, were significantly positively related to ecosystem primary productivity. 

Kobayashi et al. (2011) conducted a field survey to investigate the longitudinal spatial 

patterns of variation in ecological conditions in channels of the large floodplain system of 

the Macquarie Marshes. They found that some parameters tended to increase in a 

downstream direction. These parameters included conductivity, total nitrogen, total 

phosphorus, dissolved reactive phosphorus, dissolved silica, dissolved organic carbon, 

dissolved organic nitrogen, dissolved organic phosphorus and abundance of planktonic 

bacteria. 

           Despite water release from the major dams since the 1980s, the ecological recovery 

of the marshes could take decades. The Murray-Darling Basin Authority (MDBA)‘s water 
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purchases and infrastructure upgrades have returned 1,327 × 109 L to the rivers, 

rejuvenating parched wetland systems. The numbers of nesting waterfowl species have 

recovered, but Ruppia tuberosa, a key aquatic grass species that fish and waterfowl feed 

upon, has disappeared. Soil acidification still affects wetlands and farm fields (Finkel and 

Normile, 2012).  

 

2.4.1 Soils and water quality  

According to Brock (1998), the soil types found in the Macquarie Marshes include: 

 Red-brown earths located on the western side of the marshes, restricted to higher 

ground, and associated with prior streams;  

 Grey-brown soils of heavy texture on the eastern side;   

 Black organic loam over a grey clay (150 mm), grey clay with ferruginous mottles (200 

mm) and pisolithic ironstone gravel at 450 mm, with watertable at 600 mm; they are 

usually hydromorphic soils with significant gilgai formation, linear cracks and crab-

holes; and,  

 Yellow prairie soils with red-brown earths on the elevated areas with a soluble surface 

salt; they are well documented in some areas of river red gum and lignum. 

      The study also pointed out the scalding present outside the main wetland areas owing 

to removal of topsoil and exposure of heavy clay subsoil, especially on the red-brown 

earths (Brock, 1998). The two main causes are thought to be 1) the drought that occurred 

from 1894 to the early 1900s, when stock were concentrated around the remaining areas of 

water supply; 2) the rabbit plagues of the 1900s and 1950s. 

        The geomorphic study in the southern marshes (Yonge and Hesse, 2009) found a 

subtle reduction in suspended sediment concentration which occurs in the reach where 
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reeds (Phragmites australis) first occur across the entire channel and about 98 % of the 

total suspended sediment is deposited at the channel breakdown. These channel and 

floodplain sediments consist almost entirely of muds (Yonge and Hesse, 2009). The study 

by Ralph (2008) found a general upward fining textural sequence (70 – 90 % mud to >90 

% mud) in the floodplain deposits and a subtle decrease in sediment calibre occurs away 

from the levees; an increase in sand content (up to 40 %) also occurs in the floodout zone 

and lower reaches of the marsh, where distinct sandy layers reflect flood-pulse deposition.  

        The study by Ralph (2008) also found that sediments in the floodout zone have the 

greatest radionuclide inventories, indicating rapid recent sedimentation (0.4 to 11 mm a-1); 

relatively high sedimentation rates (2.9 to 5.3 mm a-1) also occur further upstream on the 

levees in Monkeygar Marsh, while the distal floodplain has lower rates  

(0.8 to 3.6 mm a-1).  

       A recent survey of sulfidic sediments in the Murray-Darling Basin reported that the 

acidity and potential sulfidic acidity of the sediments in the MM were relatively low 

compared to other sampling sites in the Murray-Darling Basin; and the sediments had 

relatively high acid-neutralising capacity, indicating net acidification would be prevented 

even if the sediments were oxidised (Hall et al., 2006).  

       In the review of Brock (1998), the author stated that by 1998 there had only been 

minor problems with general water quality: 1) the pesticide endosulfan (used extensively 

on cotton crops) had been detected in the upper areas of marshes; 2) turbidity and 

sediment levels had been high in some instances, particularly with small flows which were 

unable to spread out of channels to receive the full filtering effects of the wetland; 3) high 

levels of total phosphorus, total nitrogen and copper at Bell‘s Bridge (Lower Macquarie 
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River), mainly when the northern marshes Bypass Channel was open;  4) blue-green algae 

were present on one occasion near Carinda, but a bloom did not occur.  

 

2.4.2 Vegetation 

The change in flood regime has been the main cause for changes to vegetation complexes 

(Paijmans, 1981). Frequently flooded wetlands are characterised by the semi-permanent 

wetland vegetation communities of river red gum (Eucalyptus camaldulensis) forest and 

woodland, common reed (Phragmites australis), cumbungi (Typha orientalis), water 

couch (Paspalum distichum), lignum (Muehlenbeckia florulenta) and river cooba (Acacia 

stenophylla) (Paijmans, 1981; Jenkins, 2005; Shelly, 2005). Where there is less frequent 

flooding, vegetation communities are characterised by coolibah (E. coolibah) and black 

box (Eucalyptus largiflorens) woodlands, and myall (Acacia pendula) and grasslands are 

distributed at high elevations on the floodplain (Paijmans, 1981; Jenkins, 2005; Shelly, 

2005).  

         Field investigation and remote sensing studies show river red gum (Eucalyptus 

camaldulensis) forests and woodlands historically received flooding every 1-1.5 years, 

and their distribution coincided with the northern marshes which is the wettest part and 

flooded 20 times over the 28 years period (1976-2006) (Shelly, 2005; Thomas et al., 

2011). Common reed (Phragmites australis), a perennial emergent macrophyte relying on 

frequent flooding, is also found to survive prolonged drought if the soil moisture is 

retained (Thomas et al., 2011). 

        The size of the marshes varies depending on the inundated area, with estimates 

ranging from 200,000 ha (the current size under water resource development and without 

significant flooding) to up to 1,280,000 ha during the 1955 flood event (one of the largest 
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floods on record and which pre-dated significant water resource developments in the area) 

(Kingsford and Thomas, 1995; Morrison et al., 2011). In general, the extent and condition 

of semi-permanent wetland in the Macquarie Marshes have been declining since the 1930s 

(DECC, 2009).  

          

2.4.3 Fauna 

Wetlands provide habitat, food and breeding areas for insects, crustaceans, amphibians, 

reptiles, fish, birds and mammals. The Macquarie Marshes have been long recognised for 

their significance for waterbirds. Of all the fauna, colonial nesting species are most 

prominent and have been the most studied.  

        The marshes are home to 200 bird species including threatened species of brolga, 

Australasian bittern, blue-billed duck, painted snipe, magpie goose and freckled duck. 

Breeding sites are provided for the straw-necked ibis, glossy ibis, Australian white ibis, 

intermediate egret and rufous night heron (Kingsford and Thomas, 1995; Kingsford and 

Johnson, 1998; Kingsford, 2000; Kingsford and Auld, 2003). The MM have the greatest 

diversity of wetland bird species and the highest nest density rates in Australia (Kingsford 

and Auld, 2005). Seventy-six waterbird species have been recorded in the marshes, 42 of 

which have been recorded breeding (DECC, 2009), with between 10,000 and 300,000 

waterbirds relying on the marshes each season (Kingsford and Thomas, 1995) for their 

breeding, feeding and habitat requirements. These birds include the glossy ibis Plegadis 

falcinellus, Australian white ibis Threskiornis mollucca, straw-necked Ibis Threskiornis 

spinicollis, intermediate egret Ardea intermedia and rufous night heron Nycticorax 

caledonicus (Kingsford and Johnson, 1998). 
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         The study by Kingsford and Auld (2005) found the minimum requirement for 

colonially nesting waterbirds to breed successfully is flooding of sufficient volume and 

duration for colony sites and feeding areas to be inundated for a minimum of four to five 

months between August and March of the following year. They also found colonial 

waterbird breeding is triggered by flows above 200,000 ML (Kingsford and Auld, 2005). 

These flows are also critical for both maintaining wetland vegetation and for completion 

of life cycles of aquatic invertebrates (DECC, 2009). Other factors include timing of 

flows, water quality and changes to the extent of flooding of colonially-nesting waterbirds 

in the marshes (Kingsford, 2000). When the marshes dry birds travel north and stay away 

until flooding reoccurs.  

         According to the 2009 draft on ―Macquarie Marshes Adaptive Environmental 

Management Plan‖, between 1986 and 2001, colonially nesting species bred in ten years at 

14 sites throughout the marshes; by 2008 several of the known breeding sites were 

considered to be in poor condition due to lack of water and grazing pressure; since 2001, 

only one breeding event of colonially nesting waterbirds occurred in the marshes; in 2008, 

a relatively small flood supported successful nesting and about 2,000 pairs of egrets in 

river red gum forest on the Bora Channel. This was the first record of colonially nesting 

waterbirds breeding at only a single location in the marshes. Between 1883 and 1993 the 

number of species and density of waterbirds on the northern marshes declined as a result 

of decreased flooding (Kingsford and Thomas, 1995). The essential habitats and nest 

platforms for waterbird colonies, such as common reed and river coolliba community, 

were found in poor condition in the marshes (DECC, 2009).  

          From 2009 to 2013, the Macquarie River has flooded, the cool and clean north-

flowing water favours the growth of red fern Azolla, Typha sp., lignum, yellow-flowering 
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water primrose and Ranunculus sp., which then provide habitats for turtles, fish, ducks and 

grebes, ibis, brolgas, swamphens, pelicans and herons (Eastwood, 2013).  

  

2.5 Palaeoevolution  

Study of the alluvial plain upon which Macquarie Marshes are located found that the plain 

is predominately Quaternary in age and is built on up to 100 m of Neogene sediments 

(Watkins and Meakin, 1996). Geomorphic evidence on the surface of the plain indicates 

numerous phases of palaeochannel activity and the dynamic history of changing fluvial 

styles throughout the recent geological past (Yonge and Hesse, 2009). Tomkins and Hesse 

(2004) found three major changes in the depositional regime of the Macquarie River 

valley: First, erosion of the valley basement in the Late Miocene was followed by (and 

possibly synchronous with) deposition of a basal clay and sand unit. Second, the valley 

was filled with a wedge of sediments containing abundant gravel and sand during the 

Pliocene and the Pleistocene valley incision is mainly due to climate change to drier 

conditions. Third, the older gravelly unit was eroded and reworked in the Quaternary and 

a sandy clay unit, which forms the modern floodplain, was deposited. This finding 

provides a reference for studying the depositional history of the sediments in the 

Macquarie Marshes. There is no information about the palaeoenvironment of the 

Macquarie Marshes prior to the Neogene. The main areas of marshes were thought to have 

formed between 6 and 8 ka ago (Yonge and Hesse, 2009) as a result of the 

geomorphological, topographic and climatic controls of the area and which have persisted 

to the present (Ralph et al., 2011).            

         Because the Macquarie Marshes are so variable, it is difficult to simply draw a 

baseline at a particular time to compare with the existing conditions. From previous 
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studies, it is generally considered that the marshes have been in their present location and 

have maintained their general wetland state for the past 8 to 6 ka, and significant evidence 

for landscape change commonly refers to pre-European and post-European periods 

(Ralph, 2008; Yonge and Hesse, 2009). Grazing of domestic animals and establishment of 

cattle stations began in the 1830s (DECC, 2009). Although irrigated agriculture began in 

the southern marshes in the 1840s, it was not until the 1950s when large-scale irrigation 

began (DECC, 2009). Starting from the 1950s, dams and irrigation channels were built 

one after another and the free-flowing waterways were transformed into a highly managed 

system. According to a 2008 study by the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO): before European arrival in the 1800s, more than 40 % of 

the rainwater (about 12,200 billion litres) entered the system annually;  in 2008 the flow in 

the river‘s lower reaches had dropped to nearly one-third of historical levels (about 4,700 

billion litres). The decade-long Millennium Drought starting in the late 1990s exacerbated 

the water shortage.      

         Geomorphological evidence shows new natural marsh channels are initiated by 

avulsion and incision into the floodplain surface and they then gradually aggrade until a 

new avulsion results in abandonment, typically over an approximately 100-year time scale 

(Ralph, 2008; Yonge and Hesse, 2009). These conditions favour the growth of dense 

riparian and aquatic vegetation around and within the channels, in turn contributing to 

channel constriction and breakdown (Ralph et al., 2011).  

         Yonge and Hesse (2009) found that average accumulation rates for the floodplain 

sediments are low and range from 0.18 mm a-1 to 2.92 mm a-1 for the last 5,000 years; 

while over the last 200 years, they increase to between 1.44 mm a-1 and 4.39 mm a-1. The 

ages obtained from the ‗Terminus Marshes‘ core (southern marshes) ranged from ~ 59 ka 
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at 350 cm below the surface (within the late Pleistocene palaeochannel sediments) to ~ 

540 cal. years BP at just 20 cm deep; the estimate of the long-term sedimentation rate at 

this site is ~ 0.32 mm a-1 for the last ~ 4.9 ka, while the accretion rate over the last ~ 540 

years is around 0.37 mm a-1 (Ralph et al., 2011). Data from another core on lower 

Monkeygar Creek shows the estimated accretion rate for the last ~ 149 years is ~ 4.09 mm 

a-1 and ~ 5.56 mm a-1 for the last ~ 54 years; however, the authors think the age for this 

core was unreliable as it contained rare sand grains for OSL and no measurable 

unsupported 210Pb and 137Cs (Ralph et al., 2011). The study by Ralph (2008) found that the 

mean contemporary sedimentation rate near the main channel in the southern marshes, in 

particular those in the floodout zone, is around an order of magnitude greater than the 

longer-term floodplain sedimentation rates (~ 0.18 to 2.92 mm a-1) found in the system.  

         A pilot study was carried out using palaeoecological techniques to investigate 

colonial waterbird breeding events in the marshes (Cull, 2007). Assuming that colonial 

waterbird breeding within the marshes would elevate the nutrient levels of the ambient 

soil, the study focused on concentrations of phosphorus and bulk organic matter in 

pigments, but the results were not conclusive. The author suggested nutrients such as bulk 

organic matter and phosphorus alone, as preserved in the sedimentology record, was not 

an ideal and reliable technique to verify past breeding populations. 

          The first evidence of significant changes in wetland communities and ecological 

successions directly related to the geomorphic processes of avulsion and floodplain 

evolution in Macquarie Marshes is a multi-proxy study by Ralph et al. (2011) restricted to 

the southern marshes. It indicates the avulsion in the southern Macquarie Marshes caused 

the formation of a major new channel (Monkeygar Creek) and the abandonment of a reach 

of the Macquarie River in the last 200 years. The study also found that the floodplain near 
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lower Monkeygar Creek was only periodically inundated prior to avulsion (before ~ 149 

years ago) and experienced disturbance, with rapid accretion and ecological succession 

during the avulsion. This part of the floodplain became a substantial wetland, dominated 

by algae (and/or permanent charophytes and diatoms) and submerged macrophytes, due to 

a more consistent flood regime following the avulsion. The contemporary marsh on lower 

Monkeygar Creek has evolved in the last ~ 54 years into a shallower, less frequently 

flooded wetland, probably due to changes in inundation caused by rapid local floodplain 

accretion (~ 0.4 to 0. 6 cm a-1) and possibly river regulation (Ralph et al., 2011).  

  

2.6 Management  

In order to preserve key ecological assets, the Macquarie Marshes need to have a 

permanent 125 ML environmental water allocation when upstream storages are full 

(Morrison et al., 2011). However, this allocation is adjusted downwards according to 

upstream storage volumes and the marshes rarely receive the maximum allocation 

(Morrison et al., 2011). To supplement this continuing allocation, the New South Wales 

State and Federal governments periodically purchase environmental water to supplement 

these flows particularly by attempting to ‗top-up‘ natural events to add extra water to the 

system (Morrison et al., 2011).  These attempts aim to reach areas that have not been 

inundated for significant periods of time and maintain water levels for sufficient duration 

to achieve successful waterbird breeding events (Morrison et al., 2011).  

        The ‗buyback of water‘ started in the 1980s and in 1980, the first environmental flow 

release occurred. By 1986, it was clear that a formalised environmental management plan 

focusing on water for the Macquarie Marshes was essential (DWR and NPWS, 1986). 

However, by the mid-1990s, this plan was shown to be inadequate (DLWC, 2000) and a 
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new water management plan was developed (DLWC and NPWS, 1996). The Macquarie-

Cudgegong Water Sharing Plan was developed under the NSW Water Management Act 

2000 and has identified the need for 160,000 ML of environmental flow below 

Burrendong Dam. However, all the water is only available when there is 100 % allocation 

to water licences in the system. Between November 2005 and January 2006, the 

Macquarie Marshes received an environmental water release of approximately 84,000 ML, 

which was triggered by rainfall in the upper catchment and a flood in the Bell River below 

Burrendong Dam (Driver and Knight, 2007). It has been estimated that a total area of over 

24,600 ha of the marshes was inundated from this environmental water release event. 

However, after January 2006, the flow to the marshes declined again. In June 2010, the 

Wentworth Group of Concerned Scientists, called for water flows to be returned to two-

thirds of historical levels. In response to this, the Murray-Darling Basin Authority 

(MDBA) issued a plan in November 2010 to return 3,200 × 109 L to the Murray-Darling 

system by 2024.  

 

2.7 Summary  

Previous studies of the Macquarie Marshes mainly focus on the fields of geology (Brock, 

1998), biological proxies (Kingsford and Thomas, 1995; Roshier et al., 2002; Ralph et al., 

2011), history (Kingsford and Thomas, 1995; Hogendyk, 2007), management and 

planning (Kingsford and Johnson, 1998; Kingsford, 2000; Lemly et al., 2000; Roshier et 

al., 2002; Kingsford and Auld, 2005; Ren and Kingsford, 2011).  

The techniques used have been mainly remote sensing, hydrology, geomorphology, 

sedimentology, field surveys and statistically modelling calculations using data based on 

aerial surveys (Kobayashi et al., 2011; Ren and Kingsford, 2011; Wen et al., 2012) and 
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biological proxies such as charophytes, diatoms and invertebrates (Ralph et al., 2011). 

Based on the data available, most of these studies can only indicate a history based on less 

than the past 100 years. Very few studies have considered the palaeoenvironment of the 

marshes (Cull, 2007; Ralph, 2008; Yonge and Hesse, 2009; Ralph and Hesse, 2010; Ralph 

et al., 2011) and these mainly focus on the geomorphology of the southern marshes.  

         This thesis attempts to obtain more information on palaeoenvironments in the 

Macquarie Marshes in particular by filling the gap of the northern marshes, which are 

better preserved and have been more active since the late Quaternary. One of the foci is to 

trace bio-markers related to vegetation and waterbird guano, whose abundance is sensitive 

to both climate change and human impact.  Characterising the complex and interactive 

effects of palaeoclimatic and anthropogenic changes requires multi-proxy methods, 

including proxies sensitive to particular changes. 
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CHAPTER 3  SAMPLING AND MULTI-PROXY STUDIES OF THE 

MACQUARIE MARSHES 

 

This chapter discusses the sampling campaign and methods, as well as lithology, 

sedimentology, mineralogy and general geochemistry of the samples as background to 

study the Macquarie Marshes. The numerical dates for sediment cores mentioned here are 

discussed in more detail in Chapter 4. 

 

3.1 Sampling campaign and methods 

A preliminary fieldtrip to the Macquarie Marshes was conducted by Professor Allan 

Chivas and Dr Adriana García in June 2007. Another two fieldtrips, in which the author 

participated, were conducted in Spring season on 2 to 7 November 2008 and 23 to 27 

November 2009, at the peak of an 11-year drought. Even in the Nature Reserve marshes, 

hardly any wetlands could be seen. The dominant landscapes were drylands of cracked 

and broken earth, littered with the blanched shells of freshwater mussels and bordered by 

the skeletons of river red gums whose dead branches no longer supported the nests of 

migrating birds or sheltered native fish. Shells of molluscs were found on some of the dry 

river beds. Though it was supposed to be breeding season for most of the waterbirds, none 

of the common colonial waterbird species was observed. In general, the North Reserve 

was better preserved than the South Reserve with more water and vegetation coverage.    

 

3.1.1 Sampling sites 

During the fieldtrips, 25 cores from 7 sites covering the North and South Reserve areas 

were collected (Figure 3.1, Page 26). Further information for each sampling site is 
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presented in Table 3.1 (Page 27) and representative photographs of the coring procedures 

are in Figures 3.2, 3.3 and 3.4 (Page 31 and 32).  

         The sampling sites in southern marshes are along Monkeygar Creek and its wetland 

system, which comprises the central part of the southern marshes. In this system, large 

reed beds (Phragmites australis) comprise 15 % of the area and chenopod and grassland 

plains dominate the remainder (DLWC, 1996). Degraded river red gum woodland is 

evident in the north-western component of this system and coolibah and poplar box occur 

in the north-east (DLWC, 1996). During 1992-1996 (a relatively dry period), these 

wetlands were severely degraded, primarily due to the erosion occurring in Monkeygar 

Creek and the formation of a new channel.  

        The sampling sites in the northern marshes are located near the centre of its wetland 

where reed beds (Phragmites australis) occur. Mixed marsh and Typha sp. dominate its 

eastern edge, close to the northern Marsh Bypass Channel (DLWC, 1996). Surrounding 

this reedbed are large areas of water couch, river red gum forest, woodland and associated 

patches of coolibah (DLWC, 1996). A stand of black box and poplar box occurs in the 

north-eastern corner (DLWC, 1996). The coring sites chosen were mostly in water 

courses, lagoons or floodplains that were close to the main water channel (to permit 

recovery of near-continuous sedimentation) and notionally organic-rich to facilitate 

organic geochemical analysis. However, such strategy may reduce the amount of quartz 

available for OSL dating (see Chapter 4). 

      At each sampling site, duplicate cores were taken to ensure sufficient material for 

investigation and to allow one core for OSL dating and which needed to be opened in a 

darkened laboratory. Owing to the dry-soil conditions at the time of sampling, most cores 

were only 50-100 cm long; the longest (at 190.5 cm) was from Loudens Lagoon (LOLA).   
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Figure 3.1. Map of the Macquarie Marshes and the sampling sites. (The three shaded 

areas are Nature Reserve wetlands.) 
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Table 3.1  

General information on samples collected from fieldtrips to Macquarie Marshes (2007-2009). 

Sites and Descriptions 
Sample 
Name 

GPS Location Core Length  
(cm) 

Core Depth 
(cm) 

Surface sediments 
/modern samples Lat.  Long. Alt. (m) 

Southern Marshes South Lagoon 
SL1-1 S 30º56.436’ E 147º33.434’ 149 

82 100 Collected profile samples from surface (SL-
C1) to 50 cm.  SL1-2 155 106 

Southern Marshes Monkeygar Creek 
on the flood plain 

MC1-1 S 30º54.349’ E 147º32.298’ 147 
79 102 Collected profile samples from surface 

(MC-C6) to 53 cm.  MC1-2 75 122 

Southern Marshes Monkeygar Creek 
 in the creek 

MC1-3 S 30º54.444’ E 147º32.224’ 158 
55 63 

 
MC1-4 48 60 

Southern Marshes Monkeygar Creek 
east of the creek, end of Campsite Trail, small 
depression area, gastropods on the surface, some 
shells are brown (i.e. not fully bleached) 

CT-1 

S  30º55.454’ E 147º32.546’ 132 

112.5 112.5 
Collected two bags of surface soil (CT-S1), 
one bag of Phragmites leaves and one bag 
of Eucalyptus sp. leaves. 

CT-2 213 219 

CT-3 114.5 116.5 

Northern Marshes Bora channel 
east side of the lagoon, which has remained 
inundated for a long time 

MMB3 
S  

30° 41.082' 
E  

147° 31.259' 
 75 100 Collected surface sediments (MMB3-S1) 

Northern Marshes Longstowe Station 
private property, water depth 15-18 cm; used to be 
bird colony area 

LSW-1 
S 30º44.867’ E 147º31.923’ 150 

56 93 
Collected two bags of surface mud at this 
site (LSW-S1). LSW-2 52 83 

Northern Marshes Longstowe Station 
private property,water depth 90 cm 

LSW-3 
S 30º44.941’ E 147º31.817’ 157 

44 73 Collected surface mud (LSW-S3) and 
surface soil (LSW-S2) from the swamp 
bank under a red gum tree. 

LSW-4 60 82 

Northern Marshes Loudens Lagoon 
dry since 1990s (flooded early in 2008) 

LOLA-1 
S 30º43.957’ E 147º34.458’ 148 

190.5 210 Collected surface sediments from coring 
site (LOLA-S1), centre of lagoon (LOLA-
S2), and reed beds (LOLA-S3). 

LOLA-2 114  146 

Northern Marshes Loudens Lagoon 
the reeds (Phragmites australis) are dead and the 
surface is completely dry. 

LOLA-3 

S 30º43.958’ E 147º34.458’ 134 

70 122 

 LOLA-4 43  
LOLA-5 151 153 

Northern Marshes Loudens Lagoon 
2

nd
 lagoon to the west with green reeds (Phragmites 

australis) and wet areas, patches of water, one 
patch burnt 

2LOLA-1 

S 30º44.080’ E 147º33.810’  

111 152 

Collected one bag of sediment (2LOLA-
S1), one bag of Phragmites leaves, one 
bag of Ranunculus leaves with flowers. 

2LOLA-2 135 164 
2LOLA-3 73 112 

2LOLA-4 85 134 
2LOLA-5 79  

Northern Marshes Macquarie River 
Bank of a channel parallel to Macquarie River, small 
sections with little water 

MRI-1 
S 30º45.998’ E 147º31.721’ 146 

59.5 75.5 Collected surface sediment samples from 
river mud (MRI-S1), one from surface soil 
close to coring site (MRI-S2). 

MRI-2 79.5 87 
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      This thesis focuses on four core sites from the northern marshes (MMB3, LSW, LOLA 

and 2LOLA) because the sedimentary record was more complete and unaltered, 

palaeobiota from these low-lying areas or lagoons or marshy sites was better preserved, 

and have been important waterbird colonial sites for the last 30 years (Kingsford and 

Johnson, 1998).  

       Core site MMB3 is located in a lagoon, about 50 m east of the Bora Channel, in one 

of the few areas which is almost permanently inundated in the MM. This site used to 

provide woodland nesting vegetation and support bird colonies as large as 3,550 during 

the breeding season (Kingsford and Auld, 2003). At the time of sampling (June 2007), it 

was still inundated but breeding in this site had not occurred since 2000 (Kingsford and 

Auld, 2003), and which was also a small event. Core MMB3, which was 75 cm long and 

penetrated a depth of 100 cm was obtained from this site. 

      Core site LSW is located within Longstowe station, on the west side of the Bora 

Channel and south of MMB3. It used to be a bird colony site (Kingsford and Johnson, 

1998; Cull, 2007). At the time of sampling (November 2008), the water was relatively 

shallow (15-18 cm depth) (Figure 3.2); and it was difficult for the aquatic biota to survive. 

A small nesting event (egrets) was recorded in the previous months, and fruit-bats were 

present at the time of coring. LSW-1 and LSW-2 cores (56 and 52 cm long covering 93 

and 83 cm depth respectively) were duplicates obtained from a swampy area where the 

water depth was 15-18 cm. LSW-3 and LSW-4 cores (44 and 60 cm long covering 73 and 

82 cm depth respectively) were duplicates nearby where the water depth was 90 cm.  
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Figure 3.2. Site of LSW (Longstowe station, Northern MM). (Photo taken in 

November 2008) 

 

      Core site LOLA is at Loudens Lagoon, which is located away from the Bora Channel 

and close to the Bypass Channel. Despite being dry since the 1990s, a small flow reached 

it early in 2008 (Figure 3.3, left photo). One year later (November 2009), the reeds 

(Phragmites australis) were completely dry (Figure 3.3, right photo). LOLA-1 and 

LOLA-2 cores (190.5 and 114 cm long covering 210 and 146 cm depth respectively) were 

duplicates from the dry Loudens Lagoon which had been dry since 1990s and was flooded 

early in 2008. LOLA-3, LOLA-4 and LOLA-5 cores (70, 43 and 151 cm long covering 

122, 60 and 153 cm depth respectively) were triplicates from the other part of the dry 

Loudens Lagoon where the reeds (Phragmites australis) were dead and the surface was 

completely dry.  
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Figure 3.3.  Site of LOLA (Loudens Lagoon). (Left - photo taken in November 2008; 

Right – photo taken in November 2009) 

 

      The 2LOLA site was close to but just to the west of LOLA site, and is the second 

lagoon to the west of the Bypass Channel. At the time of sampling (November 2009) 

(Figure 3.4), the 2LOLA site was green with patches of water and reed beds (Phragmites 

australis). In this site, 5 cores were obtained from west of the Loudens Lagoon with green 

reeds (Phragmites australis) and wet areas. The core lengths are 111, 135, 73, 85, 79 cm 

individually, covering depths of 152, 164, 112, 134 and 90 cm, respectively.       

 

 

Figure 3.4. Site of 2LOLA (Loudens Lagoon, Northern MM). (Photo taken in 

November 2009) 
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3.1.2 Coring methods 

        In wet marshy areas, aluminium coring tubes were driven into the underlying 

sediments by sledge hammer to minimise disturbing the mud-water interface (Figure 3.5). 

On floodplains and dry lagoons, a hydraulic jack hammer was used for coring (Figure 3.6). 

However, due to the long-term drought in these areas, the tubes failed to penetrate more 

than 1 metre excepting at two sites (SL and LOLA). The ends of the coring tubes were 

sealed with plastic caps and black plastic bags to avoid exposure to light as some cores 

would be used for OSL dating.  

 

 

Figure 3.5.  Coring at the LSW site. (Photo taken in November 2008; impaling 

aluminium core barrel by sledge hammer and withdrawing core barrel with strap 

and horizontal bar) 
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Figure 3.6.  Coring at the LOLA site. (Photo taken in November 2008; Left photo - 

driving steel core barrel with hydraulic jack hammer; Right photos – extracting core 

barrel with (a) quadripod and block and tackle, (b) kangaroo jacks.) 

 

         Surface (0-5 cm) mud or soils (Table 3.1, Page 27) in and around the coring sites 

were collected in plastic sampling bags. They were used as ‗modern‘ reference material to 

which the older samples from the core sections could be compared. Such comparison 

allows the determination of molecular heritage from the organic sources and estimation of 

molecular biomarker degradation in the sediment. Sediment from the lowest barrel-layer 

of each core tube (‗core catcher‘) was also collected for reference. Samples of plants 

adapted to aquatic (emergent, submerged, littoral) and terrestrial habitats were collected in 

order to obtain and characterise their geochemical markers. Selected extant species 

included leaves and stems of river red gum (Eucalyptus sp.), reeds (Phragmites australis), 

cumbungi (Typha sp.), buttercup (Ranunculus sp.) and charophytes (Chara australis). 
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Bird guano was also sought but because bird colonies had not been present immediately 

before or at the time of sampling there were no deposits of guano (the fieldtrips were done 

at the peak of the 11-year drought).  

        Waterbodies within the northern and southern marshes were sampled for water 

quality and their aquatic biota was investigated, especially charophytes, ostracods, and 

molluscs.  

        After collection in the field, the samples were kept at 4 ºC, in the field and later at the 

University of Wollongong, principally in order to preserve organic compounds.  

        The cores were cut longitudinally using an electrical saw under subdued orange light 

in the laboratory. One half was sectioned in 2 cm intervals and subsamples used for the 

several proxies (biological, organic geochemistry, total organic carbon content (TOC), 

total nitrogen (TN), δ13Corg analysis, as well as for water-content, particle size analysis, 

mineralogy (X-ray diffraction, XRD) and elemental analysis (X-ray fluorescence, XRF). 

The other half was divided into 4-6 cm intervals (in order to obtain enough quartz) for 

optically stimulated luminescence (OSL) dating. The depth of the core profile was 

corrected for the compaction factor (core penetration depth divided by the recovered core 

length). Further details of the sample preparation methods and various analyses are 

presented in later sections/chapters. 

 

3.2 Sedimentology and geochemistry of the Macquarie Marshes 

The Macquarie Marshes are a complicated system with highly variable seasonal climate. 

Accordingly characterising palaeoclimatic and environmental changes requires multi-

proxy methods. The proxies presented in this chapter include lithology, sedimentology, 

mineralogy, total organic carbon, total nitrogen, C/N, δ13C, as well as some major- and 
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trace-element data. There is a focus on the proxies that are sensitive to climate and/or 

indicative of waterbird colonial events and vegetation changes.  

 

3.2.1 Lithology, sedimentology and mineralogy 

Visual inspection of the samples was conducted prior to other analysis to describe the 

colour (Munsell, 1971) and lithology of the samples and to identify significant changes 

such as the presence of laminations, or other changes along the cores.  

        The sediment particle size is one of the most commonly used physical characteristics 

of sediments. It is mainly controlled by the energy condition of a depositional system and 

can assist in estimating the transportation of sediments (e.g. flow velocity), the 

depositional environment into which the sediments settled (e.g. sedimentation rate, water 

depth of palaeo-lake) (e.g. Blatt et al., 1980; Yum et al., 2003; Hatfield et al., 2010) and 

also the past geomorphology of the region (e.g. Woodroffe, 2002). Sorting gives clues to 

the energy conditions of the transporting medium from which the sediment was deposited. 

As a general rule, the more reworking that is applied to sediments, the greater is their 

degree of sorting. Well-sorted sediments in a site are indicative of frequent or continuous 

occurrence of hydraulic flow conditions at the site. Conversely, poorly sorted sediments 

point to rare or intermittent occurrence of hydraulic flow (Visher, 1969; Håkanson and 

Jansson, 1983). Fluvial deposits are usually poorly sorted because the energy (velocity) in 

a stream varies with position in the stream and time (Håkanson and Jansson, 1983).  

        X-ray powder diffraction (XRD) is one of the analytical techniques used to identify 

and characterize the minerals present in a sediment sample (e.g. Loomis et al., 2011; Sun 

et al., 2011). The XRD data are usually interpreted with the geochemical data (i.e. major- 

and trace-element results) to trace the sediment sources, their transportation and 
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weathering (e.g. Vesk and Allaway, 1997; Loomis et al., 2011; Sun et al., 2011). In this 

thesis, XRD was used to identify and semi-quantify quartz and feldspar contents for OSL 

dating purposes (discussed in Chapter 4) and to obtain the mineral composition of selected 

sediments.  

 

3.2.1.1 Methodology 

The colour of the dry core sections was visually inspected by comparing to the Munsell 

(1971) soil color chart. 

      The moisture content was measured from an aliquot of the samples used for 

geochemical analysis. Each sample was weighed before and after drying in an 80 °C oven 

for 6-8 hours, then the water content of the samples was calculated by dividing the weight 

of water (the weight difference between the wet and dry sample) by the weight of wet 

sample.  

      The particle-size distribution of sediment samples from the cores was analysed at the 

University of Wollongong using a Malvern Mastersizer 2600/2000 which uses laser 

diffraction to determine various particle sizes. Approximately 1 g of sediment was added 

to a beaker containing 1L of water, mixed and dispersed ultrasonically before 

measurement. Duplicate analyses were performed to ensure that the reproducibility of 

results was less than 1 %. The proportions of sand (>63 μm), silt (3.9-63 μm) and clay 

(<3.9 μm) were recorded. The uniformity, asymmetry of the grain-size distribution and the 

shape of the grain-size frequency distribution were also reflected by the parameters of 

sorting (StdDev), skewness (G Skew) and kurtosis (Kurt). The surface sediment samples 

were sieved with a 500 μm mesh to remove plant debris before analysis by the 

Mastersizer.  
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     The minerals were identified by X-ray diffraction (XRD) using a Philips diffractometer 

in the School of Earth & Environmental Science, University of Wollongong. Thirteen 

surface sediment samples were analysed for their mineral composition and two cores 

(MMB3 and 2LOLA) were analysed to record mineralogical changes during the last 

1,000-year time span.  

       

3.2.1.2 Results 

3.2.1.2.1 Surface sediment samples 

The surface sediment samples were collected mostly from/around the coring sites from 

both southern and northern marshes (Table 3.1 on Page 27 and Table 3.2 on Page 38). 

Water content, particle size fractions, sorting, skewness and kurtosis are presented in 

Table 3.2. The surface sediment samples varied in colour depending on their organic 

content. Those with higher organic content appeared to be black and the colour was lighter 

when the organic content reduced. Most of these surface sediment samples contained plant 

debris.  

       The water content varied significantly from 4.69 % to 53.18 % depending on the 

environmental setting. Unsuprisingly, the water content was high at sites that were 

wet/inundated and decreased at sites that were dry. Sediments from sites where there was 

a vegetation canopy tended to retain more water than neighbouring exposed sites where 

the vegetation had died.  

        The most abundant (>50 %) particle size for most of the samples was silt. Two 

exemptions were samples from LOLA and MMB3 that were rich in sand. Samples 

collected from the watercourses (e.g. the MRI and LSW sites) tended to contain more clay 
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than sand while those collected from dry land (e.g. the LOLA and 2LOLA sites) were the 

opposite. The sorting parameters for all the surface sediment samples appeared to be close 

to 2, indicating they were all very poorly sorted.  The skewness parameters indicated that 

except for three samples (MRI-S1, LSW-S3 and MC-C6) that were near symmetrical (G 

Skew between +0.10 to -0.10), other samples were well skewed to various extents (G 

Skew between +0.30 to +0.10). The kurtosis parameters varied slightly from 0.83 to 1.06, 

indicating a bimodal grain size distribution. Unlike typical river sediments which are 

commonly moderately sorted, the sediments in the Macquarie Marshes were mostly 

poorly sorted indicating they had not been transported very far and little time had been 

involved in separating particles of various sizes. This explains why some of the quartz 

grains in the sediments were not fully-bleached before burial (see the OSL single-grain 

dating, Chapter 4).    

     The mineralogical results for the surface sediment samples are presented in Table 3.3 

(Page 39). There is little significant variation among the sites, indicating a likely similar 

source. Among them, quartz (mean 59 %), muscovite (mean 11 %), illite (mean 7.9 %) 

and kaolinite (mean 7.6 %) constitute more than 85 % while orthoclase (mean 4.3 %), 

albite (mean 3.3 %), biotite (mean 3.3 %), gypsum (mean 1.8 %) and traces of labradorite 

(mean 1.0 %), chlorite (mean 0.9 %), ankerite (mean 0.2 %), calcite (mean 0.1 %) and 

siderite (mean 0.1 %) varied from site to site. Quartz was more abundant than feldspar 

which was a great advantage for OSL dating.  
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Table 3.2  

Descriptions and some parameters of the surface sediments. 

 
 

  

Sample ID Location Sample Type Water (%) Sand (%) Silt (%) Clay (%)
Sorting          

(Std Dev)

Skewness 

(G Skew)

Kurtosis 

(Kurt)

MRI-S1 River mud 34.2 13.9 52.4 33.7 2.33 -0.08 0.86

MRI-S2 Surface soil close to coring site 10.1 10.4 64.9 24.8 2.09 0.21 0.85

LOLA-S1 Surface soil from dry land in lagoon centre 6.0 30.3 56.1 13.6 2.17 0.29 1.06

LOLA-S2 Soil near reed beds 13.8 37.6 51.4 11.1 2.22 0.27 1.03

LOLA-S3 Soil at coring site 5.5 46.7 44.9 8.4 2.18 0.24 1.04

2LOLA-S1 Surface sediment 33.3 18.0 56.2 25.9 2.34 0.12 0.83

MMB3-S1
Bora channel east of the lagoon which has remained 

inudated for a long time, northern MM
Surface sediment 60.9 51.9 36.9 11.2

LSW-S1 Coring site mud 35.7 15.3 64.2 20.5 2.09 0.15 0.93

LSW-S2 Soils from swamp bank under a red gum tree 24.5 22.4 57.1 20.5 2.13 0.25 0.86

LSW-S3 Surface sediment 53.2 11.9 62.4 25.7 2.10 0.05 0.89

MC-C6 Monkeygar Creek, southern MM Surface sediment 21.9 16.0 59.3 24.7 2.07 0.01 0.86

CT-S1
East side of Monkeygar Creek, end of Campsite 

Trail, southern MM
Surface sediment 4.7 17.6 63.8 18.7 2.15 0.19 0.98

SL-C1 South Lagoon, southern MM Surface sediment 16.2 16.2 67.7 16.2 1.98 0.37 1.04

Bank of a channel parallel to Macquarie River, 

northern MM

Loudens Lagoon, northern MM

Longstowe Station, northern MM
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Table 3.3 

The XRD-determined mineralogy of the surface sediments (Unit %). 

 

 

Sample ID Quartz Muscovite Illite 1
Kaolin, 

BISH12
Orthoclase 1 Biotite Albite(low) Gypsum Labradorite Chlorite Ankerite Calcite 1

Siderite 

(rhomb)

MRI-S1 65.8 9.7 6.2 6.2 7.7 1.0 2.9 0.0 0.5 0.0 0.0 0.0 0.0

MRI-S2 57.5 8.8 7.8 7.9 5.1 2.0 4.4 3.6 0.0 1.9 1.0 0.0 0.0

LOLA-S1 57.8 5.8 10.0 6.4 0.0 9.3 1.1 4.3 4.6 0.0 0.0 0.0 0.6

LOLA-S2 76.7 6.8 7.0 3.6 0.0 1.4 2.4 0.0 1.6 0.0 0.1 0.0 0.0

LOLA-S3 81.0 0.0 7.8 3.1 0.0 1.4 3.8 0.0 1.0 0.0 1.3 0.3 0.3

2LOLA-S1 44.4 17.4 10.2 9.3 5.6 3.5 2.4 2.2 1.9 2.7 0.0 0.3 0.0

MMB3-S1 67.6 12.7 5.0 6.0 5.3 0.7 1.8 0.0 0.8 0.0 0.0 0.0 0.0

LSW-S1 60.1 9.3 8.6 7.6 4.7 3.1 1.5 2.2 1.3 1.1 0.0 0.7 0.0

LSW-S2 50.2 12.9 8.7 9.3 5.3 4.0 2.6 3.8 0.2 3.0 0.2 0.0 0.0

LSW-S3 51.6 12.1 8.5 10.4 7.1 4.4 3.3 2.3 0.0 0.0 0.3 0.0 0.0

MC-C6 47.4 16.3 9.1 11.7 0.0 1.6 12.2 1.7 0.0 0.0 0.0 0.0 0.0

CT-S1 47.1 16.7 6.6 9.8 9.7 4.4 3.0 2.1 0.6 0.0 0.0 0.0 0.0

SL-C1 56.0 11.6 7.6 7.1 5.2 6.3 1.9 1.2 0.4 2.6 0.0 0.0 0.0
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3.2.1.2.2 Sediment cores 

The four cores studied (MMB3, LSW-2, LOLA-1 and 2LOLA-1) from the northern 

marshes varied slightly in their colour. Generally the change of colour in the cores was 

gradual. No laminations were found along the core profiles. It was observed that the 

deeper parts of the sediment cores were poorly sorted compared to their upper surface 

sediments. They were also finely skewed and showed bimodal particle size distributions.  

   The core dates (by OSL) are introduced in this section of Chapter 3 for convenience; 

the full details of their determinations are presented in Chapter 4.  

   As shown in Figure 3.7, the lower part of core MMB3 was pale yellow in colour 

between 100 cm and 96 cm. From 96 cm to 72 cm, the colour of the sediments gradually 

is progressively darker grey. While the clay fraction remains relatively stable (~30 %) 

between 96 cm to 72 cm, the sand fraction tends to increase up to 86 cm and decrease 

from 86 cm to 72 cm. At the depth of 87-88 cm and 77-79 cm, there are pebbles probably 

indicating a flood at these time intervals.  From 72 cm to 40 cm, the colour of the 

sediments becomes darker. The silt and clay fractions increase from 67 cm to 57 cm and 

are very abundant between 41 cm and 57 cm. The upper 40 cm of core MMB3 contains 

young sediments, less than 50 years old, organic-rich with black colour. The sand fraction 

increases towards the surface while the silt and clay fractions decrease. Plant debris was 

found at 20-21 cm and 13-17 cm and fragments of wood were found at 27-28 cm. Some 

charcoal fragments were found between 48-52 cm, 35-39 cm and 13-19 cm. The water 

content is ~22 % at a depth of 87 cm, slowly increasing to ~ 35 % at the depth of 28 cm, 

and with a high value of 60 % at 7 cm. The XRD results (Figure 3.8, Page 42) show 

fluctuations among the dominant and trace minerals between 28 cm to 56 cm (1942-1963 
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AD), while most of the mineral composition remained steady before and after this 20-year 

time span.  

 

 

Figure 3.7. Chronology, lithology, particle size and water content of core MMB3.  
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Figure 3.8.  Chronology, lithology and XRD results of core MMB3.  
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        The OSL ages from core LSW-1 date to approximately 4,000 years (before 2008 AD) 

at a depth of 90 cm. Duplicate core LSW-2, which was slightly shorter, penetrated to a 

depth of 82 cm. As shown in Figure 3.9, the sediment colour of core LSW changed from 

light grey (93-42 cm), to grey (42-8 cm) and to dark grey (8 cm). The sediments generally 

appear to be homogeneous except some yellow areas which were found in deeper parts of 

the core (up to 23 cm deep). Major variations in particle size occur in the deeper section of 

this core (53-78 cm). The clay fraction shows a peak at 68 cm where the sand fraction is 

lowest. A significant peak in the sand content occurs at 62 cm (between about 135 and 300 

years old); where both the silt and clay fractions are at their lowest. There are small 

fluctuations in the particle size between 37 cm to 54 cm (23 to ~120 years old). From a 

depth of 37 cm to the surface (less than 23 years old), the sand and silt fractions tend to 

increase while the clay fraction decreased.  The water content remains relatively stable at 

20-22 % from the bottom of the core to a depth of 30 cm and increases to 33 % in the 

surface.  
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Figure 3.9.  Chronology, lithology, particle size and water content of core LSW.  
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From 67 to 6 cm, the colour is darker, except for the section between 19 and 6 cm in 

depth, where the sediments are less consolidated. Between 67 cm and 29 cm depth, 

particularly at 41-38 cm, some iron oxide concretions were found. The upper 6 cm is loose 

grey soil and some iron oxide fragments. The sediment particle-size fractions varied along 

the core. Three significant peaks of sand occur at 66 cm (~0.95 ka), 52 cm (~0.74 ka) and 

19 cm (~0.23 ka). The silt fraction ranges from around 40 % to 55 %. The clay fraction 

remains fairly constant at around 30-40 % from 210 to 80 cm depth and decreases to 10 % 

at the surface. The water content fluctuates along the core and generally decreases from 

17-20 % at the deeper part of the core to 12 % at the surface. 
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Figure 3.10.  Chronology, lithology, particle size and water content of core LOLA.  
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to 116 cm. From 47 to 28 cm, the colour is dark grey and changes to grey from 28 to 4 cm, 

with the top 7 cm being dark organic-rich sediment with loose rootlets. The water content 

approximates 15 % in the deeper part of the core (163 cm to 65 cm) and increases to 40 % 

at the surface. Compared to core MMB3, the mineral composition of 2LOLA (Figure 3.12) 

shows less fluctuation during the last 1,000 years and quartz (55 ± 10 %) is the dominant 

mineral. However, at a depth of ~100 cm (~980 a), there is a significant decrease in the 

content of quartz, albite, chlorite and an increase in labradorite and calcite content.  

  

 

Figure 3.11. Chronology, lithology, particle size and water content of core 2LOLA. 
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Figure 3.12. Chronology, lithology and XRD results for core 2LOLA.  

Quartz Muscovite Illite 1 Orthoclase 1 Kaolin, BISH12 Biotite Albite(low) Gypsum Calcite 1 Labradorite Chlorite

(rhomb)

Siderite

D
e
p

th
(c

m
)

max.: 163 cm

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

40 7050 60 0 3010 20 0 155 10 0 205 10 15 0 155 10 0 93 6 0 62 4 0 51 2 3 4 0 153 6 9 12 0 61 2 3 4 5 0.0 3.01.0 1.5 2.0 0.0 0.40.1 0.2 0.3

Depth   Age       Lithology     Quartz         Muscovite            Illite        Orthoclase        Kaolin             Biotite  Albite          Gypsum          Calcite       Labradorite       Chlorite       Siderite         Year
(cm)      (a)                                 (%)                 (%)                    (%)                (%)              (%)                  (%)                  (%)                 (%)                  (%)                 (%)                   (%)                (%)             (AD)

1949

1959

1842

194852  8

51  11

934

1087

1189

41  10

158  34

981

1115

0

10

20

30

40

50

60

70

80

90

100

110

150

120

130

140

160

loose organic rich silty sand with plant roots, dark greyish brown (10YR 3.5/2)

grey clayey silt (2.5Y 5/1; 2.5Y 5.5/1; 2.5Y 6/1) organic-rich sediment carbonate nodule iron oxide mottling

dark grey sandy silt (2.5Y 4/1) OSL age before Year 2000

model age before Year 2000



 

 

49 

 

3.2.2 Geochemistry – bulk carbon, nitrogen, stable carbon-isotope and elemental 

analysis 

Carbon, nitrogen and their isotopes are important for studying ecosystem function and 

ecology as they can provide information on the origin, formation and pathways of 

biological materials (Blatt et al., 1980).  Bulk organic matter (OM) in lacustrine sediments 

is a mixture of organic materials derived from aquatic (autochthonous OM, e.g. 

phytoplankton, macrophytes) and/or terrestrial sources from the surrounding catchment 

(allochthonous OM, e.g. trees, shrubs, grasses, animals) (Meyers and Ishiwatari, 1993; 

Fisher et al., 2003; Brodie et al., 2011). 

      Total organic carbon content (TOC) is a widely used bulk sedimentary parameter that 

represents the fraction of OM that survived degradation during deposition and early 

diagenesis in the sediments. It is influenced by both initial authochtonous and 

allochthonous production and subsequent exposure to degradation, so reveals the different 

origins of OM, delivery routes, depositional processes, and consequent degree of 

preservation. In lake systems, the TOC concentration can serve as an indirect indicator of 

the type and biomass of local vegetation and potentially reflects changes in regional 

precipitation (Zheng et al., 2007); higher TOC concentration can also reflect improved 

preservation of OM under conditions of limited oxygen availability or colder temperature 

(Meyers and Ishiwatari, 1993).   

The bulk stable carbon-isotope composition (δ13C value) is commonly applied to 

trace the photosynthesic pathways of various plants and thus their contribution to OM in 

soils/sediments. There are three biochemical mechanisms in carbon fixation, known as C3 

(also known as Calvin cycle), C4 (also known as Hatch-Slack pathway) and CAM 

(Crassulacean acid metabolism) photosynthesis (Craig, 1953; Bender, 1971; Kluge & Ting, 
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1985). They differ in the amount of energy used, the reactions and steps during the carbon 

fixation process and the by-products generated therein (O‘Leary, 1988 and reference 

therein).  The C3 pathway is the most common and operates among most plants, with 

nearly 90 % of the estimated 250,000 land plant species using this photosynthetic pathway 

(Craig, 1953); the C4 pathway is an elaboration of the more common C3 carbon fixation 

and evolved more recently (Bender, 1971); and the CAM resembles the C4 pathway in 

their efficiency of concentrating CO2, differing temporally and spatially in synthesis and 

respiration (Kluge & Ting, 1985). Due to their efficiency in carbon fixation, CAM and C4 

plants are more tolerant of conditions like drought, high temperature and nitrogen or CO2 

limitations. CAM plants are commonly cacti and yucca from arid environments, consisting 

of 7 % of plants (Dodd et al., 2002). Common C4 plants are grass species (Poaceae) (46 % 

of grasses belong to C4 plants) which are concentrated in the tropics (below latitude of 

45°) (Rowan and Monson, 1999), consisting 5 % of plants (Bond et al., 2005). Virtually 

all trees, most shrubs, and cool-season grasses and sedges use the C3 carbon fixation 

(Schefuß et al., 2003). The photosynthesic pathways are reflected by the δ13C value of 

plant material from -21 ‰ to -35 ‰ in C3 plants and from -9 ‰ to -20 ‰ in C4 plants 

(Hesse et al., 2004). As noted by Brodie et al. (2011), the δ13C value of OM has also been 

used for various investigations, including: (1) assessment of carbon reservoir turnover 

times and soil C dynamics, (2) determination of trophic levels in environmental systems, 

(3) primary productivity reconstructions and estimation of carbon burial rates, and (4) to 

understand soil mineralisation processes. 

        The difference between the composition of C3 and C4 plants can also be reflected by 

C/N values, which is calculated by dividing TOC to total nitrogen content (TN) in this 

thesis. Protein-rich C3 plants (e.g. algae) generate OM with C/N values between 4 and 8; 
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whereas cellulose-rich/vascular C3 and C4 land plants usually create OM that has C/N 

ratios of 20 and more (Meyers, 1994; Sifeddine et al., 2011). This distinction arises from 

the absence of cellulose in algae and its abundance in vascular plants. The difference 

between algal and land-plant C/N source signatures is largely preserved in sedimentary 

OM (Meyers, 1994).  

         There are numerous successful applications of carbon, nitrogen, their ratios and 

isotopes to reconstruct the palaeoenvironment (e.g. Schwartz et al., 1986; Boutton et al., 

1998; Bai et al., 2009; Russell et al., 2009; Kobayashi et al., 2011; Bai et al., 2012). For 

example, these parameters have been successfully used for interpreting savannah 

grassland (C4) vs woodland (C3) successions (Schwartz et al., 1986; Boutton et al., 1998; 

Bai et al., 2009; Bai et al., 2012). In some studies, the nitrogen pool is found to be more 

sensitive to changes than carbon, resulting in relatively large changes of nitrogen isotopic 

values. For example, Liu et al. (2006a) found the enrichment of δ15N in closed lake 

sediments that were rich in penguin guano.  

        Inorganic elements are robust geochemical parameters to study many sedimentary 

processes. The major elements are the primary rock-forming elements Ca, Fe, K, Mg, Na 

with Al, O, and Si in silicate minerals and minor amounts of Mn , P, and Ti (Li, 2000). 

Some ratios of the major elements are good indicators of pedogenic processes and 

weathering (Sheldon and Tabor, 2009).  Most of the trace elements are directly related to 

the concentrations in the soils and rocks and therefore can be applied for examining the 

weathering intensity, evaluating leaching and estimating their transportation from the 

source. Trace element modelling of sedimentary processes can offer a degree of sensitivity 

not typically afforded by other methods (Hatfield et al., 2010). However the author also 

pointed out that it is critically dependent on precise analysis of the trace element 
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composition of sediments. Some trace elements (e.g. Pb) have several potential sources, 

including natural sources (atmospheric deposition, weathering of local soil and rocks, 

transport from sea salt, volcanic activities and forest fires) and anthropogenic sources 

(smelting of ores, burning of coal and use of petroleum products containing lead) 

(Tomkins and Hesse, 2004). These trace elements therefore may be used to ‗fingerprint‘ 

pollutants.   

      One of the applications of inorganic elements as bio-elements was seen in the study by 

Liu et al. (2006b) on a close freshwater lake in an isolated island of Dongdao Islands. The 

authors found the concentrations of As, Cd, Cu, Se, Zn, P and S are significantly 

correlated with seabird droppings and vary with their population. They also found that 

such geochemical characteristics were not observed in the upper sediment layer affected 

by cattle excrement (Liu et al., 2006b). Another study of ornithogenic sediments from 

Antarctica (Liu et al., 2006a) was largely unsuccessful in using such bio-elements to 

indicate the palaeoecology processes of penguins. A previous study of the Macquarie 

Marshes found that P levels were elevated in response to waterbird breeding (Cull, 2007). 

However the author pointed out that the sediments were not well-preserved so that P 

levels could not be a reliable technique to verify past breeding habits. Accordingly, the 

application of bio-elements for the Macquarie Marshes did not appear very promising 

because they are located in an arid/semi-arid area where the frequent change of water 

availability and flow enhances the erosion of sediments. In this study, selected core 

sections were analysed for K, U and Th contents as required for OSL dating (Chapter 4). 

Only core MMB3 was studied at higher resolution, and for a variety of major and trace 

elements, to aid in understanding the sediment source(s).  
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3.2.2.1 Methods 

The isotopic composition and concentration of TOC were determined using a Carlo Erba 

NA1500 elemental analyzer coupled to a PRISM Ш or Finnigan Delta Plus mass 

spectrometer. All results are reported in the δ13C notation in per mil relative to the Vienna 

Pee Dee Belemnite (V-PDB) standard. TOC was calculated on a carbonate-free basis with 

samples (~ 2 g each) treated with 1M HCl to remove carbonates, prior to analysis.         

        Major- and trace-element analysis of whole-sediment samples was conducted by X-

ray fluorescence (XRF). Samples were dried and crushed to fine homogeneous powders 

using a TEMA chromium-steel gyratory ring mill at the University of Wollongong. For 

trace-elements determinations, ~ 5 g of powdered sample with 5 to 6 drops of an organic 

binder solution (PVC) were pressed into aluminium cups to produce pellets. The pellets 

were dried in an oven at ~ 60 ºC overnight. For major-element determinations, ~ 2.4 g of 

1222 flux (35.3 % lithium tetraborate and 64.7 % lithium metaborate) and 400 mg of each 

sample were added to Pt/Au crucibles. These samples were fused in a furnace with 

ramping temperature from 600 ºC to 970 ºC at 7 ºC/min. Once the temperature reached 

970 ºC, a pellet of ammonium iodide (NH4I) was added to each of the crucibles to reduce 

the melt‘s viscosity. The resulting liquid of each sample was poured onto a graphite disc 

and pressed to make a glass disc.  

          The major elements determined and expressed in their oxide forms were Si, Ti, Al, 

Fe, Mn, Mg, Ca, Na, K and P. The trace elements determined were Ba, Ce, Co, Cu, Ga, 

La, Nb, Rb, S, Sc, Sr, Rh, U, Y, Zr, Hg and Zn. The detection limit was typically1 ppm for 

the later group. Both the major and trace elements were analysed by a Spectro Xepos XRF 

spectrometer at the University of Wollongong. 
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3.2.2.2 Results 

3.2.2.2.1 Modern biota 

The TOC values of the plants ranged between 41.9 to 53.8 %, varying among plants 

species and locations (Table 3.4). Comparatively, TN values differed much more among 

samples from different species and locations, from 1.1 to 4.0 %. The highest TN value was 

found in Chara australis and aquatic plants generally show higher TN values than 

terrestrial plants.  

           The δ13C values of the plants were relatively similar within the same species, and 

were comparable to values found in assorted watershed plants and lacustrine sediments 

(Meyers and Ishiwatari, 1993) . However, the δ13C values showed a range from about -30 

‰ in terrestrial plants to -26 ‰ in algae.  

          In this study, there is an increasing trend in C/N values from algae such as Chara 

australis (C/N=11) to vascular terrestrial plants such as Phragmites australis (C/N=30) 

and Eucalyptus sp. (C/N=48).  These results are consistent with the generalised data 

published (Meyers and Ishiwatari, 1993; Meyers, 2003). A combination of the C/N values 

and the δ13C values can provide more discrimination and assist in OM source 

identification of the sediments, as will be discussed later. 

 

Table 3.4 

TOC, TN, δ13
C and C/N values of modern plants.  

 

 

Type of plants Location TOC (%) TN (%) δ13C (‰) C/N

Typha  sp. (cumbungi) Monkeygar Creek, Macquarie Marshes 41.9 - -31.5 -

Eucalyptus sp. Monkeygar Creek, Macquarie Marshes 53.8 1.12 -30.1 48

unknown sp. (buttercup) Loudens Lagoon, Macquarie Marshes 44.0 - -29.9 -

Ranunculus  sp. (buttercup) Killalea Lagoon, Shellharbour 47.4 2.53 -29.5 19

Phragmites australis  (reeds) Loudens Lagoon, Macquarie Marshes 47.4 - -28.7 -

Phragmites australis  (reeds) Monkeygar Creek, Macquarie Marshes 43.0 1.45 -27.4 30

Chara australis  (charophyte) Monkeygar Creek, Macquarie Marshes 46.1 4.03 -26.6 11

Azolla filiculoides  (fern) Killalea Lagoon, Shellharbour 44.7 2 -27.0 24
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3.2.2.2.2 Surface sediment samples 

Samples from Loudens Lagoon and Longstowe station (Table 3.5), both of which are from 

the northern Macquarie Marshes, contain relatively higher OM than samples from other 

sites. These two sites are from the few areas where vegetation cover was retained during 

the drought and which were the main breeding sites for colonial waterbirds (Cull, 2007; 

Hogendyk, 2007). As a single breeding colony can consist of up to 40,000 birds 

(Kingsford and Auld, 2003; Kingsford and Auld, 2005), the potential for birds to influence 

the nutrient status of the soil might be large. The highest TOC value (8.55 %) is found in a 

soil sample from a swamp bank under a red gum tree, where the input of leaves and debris 

was another main contributor to the total organic matter. As organic matter tends to be 

better preserved in anoxic conditions (Meyers and Ishiwatari, 1993; Meyers, 2003; Peters 

et al., 2005), in environmental settings such as lagoons, where the sediments are covered 

by water and remain relatively undisturbed, the TOC will be higher. This can be seen by 

comparing the TOC of samples from dry lagoon/land (MRI-S2, LOLA-S1, CT-S1 and SL-

C1) with sites that have remained inundated (LOLA-S2, 2LOLA-S1, LSW-S3, MC-C6). It 

is worth noticing that some of the mud samples (MRI-S1 and LSW-S1) collected from 

shallow river beds still contained relatively low level of OM. It is likely that degradation 

might have been accelerated due to bioturbation and by exposure to oxidation among these 

sediments (Meyers and Ishiwatari, 1993).  Generally, the TOC values were higher in the 

northern marshes than in the southern marshes, indicating more organic input and/or 

preservation. 
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Table 3.5  

Descriptions and some parameters of the surface sediments. 

 

 

         Samples vary in their TOC and TN depending on the input of organics to the 

sediments.Generally, high TN values were observed in samples from colonial waterbird 

breeding sites where bird guano had an impact on soil chemistry such as the total nitrogen 

content (Wait et al., 2005).  

         Despite the variation in the TOC and TN values, the δ13C values are slightly 

different between samples from different sites. These values are close to the values from 

previous lacustrine sediments concluded by Meyers and Ishiwatari (1993), ranging from   

-23 to -29 ‰ although slightly more positive than the measured range of modern plants    

(-27.0 to -31.5 ‰) from the MM. In watercourses or lagoons with greater input of OM 

from algae, the δ13C values tended to be more positive; whereas in sampling sites where 

there was greater input of higher plants, the δ13C values tended to be more negative. 

         The C/N values of these surface sediment samples vary from 8 to 28 depending on 

the locations. As in these samples, TOC values are all greater than 1 %, the C/N values 

can be reliable indicators of OM source (Meyers, 2003). Samples collected from near the 

centre of the lagoon (2LOLA-S1, CT-S1, SL-C1) show C/N values lower than those closer 

Sample ID Location Sample Type TOC (%) TN (%) δ13C (‰) C/N

MRI-S1 River mud 1.36 -26.2

MRI-S2 Surface soil close to coring site 2.00 0.09 -25.4 22

LOLA-S1 Surface soil from dry land in lagoon centre 2.07 0.15 -23.3 14

LOLA-S2 Soil near reed beds 3.93 0.22 -24.4 18

LOLA-S3 Soil at coring site 2.25 -25.7

2LOLA-S1 Surface sediment 3.91 0.36 -26.4 11

MMB3-S1
Bora channel east of the lagoon which has remained 

inudated for a long time, northern MM
Surface sediment 5.50 0.49 -27.2 13

LSW-S1 Coring site mud 1.61 -25.9

LSW-S2 Soils from swamp bank under a red gum tree 8.55 0.31 -23.1 28

LSW-S3 Surface sediment 5.18 0.27 -24.8 19

MC-C6 Monkeygar Creek, southern MM Surface sediment 5.36 0.33 -23.4 16

CT-S1
East side of Monkeygar Creek, end of Campsite 

Trail, southern MM
Surface sediment 1.80 0.22 -23.6 8

SL-C1 South Lagoon, southern MM Surface sediment 2.85 0.24 -23.7 12

Bank of a channel parallel to Macquarie River, 

northern MM

Loudens Lagoon, northern MM

Longstowe Station, northern MM
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to the shore (LOLA-S1, LOLA-S2, LSW-S3 and MC-C6) or on floodplains (LSW-S2 and 

MRI-S2).  Talbot and Johannessen (1992) found that C/N ratios decrease with increasing 

distance from shore in Lake Victoria, East Africa and inferred that it was due to the 

decrease in primary productivity. This might also explain the results of Macquarie 

Marshes. 

         Meyers (1994; 2003) described the δ13C and C/N values of major sources of plant 

OM from lake sediments and suggested they discriminate the major sources of OM in lake 

sediments. Accordingly, the MM data (Figure 3.13) are located between those of 

lacustrine algae and C3 land plants, indicating both lacustrine algae (such as Chara 

australis) and C3 vascular land plants (such as Phragmites australis) are the main organic 

sources for these surface sediment samples.  
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Figure 3.13. Generalised δ13
C and C/N values of major sources of organic matter 

(fields from Meyers, 2003), with the data from modern surface sediments from the 

Macquarie Marshes. 

 

      The trace-element data of the surface sediment samples (Table 3.6) from the XRF 

showed that Ba and Zr were present in high contents (100-500 ppm), followed by Sr, Rb, 

Zn, Ce, La, Cu, Y, Pb, Co, Ga, Nb, Th and Sn in decreasing order (from ~ 100 to ~ 10 

ppm). As, U, W, Ta, Hg and Sb were found in very low levels. A significant decrease in 

elements whose abundances are strongly affected by weathering (e.g. Ba, Sr, Rb, U) was 

found among LOLA-S2 and LOLA-S3. Table 3.7 (Page 60) shows the correlation matrix 

of the trace elements with other proxies discussed previously in this chapter. Data are 

highlighted for those showing significant correlation (R2>0.9 or <-0.9). Most of the 

elements, except Ce, Y, Nb and As, are correlated to certain particle sizes. Ce, La and Hg 

showed negative correlation to TOC while Zr showed negative correlation to TN. Only Zr, 

Sr, Co, Sn and W showed some correlation with the δ13C values.  
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Table 3.6 

The XRF trace-elements of the surface sediments (in ppm). 

 

 

  

Sample ID Ba Zr Sr Rb Zn Ce La Cu Y Pb

MRI-S1 334 308 85 80 59 51 35 26 27 16

MRI-S2 370 369 91 86 67 85 49 31 31 18

LOLA-S1 577 405 84 56 38 51 35 24 24 13

LOLA-S2 315 377 87 69 53 48 35 35 27 16

LOLA-S3 259 347 68 53 35 35 19 23 20 11

2LOLA-S1 390 234 107 93 74 72 35 41 31 20

LSW-S1

LSW-S2 329 211 104 81 72 29 31 33 25 16

LSW-S3 396 263 99 97 87 < 2.0 39 40 30 20

MC-C6

CT-S1 432 236 110 102 92 58 34 38 31 21

SL-C1 338 383 87 74 57 37 26 29 27 16

Sample ID Co Ga Nb Th Sn As U W Ta Hg Sb

MRI-S1 11 14 13 10 8 3 2.0 2.4 4.1 0.7 < 3

MRI-S2 18 16 15 12 7 4 2.1 1.9 0.9 < 1.0 < 3

LOLA-S1 43 9 11 8 6 7 1.8 3.1 1.2 < 1.0 < 3

LOLA-S2 22 13 12 9 7 3 1.5 2.6 < 1.0 < 0.4 < 3

LOLA-S3 < 3 9 9 7 9 2 1.2 2.6 < 1.0 < 0.3 < 3

2LOLA-S1 18 18 14 12 8 4 2.7 1.8 < 1.0 < 1.0 < 3

LSW-S1

LSW-S2 < 7 15 12 10 7 2 2.3 0.7 2.6 0.4 < 3

LSW-S3 24 19 15 12 6 4 3.5 0.4 < 1.0 0.5 < 3

MC-C6

CT-S1 < 8 19 16 13 7 4 3.0 0.7 1.4 0.6 < 3

SL-C1 < 3 13 12 10 5 3 1.6 2.2 2.9 < 0.4 < 3
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Table 3.7  

The correlation matrix of trace elements with other proxies in the surface sediment samples. 

 

*green high shaded areas indicate significant correlation (R2>0.9 or <-0.9) 

 

Water  

Content 

(%)

Sand 

(%)
Silt (%)

Clay 

(%)

TOC 

(%)
TN (%)

δ13C 

(‰)
Quartz

Musco-

vite
Illite 1

Kaolin, 

BISH1

2

Ortho-

clase 1
Biotite Albite

Gyp-

sum

Labra-

dorite
Chlorite

Anke-

rite

Ba -.931 -.119 .892 -.561 -.496 -.157 .332 -.594 .870 -.404 .573 .861 .556 .723 .018 .723 -.536 -.536

Zr .564 -.941 -.641 .933 -.735 -.927 -.994 .917 -.676 -.800 -.927 .303 -.935 .511 -.978 .511 -.702 -.702

Sr -.879 .683 .920 -.995 .345 .654 .935 -.998 .938 .439 .996 .165 .994 -.063 .777 -.063 .301 .301

Rb -.963 -.019 .933 -.641 -.406 -.058 .424 -.672 .915 -.311 .652 .806 .636 .651 .118 .651 -.449 -.449

Zn -.998 .315 1.000 -.860 -.079 .278 .702 -.880 .997 .023 .867 .562 .857 .360 .442 .360 -.126 -.126

Ce -.412 -.779 .322 .177 -.961 -.803 -.422 .137 .277 -.928 -.163 .971 -.183 1.000 -.685 1.000 -.973 -.973

La .057 -.981 -.153 .613 -.980 -.988 -.794 .580 -.199 -.995 -.601 .751 -.618 .881 -.945 .881 -.969 -.969

Cu -.954 .529 .978 -.956 .158 .496 .850 -.967 .987 .258 .960 .352 .954 .131 .641 .131 .111 .111

Y -.858 -.282 .805 -.416 -.633 -.319 .171 -.453 .776 -.551 .429 .933 .410 .828 -.148 .828 -.669 -.669

Co .661 -.893 -.730 .970 -.647 -.874 -1.000 .959 -.761 -.721 -.966 .184 -.971 .402 -.946 .402 -.610 -.610

Pb -.940 -.094 .903 -.581 -.474 -.133 .355 -.614 .881 -.382 .593 .848 .576 .706 .043 .706 -.515 -.515

Ga -.990 .109 .971 -.734 -.286 .070 .537 -.761 .959 -.187 .743 .723 .729 .548 .244 .548 -.331 -.331

Nb -.753 -.447 .687 -.249 -.760 -.482 -.006 -.288 .652 -.690 .262 .982 .242 .914 -.321 .914 -.790 -.790

Th -.956 -.044 .923 -.622 -.429 -.083 .402 -.653 .904 -.335 .633 .820 .616 .669 .093 .669 -.471 -.471

Sn .784 -.798 -.840 .998 -.501 -.774 -.982 .994 -.865 -.586 -.997 .006 -.998 .232 -.873 .232 -.459 -.459

As -.521 -.695 .437 .054 -.920 -.723 -.306 .013 .394 -.875 -.040 .993 -.060 .994 -.590 .994 -.938 -.938

U -.999 .218 .992 -.804 -.179 .180 .627 -.828 .984 -.077 .813 .643 .800 .452 .350 .452 -.225 -.225

W .754 -.825 -.814 .993 -.541 -.802 -.990 .988 -.840 -.623 -.992 .052 -.994 .277 -.895 .277 -.500 -.500

Ta .967 -.489 -.987 .941 -.111 -.455 -.824 .954 -.994 -.212 -.946 -.396 -.939 -.178 -.604 -.178 -.064 -.064

Hg .140 -.994 -.234 .676 -.959 -.997 -.842 .646 -.280 -.983 -.666 .693 -.681 .839 -.969 .839 -.945 -.945
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3.2.2.2.3 Sediment cores 

As shown in Figure 3.14, the TOC and TN curves of core MMB3 exhibited similar trends 

with depth, increasing 20-fold from a depth around 95 cm to the surface. The bulk δ13C 

values vary from -26.4 ‰ to -28.1 ‰, falling within the range of values found in Chara 

australis (-26.6 ‰) and Phragmites australis (-27.4 to -28.7 ‰), indicating the dominance 

of C3 plants (Hesse et al., 2004). The C/N ratios range from 7.7 to 15.8, also falling within 

the range of values found in aquatic plants and emergent plants (Chara australis 11, 

Phragmites australis 30). These results indicate that algae and emergent plants including 

Chara australis and Phragmites australis were the main, and constant organic input to the 

sediments. The shift of δ13C values to lower values may indicate the input of aquatic 

plants in wet years, while the shift to higher values may indicate more input of higher 

plants in dry years. In general, C/N ratios slightly increase from the deeper part of the core 

to the surface sediments, indicating the shift of organic contribution from aquatic plants in 

the past to higher plants in past 50-60 years. Core MMB3 was the only one of the four 

cores studied here that has δ15N data. The δ15N values along the core varied from 2.0 ‰ to 

4.8 ‰ and are much lower values than those found (13.3 ‰) in ornithogenic sediments 

elsewhere (Liu et al., 2006a) and, which relate to trophic enrichment of 15N in OM as they 

pass up the food chain to the consumer that excretes the nitrogen. Two small peaks of 

δ15N at depths of 73 cm (~ 1840 AD) and 54 cm (~ 1942 AD) may relate to the input of 

waterbird guano. However, these data need to be further explored with the assistance of 

other information. 
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Figure 3.14.  Chronology, lithology, TOC, TN, C/N, δ13
C and δ15

N of core MMB3.  

 

      The major-element data from core MMB3 (Figure 3.15) were limited to five samples. 

Generally from around 310 years ago onwards (~1700 AD), SiO2, CaO and MnO decrease 

while Al2O3, Fe2O3, K2O, MgO, Na2O, SO3 and P2O5 increase. The consistently low Ti/Al 

ratio (0.03) throughout the core profile indicated that the sediments at this site originated 

from a deeply weathered source area. Close inspection of the trace-element data of core 

MMB3 (Figure 3.16 on Page 65 and Figure 3.17 on Page 66) indicates fluctuations for 

many of the elements about 60 years ago (at the depth of ~ 50 to 56 cm). The pattern of 

changes in the trace-element data (Figure 3.16 on Page 65 and Figure 3.17 on Page 66) 
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match the mineralogical data (Section 3.2.1.2) and reinforce the explanation that the 

change of water flow after the construction of Burrendong Dam caused a change in the 

sediments carried and deposited in the Marshes. The trace-element data for core sediments 

(and surface sediments) give no indication of waterbird colonial events.  
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Figure 3.15. Major-element data for whole-sediment from core MMB3.  
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Figure 3.16. Trace-element data for whole-sediment from core MMB3.  
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Figure 3.17. Trace-element data for whole-sediment from core MMB3.
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Figure 3.18.  Chronology, lithology, TOC, TN, C/N and δ13
C of core LSW.  
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fluctuate between -24.8 ‰ and -25.2 ‰ between 82 cm to 52 cm, then progressively 

change to more negative values between -25.5 ‰ and -27.2 ‰. The C/N curve showed 

two significant changes at depths of 70 cm (~ 415 years old) and the depth of 30 cm (~ 17 

years old) and remains relatively constant from 53 cm to 30 cm (about 130 to 17 years 

old). 

   The TOC and TN values of core LOLA (Figure 3.19) increase steadily from the 

deeper part of the core to the surface. This is a much older sedimentary sequence than 

those cored from other sites, and with a major break in sedimentation at ~ 123 cm. The 

TOC values fluctuate slightly at around 105-60 cm (~ 2,300 to 1,000 years old), 

overlapping one of the TN peaks. The δ13C values fluctuate between -24.4 ‰ and  

-26.2 ‰ from 208 cm to 108 cm, shift to -17.0 ‰ at 98 cm, and fluctuate between  

-23.7 ‰ and -25.1 ‰ from 78 cm to the surface. Except for the less negative value at 98 

cm indicative of C4 plants, the other δ13C values are within the range for C3 plants (e.g. 

Hesse et al., 2004). A significant change of vegetation type and organic input may have 

occurred around 2,000 years ago.  
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Figure 3.19.  Chronology, lithology, TOC, TN, C/N and δ13
C of core LOLA.  

 

  The TOC values of core 2LOLA (Figure 3.20) gradually increase from 0.02 % at the 

base to 0.89 % at 52 cm, then increase further to 2 % at 40 cm and remain relatively 

steady from 40 cm to 15 cm. TOC is high (8.79 %) in the surface sediment. The TN curve 

shows a similar trend. The δ13C values decrease within the range of C3 plants, from -23.5 

‰ at the base to -27.2 ‰ at the surface, consistent with a shift from more aquatic plants to 
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higher terrestrial plants. The C/N curve fluctuated along the core and the values are close 

to those of core MMB3.   

 

 

Figure 3.20.  Chronology, lithology, TOC, TN, C/N and δ13
C of core 2LOLA.  

 

3.2.3 Discussion and conclusions   

As the Macquarie Marshes are a complex wetland ecosystem with diverse biota and 

variable climate, none of the physical or geochemical proxies alone can explain the 

changes/trends in the marshes‘ environment. In this section, data from several proxies will 
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be assembled for analysis and interpreted, within limits, to represent and reconstruct some 

aspects of environmental change. 

      

3.2.3.1 Modern biota 

The analysis of the TOC, TN, δ13C and C/N values from modern plants seems promising 

for the identification of OM sources in the MM sediments. In particular, the δ13C and C/N 

values are distinguishable between different species of terrestrial/aquatic plants and algae. 

Bird guano samples were not collected for analysis in this study. However in a previous 

study of sediments in the Macquarie Marshes, Cull (2007) also found that OM and 

phosphorus were poorly preserved and would not be a reliable technique to verify 

breeding habits. A study of the ornithogenic sediments from Antarctica also found that the 

δ13C values are close to those in fresh lake sediments and are not influenced by penguin 

guano and thus cannot be used as evidence for the influence of guano on the sediments 

(Liu et al., 2006a). The OM preserved in the Macquarie Marshes sediments is probably 

more indicative of the surrounding vegetation than of waterbird guano. 

 

3.2.3.2 Spatial variation (surface sediments of the northern and southern MM) 

The lithology, sedimentology, mineralogy and elemental analysis data show that the 

surface sediments from both the northern and southern MM originate from the same 

source – silty fluvial sediments transported not far from the upper main stream. The 

average flow velocity on the lower Macquarie River is 0.25 m s-1 at high flow conditions 

and 0.054 m s-1 at low flow conditions (Yonge and Hesse, 2009), both of which are 

relatively low compared to most fluvial systems (Yonge and Hesse, 2009 and references 
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therein). As reflected by a Hjülstrom (1935) diagram, only clay, silt and a small fraction of 

fine sand will be transported in suspension at such flow velocities. These particular size 

fractions in most of the samples are mainly composed of plant roots/debris, seeds/oospores 

and a few fragments of clay/silt that are probably formed as a result of wetting and drying 

cycles (Yonge and Hesse, 2009). In this study, the major and trace elements (e.g. P, S) 

were also not capable of indicating past bird nesting as their concentrations were not only 

affected by the material source, but also by other factors such as the dilution, particle-size 

effects and degree of preservation (Liu et al., 2006a; Cull, 2007).  

        However, the water content, TOC, TN, δ13C and C/N values show greater variation 

among sites. Generally, the δ13C values of surface sediment samples from the southern 

marshes (MC, SL sites) are higher than those from the northern marshes, reflecting 

different vegetation types. As is observed in the field, the southern marshes are drier than 

the northern marshes; river red gum is the main vegetation type in the south while river 

red gum (Eucalyptus sp.) and reed beds (Phragmites australis) dominate in the north. The 

combination of the δ13C and C/N values has been successful in distinguishing various 

sources of OM contributed by land/aquatic plants at each sampling site. Kingsford (2000) 

concluded that the major sources of organic matter in Australian floodplain wetlands 

include materials carried by water flow, such as accumulated eucalypt leaf litter, aquatic 

macrophytes from the last filling, and/or terrestrial plants that colonise dry wetlands. From 

the above discussion, we can infer that in the Macquarie Marshes the main source of OM 

preserved in the sediments is from the accumulation of terrestrial/aquatic plants from the 

surrounding environment rather than due to transportation by water flow. This will be 

further explored using molecular-level organic markers in Chapter 5.  
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3.2.3.3 Temporal variation (Core analysis from northern marshes) 

The four cores from the northern marshes studied here represent different environmental 

settings, sedimentation and importantly, a variety of time scales.  

       Core MMB3 is close to the main channel (Bora Channel), but is the most northerly 

(i.e. downstream) of the four cores. Sedimentation at this site depends on floods and thus 

is more sensitive to the variation of the flow within the Marshes. This core covers a time 

span of the last ~750 years, with good chronological coherence. The preservation of 

pebbles in this core likely indicate a major flood around 300 years ago . Sedimentation 

rates reflect the ‗Dry (1895-1946 AD)-Wet (1947-1978 AD)-Dry (1979 AD onwards)‘ 

climate pattern reported by Hogendyk (2007). In addition, the construction of Burrendong 

Dam (1946-1967 AD) is recorded in the sediments by the variation of particle size, 

mineral composition and thus elemental composition and organic proxies.  

       Core LSW is closest to the main channel (Bora Channel) and south of core MMB3. 

This site receives more sediment during dry years when the flow rate is slower. Therefore 

it provides higher resolution on the dry years, in particular the past 30 years. It also 

records the flood around 300 years ago with increase of sand fractions. Despite the poor 

preservation of OM, the variation of the δ13C and C/N values reveals the change of 

dominant vegetation from aquatic plants/algae to more terrestrial plants around 120 years 

ago (upon European arrival).  

        Core LOLA and 2LOLA are in the southwest of the northern marshes and far from 

the main channel (Bora Channel). Despite their location close to the Bypass Channel 

which was constructed in 1972 AD, sediments in both cores seem to be rarely impacted. It 

is likely that the sediments delivered by this small tributary and deposited at these sites are 

much less than transported by heavy floods in the Marshes. Therefore the sediments 
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deposited in these two sites are older compared to those from the MMB3 and LSW sites. 

The LOLA site is adjacent to an elevated area; therefore it receives less sediment than the 

2LOLA site. It functions as a lateral pondage receiving water only after other areas within 

the marshes have been inundated. 

       Core LOLA spans the longest record among the four cores dated, covering the last 

~50 ka. It covers the important intervals like the Last Glacial Maximum (LGM), the mid-

Holocene when the Marshes were established, the big dry period in 2-1.5 ka and the most 

recent flood around 0.3 ka. The OSL dating results (Chapter 4 for detail) show a large 

hiatus between 27.5 ka at 149 cm depth and ~ 2.3 ka at 108 cm depth, covering the time 

when the Macquarie Marshes were formed in the mid-Holocene (Herron et al., 2002). The 

older sediments are very distinctive with pale yellow colour and low abundance of TOC 

and TN. The (local) formation time of the Macquarie Marshes may occur at the layer 

where the sediment colour changed from pale yellow to grey. The sedimentation rate is 

relatively low in this sampling site compared to the other three sites (further discussed in 

Chapter 4, Section 4.5.3.5.3).  One explanation for this, at least for the upper part (less 

than 1,000 years old), is that the LOLA site was a lagoon system with low sedimentation. 

It is also likely that the dry period (at ~ 2 ka) led to sediment deflection, at this site, prior 

to establishment of marsh sedimentation. The bulk organic proxy δ13C and C/N values 

showed significant peaks at ~ 2.1 ka likely due to the dry period demonstrated by the 

presence of carbonate nodules and iron oxides in the core. A GIS-based vegetation map at 

the LGM showed that this area was covered by shrub woodland (Ray and Adams, 2001), 

which accords with the δ13C and C/N values at the deeper part of the core. The shift of the 

δ13C values in the upper 80 cm may be due to a change of vegetation or relative 

proportions of plant species. However, the formation of marshes at 8-6 ka did not 
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significantly impact the bulk C and N proxies as only a small peak was observed in the 

δ13C value. At this stage, it is hard to explain the fluctuation of particle size fractions and 

the C/N curve in the upper part of the core (< 2.1 ka) and these will be further explored 

with organic markers in Chapter 5. 

       Core 2LOLA appears similar to cores MMB3 and LSW at its shallower depths and is 

more like core LOLA at deeper levels. Although the OSL dating did not provide high-

resolution ages for the upper 40 cm and base 50 cm (depth of 90 cm to 160 cm), this 

sampling site received more sediment in these two depositional periods. It records more 

information of the dry period in ~ 2-1.5 ka with abundance of carbonate and iron oxides as 

well as significant changes in mineralogy. The flood around ~ 300 years is also recorded 

in this core. Like core MMB3, it also reveals the ‗Dry-Wet-Dry‘ climate pattern in the past 

~ 110 years.  

       The aggregate of the four cores provides a broader chronological record of the 

Macquarie Marshes from ~50 ka years ago to the present, spanning the pre-formation, 

formation and deterioration of the Macquarie Marshes. The environmental changes in this 

area revealed by the multi-proxies will be further discussed in Chapter 5 with the organic 

biomarkers.  

         In summary, the physical and geochemical proxies studied in this chapter offer a 

general view of how this ecosystem has responded to environmental changes and how 

such processes have been recorded in the sediments. The contribution of waterbird guano 

to OM in the sediments is far less than those from vegetation/algae. Further detailed 

information is needed to reconstruct the palaeoenvironmental changes and this will be 

further explored in the organic geochemistry chapter (Chapter 5).  
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CHAPTER 4  OSL DATING  

 

Establishing a reliable chronology has always been a key element in Quaternary research. 

Establishing the timing of geological changes, together with other parameters and records 

such as biomarkers and climate proxies, will assist in tracing and reconstructing the 

environmental history. This is particularly useful when the historical record is sparse or 

insufficient (Gale, 2009). 

 

4.1 Choice of dating techniques for MM samples 

The significant milestone in development of dating methods is the discovery of the decay 

of radioactive elements during and immediately after the Second World War and the first 

radiocarbon dating laboratory established at the University of Chicago in 1948., which 

formed a basis for dating (Walker, 2005). Since then, dating methodology and technology 

have undergone dramatic development In his book, Walker (2005) reviewed the 

development of dating techniques with a focus on the 1950s onwards: During the 1950s 

and 1960s, other radiometric methods were developed with the technological progress and 

the increasing understandings of the nuclides and their decay process.  In the 1960s and 

1970s the amino acid geochronology technique was developed with advances in molecular 

biology. The technological innovations in the last two decades of the twentieth century led 

to a further expansion in the range of dating techniques and significant improvements in 

analytical precision. The development of accelerator mass spectrometry (AMS) not only 

revolutionised radiocarbon dating but also the technique of cosmogenic nuclide dating.   

        The various dating techniques applicable to the study of Quaternary were divided 

into two groups (Walker, 2005): numerical dating methods and relative dating methods. 
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The numerical dating methods, ―mainly involve radiometric dating methods, such as 

radiocarbon dating, long-lived and short-lived radioactive isotope dating and cosmogenic 

exposure dating‖. Relative dating methods ―determine the age by grouping sedimentary 

horizons, fossils, artefacts, etc., and ranking them in terms of relative order of age‖. Some 

of these methods are based on the principles of stratigraphy where relative age can be 

determined by the superposition of stratigraphic units in a geological sequence; others use 

the degree of time-dependent degradation or chemical alteration  on rock surfaces, in soils 

or in fossils, to establish the relative order of age (Walker, 2005).  The dating techniques 

that are most commonly used in Quaternary studies were summarised and listed in Figure 

4.1 (Walker, 2005).  

 

 

Figure 4.1. Quaternary dating techniques (Walker, 2005). 
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       This thesis focus on the Late Quaternary timescale especially the last 2,000 years. 

Among the radiometric dating methods listed in Figure 4.1, radiocarbon, Lead-210 (210Pb), 

Caesium-137 (137Cs) and luminescence dating are appropriate to the timescale of interest. 

Radiocarbon dating can date material from 100a BP to about 50,000a BP with the use of 

shells, wood, charcoal and bones (e.g. Hormes et al., 2009; Hua, 2009). Some studies 

conduct radiocarbon dating methods on whole sediments and basically date the bulk 

organic materials (e.g. Watanabe et al., 2007; Long et al., 2011). As most of these samples 

have more than one organic contributor (including reworked material), the errors in dating 

bulk organic material may be significant (Brock et al., 2010). Radiocarbon dating can also 

be applied to specific organic fractions or compounds (e.g. Smittenberg et al., 2002; 

Ohkouchi and Eglinton, 2008). In such case, radiocarbon ages from organic biomarkers 

may be particularly useful. However, because these compounds exist in sediments in trace 

amounts (10-1000 ng/g), their extractions from a 2-cm thick slice of cored sediment may 

be insufficient for radiocarbon dating. In addition, bioturbation or penetration of plant 

roots in these wetland ecosystems may lead to disturbance of the sediment sequence and 

the downward movement of younger sediments thus causing errors in dating.  

        Measurement of 210Pb in conjunction with fallout 137Cs is the most common approach 

to determining a sediment chronology spanning the ‗modern‘ period (last 100 years) (e.g. 

Madsen et al., 2005; Gale, 2009). The traditional radiocarbon, 210Pb and 137Cs dating 

methods are not able to fully date the period from 100 to 250 years which spans the period 

of European settlement in Australia and potential accompanying changes in landscape 

function and sediment erosion.  

       Luminescence methods appear to be the most suitable dating technique for the MM 

samples, because it may be used from ~50a BP to about 300,000a BP (Lian & Roberts, 
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2006). Given the ubiquity and abundance of quartz in sedimentary environments, the 

optically stimulated luminescence (OSL) dating technique has the potential to bridge the 

gap between other dating methods and provide chronological continuity. Recent advances 

in instrumentation and analysis methods have enabled the OSL dating technique to date 

fluvial and alluvial material with less than 10 years (e.g. Ballarini et al., 2003; Madsen et 

al., 2005; Page et al., 2007; Rustomji and Pietsch, 2007; Pietsch, 2009). The OSL signal of 

the grains is highly dependent on their bleaching and thermal history before burial, which 

is related to the environment of transportation and deposition. As such, the luminescence 

characteristics of the grains also provide information about sediment transport and 

depositional history. Moreover, OSL dating materials (quartz grains) are readily 

extractable from most sediment.  

          This thesis mainly uses the OSL dating. One 14C date for bulk organic matter for 

sediment at 95 cm depth in core MMB3 was analysed by the ANTARES facility at  the 

Australian Nuclear Science and Technology Organisation (ANSTO) (Fink et al. 2004). 

The age is an uncalibrated radiocarbon age rounded according to Stuiver and Polach 

(1977). It is used as independent age control for the OSL ages. The concentrations of 137Cs 

were obtained from high-resolution gamma spectrometry at the CSIRO Land and Water 

Radionuclide Laboratory at Black Mountain, Canberra (Olley et al., 1996). It assists 

independent age control of the OSL ages that are less than 100 year old.  
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4.2 Introduction to the OSL dating technique 

4.2.1 Theory of OSL dating  

Optically stimulated luminescence (OSL) dating is a radiation-exposure dating technique, 

by which a chronology is obtained through the measurement of the cumulative energy of 

nuclear radiation absorbed by the minerals of interest, such as quartz and feldspars 

(Huntley et al., 1985; Aitken, 1998). The technique is based on the fact that natural 

minerals have structural impurities or defects which can absorb and store ionizing energy 

from radiation emitted from their surrounding environment (Aitken, 1985). These ionizing 

energies generate free charges that are subsequently trapped and accumulated within the 

crystal defects. Once a mineral is exposed to sufficient light (e.g. sunlight), or is heated to 

a high temperature (e.g. ~500 ºC), some or all of these trapped charges (or stored energies) 

will be released, which is accompanied by light emission, so-called luminescence. For 

sediments, exposure to daylight is the process that resets (―bleaches‖ or ―zeroes‖) the 

luminescence clock. After burial, the minerals are hidden from light and subjected to 

environmental radiation again.  The longer the material is buried, the more charges are 

trapped and, thus, more luminescence signal will be released once it is stimulated (Figure 

4.2). By measuring the energy stored in the mineral, together with the radiation received 

per year, the time elapsed since the daylight exposure can be determined.   
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Figure 4.2. Simplified schematic diagram of the process of luminescence 

dating(Feathers, 2008). (Latent luminescence refers to the accumulation of trapped 

charge, while ‘bleaching’ can be from exposure to either light or heat.) 
 

 

      An optical age can be derived from: 
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where De is the equivalent dose (in Grays) which is the laboratory dose of radiation that 

produces the same intensity of OSL as did the environmental radiation dose; 


D  is the 

dose rate either measured directly or calculated from knowledge of the natural 

radioactivity (Aitken, 1985; 1998).   
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4.2.2 OSL dating materials 

The most widely used minerals in OSL dating are quartz and feldspar, both of which are 

the most common occurring minerals in the natural sedimentary environment (e.g. Aitken 

and Smith, 1988; Murray and Roberts, 1998; Duller, 2003). Quartz and feldspars differ in 

their chemical composition and structure (Götze et al., 2001). As is shown in Figure 4.3, 

quartz is composed of Si and O atoms with a tetrahedral structure. The two basic types of 

defect within quartz are intrinsic defects related to structural imperfections such as 

missing oxygen or silicon atoms and extrinsic defects related to impurities such as the 

replacement of Si atoms with Al (Götze et al., 2001; Bøtter-Jensen et al., 2003). In 

comparison, feldspars are alumina-silicate minerals composed of AlO4 and SiO4 

tetrahedral units, with the oxygen atoms being shared between adjacent tetrahedral (Götze 

et al., 2001; Bøtter-Jensen et al., 2003). Elements such as K, Na and Ca can substitute for 

Si or Al, and therefore affect the luminescence emission (Bøtter-Jensen et al., 2003).  
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Figure 4.3. Structure of quartz and common defects.(from Götze et al., 2001) 

 

      Although the first OSL measurements were made using quartz (Huntley et al., 1985), 

in the 1990s feldspar studies became more common because the stimulation can be 

achieved using infrared (IR) light (Hütt et al., 1988), which is relatively cheap. Compared 

to the quartz OSL signal, the luminescence emitted from feldspar is usually much more 

intense and saturates at a much larger radiation dose (Aitken, 1998), making it preferable 

for dating both very young and very old samples. However, when dating feldspar, 

anomalous fading—refers to the loss of electrons from traps that are expected to be 

thermally stable at ambient temperature over geological time, to other defects and centres 

in the crystal lattice—usually causes age underestimation (Wintle, 1973; Aitken, 1985), 

while dating quartz appears not to have the same difficulty. In the last decade, quartz OSL 

dating has been widely used (Lian and Roberts, 2006), mainly due to the introduction of 

halogen lamp stimulation sources and then later blue light emitting diode sources (Bøtter-

Jensen et al., 2003), and the development of the single-aliquot regenerative-dose (SAR) 

protocol (Murray and Wintle, 2000).  
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4.2.3 Methods for determining equivalent dose 

Two methods have been widely used to determine the equivalent dose using quartz OSL: 

single-aliquot and single-grain. In the single-aliquot method, many quartz grains (from 

tens to hundreds of grains) are mounted on 10 mm-diameter stainless-steel discs and 

measured simultaneously. In the single-grain method, individual quartz grains are 

measured separately.  

 

4.2.3.1 Single-aliquot method 

The SAR dose procedure is one of the most widely used approaches to determine the 

equivalent dose (Murray and Wintle, 2000; 2003). For the MM study, the aliquots were 

measured using a SAR procedure as listed in Table 4.1. Each aliquot was firstly preheated 

to a temperature T (usually from 160 to 300 °C) for 10 s (Step 2) to remove any unstable 

signals, before measuring the ‗natural‘ OSL signal (Ln) at 125 °C (Step 3) to avoid re-

trapping of charge at the 110 °C thermal luminescence peak and to increase the rate of 

OSL signal decay (Murray and Wintle, 2000). After that, a small test dose was given (Step 

4), and the sample was then preheated to a lower temperature (Step 5) before the test dose 

signal (Tn) was measured (Step 6) to monitor the sensitivity of the natural signal. Then a 

‗hot‘ bleaching (an OSL measurement at a temperature higher than the preheat 

temperature) was conducted to minimise recuperation (the effect of thermal charge 

transfer from shallow, light-insensitive traps to deeper light-sensitive traps (Aitken and 

Smith, 1988)) for the next steps for young samples. Such cycles were then repeated by 

applying different laboratory doses (usually 5-6 points) to a constant dose-response curve 
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(Step 7). A sensitivity-corrected dose-response curve is usually constructed by giving the 

smallest dose first, and then giving increasing doses up to some larger value that is greater 

than the expected natural dose (Wintle and Murray, 2006). Then a measurement is 

obtained when no dose is given (Step 8) and then one of the dose points is repeated (Step 

9). An IR depletion test was conducted to check the purity of quartz, or contamination of 

feldspar grains, by repeating another recycling point but incorporating an IR bleaching 

before OSL measurement (Step 10). The natural dose of the sample can be determined by 

interpolating the sensitivity-corrected natural signal (Ln/Tn) onto the dose response curve 

(Li/Ti).  
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Table 4.1  

Generalised quartz SAR protocol (Murray and Wintle, 2000; 2003). 

Step Treatment Observed 

1 Give dosea, Di   

2 Preheatb (160-300 ºC for 10s)  

3 Optically stimulatec for 40s at 125 ºC Li
d 

4 Give test dose, DT  

5 Cut-heatb (160-300 ºC)  

6 Optically stimulatec for 40s at 125 ºC Ti
d 

6* Optically stimulatec for 40s at > preheat  

7 Repeat Step 1 to 6(6*) for 5-6 increasing regeneration dose points  

8 Repeat Step 1 to 6(6*) for zero dose point as recuperation test  

9 Repeat Step 1 to 6(6*) at the lowest regeneration dose point as 
recycling test 

 

10 Repeat Step 1 to 6(6*) at the lowest regeneration dose point as IR 
depletion test 

 

a For the natural sample, i=0 and D0 is the natural dose 
b Aliquot cooled to <60 ºC after heating. In Step 5, the TL signal from the test dose can be observed, but it is 
not applied in routine applications. 
c The stimulation time is dependent on the stimulation light intensity and wavelength (e.g. 40 s for blue light 
diodes, 100-125 s for lamp-based green light sources). 
d Li and Ti are derived from the stimulation curve, typically the first 1-10 s of initial OSL signal, minus a 
background estimated from the last part of the stimulation curve. 
6* Only applied to ‗young‘ (<50 yr old) surface sediment samples. 
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      As shown in Table 4.1 (Page 87), there are three different thermal treatments in the 

SAR protocol, including preheat for the regenerative doses and cut-heat for the test doses. 

The main purpose of the preheat for the regenerative doses is to remove charge from 

thermally unstable but optically sensitive traps that are empty for natural samples but are 

filled during laboratory irradiations, and to transfer charge from the thermally unstable 

traps to the deep OSL traps (Wintle and Murray, 1999). The cut-heat for test dose is 

usually set at a temperature high enough to remove any unstable signals that may interfere 

with the OSL measurement, but kept low and short enough to minimise any additional 

heat-induced sensitivity changes. To determine the most appropriate preheat temperature, 

a preheat plateau test is usually conducted. This test involves measuring the De values 

using different preheat temperatures ranges from 160 to 300 °C with 20 °C intervals 

before measurement of the natural signal (Ln) or regeneration dose response (Lx). The best 

preheat temperature lies within a preheat temperature range that produces consistent De 

values, the so-called preheat plateau (Murray and Wintle, 2000). Due to the limitation of 

dating materials in the samples in this study, the preheat plateau tests were conducted on 

naturally bleached and laboratory dosed quartz samples that were used for dose recovery 

tests (further discussed in Section 4.6.1.3.5). 

          The reliability of the SAR protocol can be tested by a number of internal checks 

during the measurement cycles in the SAR sequence. These internal checks include: 

(i) A recycling ratio test, where two regenerative-dose points of equal dose value 

are measured and compared. The repeated dose is usually chosen to be identical to the first 

(given after measurement of the natural signal) since the sensitivity change is usually 

found to be progressive and thus the first and last measurements will give the widest 
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spread in sensitivity change. If the ratios of these two sensitivity-corrected dose points are 

within ±10 % of unity, the test doses are considered adequately accounted for by the 

sensitivity changes (Murray and Wintle, 2000). 

(ii) A recuperation test, where the signal at zero dose-point is measured and 

expressed as a proportion of the natural signal. More detailed information concerning 

recuperation is in Appendix A1.2. Murray and Wintle (2000) suggest if this value exceeds 

5 %, recuperation is considered to have occurred as a result of the previous irradiation, 

optical stimulation or preheating. 

         Apart from the thermal treatment, the effective choice of test dose size is another 

controversial issue. Earlier applications of the SAR protocol suggested that the test dose 

should be kept small with respect to the natural dose to avoid recuperation effects (Murray 

and Roberts, 1998). However, for very young and/or dim samples, it has been found it is 

better to use a larger test dose to increase the strength of the test dose signal (Murray and 

Wintle, 2000). 

 Finally, after the above experimental conditions were determined, the validity of 

the SAR protocol can be tested using a dose recovery test, which involves giving a known 

dose to bleached aliquots and then measuring these aliquots as ‗natural‘ samples using the 

SAR protocol (Murray and Roberts, 1998). Although an unsuccessful dose recovery may 

indicate that the measured De values are unreliable, a success in dose recovery does not 

necessarily guarantee a reliable estimation of the natural dose.  

 

4.2.3.2 Single-grain method 

The SAR protocol has been applied not only to the single-aliquot but quite robust results 

have also been found using single grain measurements (e.g. Murray and Wintle, 2000; 
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Jacobs et al., 2006b; Wintle and Murray, 2006; Rhodes et al., 2010). The steps are similar 

except they are applied to individual single grains instead of single aliquots. The ages 

obtained for the Macquarie Marshes sediments in this thesis mainly rely on the single-

grain method. The reasons for this are discussed in the following section.  

 

4.2.4 Application of the OSL technique to date young sediments 

In the earlier work, Aitken and Smith (1988) pointed out that recuperation might be the 

limiting factor in dating young material. In the 1990s during the focus on feldspars, there 

were some successful applications to date modern or young feldspars (e.g. Ollerhead et al., 

1994; Wolfe and Ollerhead, 1995).  Dating very young (<500 years old) OSL quartz 

samples has only become popular since the late 1990s (e.g. Olley et al., 1998; Ballarini et 

al., 2003; Madsen et al., 2005; Ballarini et al., 2007; Page et al., 2007; Rustomji and 

Pietsch, 2007). These studies provide new insights for environmental settings and fill a 

gap in the timescale where other traditional geochronological dating techniques are limited. 

Analysis has been undertaken on both single-aliquot and single-grain scales from a great 

variety of environmental settings. These young samples include alluvial and fluvial 

sediments mixed with partially-bleached grains and fully bleached grains, well-bleached 

aeolian inland deposits, and coastal dune and marine deposits also composed of fully 

bleached wind-blown sediment grains (e.g. Murray and Clemmensen, 2001; Ballarini et al., 

2003; Madsen et al., 2005; Ballarini et al., 2007; Page et al., 2007; Rustomji and Pietsch, 

2007; Hu et al., 2010). Madsen and Murray (2009) reviewed and summarised studies on 

coastal and marine deposits which received sufficient light exposure before burial and 

found encouraging young ages. Despite some successful applications in single aliquots 

with very high precision and good agreement with known age (e.g. Ballarini et al., 2003; 
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Hu et al., 2010), most of the studies are based on the single-grain analysis (e.g. Ballarini et 

al., 2007; Page et al., 2007; Rustomji and Pietsch, 2007). The main advantage of single 

grains for OSL dating is that heterogeneous bleaching within a sample may be recognised 

through dose-distribution analysis. Comparatively, single aliquots will mask the variability 

caused by incomplete bleaching which is usually the case for alluvial and fluvial 

sediments.  

       Pietsch (2009) reviewed recent work in dating young materials and indicated three 

challenges with the OSL technique. Firstly, young samples usually give low radiation 

doses which require carefully choice of dating material and an analysis procedure to 

achieve detectable luminescence signals and to avoid inherent risk of age overestimation. 

Secondly, the raw data given by young samples require a more appropriate method to 

calculate the statistically representative luminescence value. Thirdly, among Australian 

samples, there are very few truly ‗known age‘ samples in the 0-500 year age rage to 

compare with OSL dating. In particular alluvial and fluvial sediments have proved more 

difficult to date than aeolian sediments because the former are much less likely to be 

adequately bleached by exposure to sunlight prior to burial (Olley et al., 1998). As 

summarised by Rittenour (2008), partial bleaching (zeroing) of the luminescence signal 

prior to deposition in fluvial environments is due to a number of reasons, including 

attenuation of light through the water column (enhanced by increased suspended sediment 

concentrations), water depth, the mode of sediment transport (suspension, saltation or 

bedload) and transport distance. However, steady development has been seen in 

instrumentation to reduce the sample size to individual grains (Bøtter-Jensen et al., 2000) 

and modified analytical protocols introduced to improve the grains‘ sensitivity and 

eliminate contamination (e.g. isolating the well-bleached fast component of the quartz 
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OSL signal using a curve-fitting procedure) (Murray and Wintle, 2000; Olley et al., 2004; 

Cunningham and Wallinga, 2009). Previous research has also highlighted the importance 

of applying rigorous statistical data analysis and age models to obtain the most 

representative dose value (Roberts et al., 2000). All of these efforts are made to 

distinguish the true De for different age groups for age calculation and to improve the 

reliability and precision of OSL dating results. 

         In the review by Madsen and Murray (2009), they noted that a time-dependent dose 

rate is also a problem specific to dating young sediments. Alternations of sedimentary 

environments such as changing water content, sediment matrix or sample depth will 

results in a change in dose rate with time and therefore lead to an 

overestimate/underestimate of the real age.  

          In the review by Rhodes (2011), the author pointed out that although dating in 

fluvial contexts can be problematic, owing to low quartz sensitivity and incomplete 

zeroing issues; dense sampling strategies and appropriate use of the single-grain OSL can 

still provide solutions for dating fluvial sediments.  

         Most of the published work on young materials is based on quartz-rich sediments 

(e.g. Olley et al., 1997; Ballarini et al., 2003; Madsen et al., 2005; Ballarini et al., 2007; 

Page et al., 2007; Rustomji and Pietsch, 2007), which are abundant, sandy and subjected 

to multiple erosion, transport and burial cycles in most dryland environments (e.g. 

Bateman et al., 2007b). In the Australian sedimentary environment, quartz has been 

repeatedly buried and re-exposed during its transportation to a generally flat landscape 

(e.g. Pietsch et al., 2008; Pietsch, 2009). This natural recycling process is believed to have 

increased the luminescence sensitivity of quartz, making quartz a robust dosimeter for 

dating young samples (Bateman et al., 2007b). Modification of the analytical approaches 
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such as using thinner optical filters (Ballarini et al., 2007) in order to detect low doses is 

usually unnecessary. Australian quartz grains are known to be generally suitable for the 

SAR protocols (Pietsch, 2009). For these reasons, in this thesis, single-grain quartz was 

chosen for dating.    

 

4.3 Sample preparation 

The modified sample preparation procedure extracts pure coarse-grain fractions of quartz 

for De determination. To estimate the dose in mineral grains, the sample must be extracted 

without exposure to light to avoid any bleaching of the luminescence signal. In the 

laboratory, the samples were handled in filtered dim red or orange light. Any outer bulk 

sediment material that may have been exposed to daylight was removed, dried overnight 

at 100 ºC in a muffle oven and milled into a fine powder for dose rate determinations. 

       For samples from core MMB3, standard procedures described in Aitken (1998) and 

Bøtter-Jensen et al. (2003) were followed. Samples were treated with HCl to remove 

carbonates and with H2O2 to remove OM. Various grain size fractions (<90 µm, 90-125 

µm, 125-180 µm, 180-212 µm, >212 µm) were extracted by sieving. Sand-sized quartz 

grains were then concentrated by heavy-liquid separation using sodium polytungstate 

(SPT) at 2.70 g/cm3 to remove heavy minerals and at 2.62 g/cm3 to remove feldspars. The 

separates were then etched in 40 % HF to remove any residual feldspar and the outer ~10 

µm layer of the grains that was irradiated by alpha particles. Clean and dry samples were 

sieved a second time before being loaded to measurement discs to remove powder 

produced by etching. 

       Of the five samples from core MMB3, except the bottom layer (64-66 cm), very little 

quartz could be extracted from the bulk material of the four upper layers. For example, for 
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the uppermost sample (4-6 cm), the quartz extracted was only enough to make up 4 discs 

for the single aliquots (diameter 0.5 µm) analysis using the 90-125 µm fraction and 5 discs 

for the single grain analysis using the 125-180 µm fraction. Most of the quartz extracted 

after the chemical reaction procedures was lost during heavy liquid separation using 2.62 

g/cm3 SPT, because most of the quartz grains floated with the ―feldspar‖ layer. Particle-

size distribution results (Figure 3.7 in Chapter 3) from the duplicate core of MMB3 

showed that the upper sediment layers sampled for OSL dating were very silty and had 

less than 30 % sand content. Except for MMB3-04 (48-51 cm) which only contained 11 % 

sand, the others should have provided more quartz than MMB3-04 even though their sand 

content were less than 30 %.  XRD analysis was conducted in bulk sediments from core 

MMB3 to identify the minerals present and to determine their relative abundance. Figure 

4.4 shows an example of the XRD graph for MMB3-04 to indicate the purity of the quartz 

separate. Accordingly, the loss of quartz must have occurred during the preparation 

procedures. As the materials are fine, clay-rich sediments, the minerals tended to clump 

together. HCl and H2O2 reactions before wet-sieving might not be able to break them 

down so that the reaction to remove the coating of each individual grain might not be 

complete. This might explain why some ―quartz‖ floated on the 2.62 g/cm3 SPT. The 

XRD results again prove that it is more practical to choose quartz rather than feldspar for 

dating the sediments from the Macquarie Marshes.  
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Figure 4.4. The X-ray diffractogram of prepared sample MMB3-4 (48-51 cm) 

showing the minerals present. 

 

      Accordingly, a modified procedure based on standard procedures and experience from 

core MMB3 samples (Table 4.2) was used for the other samples. It is worthwhile to 

choose OSL samples based on the particle-size distribution results so as to ensure the 

extraction of more quartz for dating. The preparation of samples from the other cores 

showed the extraction efficiency did improve so that sufficient quartz grains were 

recorded to produce statistically representative data for De evaluation.  
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Table 4.2  

OSL Sample preparation procedures. 

 

4.4 OSL instrumentation 

Samples were analysed using Risø TL/OSL readers in the OSL laboratory at the 

University of Wollongong. Single-aliquot analysis and dose recovery tests were made 

using a Risø 5 which is used primarily for measurement of linearly modulated (LM) OSL. 

The majority of the single-grain analyses were made with a Risø 3 which is an automated 

Risø TL/OSL DA-15 reader equipped with blue LEDs and a single-grain laser system 

attachment that allows OSL stimulation of individual grains. Both readers are equipped 

with a 90Sr/90Y beta irradiator source for laboratory irradiation and have been cross 

calibrated for consistency. Both readers are controlled with ―Mini-Sys‖ programs. 

      The light source is a blue LED for single aliquots and a green laser for single grains. 

Only 90 % of the maximum stimulation power was used. For single aliquots, the 

stimulation time was 40 seconds with a data collection interval of 0.16 seconds; for single 

grains, the stimulation time was 2 seconds with a data collection interval of 0.02 seconds.   

Step Action Aims 

1 Wet-sieving  To separate different size fractions (<90 µm, 90-125 
µm, 125-180 µm, 180-212 µm, >212 µm) 

 To wash out the water-soluble coating of organic-rich 
grains 

2 HCl reaction To remove carbonates 

3 H2O2 reaction To remove organic matter 

4 HF etching  To remove residual feldspar 

 To etch the outer ~10 µm layer of the grains 

5 SPT separation To remove heavy minerals 

6 Second sieving To remove interference powder produced by etching 
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       Single aliquots were prepared on 10 mm-diameter stainless-steel discs. The discs were 

covered by masks with 0.5 mm diameter holes individually and sprayed using silicone oil 

(Silkospray). Therefore a uniform and consistent number of grains (~50-80 grains of size 

125-180 µm) can adhere to the sprayed surface of the discs for analysis. The reason a hole 

of 0.5 mm diameter was chosen is the smaller aliquot usually consists of fewer grains and 

thus can increase in the probability of selecting only well bleached grains from a mixed 

sample (Olley et al., 1999).  

      Single-grain discs were prepared on 10 mm-diameter stainless-steel discs with 100 

holes arranged in a regular 10×10 grid. Each hole has a diameter of 300 µm and depth of 

300 µm (Figure 4.5). Grains of 180-212 µm size can be placed in each hole by brushing 

grains over the surface of the discs. The reason for choosing 180-212 µm size is that this 

fraction has been shown to be better bleached than the finer fractions and yields a more 

representative dose in young fluvial sediments (Olley et al., 1998).  For those samples that 

did not have enough quartz sized 180-212 µm, the 125-180 µm fraction was used although 

visual inspection under a microscope was used to pick out extra grains from the hole by 

needle so that each hole contained only a single grain.  
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Figure 4.5. The single-aliquot (left) and single-grain (right) discs.(photo source from 

webpage http://cas.uow.edu.au/laboratories/index.html) 

 

4.5 Environmental dosimetry 

4.5.1 Natural radioactivity  

Once mineral grains are buried, exposure to environmental radiation causes the 

redistribution and accumulation of trapped electrons in the impurities of their crystal 

lattice.  These naturally-occurring ionising radiations come in four forms, namely alpha, 

beta, gamma and cosmic radiation. Alpha particles are heavy energetic particles but have a 

short range (a few micrometres); beta particles have a range of about 2 mm; gamma rays 

can penetrate up to about 30 cm through sediments; and cosmic radiation is highly 

penetrating (Aitken, 1998). Cosmic rays are derived from outer space, while the other 

three radiation sources are derived from the radioactive decay of radionuclides — mainly 

potassium (40K), uranium (238U and 235U, and their daughter products) and thorium (232Th 

and its daughter nuclides).  The environmental dose a sample receives from these different 

forms can be divided into internal dose and external dose. The internal dose comes from 
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within the sedimentary grains themselves as a result of alpha and beta radiation; while the 

external dose come from alpha, beta and gamma radiation in the bulk sediment matrix 

surrounding the grain and also from cosmic rays.  

      Because the internal radioactivity of quartz is usually very low and insignificant, in 

this study, the calculation of total environmental dose rates mainly focuses on the external 

dose rate arising from the surrounding sedimentary matrix and cosmic rays. 

 

4.5.2 Dose rate determination 

The dose rate can be determined in the field or in the laboratory. Field measurements can 

be performed by portable in-situ gamma spectrometry (IGRS), as described by Lian and 

Scott (2007). When field measurements are not possible or inappropriate, the dose rates 

can still be calculated by determination of radionuclide concentrations measured in the 

laboratory. Radionuclide concentrations from representative sediment subsamples are 

usually determined either by direct measurement of U, Th and K (e. g., neutron activation 

(NAA), atomic absorption spectrometry (AAS) and inductively coupled plasma mass 

spectrometry (ICP-MS) measurements), or emission counting methods that measure the 

alpha and beta particles and gamma ray emissions within the sample over a certain time 

period (e.g., thick source alpha counting (TSAC), Risø GM-25-5 beta counting and high 

resolution gamma spectrometry (HRGS). 

      In this study, the HRGS, XRF, alpha and beta counting were used for determining 

radionuclide concentrations. Cosmic ray dose rates were calculated following the standard 

procedure as described in Prescott and Hutton (1994). The water content and organic 

content were also taken into account in calculating the dose rates. Detailed information is 
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presented in Appendix A1.1. The results of dose rate and other parameters (water content 

and total organic carbon) are presented in Table 4.3. 

 

Table 4.3  

Dose rates and other parameters. 

 

 

 

Sediment 

Sample ID

Core 

Depth 

(cm)

Water 

Content 

(%)

TOC     

(%)

Gamma 

Dose Rate 

(Gy/ka)

Beta         

Dose Rate 

(Gy/ka)

Cosmic-Ray 

Dose Rate 

(Gy/ka)

Total Dose 

Rate (Gy/ka)

MMB3-1 5-8 155.85 6.34 0.406±0.029 0.719±0.048 0.143±0.014 1.267±0.101

MMB3-2 16-19 68.00 4.80 0.550±0.043 0.823±0.066 0.146±0.015 1.518±0.130

MMB3-3 27-29 55.50 4.25 0.490±0.034 0.947±0.065 0.151±0.015 1.586±0.120

MMB3-4 48-51 47.03 1.88 0.593±0.043 1.039±0.077 0.145±0.014 1.776±0.138

MMB3-5 55-57 41.69 1.83 0.706±0.053 0.951±0.071 0.147±0.015 1.804±0.140

MMB3-6 69-72 38.50 0.70 0.672±0.042 0.914±0.065 0.142±0.014 1.729±0.121

MMB3-7 85-88 31.64 0.29 0.755±0.054 0.980±0.070 0.144±0.014 1.880±0.136

LSW1 14-16 31.21 2.60 0.636±0.054 0.953±0.075 0.189±0.019 1.778±0.139

LSW2 24-26 29.15 2.10 0.540±0.038 1.070±0.080 0.180±0.018 1.790±0.128

LSW3 36-38 26.00 0.80 0.594±0.049 1.147±0.088 0.172±0.017 1.913±0.146

LSW4 47-49 22.91 0.70 0.755±0.065 0.974±0.071 0.167±0.017 1.895±0.143

LSW5 56-58 20.50 0.48 0.771±0.061 0.897±0.059 0.161±0.016 1.830±0.127

LSW6 65-67 19.11 0.40 0.884±0.072 0.836±0.059 0.162±0.016 1.881±0.136

LSW7 73-75 21.00 0.40 0.760±0.064 0.981±0.072 0.157±0.016 1.898±0.142

LSW8 80-82 23.91 0.48 0.740±0.062 0.981±0.085 0.151±0.015 1.872±0.153

LSW9 89-91 27.50 0.65 0.574±0.040 0.940±0.071 0.145±0.015 1.659±0.120

LOLA-1 17-20 12.00 1.68 0.877±0.068 1.227±0.083 0.185±0.018 2.289±0.155

LOLA-2 28-31 13.50 0.85 0.738±0.061 1.283±0.083 0.180±0.018 2.220±0.148

LOLA-3 40-42 12.50 0.65 0.768±0.064 1.419±0.093 0.180±0.018 2.368±0.161

LOLA-4 51-53 12.00 0.42 0.844±0.065 1.283±0.088 0.176±0.018 2.303±0.157

LOLA-5 63-69 12.31 0.60 0.852±0.060 1.017±0.075 0.173±0.018 2.043±0.139

LOLA-6 104-111 18.28 0.13 0.891±0.021 1.188±0.051 0.155±0.015 2.234±0.083

LOLA-7 146-151 15.87 0.06 1.051±0.024 1.283±0.055 0.151±0.015 2.485±0.090

LOLA-8 181-187 19.40 0.05 0.959±0.021 1.414±0.062 0.139±0.014 2.512±0.097

LOLA-9 202-207 17.15 0.06 0.990±0.024 1.415±0.061 0.139±0.014 2.544±0.097

2LOLA-1 8-12 28.90 4.20 0.675±0.046 1.187±0.079 0.200±0.020 2.062±0.139

2LOLA-2 23-27 33.85 2.95 0.741±0.054 1.084±0.075 0.173±0.017 1.998±0.144

2LOLA-3 39-43 28.30 2.35 0.813±0.046 1.082±0.077 0.165±0.017 2.060±0.136

2LOLA-4 63-67 22.50 0.45 0.830±0.063 1.194±0.088 0.157±0.016 2.182±0.158

2LOLA-5 88-92 22.50 0.50 0.878±0.070 1.191±0.091 0.152±0.015 2.220±0.168

2LOLA-6 128-131 21.00 0.25 0.843±0.064 1.205±0.087 0.147±0.015 2.195±0.158

2LOLA-7 144-147 18.50 0.22 0.832±0.064 1.259±0.108 0.148±0.015 2.239±0.177
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4.6 Equivalent dose determination  

Choosing the best instrumental conditions for single-grain De analysis is essential in OSL 

age determination. To ensure accurate and representative results, the analysis of the OSL 

signal and the proper calculations and interpretations of De data are also very important. 

The following sections will further discuss these issues.  

          In this thesis, all samples were measured using the SAR procedure (Table 4.2, Page 

96) with a slight modification made with the thermal treatments. Unless specified, the cut-

heat mentioned here was actually a preheat held for 5 seconds before Tn/Tx measurements. 

The purpose was to avoid possible insufficient thermal treatment of the quartz due to poor 

contact between the sample discs and the heater. Several tests have been established to 

ensure the reliability of the De obtained. The performance of the SAR protocol for our 

samples wae tested using a preheat plateau test, recycling ratio and recuperation. The same 

SAR protocol is also used in dose recovery test and sample analysis, except for the ‗young‘ 

surface sediment samples (<50 yr old) for which an extra Step 6* was added to reduce 

recuperation (Murray and Wintle, 2003). For most of the samples that have sufficient 

dating material, we ran the SAR protocol in 3-5 samples with regeneration dose based on 

estimated dose and modified the regeneration dose according to the preliminary results for 

the rest of the samples. In the light of the bright quartz, we chose to apply a small test dose 

as suggested by Murray and Roberts (1998) to avoid recuperation effects.  

 

4.6.1 Equivalent dose determination using single aliquots 

In this thesis, the single aliquot methods were conducted on the dose recovery tests in 

order to determine the best thermal conditions for analysing samples from different 
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sampling sites. It is also applied to one of the core samples (core MMB3) to compare with 

data obtained from single-grain methods.  

 

 

4.6.1.1 OSL decay curves  

It has been demonstrated that the OSL signal from quartz is typically made up of more 

than one exponentially decaying component (Bailey et al., 1997; Jain et al., 2003), namely 

the ‗fast‘ (sometimes divided into ‗ultra-fast‘, ‗fast‘), ‗medium‘ and ‗slow‘ (sometimes 

divided into ‗slow 1‘, ‗slow 2‘, ‗slow 3‘, ‗slow 4‘). These components are named 

according to their relative decay rates during continuous-wave (CW) OSL stimulation. 

These components have different thermal stabilities, degrees of sensitisation, recuperation 

levels and dose-response curve shapes (Jain et al., 2003; Singarayer and Bailey, 2003). In 

particular, the fast and medium components will exhibit differences in bleaching rate with 

stimulation wavelength (Singarayer and Bailey, 2004). Therefore the OSL signal can vary 

greatly between samples with different components and even samples with the same 

components but different proportions. Ideally, the OSL signal used for De estimation in the 

SAR protocol is the fast component (Wintle and Murray, 2006). Therefore, the dominance 

of the fast component in the OSL signal is desired when using this approach.  

CW-OSL measurements, where the power of the stimulating light source is kept 

constant, usually result in a sum of exponentially decaying components (Jain et al., 2003; 

Singarayer and Bailey, 2003). A typical OSL decay curve from samples MMB3-3 and 

MMB3-5 obtained using continuous wave (CW) OSL stimulation is shown in Figure 4.6. 

A sharp decay was observed in the first 1 s of stimulation, indicating that these samples 

are dominated by the fast component. 
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Figure 4.6. Decade curves of two single-aliquot samples from core MMB3. 
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To further confirm that the OSL from our samples is dominated by the fast 

component, a linear modulation (LM) OSL stimulation was conducted on several samples 

(MMB3-05, LSW-CC), in which the OSL was recorded by linearly ramping the 

stimulation power of the blue LEDs from zero to its full power. Single aliquots containing 

~50-80 grains were given a beta dose of 50 Gy and preheated for 10 s to 260 °C. The LM-

OSL signal was measured at 125 °C for 3600 s by linearly ramping the power of the blue 

LEDs from zero to 90 %. Figure 4.7 provides examples of LM-OSL curves for samples 

MMB3-05 and LSW-CC, both of which have three repeats. It shows the dominance of fast 

components. The shine-down curves here were in agreement with those found in 

Australian quartz by Jain et al. (2003). Although the general trend of the curves was the 

same among aliquots from the same sample, the intensity of the OSL signal varied as 

much as 5 fold. These might have been caused by the inhomogeneous characteristic 

among the quartz grains. Here the shine-down curve of LM-OSL reassures the suitability 

of the SAR protocol for the Macquarie Marshes samples. 
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Figure 4.7. LM-OSL shine-down curves of two samples from cores (a) MMB3 and (b) 

LSW.  (The triplicates of each sample are presented by markers with different 

colours.) 
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4.6.1.2 Dose response curve 

In the SAR protocol, the natural dose of the sample is determined by interpolating the 

natural signal onto the dose response curve, which is a constitution of several regeneration 

dose points. The natural signal and regeneration signals are all corrected by dividing their 

OSL response signals (Ln or Lx) to a test dose response signal (Tn or Tx). These signals are 

net OSL signals obtained by summing the initial portion (0.1s) of the decaying OSL signal 

and subtracting a mean ‗late-light‘ background signal (final 0.2s). In addition, the same 

background signal was also used to derive the subsequent net test-dose response. 

Relatively small test doses were carefully chosen for each sample in the SAR protocol in 

particular for the young samples, to minimise the risk of significant recuperation and dose 

constitution through the analysed cycle (Pietsch, 2009). In this study, standard background 

subtraction was used to sample only the initial fast signal and remove any signal 

contributed by slower OSL components or instrument noise that might interfere with the 

De calculation (Murray and Wintle, 2000).   

Typical dose response curves (DRCs) from samples MMB3-3 and MMB3-5 are shown in 

Figure 4.8 (Page 108). For relatively young samples (De less than 5 Gy), the DRCs were 

fitted using a linear fit (Figure 4.8 a) described as: 

DkII  0                                     

Where I is the sensitivity-corrected luminescence intensity (a.u.), I0 represents the initial 

offset of the signal from the 0 Gy dose-point, D is the regeneration laboratory dose and k 

the additional linear term that accounts for continued growth at high doses. 

The samples that are relatively old (De more than 5 Gy) were fitted using a saturating-

exponential-plus-linear function (Figure 4.8 b) described as: 

DkeIII
DD   )1( 0/

max0
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Where I is the sensitivity-corrected luminescence intensity (a.u.), I0 represents the initial 

offset of the signal from the 0 Gy dose-point, Imax represents the intensity of the 

luminescence signal at saturation and D is the regeneration laboratory dose, with D0 being 

a constant defining the onset of signal saturation and k the additional linear term that 

accounts for continued growth at high doses. 

           All of the De and DRCs were analysed using the ―Analyst‖ software. All of the 

parameters described above were set as the analyst condition. Instrument reproducibility 

tests have not been measured in this study, but an instrument uncertainty of 2 % has been 

adopted for each OSL measurement, according to the previous finding by Jacobs et al. 

(2006a). 
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Figure 4.8. Regeneration dose curves of two single-aliquot samples from core MMB3. 
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         Though sample MMB3-05 had the most quartz, only 9 discs of aliquots (0.5 mm in 

diameter) were prepared from the material extracted. The dose recovery tests for core 

MMB3 were conducted on three groups of empirical preheat (PH) and cut-heat (CH) 

combinations. For the other two cores (LSW and LOLA), various combinations of preheat 

(10 seconds) and cut-heat (5 seconds) ranging from 180-280 °C and 140-200 °C were 

tested. Experiments using cut-heat with various preheat temperatures were also conducted 

on the core LSW.  

         The procedures for the dose recovery tests were built on the conventional SAR 

protocol for analysing true De values, except that at the beginning of the test on the first 

step, the sun-bleached and traps-emptied aliquots were given a certain dose to represent 

the natural dose. In this study, most of the dose recovery tests were conducted on a given 

dose of 50 Gy. A lower given dose of 5 Gy, which would be more representative of those 

young samples, was also utilised for the aliquots of quartz from the core LOLA for 

comparison.  

         Samples were examined in the following steps: IR depletion, sensitivity changes, 

recuperation and recycling ratio. Results of the dose recovery tests were assessed by the 

recovery ratio (the dose recovered divided by the dose given). They are presented as a 

function of preheat and cut-heat temperatures to allow assessment of thermal transfer. The 

most suitable preheat and cut-heat temperatures which did not lead to significant thermal 

transfer and with recovery ratios closest to 1.00 were then chosen for each set of core 

samples.  
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4.6.1.3.1 IR depletion tests 

As described in Section 4.2.2, the different characteristics of quartz and feldspar cause 

different behaviours in OSL dating. Therefore it is important to work with a single mineral 

(e.g. quartz or feldspar). In this thesis, the focus is on dating the quartz and therefore 

contamination by feldspar should be minimised. Though most of the feldspars had been 

removed during the sample preparation procedures, IR depletion tests proposed by Duller 

(2003) have been conducted to confirm no feldspar contamination. These tests were done 

by adding one further measurement at the end of the SAR measurement sequence. These 

involved adding another repeated dose measurement except that, prior to preheating, the 

aliquots/grains were exposed to an IR laser diode (or IR LEDs) at just above room 

temperature (50 °C under computer control) for 100 seconds. If there were feldspar 

contamination, the depletion of feldspar after IR exposure would lead to a reduction of the 

measurement signal from the previous measurement of the same regeneration dose. 

Reductions of more than 10 % of unity would be considered to indicate significant 

feldspar contamination (Duller, 2003).  

      For core MMB3 samples (Figure 4.9 a), the three preheat and cut-heat combinations 

all give consistent IR recycling ratios close to 1. The values for LSW and core LOLA 

samples (Figure 4.9 b, c and d) are mostly acceptable, falling within ±10 % of unity. For 

samples given a cut-heat for 0 seconds, except those of 150 °C, the other two thermal 

combination results are relatively consistent, giving IR depletion ratios close to 1. Results 

show that IR recycling ratios are more consistent with different thermal treatments and 

closer to 1 when given high regeneration doses, indicating that the modified sample 

preparation procedure had been successful in extracting pure quartz and the presence of 

feldspar contamination is not a contributing factor in this study. 
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Figure 4.9. IR depletion recycling ratios for cores MMB3, LSW and LOLA. 
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4.6.1.3.2 Sensitivity changes 

The sensitivity changes that occur through the SAR measurement cycles can be 

investigated by observing changes in the test dose response (Tx). By using a broad range 

of preheat temperatures, the degree of sensitivity change can be observed (Murray and 

Wintle, 2000). This can be seen when Tx/Tn is plotted as a function of measurement cycle 

during the construction of a dose response curve using different doses. The Tx/Tn curve 

will appear to be linear when ideally no sensitivity changes occur. 

         For sample MMB3-5, despite different combinations of preheat and cut-heat 

temperature applied, the Tx/Tn curves show similar trends (Figure 4.10). The curves 

increase with increasing regeneration dose during the previous five cycles and are 

relatively stable during the last three cycles. The degree of increase becomes higher at 

lower preheat and cut-heat temperatures. Of the three preheat and cut-heat combinations, 

the one with a preheat of 240 °C and a cut-heat of 180 °C shows a relatively consistent 

trend among three discs of the same preheat and cut-heat conditions. 

 

 
Figure 4.10. Changes of test dose responses for sample MMB3-5.  
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        The Tx/Tn curves of the 14 groups of preheat and cut-heat combinations for core 

LSW show similar increasing trend as those of sample MMB3-5 (Figure 4.11). Of all the 

combinations, the three sets (Figure 4.11 b, f, g) with preheat of 220, 250 and 280 °C 

show more consistency among different aliquots tested. For the discs that received a cut-

heat for 0 seconds (Figure 4.11 h), the Tx/Tn curves all behave the same as those with a 5-

second ‗cut-heat‘.  
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Figure 4.11. Changes of test dose responses for sample LSW-CC.  
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increasing trend with the increase of regenerated doses when given a high dose, which are 

consistent to those of the other two cores. The sensitivity can increase (up to 40 %) over 

eight cycles. The Tx/Tn curves become flatter at low given doses (Figure 4.12 b), 

indicating there is less change in sensitivity. For these samples with lower given dose, the 

regenerated doses were relatively low, therefore the change in sensitivities was less 

significant.   

 

 

 

Figure 4.12. Changes of test dose responses for sample LOLA-1.  
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      In the study of Armitage et al. (2000), the Tx/Tn curves show a similarly increasing 

trend at temperatures higher than 220 °C, but tend to decrease during the regeneration 

cycles at temperatures ranging from 160 to 220 °C. In this study, the Tx/Tn curves of MM 

samples are mostly independent of preheat and cut-heat temperatures.  

      For most of the samples, the most significant Tx/Tn changes occur during cycles 2 to 6, 

after which little or no change is noted. Cycles 2 to 5 are the procedures where 

regeneration doses were given and tested in increasing order; while cycles 6 to 8 are the 

procedures where zero dose and repeated regeneration dose were given. These results 

suggest that the higher the regenerated dose, the more likely quartz tended to change in 

Tx/Tn. It has been found that Australian quartz is transported and buried repeatedly 

(Pietsch, 2009). It is expected that this natural cycling has the same sensitivity effect as 

that observed to operate in the laboratory, where the cycling of quartz through various 

irradiating, heating and bleaching treatments increases its luminescence sensitivity.  It is 

probable that the laboratory-induced sensitivity changes for the MM samples were caused 

by not only thermal treatment but also by repeated irradiation.   

 

4.6.1.3.3 Recuperation  

Recuperation is caused by thermal transfer of charges from shallow, light-insensitive traps 

to deeper light-sensitive traps (Aitken and Smith, 1988). Murray and Wintle (2000) 

suggested two potential sources for recuperation: (i) thermal transfer from optically-

insensitive traps which are partly but incompletely drained by the preheat; (ii) thermal 

transfer of photon-transferred charge, during the test dose OSL measurement, into 

thermally-shallow but light-insensitive traps that are not emptied by the cut-heat.  
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       In this study, the recuperations (Figure 4.13) for most of the tested samples are less 

than 5 %. These values are similar to those observed by Murray and Wintle (2000) within 

sediment samples and higher than for the heated samples. There are no systematic changes 

in the recuperation for these samples with different preheat temperatures, at least within 

the range 200 to 280 °C.  Under the same thermal conditions (Figure 4.13 a, b and c), 

recuperation values of samples given a higher dose are more consistent; for those given 

lower doses (Figure 4.13 d), the recuperation values are more scattered and are relatively 

higher. Because the recuperation is calculated by the sensitivity-corrected dose at zero-

dose point (Lx/Tx) divided by the sensitivity-corrected natural dose (Ln/Tn), it is expected 

that a lower recuperation is obtained for a higher Ln/Tn value, and, hence, the lower the De, 

the greater the recuperation.  
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Figure 4.13.  Recuperation test results for cores MMB3, LSW and LOLA. 
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4.6.1.3.4 Recycling ratio 

The recycling ratio test involves repeating a dose point within the SAR measurement 

cycle. It tests for the reliability of sensitivity correction. The recycling ratios of aliquots 

from the MMB3, LSW and LOLA core samples are shown in Figure 4.14 as a function of 

preheat temperatures. 

         For core MMB3 samples, the recycling ratios of different thermal treatment 

combinations exhibit no temperature dependence. 

         LSW samples with a ‗cut-heat‘ of 5 seconds are more scattered but all fall within  

10 % of unity except for the combination of preheat 245 °C and cut-heat 165 °C.  

         Core LOLA samples also show recycling ratios that are less dependent on preheat 

temperatures but more dependent on given doses. Recycling ratios are more consistent to 

1 at higher given doses. With the low given dose, relatively low thermal treatments 

(preheat of 220-260 °C and cut-heat of 160-180 °C) should be used in order to achieve 

acceptable recycling ratios.  

        In conclusion, the recycling results demonstrate that the sensitivity correction of the 

SAR protocol works well for the MM samples. 
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Figure 4.14. Recycling ratio test results for cores MMB3, LSW and LOLA. 
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4.6.1.3.5 Dose recovery test results 

Dose recovery tests were conducted using different preheat temperatures. The ratios of 

the recovered dose to the given dose versus preheat temperature are plotted in Figure 

4.15 (Page 123). 

       The three preheat and cut-heat combinations of sample MMB3 (Figure 4.15 a) all 

give a recovery ratio lower than 1, suggesting that underestimation of the true De values 

in the samples may be possible using these conditions. The combination of preheat 240 

°C and cut-heat 160 °C appears to give a more satisfactory recovered ratio of 0.92 ± 0.18, 

and, hence, was chosen as the setup parameter for the MMB3 sample natural dose 

analysis.   

      Weighted recovered ratios of each preheat and cut-heat combinations of the LSW 

samples are plotted in Figure 4.15 b. It suggests that combinations of preheat within 220-

260 °C and cut-heat within 145-175 °C are the most suitable combination for giving dose 

recovery close to 1 (within ±5 % error). Taking the sensitivity change (described above) 

into consideration, a combination of preheat 260 °C and cut-heat 180 °C was chosen for 

the LSW samples. 

       For core LOLA, except for one sample with high preheat (270 °C) and cut-heat (190 

°C) combination, the other samples (Figure 4.15 c, d) are able to recover the given dose 

despite the different thermal treatments used. Both sets of samples with preheat of 220 

°C and cut-heat of 160 or 180 °C show good recovery ratios close to 1 (within ±5 % 

error). In this case, it is safe to apply the same thermal treatment to samples with both 

high and low De. The standard error of the 180°C cut-heat is relatively lower, thus is 

chosen with the combination of 220 °C preheat as the thermal treatment conditions for 

the core LOLA sample De analysis.  
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        Because the 2LOLA2 core was collected close to core LOLA, a separate dose 

recovery test was not performed. However, a single grain dose recovery test for 2LOLA2 

core was conducted at  220 °C preheat and 180 °C cut-heat (same as core LOLA) (further 

discussed in the next section). 
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Figure 4.15. The De recovery results for cores MMB3, LSW and LOLA. 
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4.6.1.4 Selected thermal conditions for equivalent dose determination 

From the above discussion, conventional single-aliquot OSL dating method -- the SAR 

protocol reported in the literature is applicable to the samples in this study. Thermal 

transfers are unlikely to be problematic with preheat temperatures ranging from 200 to 280 

°C, which are high enough to overcome the 110 °C thermal peak and lower than the 325 

°C optical luminescence peak. Possible sensitivity changes can be corrected by the internal 

checks of the SAR protocol. However modifications have been made to the SAR 

procedure including the following: 

        1) There is no significant variation in dose recovery results between cut-heat and 5 

seconds preheat under the same preheat condition.  In order to reach the desired 

temperature before recording the test dose signal, a ‗cut-heat‘ which is actually a preheat 

for 5 seconds is chosen.  

        2) IR depletion tests were added to the conventional SAR protocol to confirm no 

feldspar contamination. Results again showed that the modified sample preparation 

procedure had been successful in extracting pure quartz and there is no significant feldspar 

contamination in this study. 

        3) Various responses to thermal treatments are observed within the same sample and 

among samples from different sites (Table 4.4). Therefore it is essential to perform dose 

recovery tests ideally to each sample of interest, or at least to each suite of related samples.  
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Table 4.4  

Selected thermal conditions for analysing samples from the various MM sites. 

Site 
PH

*
 

(°C) 

CH
**

 

(°C) 

Recuperation 

(%) 

Recycling Tests Recovery of De 

Ratio 

(%) 
Error 

Ratio 

(%) 
Error 

MMB3 240 160 1.33 0.99 0.02 0.92 0.01 

LSW 260 180 1.95 1.01 0.02 0.95 0.03 

LOLA   
(High Dose) 

220 180 2.56 0.99 0.01 0.99 0.02 

LOLA   
(Low Dose) 

220 180 2.70 0.96 0.03 0.96 0.01 

2LOLA 220 180 - - -   

* PH= Preheat temperature     ** CH=Cut-heat temperature 

 

4.6.2 Equivalent dose determination using single grains 

4.6.2.1 OSL decay curves  

A typical OSL decay curve from sample MMB3-07 obtained using continuous-wave 

(CW) OSL stimulation is shown in Figure 4.16. A sharp decay was observed in the first 

0.5 s of stimulation, further confirming that our samples are dominated by the fast 

component. 
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Figure 4.16. Decade curves for two single-grain samples from core MMB3. 
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4.6.2.2 Dose response curves 

Typical dose response curves (DRCs) from samples MMB3-04 and MMB3-07 are shown 

in Figure 4.17. In this study, for relatively young samples (De less than 5 Gy), the DRCs 

were fitted using a linear fit (Figure 4.17 a); while the samples that are relatively old (De 

more than 5 Gy) were fitted using a saturating-exponential-plus-linear function (Figure 

4.17 b). 

 

 

     

Figure 4.17. Regeneration dose curves for two single-grain samples from core MMB3. 
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4.6.2.3 SAR performance of single grains 

4.6.2.3.1 Dose recovery for LSW samples 

In order to test if the thermal treatment conditions obtained using single aliquots 

(discussed in the previous section) are applicable to single grains, a dose recovery test was 

first conducted on 5 single-grain discs (500 grains in total) made up of core LSW 

materials. The modified SAR protocol was applied with a 10 seconds preheat of260 °C 

and 5 seconds preheat of 180 °C for test dose. Each of the sun-bleached quartz grains was 

given a beta dose of 348 seconds (~ 40 Gy). Altogether 500 single-grain data were 

collected and analysed under seven selection criteria (Appendix A1.2).  

       The dose recovery results for single-grain data analysed with the seven selection 

criteria are listed in Table 4.5. On the first selection procedure, about 39 % (194 out of 

500) of grains were rejected due to low signal intensity probably caused by the incomplete 

stimulation they received. Only half of the remaining grains survived the recycling ratio 

tests. A majority of 84 % of grains passed the IR depletion ratio check. About 68 grains 

were rejected as they failed in either one of the selection criteria from criteria 4 to 7.  

About 39 out of the 68 grains were rejected because their recuperations were greater than 

5 %. Among the 60 grains left after the seven selection criteria above, only 34 have errors 

within 10 % of unity. The ratio of recovery dose and given dose for these 34 grains was 

calculated and plotted in Figure 4.18; 66 % (22 out of 34) gave good recovery (ratio of 

recovery dose and given dose fall within the range of 0.90 and 1.10). Generally, the 

thermal treatment conditions tested by single aliquots are applicable to the single grains. 

Quartz grains that undergo significant sensitivity change during the thermal treatment in 

the SAR procedure will be noted by the internal checks and thus those data will be 

rejected or corrected when interpreting the true De value.  
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Table 4.5  

Single-grain dose recovery tests data selection results for LSW-CC (60-62 cm).

 
Criterion 1-Signal intensity check (reject Tn<3XBG) 
Criterion 2-Sensitivity correction-recycling ratios 
Criterion 3-IR depletion ratio check 
Criterion 4-Saturation and Monte Carlo fit check 
Criterion 5- Tx/Tn curve 
Criterion 6-Decade curve 
Criterion 7-Recuperation (<5 %) 

 

 

Figure 4.18. De recovery results for single-grain dose recovery test for core LSW 

(LSW-CC, 60-62 cm). 

 

4.6.2.3.2 Dose recovery for LOLA samples 

For core LOLA, LOLA-1 (17-20 cm) which has the most abundant material was chosen.  

Dose recovery tests on 5 combinations of preheat (220 to 260 °C) and cut-heat (160 to 180 

°C) temperatures were conducted (Table 4.6). Each combination of temperatures was 

tested on 2 discs consisting of ~ 200 single grains. Procedures and selection criteria for 

data analysis were the same as for the core LSW (discussed above) except the variation of 

preheat and cut-heat temperatures. Generally, results from the 5 combinations were very 
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similar with respect to the number of grains accepted and their recovery. The set with 

lowest temperatures (preheat 220 °C and cut-heat 160 °C) was not very satisfactory 

because it yielded lower recovery and the number of grains accepted was also 

proportionately lower than the others. Among all, the set with preheat 220 °C and cut-heat 

180 °C seemed to be more applicable for its higher acceptance of grains, higher recovery 

with remaining lower errors and overdispersion values. This set of parameters also 

matched those tested by the single-aliquot dose recovery test and again proved the thermal 

treatment conditions tested for single aliquots are adoptable for the single-grain analysis. 

 

Table 4.6  

Single-grain dose recovery tests results for LOLA-1 (17-20 cm) on 5 combinations of 

preheat (PH) and cut-heat (CH) temperatures. 

 

 

4.6.2.3.3 Dose recovery for 2LOLA2 samples 

The parameters (preheat 220 °C and cut-heat 180 °C) of the core LOLA was applied to the 

2LOLA2 core as they were collected near to each other in Loudens Lagoon. However, the 

sample of core 2LOLA2 chosen for the single grain dose recovery test was from the upper 

surface layer of the core (2LOLA2-1, depth 8-12cm). As shown in Table 4.7, the 

acceptance of grains and recovery were lower than those for core LOLA but the 

overdispersion value appeared to be higher. The reason for this needs to be further 

investigated. From the previous tests, applying medium preheat and cut-heat temperatures 

PH CH
Grains 

Analysed 

Grains 

Accepted

% of 

Grains 

Accepted

Given 

dose 

(Gy)

Recovery 

dose (Gy)

Recovery 

(%)

Overdispersion 

(%)

260 180 179 65 36.3 40.5 40.0 ± 0.6 99 ± 1 9.56 ± 1.08

260 160 175 76 43.4 40.5 40.3 ± 0.5 100 ± 1 10.23 ± 1.02

220 160 179 54 30.2 40.5 39.2 ± 0.4 97 ± 1 5.75 ± 0.94

220 180 184 75 40.8 40.5 40.0 ± 0.3 99  ± 1 5.30 ± 0.78

240 180 172 59 34.3 40.5 40.6 ± 0.4 100 ± 1 4.68 ± 1.17
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did not cause significant alteration in dose recovery test. Therefore it is safe to proceed 

with this set of parameters for samples from the 2LOLA2 core. 

  

Table 4.7  

Single-grain dose recovery tests results for 2LOLA2-1 (8-12 cm). 

 
 

4.6.3 Selection criteria applied to De value determinations 

Several criteria have been suggested and widely used for the analysis of single-grain De 

data (Olley et al., 2004; Jacobs et al., 2006a; Delong and Arnold, 2007; Arnold et al., 

2008). They usually make reference to grain sensitivity, dose-signal repeatability, IR 

response and the precision of the final De. In this study, seven selection criteria (Appendix 

A.1.2) were used for single grain De determinations, according to those criteria that are 

most accepted, as well as based on the results of dose recovery tests. The aliquots and 

grains were rejected if they failed any of the selection criteria. Only those that passed all 

selection criteria were accepted for further analysis. These criteria were based on the 

following checks in sequence. The raw data were copied and pasted into a spreadsheet 

designed for checking signal intensity, recycling ratio, IR depletion ration and 

recuperation. The saturation check, Tx/Tn curve check and decay curve check were 

visually inspected under ―Analyst‖ software window. 

 

PH CH
Grains 

Analysed 

Grains 

Accepted

% of 

Grains 

Accepted

Given 

dose 

(Gy)

Recovery 

dose (Gy)

Recovery 

(%)

Overdispersion 

(%)

220 180 300 110 36.7 40.5 38.8 ± 0.4 96 ± 1 9.71 ± 0.86
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4.7 De analysis and age determination 

Developments in OSL instrumentation and measurement protocols allow the acquisition 

of numerous De values from aliquots and single grains. These data can be used not only 

for statistical analysis and calculation, but also for investigating the types of pre-

depositional, depositional and post-depositional processes that might have occurred and 

affected the buried sediment sample.  

     Despite proceeding from the same material, after selecting for appropriate grain size 

and applying same measurement conditions, the De values obtained from the same sample 

usually vary to some extent. In some cases, these variations can be large, depending on the 

sample. Experimental sources such as counting statistics and systematic instrumental 

uncertainty (arising from non-uniform measurement conditions applied to individual 

grains or aliquots), can cause the scatter of De values. However they were corrected by 

instrumental uncertainty of 2 % as reported by other studies (Jacobs et al., 2006a). At this 

stage, only the natural factors that caused the scatter of De values were considered. These 

natural factors can be concluded as following: 

       1) Partial bleaching – also termed ―incomplete‖ or ―non-uniform‖ bleaching in some 

references, is commonly found in many depositional environments (Olley et al., 1998; 

1999 and 2004) due to surface coatings (e.g. water or organic matter) on grains and/or 

poor exposure to sunlight during sediment transport. This results in grains being deposited 

with a heterogeneous distribution of residual trapped charge and a correspondingly wide 

range of measured De (Olley et al., 2004). In all environments, grains may be transported 

at night and receive no light exposure and theoretically ~50 % of deposition occurs in the 

dark. However the last transport event is not necessarily the most important, as the grains 

may have been exposed to sufficient light in the previous transport cycles (Rhodes, 2011). 
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Apart from the environmental factors, sample characteristics are also important for 

successful OSL bleaching. Rhodes (2011) summarised that samples containing grains 

recently eroded from bedrock, typically have low OSL sensitivity and are relatively 

difficult to bleach. In contrast, quartz that has experienced multiple cycles of reworking 

over the recent geological past (e.g. desert dune sands, or significant heating by wildfires 

or in hearths) usually has high OSL sensitivity and is more easily bleached to a low 

residual level. In our study, sample characteristics are not a significant issue as most of the 

grains appear to be bright and sensitive in their OSL signals (Sections 4.6.1.1 and 4.6.2.1).   

       2) Post-depositional mixing – is the mixing of the deposit through physical 

disturbance (Richard et al., 1998; Bateman et al., 2007a; David et al., 2007). One of the 

most common disturbances is bioturbation, which refers to the post-depositional 

translocation, either vertically or laterally of sediments and soils either through mixing or 

exhumation by flora and fauna (Balek, 2002). In theory, sediments at or just below the 

surface are more likely to undergo maximum mixing and disturbance as this is where 

animal and plant activity is most intense and soil overturn rates are high (Heimsath et al., 

2002). This process usually leads to intrusion of younger grains into older deposits or vice 

versa, and the grains affected might exhibit various palaeodoses (De) within one sample. 

Vegetation, in particular trees, usually disturbs sediment both though the growth and 

decay of root systems and via tree throws (Heimsath et al., 2002). Whereas the latter is 

clearly surficial, tree root growth can extend to great depths in areas with deep water 

tables. In such case, bioturbation is most intensive within a metre or so of the surface 

(Bateman et al., 2007b). Unlike partial-bleaching, bioturbated samples will display De 

values both higher and lower than the true burial dose (Bateman et al., 2007a). Arnold and 

Roberts (2009) concluded sediment mixing has the potential to affect the appearance of De 
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distribution in various ways including: symmetrically increasing the overall spread of De 

values, or increasing either positive skewness (where the dominant intrusion is by younger 

grains) or negative skewness (where the intrusive grains are mostly older), creating 

discrete dose populations (including zero-age grains) and multi-modal De distributions.  

         3) Microdosimetry – is caused by beta-dose heterogeneity among individual buried 

grains (Murray and Roberts, 1997; Olley et al., 1997) and occurs when beta particles from 

40K of the high radioactivity minerals (termed as hotspot) fluctuate. For example, if 

potassium feldspar grains, which have an internal K concentration of ~14 %, are dispersed 

in low abundance among quartz grains in sediments with an average bulk K content of 

0.1-4 %, the De distributions are likely to be positively skewed (Arnold et al., 2008). 

Unlike bioturbation and partial bleaching which are highly dependent on the depositional 

environment, beta heterogeneity is an intrinsic aspect of exposure and affects all single 

grain distributions to a certain extent (Mayya et al., 2006).  

         4) Intrinsic grain-to-grain variability – is caused by variation of luminescence 

behaviour and differing responses to fixed SAR conditions (Jacobs et al., 2003).  

     

4.7.1 Graphic display of De distribution 

The use of single-aliquot and single-grain dating procedures will yield multiple values of 

De for each sample. When displayed graphically, these values can provide information on 

the reliability of individual measurements. Moreover they provide insight into whether the 

distribution of De values is normal or skewed, thus allowing consideration of the potential 

causes of De variations. Olley et al. (1999) propose that the shapes of dose distributions 

and their degree of asymmetry can be used to infer the degree of partial bleaching 

contamination in samples and thus may be useful in selecting appropriate age models.  
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      There are two extensively used methods of displaying the De data – histograms and 

radial plots (Olley et al., 1998; 1999; Bøtter-Jensen et al., 2003). Histogram plots are a 

straightforward form of data presentation for dose estimates that have similar relative 

errors (precisions) (Olley et al., 1999). To construct a histogram, the individual De values 

must be sorted and entered into bins of finite De width. The bin width will affect the 

resolution of the shape of the distribution. In order to gain better resolution, a smaller bin 

width should be chosen. Histograms for a normal distribution will approximate a Gaussian 

distribution. However aliquots or single grains typically vary greatly in their OSL 

intensities, and the precisions of their dose estimates differ substantially. As histogram 

plots take no account of difference in precision associated with individual dose estimates, 

the inclusion of relatively imprecise values may seriously distort a histogram plot and 

results in incorrect inferences being drawn about the true pattern of the dose distribution 

(Olley et al., 1999). Despite this disadvantage, histograms are still widely used as a 

general-purpose graph as they are nearer to the raw data, easier to use and more 

convincing (Galbraith, 2010). For a better interpretation of the De values, histograms have 

been improved by adding scatter plots of standard error (Galbraith, 2010) or ranking De 

value with standard errors (Demuro, 2009).  

      A more appropriate and informative method proposed by Galbraith (1988) is 

conventionally known as the ―radial plot‖. Unlike the histograms, in a radial plot each De 

value is plotted as an individual point on the graph. The x-axis expresses the measurement 

of the precision as well as the relative error (expressed as a percentage). The more 

precisely the De value is, the further it plots to the right on the diagram. The y-axis is 

usually the values of De expressed in logarithmic terms which are calculated by 

subtracting a reference value from each of the log doses and then dividing each of the 
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differences by the associated standard error (Galbraith et al., 1999; Olley et al., 1999). The 

choice of reference value is arbitrary, but the mean value of De is the value usually chosen. 

Altering the reference value causes the data points to rotate about the origin (Bøtter-Jensen 

et al., 2003). Another useful feature of the radial plot is that it naturally sorts the data. If 

the individual estimates are consistent with a common dose, about 95 % of the points 

should fall within a band ±2 units vertically around some radial line (Galbraith, 1988). If 

the data arise from two distinct populations, then the points should mostly lie within two 

such radial bands. If there is a minimum dose, the data should almost all lie within or 

above the radial band corresponding to that dose.  

      Here De values are displayed using  both improved histogram format and the radial 

plot format. The histograms with ranked De values shown in this study were drawn using 

the Microsoftware Excel program, each individual De value was shown as a bold dot with 

its error bars. For samples with positive De values, the radial plots were drawn using the 

Radial Plot v1.3 software developed by Jon Olley and programmed by Michael Reed. For 

samples with negative De values, the radial plots were drawn using the RadialPlotter v2.1 

software developed by Pieter Vermeesch (2009). The ±2σ bands in blue were drawn using 

the De value calculated by the Central Age Model and those in red were drawn using the 

De values calculated by the Minimum Age Model (detail in the following sections). 

 

4.7.2 Introduction to age models 

With the use of one of the formats discussed above, the distribution pattern of the De 

values can be obtained. However, for the age calculation, only one single De value is used. 

It is necessary to calculate the De value that is most representative of the dose – the one 

that has accrued since the event of interest using the appropriate age model. The age 
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models are statistical methods developed to isolate grains representative of the true burial 

dose. If the palaeodose shows a normal distribution, the representative dose could be the 

central parameter such as the average or the median of this distribution. In the case of a 

non-normal distribution, the selection of representative dose requires firstly decoupling the 

mixing dose populations and thus becomes more complicated. This study focuses on the 

central age model and the minimum age model, which have been shown to provide the 

most accurate optical age estimates for all of the known-age samples (Arnold et al., 2007). 

They are more applicable to the Macquarie Marshes samples, since partial bleaching is the 

dominant cause of De scatter in these fluvial samples (further discussed in the following 

sections). 

 

4.7.2.1 Central age model (CAM) 

The ―central age model (CAM)‖ was developed by Galbraith et al. (1999) to obtain the 

best estimate of De. This model is based on the assumption that the logarithms of the true 

De values are drawn from a normal distribution with a mean µ  and standard deviation 

(usually termed ‗overdispersion (OD)‘) σ. These parameters are determined from the 

measured data set according to the equations developed by Galbraith et al. (1999). The 

over-dispersion parameter (usually reported as a percentage) is obtained from applying the 

CAM and has been used extensively as an indicator of spread in dose distributions. High σ 

values (e.g. >10 %) may indicate grain mixing or incomplete zeroing (Rhodes, 2011). OD 

represents the fraction of the observed spread in De which is not accounted for by the 

spread of the data as expected from the size of the errors on the individual De estimates 

(Bailey and Arnold, 2006). Thomsen et al. (2012) reviewed the previously published 

single-grain OD values and found most samples have an OD larger than 15 % despite 
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uncertainty (counting statistics and instrument reproducibility) were considered. Because 

such significant over-dispersion are also found in laboratory dose recovery experiments 

where all extrinsic sources of variability have been eliminated, the authors pointed out the 

significant over-dispersion in natural well-bleached samples is caused by intrinsic 

(Thomsen et al., 2012). In this study, CAM is used as an informative comparison to the 

other age models and also an estimate of the overdispersion value.  

 

4.7.2.2 Minimum age model (MAM) 

The ―minimum age model (MAM)‖ has been described and tested in simulations by 

Galbraith and Laslett (1993) and Galbraith et al. (1999). This model is based on the 

assumption that the logarithms of the true De values are drawn from a truncated normal 

distribution including 3 to 4 parameters: the lower truncation point (the minimum age) is 

denoted by γ; the unknown proportion of fully bleached grains is denoted by p; the rest of 

the population that has ages in excess of γ is approximated by a truncated normal 

distribution, with mean µ  and deviation σ. If the log De distribution is not truncated, then µ  

and σ would correspond to its mean and standard deviation. In cases where the 4-

parameter model (usually termed ―MAM4‖) does not fit, a more robust estimate of γ may 

be obtained using a 3-parameter model (usually termed ―MAM3‖) in which γ=µ . The 

MAM4 will converge to the CAM when γ is small and p is close to zero. In various 

geomorphic settings, the application of the MAM provides the most accurate estimate of 

the burial dose while the weighted mean De (as obtained using the ‗central age model‘) 

gives rise to burial age overestimates of up to a factor of 10 (Olley et al., 2004). However, 

the minimum age model does not always provide a reliable age estimate due to inferred 

cause of variations in De values (e.g. Galbraith et al., 1999). For example, applying the 
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MAM for samples that have undergone post-depositional disturbance will result in the 

intrusion of grains from younger strata (Galbraith et al. 1999). The authors also pointed 

out in the case of grains that experienced unusually low beta dose rates, the minimum log 

palaeodose γ does not relate to the most fully bleached grains.  

 

4.7.2.3 Finite mixture age model (FMM) 

In nature, various bleaching and burial process occur with a discrete De component, and in 

this case the ―finite mixture age model (FMM)‖ can offer a useful alternative for De 

determination (Galbraith and Green, 1990; Galbraith and Laslett, 1993). This model was 

first proposed by Galbraith and Green (1990) and originally designed for fission track 

dating (Galbraith and Laslett, 1993). The model has been used in OSL studies of mixed 

sediments (Roberts et al., 2000; Jacobs et al., 2006a; Bateman et al., 2007a; David et al., 

2007; Jacobs et al., 2008). This model estimates the number of discrete dose populations 

in a mixture, their corresponding palaeodoses and their relative proportion among the age 

groups. It has been shown that this age model should only be applied to single-grain scale 

of analysis (David et al., 2007; Arnold and Roberts, 2009), because multi-grain aliquots 

may consist of grains drawn from more than one dose population resulting in spurious 

dose populations.  

      The FMM is based on the assumption that the overdispersions for each dose 

population are the same, which may not always be the case for natural samples (e.g. 

Arnold and Roberts, 2009). These heterogeneously bleached fluvial sediments  are 

composed of grains with log De values that are not normally distributed and/or that consist 

of multiple or discrete dose components with significant different oversdispersion values; 

and thus not suitable for applying the FMM.  
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       The FMM was not applied to the samples studied here as most of them were suitable 

for applying the MAM because partial-bleaching was the dominant influence on the De 

values. However, further studies can be done with the application of the FMM to 

determine the relative abundance of the De value groups, in particular for those that 

contain a broad range of De values.  

The above age models all use the natural logs of individual De estimates. In the case 

of very young and modern samples which contain negative, zero or close to zero De 

values, the log-transformed De datasets can pose problems. Arnold et al. (2009) revised 

the original version of the central and minimum age models so that they can be applied to 

un-logged De estimates and their associated absolute standard errors. These un-logged 

versions of the central and minimum age models have been shown to be capable of 

producing accurate burial dose estimates for modern-age and very young (<350 yr) fluvial 

samples that contain (i) more than 20 % of well-bleached grains in their De distributions, 

or (ii) smaller sub-populations of well-bleached grains for which the De values are known 

with high precision (Arnold et al., 2009).  

In practice, no single age model is appropriate for all situations. Bailey and Arnold 

(2006) evaluated a selection of the various statistical approaches and showed that 

significantly different estimates of the De values can be obtained by applying the different 

methods. They proposed a decision-support criterion to help with choosing the most 

appropriate model for De determination. Fuchs and Owen (2008) cautioned to be careful 

when using these methods. They pointed out that the underlying problem is that the 

uncertainty regarding the causes of a broad distribution of De values is more complex than 

the bleaching history, since it may also be due to effects such as microdosimetry and 
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luminescence characteristics. Thus, the application of the statistical models requires 

knowledge of the potential variability present in well-bleached samples.  

In this study, the ‗central age model‘ was only applied to a few samples which were 

less dispersed in their De values with low overdispersion values (<20 %). For the rest of 

the samples, the most mathematically rigorous of the age models – the ‗minimum age 

model‘ was applied to obtain representative De values for most of the fluvial samples. 

Only for the upper surface sediment samples which contain negative, zero or close to zero 

De values, was the un-logged version of the original age model used. The rest of the 

samples were still calculated by the original (log-transformed) version of the central and 

minimum age models, since these age models are better suited to the statistical properties 

of typical single-grain and multi-grain single-aliquot De datasets for most routine dating 

applications (Arnold et al., 2009). Thomsen et al. (2012) emphasised that analysis of 

single grain dose distributions requires knowledge of the dispersion of the well-bleached 

part of the dose distribution, which can be estimated by measurement of a suitable 

analogue, e.g. a well-bleached sample. Herein, the OD values from the dose recovery test 

(on well-bleached samples with known laboratory dose) for each core were used as a 

guide for applying the age models.   

As the De distribution of either single grain or aliquot is highly dependent on the 

environmental settings, the sedimentology was considered when interpreting the data. 

Accordingly, the environmental setting of the sampling sites were reviewed before 

interpreting the De values and estimated the ages of the cores. 
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4.7.3 De distributions and age determination for core MMB3 

Core MMB3 was collected in Bora channel where marsh vegetation was growing nearby 

at the time of sampling. The water was relatively shallow, with a depth of about 5-10 cm. 

At this fluvial sampling site, we would expect OSL quartz samples with a mix of partially 

and fully-bleached quartz grains.    

 

4.7.3.1 De distributions of single aliquots 

Due to the limitation of material used for single aliquot analysis, 24 aliquots from each of 

the deeper parts of the core (MMB3-5 and MMB3-7) were analysed while only 12 

aliquots from MMB3-4 were analysed.  

     The shape of the dose distributions can be used to assess the likelihood that the aliquots 

consist only of grains that were well-bleached at the time of deposition (Olley et al., 

1999). Figure 4.19 shows the histograms with ranked De values (on the left) and the radial 

plots (on the right) for the three samples. The spread of De values is large, ranging 8-10 

times from the smallest values to the largest ones within the same sample. However, the 

ratio of maximum and minimum doses in these samples is much lower than other fluvial 

samples (100-400 times) found by Olley et al. (1998). The three samples show asymmetric 

distributions to some extent and a ―tail‖ at higher De values in their histograms. The De 

distributions from samples taken progressively deeper down the core (from MMB3-4 to 

MMB3-7), have the leading edge of each distribution as well as the ―tail‖ values moved 

systematically to larger dose values. Comparatively, MMB3-4 and MMB3-5 are more 

asymmetric with longer tails while MMB3-7 is more symmetric with a shorter tail. These 

asymmetric distributions are similar to those found by Olley al. (1998, 1999) among 

various young fluvial sediments, in which cases they suggested the lowest De values might 



 

 

143 

 

be more representative of the true burial dose while the high De values of poorly bleached 

grains might yield overestimated results. In the radial plots, despite the limited number of 

available data, the precision for almost all the samples (except one sample from MMB3-7) 

are relatively high. The deeper the sample (i.e. older) is, the more precise the De values 

are. Of all the radial plots, very few De values fall within the ±2σ band with central age 

model value and these data cannot be simply grouped into two populations by plotting an 

additional ±2σ band with minimum age model value.  

      Considering these data were obtained by applying the same instrumental conditions to 

the same sample and selected by the seven criteria discussed in Appendix A1.2, and the 

heterogeneous characteristic and behaviour among the grains would not have caused such 

a great variation of De values, the asymmetric distribution and variation of De values are 

more likely to be caused by the ―contamination‖ of partially-bleached grains in the fully-

bleached grains. 
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Figure 4.19. Histograms with ranked De values (left) and radial plot (right) of single-aliquot data from core MMB3. 
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Figure 4.19 (continued). Histograms with ranked De values (left) and radial plot (right) of single-aliquot data from core MMB3. 
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Figure 4.19 (continued). Histograms with ranked De values (left) and radial plot (right) of single-aliquot data from core MMB3. 
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4.7.3.2 De distributions of single grains 

Given the possible insufficient bleaching problem shown in the single aliquot results 

shown above, single grain measurements were conducted in order to identify fully 

bleached grains. Selected De values (survivors of the seven selection criteria) of single 

grains for the seven core sections of MMB3 are plotted in both histograms with ranked De 

and radial plots in Figure 4.20. For comparison, De distributions of single grains for dose 

recovery test (Section 4.3.5) are shown in Figure 4.21 (Page 155).  

Of the seven core sections, only sample MMB3-1 contains negative De values, which 

is statistically reasonable for weak OSL signals. This could also indicate possibly 

sensitisation during the initial (and uncorrected) natural OSL measurement in the SAR 

protocol (Bateman et al., 2007a).  
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Figure 4.20  Histograms with ranked De values and radial plot of single-grain data from core MMB3. (left graph: histogram; right graph: 

radial plot, blue line and number indicate De calculated by central age model, red line and number indicate De calculated by minimum 

age model) 
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Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 

 

 

 

0.12 ± 0.01

0

3

6

9

12

15

18

21

N
u

m
b

e
r 

o
f 

G
ra

in
s

De (Gy)

MMB3-2 16-19 cm Single-grain De values (n=37)

0.00     0.05        0.10 0.15             0.20            0.25         0.30

OD=35±5%

S
ta

n
d

a
rd

is
e

d
 E

s
ti

m
a

te

2
0
-2

D
e

(G
y
)

Relative Error (%)

Precision



 

150 

 

 

 

Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 
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Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 
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Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 
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Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 
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Figure 4.20 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core MMB3. 
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Figure 4.21. Histograms with ranked De values (left) and radial plot (right) of single-grain data from dose recovery test (LSW-CC).  
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The MMB3-3, MMB3-5, MMB3-6 and MMB3-7 data generally show more positive 

skewness in the histograms and the range between the minimum and maximum values 

range from 60 to 800 times. They reveal typical fluvial samples similar to those found by 

Olley et al. (1998); skewed dose distributions with a minority of high dose estimates 

forming an extended high value tail. It is likely that grains of these samples were carried 

by a flood upstream of Bora Channel and deposited at the sampling site. The coverage of 

water and vegetation, and insufficient exposure time to the Sun led to heterogeneous 

bleaching of the grains, thus causing the great variation of De values. A recent study by 

Rhodes (2011) found that deep water attenuates the UV end of the spectrum, reducing the 

bleaching rates of the grains, and the same can be affected by vegetation coverage. It is 

also likely that the higher proportion of partially-bleached grains in these samples may 

indicate they were deposited in deep water with good vegetation coverage in the 

surrounding area. As suggested by Olley et al. (1999), the asymmetrical distribution can 

reveal the increasing proportion of unbleached grains. The higher proportions of partially-

bleached grains among these samples also indicate the flow rate was comparatively fast at 

the time period represented by these sections. Comparatively, MMB3-1, MMB3-2 and 

MMB3-4 show relatively more symmetrical distribution in their histograms with De values 

ranging 5-10 times between the minimum and maximum values. They may reveal either a 

contribution of aeolian grains deposited in the dry years or fluvial grains with higher 

proportion of fully-bleached grains (Olley et al., 1999). The contribution of aeolian sand is 

very unlikely in particular in MMB3-1 and MMB3-2 samples because the sampling site 

close to Bora channel has been inundated for a relatively long time (Kingsford and Auld, 

2003). The addition of a high proportion of fully-bleached fluvial sand is more likely to 
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happen during the relatively dry years when the flow rate was relatively slow and the 

grains were carried from upstream and more fully bleached before burial.  

The uppermost sediment samples (MMB3-1 to MMB3-4) generally show two 

distinctive groups on their individual radial plots. The deeper core sections (MMB3-5 to 

MMB3-7) show a large spread of data in their radial plots. The spread of De values 

indicates grains from these core sections may be a mixture of grains from different 

sources, or they may have undergone complicated processes before and after their burial. 

In this case, no single explanation – such as partial bleaching, is sufficient to explain the 

observed spread of De values. The grains may have originated as fluvial sediments, 

experienced partial-bleaching before burial, affected by bioturbation at a certain time 

period, but they remained undisturbed until recent excavation. Such broad distribution of 

the De is very unlikely to have been caused by microdosimetry (Murray and Roberts, 

1997; Mayya et al., 2006), because too little time has elapsed since deposition to expose 

these grains to sufficiently high dose rates (Arnold et al., 2009). Further investigation is 

needed to understand the influence of microdosimetry at this sampling site. Considering 

this sampling site was in a fluvial setting, partial bleaching would still be the main cause 

of De scatter.  

    Similar to the single-aliquot data, all these single-grain De data, again, generally tend to 

increase with the increase of core depth. Zero-doses De grains are not found among 

samples from the deeper core sections, indicating they have not been in recent contact 

with the ground surface (Bateman et al., 2007a). These observations further confirm that, 

compared to partial-bleaching, bioturbation and reworking of sediments in recent years are 

not the main cause of the variation of De values.  
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    Due to the limitation of dating material, the 180-212 μm grain-size was used for three 

sections (MMB3-2, MMB3-6 and MMB3-7). For all the others, the 125-180 μm grain-size 

fractions was used. It is worth mentioning that although a larger grain-size was used when 

dating these samples, the spread of De values caused by the contamination of partial-

bleached grains still existed and the proportions of these contaminants were too large to be 

neglected. The notion that coarser fractions may be better bleached than the finer fractions 

(Olley et al., 1998; Hu et al., 2010) is obviously not the case in core MMB3 sections. This 

again proves that partial-bleaching effects are profound in these environmental settings.  

As is shown in the ranked histogram and radial plot of the single-aliquot data, the 

relative standard error tends to increase with the increase of De value within a given 

sample. However, this is not always the case for single-grain data. In particular, for the 

near-surface sediment sample, the relative standard error of De values displays a great 

variation. This finding is similar to those found by Porat et al. (1996) and Greenbaum et 

al. (2000) and is thought to be attributed to inadequate sunlight exposure of the grains 

prior to burial (Thorndycraft et al., 2008).   

 

4.7.3.3 Age models 

Initially, the De values of all the samples were calculated by the ‗Central Age Model 

(CAM)‘. MMB3-1 was calculated by un-logged CAM (UCAM) as it contains negative 

numbers. The data for MMB3-2, MMB3-3 and MMB3-4, which contain low De values 

close to zero, were also calculated by UCAM for comparison. As shown in Table 4.8 

(Page 160), CAM gives over-dispersion values from 35 % to 135 % for all the samples, 

which are all greater than the recommended value (20 %) to apply this age model. This, 

again, indicates that partial bleaching should be the main consideration when choosing the 
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appropriate age model for interpreting De distribution of these samples. A previous study 

by Bateman et al. (2007b) proposed high OD values together with zero dose values may 

be particularly useful in highlighting samples currently undergoing bioturbation and also 

in identifying older samples which were once bioturbated. They found within a modern 

bioturbation core profile, the OD values declined from the surface modern soil to the 

underlying sand unit. Such a trend of declining OD was not found in the core MMB3 

profile and the OD values exhibit random distribution along the core. This again proves in 

this sampling site, the bioturbation effect on the dose distribution is relatively minor 

compared to the partial-bleaching effect. We can also see from Table 4.8 that the De 

values of UCAM and CAM are very similar in samples MMB3-2 and MMB3-3, but the 

overdispersion values calculated by UCAM are greater than CAM. However, in sample 

MMB3-3, the De value calculated by UCAM is larger than that for CAM while the 

overdispersion values are similar.  
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Table 4.8  

The De values of core MMB3 calculated by different age models. 

 
* Values in bold are the most representative dose and age  
** SG: Single-grain 
    SA: Single-aliquot 

              UCAM               CAM

De (Gy) Age (a)
O verdispersion 

(%)
De (Gy) Age (a)

O verdispersion 

(%)
De (Gy) Age (a) De (Gy) Age (a)

MMB3-1 5-8 125-180 1.27 ± 0.10 0.087 ± 0.015 67 ± 13 116 ± 12 - - - 0.04 ± 0.01 31 ± 8 - -

MMB3-2 16-19 180-212 1.52 ± 0.13 0.13 ± 0.02 81 ± 12 80 ± 8 0.12 ± 0.01 78 ± 9 35 ± 5 0.07 ± 0.01 45 ± 8 - -

MMB3-3 27-29 125-180 1.59 ± 0.12 0.12 ± 0.02 75 ± 11 66 ± 4 0.11 ± 0.01 65 ± 9 69 ± 8 0.08 ± 0.01 49 ± 7 - -

MMB3-4 48-51 125-180 1.78 ± 0.14 0.18 ± 0.02 97 ± 11 57 ± 6 0.17 ± 0.01 96 ± 10 33 ± 6 0.08 ± 0.02 44 ± 12 - -

MMB3-5 55-57 125-180 1.80 ± 0.14 - - - 0.28 ± 0.02 150 ± 66 58 ± 5 0.12 ± 0.02 65 ± 10 - -

MMB3-6 69-72 180-212 1.73 ± 0.12 - - - 0.68 ± 0.06 385 ± 43 79 ± 6 0.29 ± 0.01 165 ± 13 - -

MMB3-7 85-88 180-212 1.88 ± 0.14 - - - 3.5 ± 0.5 1805 ± 289 135 ± 10 0.58 ± 0.07 306 ± 43 - -

MMB3-4 48-51 90-125 1.78 ± 0.14 - - - 0.89 ± 0.20 503 ± 122 79 ± 16 - - 0.22 ± 0.03 124 ± 20

MMB3-5 55-57 125-180 1.80 ± 0.14 - - - 1.90 ± 0.31 1053 ± 1889 74 ± 11 - - 0.49 ± 0.04 273 ± 31

MMB3-7 85-88 180-212 1.88 ± 0.14 - - - 15 ± 2 7988 ± 1247 64 ± 10 - - 4.15 ± 0.35 2209 ± 248

MAM

SG

SA

Sample ID
Depth 

(cm)

Grain size 

(µm)

Total Dose 

Rate (Gy/ka)

UMAM4
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Considering the fluvial setting of this sampling site and the partial bleaching 

characteristic of the De values discussed in the previous section, we applied the minimum 

age model (MAM) to calculate the true De values. Given the negative values in MMB3-1 

and near-zero values among the other samples, the un-logged MAM (UMAM) version 

proposed by Arnold et al. (2009) was applied as it has proven to offer the most suitable 

means of deriving accurate burial dose estimates for very young and modern-age samples. 

We applied 4-parameter MAM (MAM4) for core MMB3 as it has been suggested that 

both the MAM3 and MAM4 De estimates are stable when the number of samples exceed 

20 (Galbraith et al., 1999).  All of the samples return the most representative De values 

(best fit for the age model, maximum likelihood) with the input OD value less than 10 %. 

Results (Table 4.8, Page 160) calculated by UMAM4 show good chronological sequence 

with increasing De values down the core. The De values of MMB3-2, MMB3-3 and 

MMB3-4 calculated by UMAM are very close to each other disregarding their absolute 

errors. The grains from these three samples may have been deposited over a short time 

interval. The De values calculated by UMAM will be further examined by independent age 

control in the following section.    

 

4.7.3.4 Comparison between single-aliquot and single-grain data 

A study of coastal dune sediments by Ballarini et al. (2007) compared De obtained from 

single-grain analysis to those obtained by means of similar single-aliquot methods. They 

found the results were comparable although the De determined through the single-aliquot 

methods was more precise. However, this is not the case for the Macquarie Marshes 

samples. For core MMB3 samples, the De values of the aliquot results are 2-5 times higher 

than the single-grain results for the same sample, despite applying the same age model to 
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single-grain and single-aliquot data sets (Table 4.8, Page 160). Compared to well-bleached 

coastal dune grains, the Macquarie Marshes sediments are more likely to have a 

heterogeneous bleaching of the grains transported by a fluvial environment. Each aliquot 

may include grains that were insufficiently bleached before burial. The intrusion of such 

grains leads to an overestimation of the true De. Although small aliquots (ID 0.5 mm) 

consists of a small amount of grains, the averaging effect is still large. Single-grain 

analysis enables the separation of those grains that were well bleached prior to deposition 

from those that were partially bleached. We can thus exclude the insufficiently bleached 

grains from the age calculation. The De distribution between the single-aliquot and single-

grain data from the same sample (MMB3-4, MMB3-5 and MMB3-7) shows large 

differences in both histogram and radial plots. These findings are similar to those by 

Arnold et al. (2007) indicating that individual samples do not necessarily display the same 

types of dose distribution at both the single-grain and single-aliquot scale of analysis. 

     Olley et al. (1999) pointed out that aliquots with the lowest dose will yield the true 

burial dose only if the high-dose (unbleached) grains constitute <7 % of the grain 

population. In our study, as revealed by the histogram of the single-grain data, grains with 

high De constitute a relatively high proportion (>7 %) of the grain population in such 

heterogeneous samples. Thus, single-aliquot data would not yield ages close to reliable 

ages as single grains do. We would need to choose single grains to calculate more 

appropriate ages.  

    Olley et al. (1999) demonstrated that single-grain dating of fluvial material is possible 

and practicable using standard RisØ optical dating equipment, and suggested using the 

lowest dose population (5 %) to estimate the burial dose, this being the best available 

means of obtaining reliable luminescence ages for heterogeneously bleached fluvial 



 

 

163 

 

sediments. Accordingly we chose single grain instead of single aliquots for dating the 

other core sections.  

 

4.7.3.5 Age calculation and independent age control 

The doses calculated by UMAM and dose rates presented in Section 4.5.2 are used to 

calculate the age for each individual sample. The OSL ages for core MMB3 (measured in 

2007 AD) generally exhibit good stratigraphic coherence with increasing ages down the 

core (Table 4.9 and Figure 4.22).  

 

Table 4.9  

The OSL and 
14

C ages of core MMB3.  

 

 

Depth (cm) OSL Ages (a) 14C Age (a)
Ages before 

Year 2000 (a)

7 32 ± 8 25 ± 8

17 46 ± 8 39 ± 8

28 50 ± 7 43 ± 7

49 44 ± 12 37 ± 12

56 66 ± 10 59 ± 10

71 168 ± 13 161 ± 13

87 311 ± 44 304 ± 44

93 752 ± 88 802 ± 88
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Figure 4.22. Chronology of core MMB3. (●: OSL single grain age before Year 2007; 

■ : 
14

C dating age; graph insert: the linear regression of the ages between depths of 7 

to 56 cm; blue dashed line: the linear regression line; red curves: the error envelope)  

 
 

    Though special attention has been paid in order to acquire all the appropriate parameters 

for age determinations in OSL dating, additional information is still necessary to test the 

results for those unknown age samples. The 14C dating result (on bulk organic matter) of 
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years BP. The HRGS results (Table 4.10) show that the concentrations of 137Cs in the 

surface sediment sample (0-5 cm in depth) are relatively high, indicating the input of 

atmospheric nuclear testing products in the late 1950s and mid-1960s. Although sample 

MMB3_HRGS02 shows a small amount of 137Cs, taking into account the standard error, 

the absolute concentration is negligible compared to the surface sediment sample (0-5 cm 

in depth). The HRGS results suggest that the surface sediment sample (0-5 cm in depth) 

must be younger than 50 years old, the middle layer (56-61 cm in depth) may be close to 

50 years old and the bottom layer (87-89 cm depth) should be older than 50 years. The 

fact that the concentrations of 137Cs are decreasing from the top layer to the bottom layer 

also suggests that extensive bioturbation and reworking of sediments is very unlikely to 

occur in this sampling site and the chronology should be stratigraphically coherent. Using 

UMAM for core MMB3, samples above 50 cm depth are calculated less than 50 years, 

while the other samples all fall within the age range of 50-310 years old. The ages 

calculated would not match the independent age control if calculated by CAM. It is also 

shown in Table 4.8 (Page 160) that the ages would be greatly over-estimated if the single-

aliquot data were used. Therefore, the ages determined by single-grain OSL and calculated 

by the minimum age model are appropriate at this sampling site.  

Table 4.10  

High resolution gamma spectrometry results of core MMB3 samples. 

Sample ID 
Depth 

(cm) 

137Cs 

(Bq/kg) 

MMB3_HRGS01 0-5 1.73 ± 0.18 

MMB3_HRGS02 56-61 0.37 ± 0.15 

MMB3_HRGS03 87-89 0.08 ± 0.14 

 

      Based on the results in Figure 4.22 (Page 164), the sedimentation rates fluctuated. 

From the depth of 56 to 7 cm (~ 1940 to 1975 AD), the sedimentation rate was high (about 
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1.45 cm/a) reflecting likely ‗wet‘ years when the floods brought in more sediments that 

were deposited in the Marshes. From the depth of 7 to 0 cm (~ 1975 AD onwards) and the 

depth of 87 cm to 56 cm (~ 1840 to 1940 AD), the sedimentation rates were ~1/10 lower 

(0.11 to 0.22 cm/a) reflecting ‗dry‘ years. The results of the upper layers (less than 71 cm 

in depth) fit in the historical record of Macquarie Marshes dated back to 1895 AD 

(Hogendyk, 2007). It is recorded that from 1895 to 1946 AD, the Macquarie Marshes were 

experiencing a ‗dry phase‘ and then a ‗wet phase‘ lasting for three decades from 1947 to 

1978 AD before another ‗dry phase‘ from 1978 onwards. Since Bora channel is a major 

channel in the Macquarie Marshes, the sedimentation rate recorded in this fluvial system 

will reflect the climate change in this area. It is observed that the sediment rate increases 

from 0.14 cm/a in ‗dry phase‘ (~ 1840 to 1940 AD) to 1.45 cm/a in ‗wet phase‘ (~ 1940 to 

1975 AD) and decreases again to 0.22 cm/a in the second ‗dry phase‘ (~ 1975 AD 

onwards). This recorded history and sedimentation rate calculation again support the 

accuracy of the OSL data.      

  Assuming that the sediments were deposited sequentially without erosional hiatus, the 

ages of the other part of the core (used for core interpretations in Chapter 3 and 5), were 

obtained directly by interpolation between the two OSL ages bracketing the part of interest. 

For the section from 56 to 7 cm, a linear regression (see blue dashed line in the insert 

graph of Figure 4.22) was obtained by  the software Isoplot (Version 4.15), which is a 

geochronological toolkit designed by Kenneth R. Ludwig from the Berkeley 

Geochronology Centre. The best least square fit line (blue dash line in inserted graph of 

Figure 4.22) with 2σ confidence (two red curves in inserted graph of Figure 4.22) was 

obtained considering the ages, their 1σ error and their relevant depth. Thus, an equation 
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was generated from this line. The ages of the sediments in this section were then obtained 

by projecting the depth onto the trend line according to the following equation: 

Age (a) = (depth (cm) + 65) / 1.97 

The ages calculated based on the sedimentation rates are referred as ―model age‖ in the 

other chapters. The ages used for core interpretations are listed in Table 4.11.  

 

Table 4.11  

The ages and respective calendar years of core MMB3. 

 

 

4.7.4 De distributions and age determination for core LSW  

Core LSW was collected from a swampy site, where river red gum (Eucalyptus sp.) and 

cumbungi (Typha sp.) were growing by the watercourse. The water was as shallow as the 

location of core MMB3 with depth of about 10-20 cm, which favoured the growth of 

cumbungi (Typha sp.). The growth of the plant might cause disturbance of the sediments 

(in particular for those from the upper surface). However, partial-bleaching may still be 

the main influence on the dose distributions.  

 

Depth (cm)
OSL Age             

before Year 2000 (a)

Model Age            

before Year 2000 (a)
Year (AD)

0 2007

7 29 1971

17 35 1965

28 40 1960

49 51 1949

56 54 1946

71 161 ± 13 1839

87 304 ± 44 1696
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4.7.4.1 De distributions of single grains 

The histograms and radial plots for each core sections are presented in Figure 4.23. 

According to the similarity in the overall shapes, they can be divided into two groups. The 

near-surface sediment samples (LSW-1 and LSW-2) and the deepest sample (LSW-9) 

showed relatively symmetrical De distributions and centralised data points in their radial 

plots. The ratio of the minimum and maximum De values range from 3-6 times. These 

samples may be deposited in dry years when the flow rate is slower and water was 

shallower. The remaining samples (in particularly LSW-4 to LSW-8) showed significant 

levels of scatter, positive skewness in the histograms and the ratio of the minimum and 

maximum values ranged hundreds of times. However, the most abundant De populations 

of these samples have low values. In addition, they displayed multi-model distributions in 

higher De values indicating the scatter of De values might not simply relate to partial 

bleaching. Considering the coring site was close to where cumbungi (Typha sp.) was 

growing, these near-surface unconsolidated silt deposits may have been highly prone to 

bioturbation. Such findings were similar to those found by Bateman et al. (2007a) that 

mixing and exhumation associated with bioturbation increase the degree of inter-grain 

scatter and leads to a heterogeneous De distribution non-normally distributed around a 

sample mean.  

       Negative dose grains were observed in the uppermost sediments (LSW-1 to LSW-3), 

whilst zero/close-to-zero dose grains were also found down to 81cm (LSW-8).  It is worth 

noting that some high De values (20-30 Gy) were found in middle-profile samples (from 

LSW-4 to LSW-8) but not in the deepest layer (LSW-9 90 cm in depth). It is most likely 

that these minority high De groups are partially-bleached grains deposited at the time when 

when the water was deeper and the dense coverage of vegetation prevented their efficient 
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exposure to the sunlight. The highest De values increased from 20 Gy at 48-57 cm to 30 

Gy at 66-74 cm. One possible explanation for such variation is that they had experienced 

different exposure to sunlight: the 20 Gy grains were perhaps deposited in a less energetic 

fluvial environment (lower flow rate) and were more fully bleached than the 30 Gy grains. 

The fact that sample LSW-9 (90 cm in depth) does not contain zero/close-to-zero De and 

high De (20-30 Gy) as do the upper layers indicates that this layer was not significantly 

bioturbated.  



 

170 

 

 

 

 

 

Figure 4.23. Histograms with ranked De values and radial plot of single-grain data from core LSW. (left graph: histogram; right graph: 

radial plot, blue line and number indicate De calculated by central age model, red line and number indicate De calculated by minimum 

age model) 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 

 

 

 

 

0

5

10

15

20

25

30

35

N
u

m
b

e
r 

o
f 

g
ra

in
s

De (Gy)

LSW-4 47-49 cm Single-grain De values (n=41)

0.00    2.00   4.00    6.00 8.00 10.00   12.00  14.00   16.00   18.00  20.00

OD=118±19 %

4.07 ± 0.77

0.22 ± 0.03

S
ta

n
d

a
rd

is
e

d
 E

s
ti

m
a

te

2
0
-2

D
e

(G
y
)

Relative Error (%)

Precision



 

174 

 

 
Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

N
u

m
b

e
r 

o
f 

g
ra

in
s

De (Gy)

LSW-6 65-67 cm Single-grain De values (n=93)

0.00  3.00 6.00   9.00 12.00 15.00  18.00  21.00   24.00   27.00 30.00

OD=86 17 %

6.08 ± 0.60

0.57 ± 0.26

S
ta

n
d

a
rd

is
e

d
 E

s
ti

m
a

te

2
0
-2

D
e

(G
y
)

Relative Error (%)

Precision



 

176 

 

 
Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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Figure 4.23 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LSW. 
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4.7.4.2 Age models 

At the LSW sampling site, most of the grains originated from fluvial sediment that 

experienced partial-bleaching to various extents. Being close to where the plants grew 

actively, bioturbation cannot be diminished. The complexities of such depositional and 

post-depositional environment make it harder to interpret the De value and relevant ages in 

core LSW compared to core MMB3. Herein, various age models were applied, and then 

the most appropriate De value was chosen by calculating their relevant age and assessing 

with independent age control.  

      As shown in Table 4.12 (Page 181), all the samples were calculated with the central 

age model to obtain a general idea of over-dispersion for each of the samples, The UCAM 

was applied for all the samples as the upper surface sediment samples contained negative 

De values and almost all samples (except LSW-9) contained zero/close-to-zero De values. 

Except the near-surface sediment samples (LSW-1 to LSW-3), the other samples were 

also calculated by CAM for comparison. Only for sample LSW-9, were the De value 

calculated by UCAM and CAM similar within the error range. For the other samples 

(LSW-4 to LSW-8), De values calculated by UCAM were about 2 times higher than those 

calculated by CAM, while the OD values were similar. The OD value for LSW-9 is higher 

(16 %) than that for the dose recovery test (5.6 %), but less than the recommended value 

(20 %) (Arnold et al., 2009). Therefore it is appropriate to apply the CAM for sample 

LSW-9. Compared to core MMB3, the OD values of core LSW sections (except LSW-9, 

89-91 cm depth) are relatively high and irregular through the core. The pattern found by 

Bateman et al. (2007b), namely that OD values decline from the surface modern soil to the 
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underlying sand unit, was not found in core LSW. Thus the variation of De values cannot 

simply be attributed to bioturbation.   
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Table 4.12  

The De values and age of core LSW calculated by different age models. 

 
*numbers in bold are the values chosen for age calculations. 

De (Gy) Age (a)
O verdispersion 

(%)
De (Gy) Age (a)

O verdispersion 

(%)
De (Gy) Age (a)

LSW-1 14-16 180-212 0.64 ± 0.05 0.012 ± 0.010 7 ± 6 83 ± 10 0.012 ± 0.010 7 ± 6

LSW-2 24-26 180-212 0.54 ± 0.04 0.041 ± 0.010 23 ± 6 101 ± 18 0.024 ± 0.005 13 ± 3

LSW-3 36-38 180-212 0.60 ± 0.05 0.21 ± 0.05 109 ± 28 207 ± 41 0.044 ± 0.020 23 ± 11

LSW-4 47-49 180-212 0.76 ± 0.07 4.07 ± 0.77 2146 ± 437 118 ± 19 1.89 ± 0.42 995 ± 233 140 ± 16 0.22 ± 0.03 118 ± 16

LSW-5 56-58 180-212 0.77 ± 0.06 3.32 ± 0.41 1816 ± 257 102 ± 11 1.98 ± 0.27 1079 ± 168 116 ± 10 0.25 ± 0.11 136 ± 58

LSW-6 65-67 180-212 0.88 ± 0.07 6.08 ± 0.60 3231 ± 401 86 ± 17 3.46 ± 0.46 1839 ± 280 126 ± 9 0.57 ± 0.26 301 ± 137

LSW-7 73-75 180-212 0.76 ± 0.06 6.74 ± 0.68 3552 ± 450 99 ± 10 3.82 ± 0.47 2011 ± 291 121 ± 9 1.00 ± 0.15 527 ± 87

LSW-8 80-82 180-212 0.74 ± 0.06 6.88 ± 0.92 3762 ± 579 110 ± 13 4.41 ± 0.52 2353 ± 340 96 ± 8 2.12 ± 0.15 1133 ± 125

LSW-9 89-91 180-212 0.57 ± 0.04 6.64 ± 0.11 4003 ± 307 16 ± 1 6.62 ± 0.12 3992 ± 308 18 ± 1

Sample ID Depth (cm)
Grain Size 

(µm)

Total Dose 

Rate (Gy/ka)

UCAM CAM UMAM
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Table 4.13  

The De values calculated by UMAM with different OD (σ) values (Unit Gy). 

 
* Values in bold are the most representative dose and age  

Sample ID σ=0.05 σ=0.1 σ=0.15 σ=0.2 σ=0.25 σ=0.5 σ=0.8
LSW-1 0.012 ± 0.010 0.015 ± 0.025 - - - - -

LSW-2 0.024 ± 0.005 0.042 ± 0.010 0.047 ± 0.010 0.047 ± 0.020 0.048 ± 0.025 - -

LSW-3 - - 0.044 ± 0.020 0.056 ± 0.025 0.069 ± 0.030 0.15 ± 0.07 -

LSW-4 0.22 ± 0.03 0.24 ± 0.04 0.25 ± 0.06 0.26 ± 0.08 0.28 ± 0.09 0.80 ± 0.17 1.13 ± 0.20

LSW-5 0.16 ± 0.06 0.18 ± 0.05 0.20 ± 0.08 0.25 ± 0.11 0.32 ± 0.12 0.76 ± 0.18 1.29 ± 0.20

LSW-6 0.23 ± 0.03 0.22 ± 0.05 0.23 ± 0.07 0.24 ± 0.09 0.26 ± 0.12 0.57 ± 0.26 1.26 ± 0.26

LSW-7 - - 0.30 ± 0.09 0.34 ± 0.11 0.44 ± 0.14 1.00 ± 0.15 1.00 ± 0.26

LSW-8 - - - - - 2.12 ± 0.15 2.52 ± 0.15
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       Various over-dispersion values were applied to UMAM to estimate the De values for 

samples from LSW-1 to LSW-8 (Table 4.13, Page 182). Considering the OD values in the 

dose recovery test and in sample LSW-9, the age models were run a number of times with 

input OD values of 5 %, 10 %, 15 %, 20 %, 50 % and 80 % until the best fit for the model 

was obtained. Table 4.13 summarises the De values estimated by UMAM with various 

input D values, and the data in bold show the best fit for the age model and with maximum 

likelihood. Not all the input OD values produce a result. For example, LSW-1 can be only 

run with input OD values of 5 % and 10 % while LSW-8 can be run only with high input 

OD values of 50 % and 80 %. As shown in Table 4.13, when the input OD values were 

less than/equal to 25 %, the calculated De values for LSW-1, LSW-4 and LSW-6 were 

independent of the input OD values -- the increase of input OD values only affects their 

error; when the input OD values exceed 25 %, LSW-4 and LSW-6 showed increasing De 

values with an increase of OD values. Comparatively, LSW-7 and LSW-8 showed 

independent De values with an increase of input OD values when OD values exceed 50 %.  

       Unlike core MMB3 samples, if the same input over-dispersion was applied to the 

model, the De values for core LSW did not follow stratigraphic order. This perhaps 

indicates that core LSW samples experienced more complicated depositional and post-

depositional processes which affected the De variations and the over-dispersion for each 

sample differed from the others. In reality, the true over-dispersion for each sample is 

unknown. However by fitting the UMAM with various estimated OD values, the most 

representative De values can be extracted. As shown in Table 4.12 (Page 181), the 

calculated De values in bold showed relatively good chronological order. The De values 

for LSW-1 to LSW-5 were calculated by UMAM using relatively small input OD values 

(<25 %), while those for LSW-6 to LSW-8 used relatively high input OD values (50 %). If 
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a lower input OD value was used for LSW-6 and LSW-7, the UMAM would return a 

relatively low De value which is not the best fit for the age model. It is most likely these 

layers were disturbed at the time when the marshes were growing and the animals (i.e. 

worms and snails) in the marshes were active so that the grains were transported and 

mixed upward and downward. Therefore the bioturbation influences were more profound 

at those time periods.    

        The analysis of De distribution makes it possible to exclude samples that are not 

suitable for age determination by the CAM, and the MAM should be used. Thus for 

sample LSW-9, the De values calculated by the UCAM are identical to the CAM results 

within error. As discussed above and in the previous section, most of the core LSW 

samples (LSW-1 to LSW-8, and particularly LSW-3 to LSW-8) had undergone 

complicated processes (mainly partial bleaching and the mixing and exhumation of grains) 

that brought together grains with very different palaeodoses in the same layer. The true 

burial ages cannot simply be derived from CAM as it will average out the lower and 

higher age groups. Only one sample (LSW-1) shows similar De values for UMAM and 

UCAM. For the rest of the samples (LSW-2 to LSW-8), the De values calculated by 

UMAM are lower than those by UCAM. However, the application of UCAM with various 

input OD values were able to distinguish the most representative De values for each core 

sample, even when both partial-bleaching and bioturbation had affected the variation of De 

values to certain extents. This suggests that compared to partial-bleaching, the 

bioturbation effect was relatively minor. It has been discussed (Arnold and Roberts, 2009) 

that field identification of sediment mixing is commonly difficult because the absence of 

depositional bedding is not necessarily indicative of sediment mixing, whilst the presence 

of sedimentary structure does not necessarily preclude post-depositional disturbance. The 
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sedimentology and micro-fossil analysis in the previous chapter cannot provide adequate 

evidence for bioturbation, in this case.  
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4.7.4.3 Age calculation and independent age control 

The doses calculated in the previous section and dose rates presented in Section 4.5.2 are 

used to calculate the age for each individual sample. The OSL ages for core LSW 

generally exhibit good stratigraphic coherence with increasing ages in progression down 

the core (Figure 4.24 and Table 4.14). 

 

 

Figure 4.24. Chronology of core LSW determined by OSL techniques. (●: OSL 

single-grain age before Year 2008) 
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Table 4.14  

The OSL ages of core LSW.  

 

 

      There are no chronological data from other dating techniques (e.g. 14C dating) for core 

LSW. However, the HRGS results can provide some information (Table 4.15) and show 

that the concentrations of 137Cs in the upper surface sediment sample (23-28 cm depth) are 

relatively high, indicating the input of atmospheric nuclear testing in the late 1950s and 

mid-1960s. The LSW-6_Dose sample shows negligible 137Cs concentration results 

compared to an overlying sediment sample. These HRGS results suggest that the younger 

sediment sample (23-28 in depth) must be less than 50 years old; the lower layer (more 

than 65 cm in depth) should be older than 50 years.  

 

Table 4.15  

High resolution gamma spectrometry results of core LSW samples. 

Sample ID 
Depth  

(cm) 

137Cs 

(Bq/kg) 

LSW-2_Dose 23-28 2.22±0.18 

LSW-6_Dose 65-68 0.18±0.21 

 

Depth (cm) OSL Ages (a)
Ages                

before Year 2000 (a)

15 7 ± 6 -1 ± 6

25 13 ± 3 5 ± 3

37 23 ± 11 15 ± 11

48 118 ± 16 110 ± 16

57 136 ± 58 128 ± 58

66 301 ± 137 293 ± 137

74 527 ± 87 519 ± 87

81 1133 ± 125 1125 ± 125

90 4003 ± 307 3995 ± 307
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         The chronological profile of core LSW (Figure 4.24, Page 186)) displays a similar 

trend to core MMB3 and the sedimentation rates also fluctuated significantly. The 

deposition rate is less than 0.01 cm/a deeper in the sample profile (90 cm depth) and 

gradually increase upwards in the core. The near-surface layers (less than 40 cm depth, ~ 

1985 AD onwards) shows rapid deposition (1.2 to 2.1 cm/a) and are comparatively 

younger than those in core MMB3 (~ 1960 to 1970 AD in the upper 40 cm). The ‗dry 

(1895-1946 AD)-wet (1947-1978 AD)-dry (1978 AD onwards)‘ pattern found in core 

MMB3 was not found in core LSW, indicating the depositional rate of this sampling site 

did not follow the general cycle of the Macquarie Marshes. Despite the drought since the 

late 1970s, this sampling site has remained wet and has been receiving significant 

sediment. This is mainly because the LSW site is located close to the main watercourse.  

        Assuming that the sediments were deposited sequentially without erosive hiatus, the 

ages of other parts of the core (used for core interpretations in Chapter 3 and 5), were 

obtained directly by interpolation between OSL ages bracketing the section of interest. 

The ages calculated based on the sedimentation rates are referred as ―model age‖ in the 

other chapters. The ages used for core interpretations are listed in Table 4.16. 

 



 

 

189 

 

  

Table 4.16  

The ages and respective calendar years of core LSW. 

 

 

4.7.5 De distributions and age determination for core LOLA 

Core LOLA was collected from Loudens Lagoon, which had been dry since the 1990s and 

was flooded early in 2008. At the time of sampling (November 2008), the site was again 

dry. Patches of reed beds (Phragmites australis) and dead river red gum (Eucalyptus sp.) 

trees were observed at this site, indicating that it had changed from river red gum 

(Eucalyptus sp.) / cumbungi (Typha sp.) woodland landscape (as for the site of core LSW) 

to common reed beds (Phragmites australis) landscape. When we revisited this sampling 

site after one year (November 2009), the reeds (Phragmites australis) were dead and the 

surface was completely dry. As for the LSW site, most of the deposits in this less dynamic 

lagoonal system originate from fluvial sediments which in most cases would not be 

expected to be excessively bleached. Bioturbation of upper surface sediments was also 

expected to affect some of the OSL data. 

Depth (cm)
OSL Age              

before Year 2000 (a)

Model Age            

before Year 2000 (a)
Year (AD)

0 2008

15 -1 ± 6 2001

25 5 ± 3 1995

30 9 1991

37 15 ± 11 1985

45 84 1915

48 110 ± 16 1890

52 118 1882

57 128 ± 58 1872

66 293 ± 137 1707

74 519 ± 87 1481

81 1125 ± 125 875

90 3995 ± 307
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4.7.5.1 De distributions of single grains 

The De distribution characteristics of the nine samples from core LOLA (Figure 4.25, Page 

192) reveal that these sediments were subjected to a diverse array of bleaching conditions 

prior to deposition and post-deposition histories.  

     The lowest De values increase from -1.41 Gy in the upper sample (LOLA-1 17-20 cm 

depth) to 48.58 Gy in the deepest sample (LOLA-9 202-207 cm depth). This pattern is not 

evident in the highest De values, however the highest De values generally range from 4.75 

Gy in the upper part (LOLA-3 40-42 cm depth) to 448.8 Gy in the deepest sample 

(LOLA-9 202-207 cm depth). Two upper sediment samples (LOLA-1 and LOLA-2) show 

relatively centralised De values in their radial plots while the De values of the other 

samples spread out to different extent in radial plots (LOLA-3 to LOLA-9). 

     Two upper sediment samples (LOLA-1 and LOLA-2) contain higher De values than the 

highest De values in LOLA-3, probably due to different partial-bleaching scenarios. These 

two samples represent typical partial bleaching of fluvial samples with positive skewness 

and a long tail of high De value in the histograms. There is also some ‗contamination‘ — 

grains with a negative dose and close-to-zero dose appearing in these samples. They may 

be related to reeds (Phragmites australis) at this site or are surface sediment samples that 

fell into desiccation cracks during dry years. The LOLA-3 and LOLA-4 samples show a 

more symmetrical De distribution in their histograms and relatively centralised points in 

their radial plots, indicating a relatively drier deposition environment where grains were 

better bleached before burial. An abrupt increase of the high De values is observed in the 

LOLA-5 sample, possibly indicating a significant age transition near the depth of 63-69 

cm. This is supported by the presence of an indurated layer at about 60 cm noted during 
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the coring operations. Lithology and sedimentology (Chapter 3) also indicate a change in 

this section. The LOLA-5 and LOLA-6 samples also show partial-bleaching De 

distribution pattern with a long tail in their histograms but large dispersions of De values in 

the radial plots. Samples from LOLA-7 to LOLA-9 again show less asymmetry in their 

histograms with a shorter tail and less spread in their radial plots. It is likely that these 

older deposits have undergone considerably longer transport and more numerous 

deposition cycles prior to final deposition (allowing for greater bleaching) than modern 

and recently deposited sediments in the same depositional system (cf data by Jain et al., 

2004). The results are also similar to those found by Murray et al. (1995) and Rittenour 

(2008) where the levels of non-bleached signal contributes a large proportion of the 

measured De in young samples and is reduced in older samples that have higher burial 

doses. 

          In general, the histograms and radial plots reveal two depositional environments 

(wet and dry) in this less dynamic lagoon environment. During the wet years when the 

flow rate was relatively high, the grains were deposited rapidly and therefore might not 

necessary be fully bleached before their burial. The reed (Phragmites australis) canopy 

and the coverage of water and organic matter may have also reflected the light thereby 

reducing the grains‘ exposure to sunlight. Therefore grains that were deposited in wet 

years would display a partial-bleaching pattern in their histograms and a large spread in 

the radial plots. Comparatively, grains deposited in dry years show less asymmetry in their 

histograms and more cluster in their radial plots.     
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Figure 4.25.  Histograms with ranked De values and radial plot of single-grain data from core LOLA. (left graph: histogram; right graph: 

radial plot, blue line and number indicate De calculated by central age model, red line and number indicate De calculated by minimum 

age model) 

 

 

0

20

40

60

80

100

120

140

160

N
u

m
b

e
r 

o
f 

g
ra

in
s

De (Gy)

LOLA-1 17-20 cm Single-grain De values (n=182)

-2.00       0.00    2.00     4.00      6.00      8.00     10.00    12.00    14.00

OD=123±10 %

S
ta

n
d

a
rd

is
e

d
 E

s
ti

m
a

te

2
0
-2

D
e

(G
y
)

se



 

 

193 

 

 

 
Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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`  
Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Figure 4.25 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from core LOLA. 
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Table 4.17  

The De values and age of core LOLA calculated by different age models. 

 
* Values in bold are the most representative dose and age.

De (Gy) Age (ka)
O verdispersion 

(%)
De (Gy) Age (ka)

O verdispersion 

(%)
De (Gy) Age (ka) De (Gy) Age (ka)

LOLA-1 17-20 180-212 0.88 ± 0.07 1.59 ± 0.15 0.68 ± 0.08 123 ± 10 0.60 ± 0.15 0.26 ±0.07

LOLA-2 28-31 180-212 0.74 ± 0.06 2.09 ± 0.14 0.94 ± 0.09 96 ± 6 0.96 ± 0.06 0.43 ± 0.04

LOLA-3 40-42 180-212 0.77 ± 0.06 2.09 ± 0.08 0.87 ± 0.07 42 ± 2 1.01 ± 0.15 0.42 ± 0.07 0.56 ± 0.08 0.23 ± 0.04

LOLA-4 51-53 180-212 0.84 ± 0.07 2.69 ± 0.11 1.15 ± 0.09 38 ± 3 2.86 ± 0.12 1.22 ± 0.10 38 ± 2 1.74 ± 0.21 0.75 ± 0.10 1.26 ± 0.10 0.54 ± 0.06

LOLA-5 63-69 180-212 0.85 ± 0.06 9.95 ± 0.77 4.80 ± 0.50 96 ± 6 2.62 ± 0.37 1.26 ± 0.20

LOLA-6 104-111 180-212 0.89 ± 0.02 65.1 ± 6.5 28.7 ± 3.1 104 ± 7 5.11 ± 1.24 2.25 ± 0.55

LOLA-7 146-151 180-212 1.05 ± 0.02 126.4 ± 6.8 50.2 ± 3.4 48 ± 4 68.3 ± 9.7 27.1 ± 4.0

LOLA-8 181-187 180-212 0.96 ± 0.02 162.5 ± 8.3 63.9 ± 4.3 52 ± 4 71.4 ± 11.0 28.1 ± 4.5

LOLA-9 202-207 180-212 0.99 ± 0.02 198.2 ± 8.0 76.9 ± 4.5 40 ± 3 128.5 ± 16.6 49.9 ± 6.8

MAM UMAM
Sample ID Depth (cm)

Grain Size 

(µm)

Total Dose Rate 

(Gy/ka)

CAM UCAM



 

202 

 

 

4.7.5.2 Age models  

In the previous two sections, the application of MAM has been successful to determine the 

ages of two cores (core MMB3 and core LSW). For core LOLA, MAM was also applied 

to extract the De values while CAM was used to estimate the overdispersion.  

The un-logged CAM was applied to LOLA-1 to LOLA-4 as they contained negative 

De or close-to-zero De values. The CAM was applied to LOLA-4 to LOLA-9. As shown in 

Table 4.17 (Page 201), the De values are generally in good chronological order (except 

LOLA-2 and LOLA-3 overlap within their error ranges). For LOLA-4 which was 

calculated by both UCAM and CAM, the De values are similar within their error range and 

the OD values are the same. All of the OD values are higher than the recommended OD 

value (20 %) to apply CAM/UCAM model while in the dose recovery test (Section 4.3.5), 

the same quartz from this sampling site found OD values less than 10 %. It is very 

unlikely these high OD values are caused by heterogeneity of beta microdosimetry. There 

are two reasons for this inference: 1) the OD values are higher than those (23 %) found by 

Murray and Roberts (1997) among well bleached single-grain quartz that experienced 

heterogeneous microdosimetry in their burial environment; 2) the variation of De values 

(discussed in the previous section) are greater than those (46 % to 18 % relative standard 

deviation) found by Mayya et al. (2006) among well bleached single-grain quartz that also 

experienced microscopic heterogeneity of potassium distribution. Therefore the possible 

explanation for elevated OD values and dispersion of De values is partial bleaching. The 

OD values of the two upper sediment samples (LOLA-1 and LOLA-2) and two mid-depth 

samples (LOLA-5 and LOLA-6) are relatively high (90-125 %); while the OD values of 

the remaining samples (LOLA-3 to LOLA-4, LOLA-7 to LOLA-9) are very similar and 
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small (about 40-50 %). Apart from partial-bleaching, the high OD values of the two upper 

sediment samples may have been caused by bioturbation and those for the middle layer 

samples may have been caused by mixing of ‗young‘ and ‗old‘ sediments in the transition 

layers.  

The OD values estimated by the dose recovery test and by CAM among the samples 

were used as guides to apply the MAM. For samples LOLA-1 to LOLA-4 which contain 

negative De and/or close-to-zero De, the un-logged MAM was applied. Only LOLA-1, 

LOLA-2 and LOLA-4 yielded a reasonable chronological order. The De values of LOLA-

3 calculated by UMAM was even lower than the uppermost sediment sample (LOLA-1), 

which is likely due to contamination by younger material. It seems that the application of 

UMAM in core LOLA was not as successful as for core LSW to distinguish the 

bioturbated samples and partial-bleaching samples. However, applying the log model 

(MAM), those low De values contribute less than those of the un-logged model. For 

sample LOLA-3, the De values calculated by the MAM returned 1.01 Gy which excludes 

the contaminated younger De values (0.56 Gy) calculated by the UMAM. Similarly, the De 

values of sample LOLA-4 calculated by the MAM yielded 1.74 Gy while those by the 

UMAM gave 1.26 Gy from the likely contaminated grains. The De values calculated by 

MAM for LOLA-3 and LOLA-4 were in coherent order with the two upper sediment 

samples. And the De value calculated by MAM for LOLA-3 (1.01 Gy) was very close to 

the De value calculated by UMAM for LOLA-2 (0.96 Gy), again (as found in CAM 

results) indicating these two layers are not distinguishable within the resolution of the 

OSL single-grain dating technique. Therefore, the De values by MAM were chosen instead 

of UMAM for the age calculation of LOLA-3 and LOLA-4 samples (discussed in a later 

section). For LOLA-5 and deeper samples, the MAM was applied to extract the most 
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representative De values. Results (Table 4.17, Page 201) show the De values by UMAM 

and MAM are in stratigraphic order.      

In summary, the UMAM was applied to the upper sediment samples (LOLA-1 and 

LOLA-2) while the MAM was applied to the remaining samples (LOLA-3 to LOLA-9). 

This is reasonable as suggested by Bailey and Arnold (2006) that the optimum choice of 

statistical methods may be different for each sample and is dependent on the dominant 

mechanisms affecting De scatter (e.g. partial bleaching, post-depositional mixing or dose-

rate heterogeneity). 

 

 

4.7.5.3 Age calculation and independent age control 

The doses calculated by the MAM/UMAM in the previous section and dose rates 

presented in Section 4.5.2 are used to calculate the age for each individual sample. The 

OSL ages for core LOLA generally exhibit good stratigraphic coherence with increasing 

ages in progression down the core (Figure 4.26). 
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Figure 4.26. Chronology of core LOLA determined by OSL techniques. (●: OSL 

single-grain age; graph insert: the linear regression of the ages at depths of 66 to 19 

cm; blue dashed line: the linear regression line; red curves: the error envelope)  
 

     The independent age control for core LOLA is only limited to the HRGS results (Table 

4.18) of the deeper layers. The concentrations of 137Cs in these deeper samples fluctuate 

and are very irregular along the core. Most of the samples show low 137Cs concentrations. 

Although LOLA-DR-02 shows the highest 137Cs results, it is negligible when comparing 
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the absolute value (taking into account its standard error) to those from MMB3 and LSW 

core samples. It seems that samples of the deeper layers should be older than 50 years, as 

is clear from the OSL dating results.  

 

Table 4.18  

High-resolution gamma spectrometry results for core LOLA samples.  

Sample ID 
Depth  

(cm) 

137Cs 

(Bq/kg) 

LOLA-DR-04 105-111 0.11±0.15 

LOLA-DR-03 145-151 -0.08±0.24 

LOLA-DR-02 181-186 0.48±0.22 

LOLA-DR-01 201-207 0.14±0.19 
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     The OSL ages of core LOLA are much older compared to the previously described two 

cores (MMB3 and LSW). The Loudens Lagoon system is less dynamic than the fluvial 

systems and thus the deposition rate is much slower. The younger sedimentation of the 

past few hundreds of years has not been identified (unless it is compressed in the upper 15 

cm). It is likely that, in this exposed site, the sediments have been deflated, particularly 

during dry periods. The ages of LOLA-2 (28-31 cm depth) and LOLA-3 (40-42 cm depth); 

LOLA-7 (146-151 cm depth) and LOLA-8 (181-187 cm depth) are not distinguishable 

within the resolution of the OSL single-grain dating technique. Generally, the 

sedimentation rates calculated are less than 0.01 cm/a among the older layers (from the 

core base to 108 cm, except the layers between 149 cm and 184 cm where the ages are 

identical). The rate fluctuates from 0.03 cm/a to 0.07 cm/a in the younger sediments (< 

2.29 ka around the depth of 108 cm).    

         For the section from 66 to 19 cm, a linear regression (see blue dashed line in the 

insert graph of Figure 4.26) was obtained by the software Isoplot (Version 4.15). The best 

least-squares fit line with 2σ confidence (two red curves in insert graph of Figure 4.26) 

was obtained considering the ages, their 1σ error and their relevant depth. Thus, an 

equation was generated from this line. The ages of the sediments in this section were then 

obtained by projecting the depth onto the trend line according to the following equation: 

Age (a) = (depth (cm) -3) / 66 

       Except for the age hiatus (149 to 108 cm) and the upper layer (66 to 19 cm), the ages 

of the other parts of the core (used for core interpretations in Chapter 3 and 5) were 

obtained by interpolation between the two ages bracketing the section of interest.  

       The ages calculated based on the sedimentation rates are referred as ―model age‖ in 

the other chapters. The ages used for core interpretations are listed in Table 4.19. 
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Table 4.19  

The OSL and model ages of core LOLA. 

 

 

4.7.6 De distributions and age determination for core 2LOLA  

Core 2LOLA was collected near a moist reedbed (Phragmites australis) within the west of 

Loudens Lagoon, which was dry at the time of sampling (November 2009). Compared to 

the LOLA sampling site, this site was less impacted by the drought since the 1990s. 

Despite being close to the LOLA site, 2LOLA was more elevated and the environmental 

setting for deposition of sediments would not necessarily be the same.  

 

4.7.6.1 De distributions of single grains 

As shown in Figure 4.27 (Page 210), the patterns of the De histograms and radial plots for 

core 2LOLA were similar to the three cores discussed in the previous sections. Partial 

bleaching is very common among most of the samples (2LOLA-3 to 2LOLA-7), which 

Depth (cm) OSL Age (ka) Model Age (ka)

0

19 0.23

30 0.40

41 0.58

52 0.74

58 0.83

66 0.95

78 1.33

98 1.97

108 2.29 ± 0.56

149 27.5 ± 4.1

184 28.4 ± 4.5

205 50.5 ± 6.9
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display a long tail in the histogram and a spread of De values in the radial plot. The two 

near-surface sediment samples (2LOLA-1 and 2LOLA-2) show a small peak of negative 

De values, probably sourced from the contamination of ‗young‘ grains by bioturbation 

although the extent of impact cannot be accessed. The points in the radial plots of these 

two near-surface sediment samples tend to be more centralised than the other samples. 

      The minimum and maximum De values both increase downwards in core 2LOLA, 

indicating that the sediments are well-preserved and generally in chronological order and 

that the disturbance in the upper sediment samples is relatively minor. The ratio of the 

minimum and maximum De values is less than a hundred times in these two upper 

sediment samples and rises to hundreds of times among the other samples.  

     The De distributions of the core 2LOLA samples are typical of fluvial sediments which 

contain various proportions of partially bleached grains and fully bleached grains (e.g. 

Ballarini et al., 2003). Compared to the previous three cores, the sediment input of core 

2LOLA seems to be more consistent as illustrated by their histograms and radial plots. 

Therefore, the choice of age model and age interpretation for core 2LOLA should be less 

complicated.  
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Figure 4.27. Histograms with ranked De values and radial plots of single-grain data from core 2LOLA2. (left graph: histogram; right 

graph: radial plot, blue line and number indicate De calculated by central age model, red line and number indicate De calculated by 

minimum age model) 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core. 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core. 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core. 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core. 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core. 
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Figure 4.27 (continued). Histograms with ranked De values (left) and radial plot (right) of single-grain data from 2LOLA2 core.  
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4.7.6.2 Age models  

As with the previous cores, samples of core 2LOLA were collected from fluvial sediments 

where partial-bleaching had clearly occurred. In light of this, the lowest De values 

extracted by the MAM (Table 4.20), were selected for use in age calculation. The 

CAM/UCAM was also applied before the MAM/UMAM to estimate the OD values. 

The un-logged CAM was applied to 2LOLA-1 and 2LOLA-2 as they contained 

negative De values while the CAM was applied to the rest of the samples. The De values 

calculated by CAM/UCAM do not follow stratigraphic order along the core and the De 

values of 2LOLA-2 and 2LOLA-3; and 2LOLA-6 and 2LOLA-7 are very similar. All of 

the OD values are more than 100 % even in the two upper sediment samples which show 

less dispersion in their histograms and radial plots. When applying the UCAM, the OD 

values were calculated by dividing maximum likelihood values of the sigma by the mu. 

For the two near-surface sediment samples, the mu parameters which are the De values, 

were relatively low and thus increased the OD values. In fact, the true overdispersions for 

these two samples remain unknown.  

Although the dose recovery test (Section 4.6.2.3.3) of core 2LOLA samples yielded 

an OD value less than 10 %, the UMAM was still run a number of times with various 

input OD values until the best fit/maximum likelihood was obtained for 2LOLA-1 and 

2LOLA-2. The input OD values were 10 % for 2LOLA-1 and 20 % for 2LOLA-2. This 

again proves that the OD values calculated by the UCAM for these two samples were not 

representative. For the rest of the samples, the MAM was applied.    
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Table 4.20  

The De values and age of core 2LOLA calculated by different age models. 

* Values in bold are the most representative dose and age 

De (Gy) Age (ka)
Overdispersion 

(%)
De (Gy) Age (ka)

Overdispersion 

(%)
De (Gy) Age (ka) De (Gy) Age (ka)

2LOLA-1 17-20 180-212 2.06 ± 0.14 0.92 ± 0.12 0.44 ± 0.06 126 ± 20 0.12 ± 0.02 0.060 ± 0.008

2LOLA-2 28-31 180-212 2.00 ± 0.14 0.34 ± 0.06 0.17 ± 0.03 211 ± 33 0.12 ± 0.02 0.059 ± 0.011

2LOLA-3 40-42 180-212 2.06 ± 0.14 0.40 ± 0.03 0.19 ± 0.02 100 ± 6 0.10 ± 0.02 0.049 ± 0.010

2LOLA-4 51-53 180-212 2.18 ± 0.16 3.60 ± 0.40 1.63 ± 0.22 125 ± 7 0.36 ± 0.07 0.17 ± 0.03

2LOLA-5 63-69 180-212 2.22 ± 0.17 9.60 ± 0.80 4.42 ± 0.49 98 ± 6 2.23 ± 0.39 1.01 ± 0.19

2LOLA-6 104-111 180-212 2.20 ± 0.16 14.0 ± 1.10 6.29 ± 0.68 94 ± 6 2.58 ± 0.42 1.18 ± 0.21

2LOLA-7 146-151 180-212 2.24 ± 0.18 13.2 ± 1.20 5.81 ± 0.71 115 ± 7 2.42 ± 0.32 1.08 ± 0.17

Sample ID Depth (cm)
Grain Size 

(µm)

Total Dose 

Rate (Gy/ka)

CAM UCAM MAM UMAM
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4.7.6.3 Age calculation 

The doses calculated by the MAM/UMAM in the previous section and dose rates 

presented in Section 4.5.2 are used to calculate the age for each individual sample. The 

OSL ages for core 2LOLA generally exhibit reasonable stratigraphic coherence with 

increasing ages in progression down the core (Figure 4.28 and Table 4.21). 

 

 

Figure 4.28. Chronology of core 2LOLA determined by OSL techniques. (●: OSL 

single-grain age before Year 2008; blue dashed line: the linear regression of the ages 

at depths of 145 to 90 cm) 
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Table 4.21  

The OSL ages of core 2LOLA.  

 
 

         Like the previous three cores, the chronological profile of core 2LOLA depicts 

fluctuating sedimentation rates. The ages for core 2LOLA are comparable to core MMB3 

and core LSW but younger than its neighbouring core LOLA. Unlike core LOLA, the 

2LOLA core site was not completely desiccated so that the potential deterioration of the 

surface sediments was not as profound. The OSL ages of core 2LOLA can be divided into 

three sections: from 145 cm to 90 cm represents sediments greater than 1,000 years old; 

followed by a compressed/deflated/lost section from 90 cm to 65 cm; and with the upper 

65 cm representing sediments younger than ~158 years old (before Year 2000). The ‗dry 

(1895-1946 AD)-wet (1947-1978 AD)-dry (1978 AD onwards)‘ pattern found in core 

MMB3 is likely present in the upper 65 cm of core 2LOLA.  

     There are  no independent dating controls, including HRGS, 137Cs results, to assist in 

assessing the OSL ages for core 2LOLA.  

          For the lower section between 145 cm to 90 cm, a linear regression (blue dashed 

line in Figure 4.28) was obtained to calculate the sedimentation rate. The ages for this 

section were calculated using the following equation:  

Age (a) = (depth (cm) + 113.6) / 0.2 

Depth (cm) OSL Ages (a)
Ages               

before Year 2000 (a)

10 60 ± 8 52 ± 8

25 59 ± 11 51 ± 11

41 49 ± 10 41 ± 10

65 166 ± 34 158 ± 34

90 1006 ± 191 998 ± 191

129 1175 ± 212 1167 ± 212

145 1082 ± 170 1074 ± 170
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       The ages calculated based on the sedimentation rates are referred to as ―model ages‖ 

in the other chapters. The ages used for core interpretations are listed in Table 4.22.  

 

Table 4.22  

The OSL and model ages of core 2LOLA. 

 

 

4.8 Summary 

4.8.1 OSL methodology 

Conventional OSL dating methodology including sample preparation and SAR protocols 

are applicable to sediment samples from the Macquarie Marshes. Thermal transfers are 

unlikely to be problematic with preheat temperatures ranging from 200 to 280 °C, which 

are high enough to overcome the 110 °C thermal peak and lower than the 325 °C optical 

luminescence peak. Possible sensitivity changes can be corrected by the internal checks of 

the SAR protocol. However modifications have been made including the following: 

        1. Sample preparation procedure 

        It has been shown that initial particle-size distribution analysis is very important 

before selecting the core samples for OSL dating, especially when dating silty fluvial 

Depth (cm)
OSL Age                

before Year 2000 (a)

Model Age            

before Year 2000 (a)
Year (AD)

0 2008

10 52 ± 8 1948

25 51 ± 11 1949

41 41 ± 10 1959

65 158 ± 34 1842

90 934

100 981

123 1087

129 1115

145 1189
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samples like these. Sections with a high content of sand should be chosen for OSL dating. 

It is also practical to wet sieve the samples before conducting chemical reactions when 

dealing with fine silt samples so as to concentrate the quartz by removing its silty coating.  

        2. SAR analysis procedure 

        1) There is no significant variation in dose recovery results between cut-heat of 0 

seconds and 5 seconds under the same preheat condition.  In order to ensure reaching the 

desired temperature before recording the test dose signal, a ―cut-heat‖ which is actually a 

preheat for 5 seconds was chosen.  

        2) IR depletion tests were added to the conventional SAR protocol to test for no 

feldspar contamination. Results again showed that a modified sample preparation 

procedure had been successful in extracting pure quartz and that there is no significant 

feldspar contamination for the samples used in this study. 

        3) Various responses to thermal treatments are observed within the same sample and 

among samples from different sites (Table 4.4, Page 125). Therefore it is essential to 

perform dose recovery tests ideally to each sample of interest, or at least each suite of 

similar samples.  

 

4.8.2 OSL dating results 

The OSL dating results reveal that the samples have been subjected to a diverse array of 

bleaching conditions and post-depositional process. Water attenuates the blue end of the 

spectrum (the most efficient bleaching wave-lengths) and the relatively high levels of 

organic compounds also attenuate the daylight spectrum (Madsen et al., 2005). Thus, 

quartz is more unlikely to be well zeroed before burial in particular in young sediments. In 

fluvial systems like the MM, offsets of several hundred to a few thousand years are 
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common (Murray and Olley, 2002). When plotting the De values as histograms, the well-

bleached samples are characterised by narrow and almost symmetrical normal 

distributions, whereas poorly bleached samples have a broad distribution and are skewed 

towards the smaller De values. For ―modern‖/ ―young‖ sediment, the degree of bleaching 

is the most pronounced of all the samples analysed. Although coarser sand grains (125-

180 µm or 180-212 µm) were chosen for OSL dating, the partial bleaching effect seems to 

be inevitable. Individual samples did not display the same types of dose distribution at 

both the single-aliquot and single-grain scale of analysis, which again proves that the 

quartz grains were not homogeneous and were not excessively bleached. Intrusion of 

younger grains by bioturbation (in particularly with the growth of plants) was also 

observed in some surface/near surface sediment samples. However, such influence on the 

De distributions was negligible compared to the partial-bleaching.  

         Multiple age distributions were common but the internal consistency of age 

estimates was high. For the Macquarie Marshes samples in this study, issues of partial 

bleaching and bioturbation seem to be manageable with appropriate calculation by the 

most suitable age model. For almost all samples with incomplete bleaching, a minimum 

age model (MAM/UMAM) was used, in which the distribution of De values was 

approximated by a truncated logged-/un-logged normal distribution with the truncation 

point giving the best estimate of the true burial dose. Generally, these age models yield 

OSL ages that are stratigraphically consistent and consistent with independent age control.  

         The ages obtained from the four cores, by the OSL dating technique alone, range 

from 7 ± 6 years old to 50.5 ± 6.9 ka, a range not attainable by other dating techniques. 

Three short (<100 cm) cores, including cores MMB3, LSW and 2LOLA, are dated 

younger than ~1,000 years. One long (220 cm) core (LOLA) shows that ‗young‘ 
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sediments (< 2 ka) were deposited on palaeo-sediments (20-50 ka) which predate 

formation of the marshes. The oldest section at 210 m depth has been dated at ~ 50 ka. 

The deposition rates calculated by the OSL ages vary from site to site and are generally 

rapid during the last 100 years or so. The ‗dry (1895-1946 AD)-wet (1947-1978 AD)-dry 

(1978 AD onwards)‘ pattern reported in the literature has also been found in core MMB3 

and core 2LOLA. It has been discussed in Chapter 3 and will be further discussed in 

Chapter 5 with the organic proxies.  

         Despite the complexity required to obtain the OSL data and in calculating ages, the 

OSL dating technique has worked well for the Macquarie Marshes sediments.  
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CHAPTER 5   ORGANIC GEOCHEMISTRY  

 

In Chapter 3, the total organic carbon content (TOC), its stable isotope δ13C, total nitrogen 

(TN) and carbon/nitrogen (C/N) values revealed that algae and C3 higher plants are the 

main organic matter (OM) sources for the surface sediments in the Macquarie Marshes. In 

the sediment cores, these proxies also indicate the changes of vegetation from dominantly 

aquatic plants to land plants. This chapter will further test these findings by analysing 

specific organic molecular markers, which will provide further information on the organic 

matter sources and assess their contribution at the level of individual compounds. A pilot 

study to investigate the colonial waterbird breeding events in Macquarie Marshes (Cull, 

2007) using phosphorus, nitrogen and total organic matter content of sediments was not 

particularly successful. Accordingly, this chapter will utilise specific organic compounds 

to investigate changes in the wetland ecosystem, including the variation of dominant 

vegetation and the possible cause of the decline of colonial waterbirds. Some 

anthropogenic organic pollutants will also be analysed and discussed to assess if there 

is/was any contamination in this Nature Reserve wetland.  

 

5.1 Introduction to organic geochemical proxies for palaeoenvironmental 

reconstruction 

Organic matter (OM) consists of a complex mixture of lipids, carbohydrates, proteins and 

other organic compounds (Meyers, 2003; Choudhary et al., 2009). Although lipids are 

only a small proportion of total OM (less than 5 %) (Tissot and Welte, 1984), they are 

important constituents of the OM, because lipids contain the basic skeletal structure and 

functional group details of the original source (Venkatesan, 1988b). Compared to the use 
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of bulk OM, lipids can better distinguish the heterogeneous sources of OM from a 

molecular level (Meyers and Ishiwatari, 1993; Fisher et al., 2003; Brodie et al., 2011). 

Biological lipids (commonly referred to as ‗biomarkers‘), synthesised by living organisms, 

have distinctive chemical structures and can be used for assigning sources to particular 

groups of organisms (e.g. terrestrial plants, bacteria, microalgae, etc.) (Peters et al., 2005 

and reference therein).  

       Biomarkers extracted from recent or ancient marine, lacustrine and bog/peat 

sediments have been widely used to reconstruct past environmental conditions, including 

determining the nature of the main or specific vegetation inputs to sedimentary OM,  

assessing vegetation modification triggered by climate and/or natural environmental 

changes or anthropogenic activities (e.g. agricultural practices) (e.g. Cranwell et al., 1987; 

Meyers and Ishiwatari, 1993; Logan and Eglinton, 1994; Van Aarssen et al., 2000; Meyers, 

2003; Otto and Simpson, 2005; Hautevelle et al., 2006; Feakins et al., 2007; Zheng et al., 

2007; McKirdy et al., 2010; Seki et al., 2010; Trendel et al., 2010; Huguet et al., 2012; 

Lopes Dos Santos et al., 2012).  

        Among the biomarkers studied, n-alkanes, widely found in marine and lacustrine 

sediments, have been extensively used for palaeovegetation changes and their associated 

palaeoclimate because they are more resistant to microbial degradation (e.g. Logan and 

Eglinton, 1994; Van Aarssen et al., 2000; Meyers, 2003; Otto and Simpson, 2005; 

Hautevelle et al., 2006; Seki et al., 2010). Apart from the lipids, some organic compounds 

are also of geological importance as they can be used as markers/proxies to indicate 

environmental change in the past (e.g. fire, pollution, etc.) (Killops and Massoud, 1992; 

Mortimer, 2000; Shivaramaiah et al., 2002; Simoneit, 2002).  For example, Killops and 

Massoud (1992) found pyrolytic originated benzo[e]pyrene, benzo[g,h,i]perylene and 
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coronene in ancient sediments as evidence of Jurassic vegetation fires. The persistent 

organic pollutants DDT and DDE were used to trace the usage of pesticides in cotton-

farming regions in New South Wales, Australia, in the 1950s (Shivaramaiah et al., 2002). 

         Wetlands comprise only about 5–8 % of the terrestrial land surface (Mitsch and 

Gosselink, 2007), but they are globally important carbon sinks because 20–30 % of the 

Earth‘s soil pool of 2500 Pg of carbon is stored in wetlands (Roulet, 2000; Bridgham et al., 

2006). Many of the world‘s wetlands are thought to be highly sensitive to climate change 

(Erwin, 2009), so it is important to know the sources of OM in wetland ecosystem 

sediments and the factors controlling their distributions in order to understand global 

biogeochemical cycles. As with lacustrine sediments, wetland sediments have a 

heterogeneous array of organic materials derived from aquatic (autochthonous OM, e.g. 

phytoplankton, macrophytes) and/or terrestrial origin from the surrounding areas 

(allochthonous OM, e.g. trees, shrubs, grasses, animals) (Meyers and Ishiwatari, 1993; 

Meyers, 2003). When Australian floodplain wetlands receive water from rivers, the flow 

carries organic matter; other accumulated organic matter within the wetland may consist 

of Eucalyptus spp. leaf litter, aquatic macrophytes from the last filling, or terrestrial plants 

that colonise wetlands when they dry (Kingsford, 2000 and references therein). In 

floodplain wetlands, the fluctuation in the hydrological cycle additionally controls the 

chemistry and biology of the water column and a variety of sedimentary processes, which 

are distinctively recorded in the composition of the sedimentary OM (da Silva et al., 2008). 

Thus organic geochemical studies of wetland sediments may be used to recognise the 

source of organic materials and their depositional conditions.  

        Compared with marine and lacustrine sediments, organic geochemical studies on 

wetland sediments are limited and mainly focus on coastal marshes (e.g. Zheng et al., 
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2007; Seki et al., 2010; Lin et al., 2013). Therefore the study of inland freshwater 

wetlands, in particular from semi-arid/arid floodplain wetlands like the Macquarie 

Marshes (MM) becomes increasingly important to understand the composition, origin and 

transport of OM of dynamic and complex ecosystems which depend on flood/dry cycles.   

        As a first step in the study of OM biomarkers, a preliminary study was performed to 

analyse the biomarkers of modern plants and surface sediments collected adjacent to the 

core sites, in order to help assign the organic sources. These provided a database used to 

distinguish specific biomarkers, and to identify the sources of organic matter in the 

sediments. The study of the surface sediments assisted in the evaluation of how the 

organic compounds and their proxies can indicate the sources of OM and their relative 

contribution. Then the most appropriate molecular markers and proxies were used to 

reconstruct the past climate and ecosystem histories using the sediment cores. 

          Several organic compounds were targeted in order to answer questions about 

vegetation change, birds and pollutants. These include: 

 Compounds that indicate vegetation input to the organic matter pool, ideally 

unique to particular plant species; 

 Compounds that indicate the existence of waterbirds, e.g. unique biomarkers of 

their guano; 

 Compounds that indicate environmental events/changes, e.g. climate (temperature, 

rainfall, humidity, etc.), fire, flood, drought, land clearance, etc.; and,  

 Compounds that indicate pollutants from anthropogenic activities that may or may 

not affect the well-being of wetlands.  
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      The selected organic-compound classes are n-alkanes, n-alkanols, n-alkanoic acids, 

sterols, α-phellandrene, polycyclic aromatic hydrocarbons (PAHs) and organochlorine 

pesticides (OCPs). A summary of the application of these organic compounds for 

sediments in MM  is given in Table 5.1 and they will be further discussed in the following 

paragraphs. 
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Table 5.1  

Selected organic compounds and their applications to the sediments of the Macquarie Marshes. 

Compounds Source Applications 

n-alkanes Naturally occurring Indicate the OM sources from algae, aquatic macrophytes, and land plants and thus 
reveal the relevant environment conditions (flood/drought). 

n-alkanols Naturally occurring Indicate the OM sources from algae, aquatic macrophytes, and land plants and thus 
reveal the relevant environment conditions (flood/drought). 

n-alkanoic acids Naturally occurring Indicate the OM sources from algae, aquatic macrophytes, and land plants and thus 
reveal the relevant environment conditions (flood/drought). 

sterols Naturally occurring 
/Anthropogenic 

Indicate the OM sources from algae, aquatic macrophytes, and land plants and thus 
reveal the relevant environment conditions (flood/drought); coprostanol is a faecal 
biomarker for birds, higher animals and humans. 

α-phellandrene Naturally occurring Contribution from Eucalyptus spp.  

polycyclic aromatic 
hydrocarbons (PAHs) 

Naturally occurring 
/Anthropogenic 

Pyrogenic PAHs (e.g. retene, perylene and high molecular weight PAHs) can be 
used as indicators of fires (either naturally occurring, commonly during droughts, 
or by anthropogenic combustion in land clearance campaigns); Some PAHs (e.g. 
retene and perylene) are formed naturally by the biogenic precursors and can 
indicate the relevant plant species.  

organochlorine 
pesticides (OCPs) 

Anthropogenic Contribution from agricultural usage of pesticides and herbicides. 
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5.1.1 n-alkanes 

Normal alkanes, indicated by the prefix n- (for normal), are straight-chain saturated 

hydrocarbons, which normally constitute a very small fraction of the total OM in both 

biota and sediments (Meyers, 1993). However, they are a group of compounds that are 

less susceptible to microbial degradation compared to other types of organic biomarkers 

and are generally used as robust indicators to trace the origins of OM in the sediments 

(e.g. Volkman et al., 1980; Meyers and Ishiwatari, 1993; Ficken et al. 2000). For example, 

the two principal sources of biotic hydrocarbons found in lake sediments have 

distinctively different suites of hydrocarbons;  these characteristic molecules can serve as 

proxies for estimating the sources of OM (Meyers, 2003) – whether OM is derived from 

algae, bacteria and vascular plants that live around or within the lake, or only from the 

vascular plants that live around it. Meyers (2003), in a review paper, concluded that the 

abundance of C17 n-alkane reflects the input of algae and photosynthetic bacteria, the 

abundance of C21, C23 or C25 n-alkanes reflects the input of non-emergent (submerged and 

floating) macrophytes, and the abundance of C27, C29 and C31 n-alkanes, typical of waxy 

coatings, reflects the input of vascular plants living on land or along the edges of lakes. 

Emergent aquatic plants have n-alkane distributions midway between non-emergent and 

terrestrial plants. The author also suggested that the absolute amounts of biomarker 

hydrocarbons should be interpreted cautiously as they might be exaggerated by the 

diagenetic loss of the non-hydrocarbon components and which is particularly relevant for 

sediments with organic inputs mainly from land-plants.  
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Table 5.2  

Some n-alkane proxies and their application in palaeoenvironmental reconstructions. 

Proxies Applications References 

Carbon preference index 

















3432302826

3331292725

3230282624

3331292725
alk

2

1

CCCCC

CCCCC

CCCCC

CCCCC
CPI  

Indicator of OM sources: high values (>5) are probably 
due to contribution of vascular plants; low values (~1) 
can probably be attributed to greater input from 
microorganisms 

Kennicutt et al., 
1987; Rieley et 
al., 1991a 

Odd-even predominance  

31

42

44

6









ii

iii

CC

CCC
OEP  

Indicator of contribution of OM from vascular plants 
(higher plants synthesise hydrocarbons with a strong 
odd-over-even predominance by a factor of 10 or more) 

Scalan and 
Smith, 1970; 
Bianchi and 
Canuel, 2011 

Terrigenous/aquatic ratio  

191715

312927

CCC

CCC
TAR




  

Indicator of possible changes in the terrigenous/aquatic 
mixtures of hydrocarbons in core sediments; the 
presence of high TAR values can probably be attributed 
to higher contributions of terrigenous lipids 

Bourbonniere 
and Meyers, 
1996; Jeng and 
Huh, 2006 

Average chain length 

2331292725

3331292725 )(33)(31)(29)(27)(25

CCCCC

CCCCC
ACL





 

Indicator of variation in plant species; in some cases 
used to assess petrogenic and biogenic hydrocarbons 
(input of petrogenic hydrocarbons can result in lower 
ACL values and wider ACL range) 

Cranwell, 
1973a; Jeng, 
2006 

31292523

2523

CCCC

CC
Paq 


  

Indicator of macrophyte and terrestrial plant inputs: 
values range from 0.01 to 0.23 for terrestrial plants and 
from 0.48 to 0.94 for submerged and floating species of 
macrophytes 

Ficken et al., 
2000 

3129272523

312927

CCCCC

CCC
Pwax 


  

Indicator of the relative proportions of waxy 
hydrocarbons derived from emergent macrophytes and 
terrestrial plants to total hydrocarbons 

Zheng et al., 
2007 
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           Therefore, the relative amounts of hydrocarbon biomarkers have been widely used 

as palaeoenvironmental proxies. Table 5.2 (Page 232) summarises the most commonly 

used n-alkane proxies (indices and their formulae) and their applications in 

palaeoenvironmental reconstructions. These proxies integrate the potential sources from a 

great variety of samples and are more straightforward and easy to compare among 

different samples. Carbon preference index (CPI) values summarise the relative proportion 

of even- and odd-numbered n-alkane carbon molecules of biological and geological 

samples (Kennicutt et al., 1987; Rieley et al., 1991a). Biomarkers of different biological 

origin have different CPI values: n-alkanes from the waxes of higher plants have a strong 

odd/even predominance with high CPI values (>5) whereas n-alkanes from bacteria and 

algae show a weak odd/even predominance with low CPI values (~1) (Cranwell et al., 

1987). Odd-even predominance (OEP) values were originally proposed to be used in the 

form of a plot versus the carbon chain length to characterise the series of normal alkanes 

separated from crude oils, ancient rocks, and modern sediments (Scalan and Smith, 1970). 

OEP can be used as an indicator of the contribution of OM from vascular plants, as higher 

plants synthesise hydrocarbons with a strong odd-over-even predominance by a factor of 

10 or more (Bianchi and Canuel, 2011 and references therein). In this thesis, OEP was 

calculated based on the C25 to C31 n-alkanes. The n-alkane average chain length (ACL) is 

the weight-averaged number of carbon atoms of the higher plants C25-C33 n-alkanes 

(Cranwell, 1973a; Jeng, 2006). Lipid analysis of aquatic plants reveals that non-emergent 

(submerged and floating-leaved) species display enhanced abundances of mid-chain 

length C23 and C25 n-alkanes; while emergent aquatic plants and terrestrial plants display 

typically long-chain length homologues (>C29) (Ficken et al., 2000). Therefore, a proxy 

Paq was proposed to reflect the non-emergent aquatic macrophyte input to lake sediments 
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relative to that from emergent aquatic and terrestrial plants (Ficken et al., 2000): for 

modern plants, Paq averages 0.09 for terrestrial, 0.25 for emergent and 0.69 for sub-

merged/floating species. As applied to sediment extracts, a given value will reflect a 

particular mixture of inputs from two or more of these sources (Ficken et al., 2000). 

Another proxy, Pwax, was used as indicator of the relative proportions of waxy 

hydrocarbons derived from emergent macrophytes and terrestrial plants to total 

hydrocarbons (Zheng et al., 2007). Based on the difference of molecular distributions in 

various plants, some proxies/ratios can be used to indicate the relative proportion of algae 

and bacteria/higher plants (C17/C31), emergent aquatic plants and terrestrial plants/C3 grass 

(C27/C31 or (C27+C29)/2C31) (Seki et al., 2010). For example, high C27/C31 values indicate a 

higher contribution from tree-leaf derived waxes than grasses and aquatic plants; while 

low values indicate wetland emergent vegetation dominated by C3 grasses (Seki et al., 

2010).  

         The proxy ratios were suggested can be diagenetically insensitive because they are 

based on the relative abundance of chemically similar compounds within a limited 

molecular weight range (Hedges and Prahl, 1993). Compared with the approach using 

more sophisticated geochemical techniques like isotopic analysis, the proxy ratio method 

is still a rapid screening tool (Jeng, 2006).  

           The use of ternary diagrams of the high molecular n-alkanes is another 

straightforward way to indicate organic sources. They are usually plotted to show the 

relative composition of the three most abundant n-alkanes (nC27, nC29 and nC31, in some 

cases nC29, nC31 and nC33) in plants and soils/sediments and to estimate the contribution of 

plant biomass to soils/sediments (Schwark et al., 2002; Wiesenberg et al., 2004). For 
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example, elevated nC31 is attributed to grass input whereas nC27 or nC29 predominance is 

related to tree-leaf origin (Cranwell, 1973b; Schwark et al., 2002).  

 

5.1.2 n-alkanols 

The lipid n-alkanols have not been as widely applied in palaeolimnological 

reconstructions as either n-alkanes or n-alkanoic acids, although n-alkanols contain 

equally useful information about the source of OM in sedimentary records.  Contributions 

from algae and photosynthetic bacteria can be identified via the large proportion of C16-

C22 n-alkanols (Robinson et al., 1984; Volkman et al., 1999);  submerged and floating 

macrophytes have a predominance of C22 and/or C24 n-alkanols (Ficken et al., 1998); 

vascular land plants and emergent macrophytes contain large proportions of C22-C30 n-

alkanols (Eglinton and Hamilton, 1967; Cranwell, 1984; Rieley et al., 1991b). For 

example, the study by Trendel et al. (2010) found C26 n-alkanols dominating in all 

grasslands (more especially in pastures), while C28 n-alkanols dominate in beech forests 

(typical for North Hemisphere) and C24 n-alkanols dominate in oak forests (typical for 

North Hemisphere). Castañeda et al. (2011) found C28 – C32 n-alkanols present in lake 

sediments as biomarkers for terrestrial higher plants.  

      CPI values of n-alkanols (CPIOH) summarise the relative proportions of even- and odd-

numbered carbon molecules (Bray and Evans, 1961; Kvenvolden, 1970) and is calculated 

by the following equation: 
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      In undegraded lipid material, even-numbered chains dominate the composition of  

n-alkanols while odd-numbered chains dominate n-alkane composition (Tissot and Welte, 

1984; Meyers and Ishiwatari, 1993). It has been found that low CPIOH values (<18.9) are 

indicative of root-derived lipids from vascular plants (Huang et al., 2011). In this thesis, 

due to the low concentrations of odd n-alkanols in sediments from deeper parts of the core 

profiles, CPIOH values are only calculated and discussed among the modern biota and 

surface sediment samples. The ratios of short-chain and long-chain n-alkanols show the 

predominant n-alkanols, thus indicating the organic source (Duan and Ma, 2001): the 

lower ratios indicate the input of higher plants, such as herbaceous plants; whereas the 

higher ratios indicate the input of microbes (Rieley et al., 1991a).  

 

5.1.3 n-alkanoic acids  

The fatty acids are typically of C12 and C36 chain length and in animals they are 

predominantly saturated (referred to as ‗alkanoic acids‘), whereas in plants more 

unsaturated (referred to as ‗alkenoic acids‘) and polyunsaturated acids are present. Fatty 

acids are more sensitive to degradation and modification than most types of lipid 

biomarkers (Volkman et al., 1980). This thesis only focuses on the saturated fatty 

n-alkanoic acids. Similar to n-alkanes and n-alkanols, the different molecular weights of 

n-alkanoic acids can be indicative of a variety of types of plants: large proportions of C16 

and C18 n-alkanoic acids usually originate from algae and photosynthetic bacteria 

(Robinson et al., 1984; Volkman et al., 1999); while C24-C30 n-alkanoic acids are usually 

derived from vascular land plants and emergent macrophytes (Cranwell, 1974; 

Wiesenberg and Schwark, 2006). Apart from the n-alknoic acids, the unsaturated (e.g. 

C16:1, C18:1) and branch-chain iso/anteiso (C14, C15) alkanoic acids, usually detected in 
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relatively low abundance, are indicative of bacterial origin (Matsuda and Koyama, 1977; 

Perry et al., 1979; Volkman et al., 1980; Cranwell, 1984).  

        The CPI value of n-alkanoic acids (CPIFA) summarises the relative proportions of 

even and odd-numbered carbon molecules (Bray and Evans, 1961; Kvenvolden, 1970), 

and is calculated by the following equation:  
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        Similar to n-alkanols, even-numbered chains dominate the composition of n-alkanoic 

acids in undegraded lipid material (Tissot and Welte, 1984; Meyers and Ishiwatari, 1993). 

Due to the low concentration of odd n-alkanoic acids in modern biota and sediments from 

the deeper part of the MM core profiles, CPIFA values can only be calculated and 

discussed among the near-surface sediment samples. The ratios of short-chain and long-

chain n-alkanoic acids show the predominant n-alkanoic acids and thus indicate the 

organic source.  

       The relative composition of the three most abundant n-alkanoic acids (nC22, nC24 and 

nC26) in plants and soils/sediments can be plotted in a ternary diagram to estimate the 

contribution of plant biomass to soils/sediments (Wiesenberg et al., 2004). For example, 

elevated nC22 (>40 %) is characteristic of C3 plants whereas nC24 is related to C4 plants 

(Wiesenberg et al., 2004). 
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5.1.4 Sterols 

Sterols are crystalline compounds and contain an alcohol group. They occur free or as 

esters of the higher fatty acids, and are isolated from the unsaponifiable portion of oils and 

fats; therefore they are considered to be more stable than fatty acids in sediments 

(Volkman et al., 2008). The sterols are numbered as shown in Figure 5.1 (Lipidlibrary, 

http://lipidlibrary.aocs.org/Lipids/plant_st/index.htm), with structures of 1,2-

cyclopentenophenanthrene skeleton. According to the Lipidlibrary 

(http://lipidlibrary.aocs.org/Lipids/plant_st/index.htm), the prefix α and β before the 

number of the carbon atom is used to denote the function group below (α) or above (β) the 

plane of the nucleus; the prefix ‗nor‘ preceded by the number of the carbon atom indicatea 

methylene group is missing from the side-chain; the prefix ‗nor‘ preceded by a small 

capital letter indicate a ring has been contracted; the prefix ‗nor‘ preceded by the number 

designating that methyl group in some cases indicate the loss of an angular methyl group. 

 

 

Figure 5.1. Structure of 4-desmethylsterol with carbon numbers. (Source from 

http://lipidlibrary.aocs.org/Lipids/plant_st/index.htm) 

 

        Sterols are widely distributed among animals and plants in the form of oils or fats. 

Sterols are essential membrane components with various biophysical functions and are 

found in all eukaryotic organisms (e.g.Volkman, 2003). In microalgae, they usually 

possess C27-C30 skeletons, with differences in alkylation at C24 and double bonds in the 

http://lipidlibrary.aocs.org/Lipids/plant_st/index.htm
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nucleus (most common in C number 5, marked as Δ5) and side chain (most common in C 

number 22, 24(28), marked as Δ22, Δ24, Δ24(28)).   

        In sediments, the structural diversity of sterols and their derivatives provide 

important information about the origin of the OM.  Table 5.3 summarises some common 

sterols used in palaeoenvironmental reconstructions. Generally C29 sterols are among the 

major sterols in higher plants and microorganisms such as cyanobacteria and 

Chlorophyceae. Consequently, the variation of C29 sterols may reflect changes in both 

productivity and terrigenous supply (da Silva et al., 2008). C27 and C28 sterols usually 

reflect algal contribution to the sediment (Volkman, 2003; da Silva et al., 2008). Biota can 

also contribute C27 - C29 sterols to the sediment by their excretions and can usually be 

distinguished by the abundance of coprostanol which is unique to higher animals 

including human beings. In an open environment, the OM source may not be constrained 

to just one source. In most of the cases, the sterol profile may indicate several sources as 

there may be more than one source of OM in an open environment, and they may alternate 

due to environmental changes. Therefore proxies calculated by the ratio of particular 

compounds can be further examined to assist in source identification. For example, the 

ratio of coprostanol/(coprostanol+cholestanol) is used to indicate significant sewage 

pollution (Grimalt et al., 1990). 



 

240 

 

Table 5.3  

Sterol proxies and their application in palaeoenvironmental reconstructions. 

Proxies Applications Reference 

Cholesterol Principal sterol synthesised by animals, small quantities 
synthesised by other eukaryotes (e.g. plants and fungi); 
completely absent among prokaryotes (including bacteria) 

Volkman, 2003 

Coprostanol Formed from the biohydrogenation of cholesterol in the gut 
of most higher animals and birds; biomarker for the presence 
of human faecal matter in the environment 

Leeming et al., 1996; Bull et al., 
2003; Tindale et al., 2009 

Cholest-5,22-dien-3β-ol,  
24-methylcholesta-5,22E-dien-3β-ol 

Diatom sterol Volkman, 2003 

C29 sterols Commonly associated with higher plants; also abundant in 
cyanobacteria and Chlorophyceae 

Volkman, 2003; Sonibare and 
Sojinu, 2009 

Coprotanol 

Total Sterols
 

< 0.01-0.02 may indicate the formation of coprostanol in 
anaerobic sediment in pristine environments without faecal 
pollution 

Leeming et al., 1996 

           Coprostanol 

Coprostanol + Cholestanol
 

≥0.7 indicate significant sewage pollution Grimalt et al., 1990 
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5.1.5 Other organic markers 

5.1.5.1 α-phellandrene 

α-phellandrene (Figure 5.2) is the isomer of β-phellandrene, both of which are cyclic 

monoterpenes, insoluble in water but miscible with ether. α-phellandrene is named after 

Eucalyptus phellandra (Eucalyptus radiata) (Merck, 1996) and is also a constituent of the 

essential oil of Eucalyptus dives (Jacobs and Pickard, 1981). In this thesis α-phellandrene 

was found in some of the surface sediments where Eucalyptus spp. grew (discussed in 

Section 5.4.5.1) and used as a specific biomarker for studying the vegetation changes in 

the core profiles.  

 

 
Figure 5.2. Structures of α-phellandrene and β-phellandrene (Merck, 1996). 

  

α-phellandrene β-phellandrene
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Figure 5.3. Structures of 18 polycyclic aromatic hydrocarbons (PAHs) (source from Wikipedia). 
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5.1.5.2 Polycyclic aromatic hydrocarbons (PAHs)  

Polycyclic aromatic hydrocarbons (PAHs) are a variety of compounds consisting of fused 

aromatic rings (Figure 5.3, Page 242). PAHs do not occur naturally in organisms, but are 

the products of OM alteration and are created by one of three processes: (1) microbial 

modification of biogenic precursors shortly after burial in sediment, (2) low-temperature 

diagenesis over a long period of time, or (3) high-temperature rearrangements of OM 

combustion products into polynuclear aromatic molecules (Meyers, 2003). Once formed, 

most PAHs are considered to be relatively robust and can provide source information in 

sediments (e.g. Jiang et al., 2000; Götze et al., 2001; Yunker and Macdonald, 2003; Muri 

and Wakeham, 2009; O‘Dwyer and Taylor, 2009). In the nature reserve of the Macquarie 

Marshes, contaminant PAHs formed by spillage of unburnt petroleum are very unlikely to 

be present. The PAHs found in the sediments, if any, are likely formed by their biogenic 

precursors, pyrogenesis or the combination of the two. In this thesis, we are particularly 

interested in the third group of PAHs, which are usually referenced as pyrogenic 

(combustion-derived) PAHs and used as indicators of forest/wood fires, in particular to 

reveal if vegetation fires occurred naturally (commonly during droughts) or 

anthropogenically induced during land clearance campaigns (Killops and Massoud, 1992; 

Jiang et al., 2000; Gabos et al., 2001). These compounds mainly include:  

(1) Retene is a unique marker for wood combustion, e.g., forest fires (Ramdahl, 1983; 

Gabos et al., 2001); but also a short-term diagenic product of abietic acid, 

abundant in resins of conifers and other higher plant lipids (Simoneit, 1977; 

Laflamme and Hites, 1978; Wakeham et al., 1980). 

(2) Perylene is a diagenetic product derived from its natural precursors via post-

deposition, indicating terrestrial input and transformation from the surrounding 
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environment to sediments (e.g. Ishiwatari et al., 1980; Wakeham et al., 1980; 

Venkatesan, 1988a; Jiang et al., 2000). It can also be produced by combustion 

(only trace or small amounts) (Jiang et al., 2000). It is also a palaeoenvironmental 

marker for syn-and post-depositional anoxia if the concentration is greater than 

0.010 ppm (Silliman et al., 1998; Jiang et al., 2000).    

(3) High molecular weight PAHs like benzofluoranthenes, indeno[1,2,3,cd]pyrene and 

benzo[ghi]perylene: They have a pyrolytic origin associated with soot particles 

delivered by long-range atmospheric transport, or by major contribution from 

anthropogenic or naturally occurring combustion (Dachs et al., 1997; Gabos et al., 

2001).     

           The pyrogenic PAHs can be distinguished from those from other sources by: 

(1) the predominance of higher molecular weight PAHs (three condensed rings or more) 

over the low molecular weight PAHs;  

(2) the predominance of the unsubstituted parent PAHs over their corresponding 

alkylated homologues;  

(3) a decrease in relative abundances with increasing levels of alkylation (Prahl and 

Carpenter, 1983; Wang et al., 1999; Gabos et al., 2001; Wilcke, 2007; Vergnoux et 

al., 2011).  

   The pyrogenic PAHs have been found recently and historically in sediments since the 

Middle Jurassic, however data on their occurrence in ancient sediments are far less than 

those in young sediments (e.g. Killops and Massoud, 1992; Jiang et al., 2000; Yunker and 

Macdonald, 2003; Conedera et al., 2009; O‘Dwyer and Taylor, 2009; Vergnoux et al., 

2011).  

         In this thesis 18 PAHs (Figure 5.3, Page 242) from 2 rings to 6 rings were analysed 
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including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, retene, 

anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, perylene, benzo[a]pyrene, indeno[1,2,3,cd]pyrene and 

benzo[ghi]perylene. The aim was to use these compounds to trace vegetation fires and, if 

possible, correlate to drought years or to anthropogenic combustion during land clearance 

campaign in the Macquarie Marshes. 

 

5.1.5.3 Organochlorine pesticides (OCPs) 

In addition to direct loss of wetland area, wetlands can be functionally lost due to 

contamination of the water supplies from agricultural pesticides and herbicides due to 

surface runoff from irrigated fields (Lemly et al., 2000). This leads to investigating the 

organochlorine pesticides (OCPs) − chlorinated hydrocarbons (Figure 5.4, Page 247) used 

extensively from the 1940s through the 1960s in agriculture and pest control. These 

compounds were introduced to Australia in the mid-1950s, widely used during the mid-

1970s and phased out by 1990 (Connell et al., 2007). When large amounts were 

extensively used, the transport of OCPs from contaminated areas by water courses and 

atmosphere could also affect remote areas and be detected in sediments/soils/plants (e.g. 

Leonard et al., 1999; Haynes et al., 2000; Fu et al., 2001; Meijer et al., 2002).   

           The Macquarie Marshes are on the margin of 175,000 ha of cotton farming areas in 

northwestern New South Wales (Leonard et al., 1999). The release and transport of OCPs 

from surrounding cotton farming areas could have an impact on the wetlands and its 

ecosystem. In this thesis, compounds analysed include HCB (hexachlorobenzene), 

heptachlor, heptachlor epoxide, aldrin, γ-BHC (Lindane, γ-hexachlorocyclohexane), α-

BHC, β-BHC, δ-BHC, trans-chlordane, cis-chlordane, dieldrin, pp-DDE 
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(dichlorodiphenyldichloroethylene), pp-DDD (dichlorodiphenyldichloroethane), pp-DDT 

(dichlorodiphenyltrichloroethane), endrin, endrin aldehyde, endrin ketone, α-endosulfan,  

β-endosulfan, endosulfan sulfate and methoxychlor (Figure 5.4), particularly focusing on 

the following compounds: 

 (1) Endosulfan, a mixture of α- and β-isomers, is an organochlorine pesticide registered 

for use on a wide range of crops to control chewing and sucking insects (e.g. Lee et al., 

1997; Leonard et al., 1999). The most important use of endosulfan in Australia is to 

control Helicoverpa species, especially in cotton cropping (Leonard et al., 1999). Studies 

found that endosulfan runoff from cotton fields especially during storm events had an 

impact on freshwater fish, including immediate death or gene regeneration (Leonard et al., 

1999). 

(2) DDT, DDE and DDD. DDT was used very extensively in cotton-growing areas of 

Australia such as the Namoi and Gwydir valleys until being banned in 1982 (Leonard et 

al., 1999). The main residue observed after several years in these soils is DDE, although at 

the more heavily contaminated cattle-dip sites DDT itself is the major residue and DDD is 

also found (Leonard et al., 1999). The conversion of DDT to DDD is favoured by 

anaerobic conditions such as those encountered with soils that are periodically or 

permanently flooded (Shivaramaiah et al., 2002). 
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Figure 5.4. Structures of 21 organochlorine pesticides (OCPs) (source from Wikipedia). 
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5.2 Methodology 

5.2.1 Sample preparation  

All glassware used for the sample preparation was soaked in detergent overnight, rinsed 

with MilliQ water (18.2 MΩ cm-1 resistivity), heated in a muffle furnace (450 ºC, 24 h) 

and wrapped with aluminium foil. Prior to use, the glassware was rinsed with solvent 

(hexane or dichloromethane). 

         In this study, bulk sediments were used for organic geochemistry analysis, without 

sieving, as Fisher et al. (2003) found that lipid distributions in both fine and coarse 

sediment fractions were very similar in lacustrine sediments. Plant debris was handpicked 

and removed from these sediments to avoid contamination. Sediments were freeze-dried, 

ground to a fine powder and homogenised before extraction.          

         The target compounds include non-polar (n-alkanes) and polar (PAHs, n-alkanols, 

sterols and n-alkanoic acids), therefore a mixed solvent with dichloromethane:methanol 

(97:3 v:v) was used for extraction. About 10-20 g of dried and ground sample was 

extracted by Soxhlet apparatus with 200 mL mixed solvents for 24 hours. Copper chips 

were added to remove elemental sulfur from the extracts. The extracts were then 

concentrated to 1 mL by rotary evaporation at 40 °C and the solvent exchanged to hexane.  

        The chromatography columns used for separating the organic compounds were 

micro-columns (0.8 cm ID × 12 cm length) which are less solvent-consuming and more 

efficient in the separation performance  (Xu and Sun, 2006). The column packing 

materials were silica gel (Sigma-Aldrich, 200-425 mesh) and alumina which have -OH 

functional groups on their surface to adsorb the compounds. All the compounds targeted 

can be obtained by the silica-alumina column while some compounds like aldehydes are 
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destroyed by alumina (Eglinton and Hamilton, 1967). Prior to packing, the column 

packing materials were combusted at 300 °C in a muffle furnace overnight and kept in 

desiccators prior to use. Silica gel was deactivated by adding 3 % (w/w) of distilled water. 

The dry silica gel and alumina (3cm: 3cm in length) were loaded in sequence into the 

micro-column. About 1 cm of anhydrous Na2SO4 was added on top of the alumina to 

remove moisture from the extracts (if any). The packed column was then rinsed and 

moisturised using hexane for pre-conditioning. The extracts were applied to the column 

before the column was completely dried.  

           In order to separate analytes the interference by their different chemical polarity, 

proper solvents should be chosen to elute the targeted compounds (Patnaik 1997, Loconto 

2001, Pollard et al. 2007) —the interfering compound should be left adsorbed onto the 

column, while the targeted compounds are all eluted by the solvent. Depending on the 

compound of interest and its polarity, solvents/mixed solvents of different polarity are 

used. Alkanes, PAHs and OCPs are usually eluted by a solvent with less polarity such as 

hexane, toluene:hexane (5.6:9.4 v:v) or hexane:dichloromethane (1:1 v:v); while the more 

polar compounds including alcohols, sterols and fatty acids are eluted with more polar 

solvents such as dichloromethane:methanol (97:3 or 2:1 v:v) or acetic acid (e.g. Gogou 

and Stephanou, 2004; Hu et al., 2006; Hu et al., 2009). In this study, solvent/mixed 

solvents were used to collect the compound groups in the following sequence: 

         (1) Fraction 1 - 10 mL hexane 

         (2) Fraction 2 - 10 mL hexane:dichloromethane (1:1 v:v) 

         (3) Fraction 3 - 10 mL dichloromethane  

         (4) Fraction 4 - 10 mL dichloromethane:methanol (1:1 v:v) 

         (5) Fraction 5 - 10 mL methanol 
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         The n-alkanes, PAHs and OCPs were eluted in fraction 1, the n-alkanols and sterols 

were eluted in fraction 3, and the n-alkanoic acids were eluted in fraction 4. 

          The fractions collected were concentrated to 0.5 mL under gentle N2 flow and 

known amounts of internal standard were added. For the polar fractions (n-alkanols, 

sterols and n-alkanoic acids), an aliquot of 25 μL of sample was taken, dried and 

derivatised by bis-trimethyl silyl trifluoroacetamide (BSTFA) in a 50 °C oven for one hour 

before analysis. The reason for doing this is to replace the hydroxyl group with the less 

exchangeable trimethysilyl (TMS) group for GC analysis (Knapp, 1979). 

           The sample preparation procedure for sediments is summarised in the flowchart 

shown in Figure 5.5.  

            The plant samples were also freeze-dried and cut into small pieces with clean 

stainless scissors. The preparation procedures were similar to those used for sediments 

excepting that an extra step was added to the polar fractions. This is to remove the wax 

from the plants which would shorten the life of the capillary columns when introduced to 

the GC/GC-MS instrument. The micro-column was loaded with celite (diatomaceous earth 

composed of 80-90 % SiO2, 2-4 % Al2O3 and 0.5-2 % Fe2O3) and pre-conditioned with 5 

mL dichloromethane. The concentrated extracts containing n-alkanols, sterols and n-

alkanoic acids were loaded into the micro-column with celite and eluted with 

dichloromethane/methanol.   

 

 



 

 

251 

 

 

Figure 5.5. Flowchart of sample preparation procedures for organic geochemical 

analysis. 
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5.2.2 Instrumentation  

An Agilent 6890N gas chromatography with flame ionisation detector (GC-FID) in the 

geochemistry laboratory of the University of Wollongong was used mainly for the 

quantification of the organic compounds. The GC column was a DB-5ms fused-silica 

capillary column (60 m × 0.25 mm × 0.25 μm film thickness). Injections (1 μL) were 

conducted mostly in the splitless mode except when running hexane to clean the column. 

The temperature ramping procedures were slightly different between each compound 

group (Table 5.4) as reported by other researchers (e.g. Patnaik, 1997; Gogou and 

Stephanou, 2004; Hu et al., 2006; Volkman et al., 2007; Hu et al., 2009). The carrier gas 

was helium (1.6 mL min-1).  
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Table 5.4  

GC-FID Instrumental analytical parameters.   

hexane n -alkanes PAHs OCPs

length (m)

diameter (mm)

film thickness (μm)
gas

mode

mode split

initial Temp. (°C)

initial pressure (kPa)

split ratio 50

injection volumn (μL) 0.2

purge pressure (kPa) -

purge time (min) -

pre-wash solvent A

number of pre-washes, Solvent A

pre-wash solvent B

number of pre-washes, Solvent B

wash solvent A

number of washes, Solvent A

wash solvent B

number of washes, Solvent B

initial Temp. (°C) 40 70 40 50

time at initial Temp. (min) 2 2 4 1

ramping Temp
1
 (°C) 320 290 270 100

hold Time
1
 (mins) 40 30 60 0

ramping rate
1
  (°C/min) 10 3 10 25

ramping Temp
2
 (°C) 300

hold time
2
 (min) 5

ramping rate
2
  (°C/min) 5

GC Pressure initial pressure (kPa)

operation Temp (°C)

H2 flow rate  (mL/min)

air flow rate  (mL/min)

1.6

FID

340

40

300

5

hexane

5

GC Oven

70

2

290

30

3

dicholomethane

Carrier Gas
helium

constant flow

Inlet

splitless

280

1

-

1

50

1.3

dicholomethane

5

hexane

5

                                      Compound Groups                                        

Instrumental Setup                               

n -alkanols, sterols 

& n -alkanoic acids

Column

60

0.25

0.25
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        The chromatograms of some standards run by GC-FID are shown in Figures 5.6 to 

5.10. 

 

 
Figure 5.6. Chromatogram of n-alkane compound group. 

 

 
Figure 5.7. Chromatogram of PAH compound group. 
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n-alkanes 5 µg/mL

Cx: n-alkanes with carbon number       C24D50: Tertracosane- d50

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 66.00
Time9

100

%
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16.39

44.03

24.63
18.98
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34.7733.1625.12 44.22
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53.84

63.5561.50

PAHs 4.55 µg/mL
hexamethylbenzene

1

2

3

5

6 7
8 10 11

12

13

15

18

20

21 22

4

9 14
16

17 19

1. naphthalene-d8 2. naphthalene  3. acenaphthylene 4. acenaphthene-d10 5. acenaphthene

6. fluorene  7. phenanthrene-d10 8. phenanthrene 9. anthracene 10. retene 11. fluoranthene

12. pyrene 13. chrysene-d12 14. chrysene  15. benzo[b]fluoranthene 16. benzo[k]fluoranthene

17. benzo[a]pyrene 18. perylene-d12 19. indeno[1,2,3-cd]pyrene 20. dibenzo[a,h]anthracene

21. benzo[ghi]perylene 22. perylene
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Figure 5.8. Chromatogram of OCP compound group. 

 

 
Figure 5.9. Chromatogram of n-alcohol and sterol compound groups. 
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Figure 5.10. Chromatogram of n-alkanoic acid compound group. 
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        The identification of some organic compounds with no reference standards was 

performed by gas chromatography mass spectrometry (GC-MS) in the organic 

geochemistry laboratory of The Australian National University. Samples were injected 

using a splitless mode on the same column used for GC-FID analysis, programmed at the 

same conditions as the GC-FID analysis, with ion source temperature at 300 °C, interface 

temperature at 310 °C, electron energy 70 eV, scanning from 40 to 600 a.m.u., 1.5 scan/s 

(Brocks and Schaeffer, 2008). Compounds were identified by interpretation of their 

characteristic mass spectral fragmentation patterns, gas chromatographic relative retention 

times, and by comparison with the software library and literature (e.g. Volkman et al., 

2007; Castañeda et al., 2011; Andersson and Meyers, 2012). The retention times of these 

compounds in GC-FID were determined based on comparing their retention times to their 

two neighbouring compounds from the GC-MS.  

        Quantifications of the target compounds were made using the internal standard 

calibration procedure to correct for the variation of instrumental responses. The internal 

standards, different from the analytes, for each compound group were tetracosane-d50 for 

n-alkanes, hexamethylbenzene for PAHs, pentachloronitrobenzene for OCPs, 1-

nonadecanol for n-alkanols and sterols, and palmitic-d31 acid for n-alkanoic acids. At least 

four mixed standards with sequential known concentrations from each compound group 

were run to build up a calibration curve. The response of the analyte in the calibration 

curve was the ratio of the signal of analyte and the internal standard. The response for the 

sample was compared with that of the standards within the linear range of the curve. 

Accordingly, the concentration of the analyte in the sample was calculated. In this study, 

peak identification and integrations were made under Ionvantage (Version 1.1) software 
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―Data Browser‖ window. Peak areas of the compounds were recorded and fitted into an 

excel spreadsheet established for building up the calibration curve from data of the 

standard series, calculating the parameters of the curve and assessing the concentration of 

the sample. 

         For the compounds without standards (e.g. α-phellandrene), semi-quantification was 

achieved by comparing their GC peak areas to that of the internal standard with known 

concentration and calculated from the ratio. 

         The compound-specific 13C/12C isotopes of n-alkanes were by gas chromatography-

isotope ratio mass spectrometry (GC-IRMS) in the State Key Laboratory of Organic 

Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science. A VG 

Instruments Isoprime mass spectrometer was used. The n-alkanes were separated on an 

HP-5 trace analysis fused silica capillary column (30 m × 0.32 mm × 0.25 μm film 

thickness). Helium was used as carrier gas. The GC oven temperature was programmed 

starting at 80 ºC for 2 min, from 80 ºC to 120 ºC at 15 ºC /min, from 120 ºC to 290 ºC at 4 

ºC /min, then held isothermally at 290 ºC for 25 min. All carbon isotope ratios are 

expressed as per mil (‰) relative to the Pee Dee Belemnite (V-PDB) standard. Reported 

carbon-isotope values (δ13C) represent the averaged value of triplicate analysis. Standard 

deviations were generally ≤ ± 0.5 ‰. 

 

5.2.3 Quality Assurance and Quality Control  

To achieve precise and accurate results, good laboratory Quality Assurance and Quality 

Control (QA/QC) protocols are required. In this thesis, the QA/QC protocols include the 

following:  

 All glassware was properly cleaned and stored as described in Section 5.2.1; 
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 Blank samples that contained no targeted analytes, surrogates, or matrix spikes 

were prepared in parallel in the same manner as sediments/plants to check for 

contamination during sample preparation. No target components or other 

substances with similar retention times were detected in the blanks; 

 Matrix samples spiked with known amounts of standards were processed in the 

same manner as the sediment samples and analysed by GC-FID. The recoveries for 

the standards were all greater than 90 %, indicating that the sample preparation 

was efficient and that there was no contamination that would affect the analytical 

results; 

 Three random sediment samples were prepared and analysed in duplicate in order 

to detect variations during sample preparation and analysis. Relative standard 

deviation was below 10 %; 

 Samples were analysed by GC within 1 to 2 weeks of extraction. Prior to 

instrument analysis, samples were dark sealed and stored at 4 ºC to avoid 

evaporation and degradation; 

 Analytical system performance was checked by injecting three hexane (1 μL) 

aliquots for cleaning the column and by running an analytical standard every 10 

samples during each analysis sequence. Recalibration was conducted if the internal 

standard corrected response for an analyte varied by more than 15 % from the 

calibration standard of the analysis sequence. Duplicate analyses of samples by the 

GC-FID also indicated good analytical agreement; and, 

 Eight surface sediment samples from eight sampling sites were freeze-dried and 

sent to the National Measurement Institute (NMI Australia) for OCPs analysis. 

Sample preparation and instrumental analysis were performed at NMI based on 
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USEPA 8081 method. Briefly, each sample was mixed with anhydrous sodium 

sulfate and extracted using hexane:acetone. The extract was cleaned up with 

alumina and analysed by gas chromatography with electron capture detector (GC-

ECD) (dual column) for OC pesticides. Confirmation was made by gas 

chromatography - electronic ionization mode with selected-ion monitoring 

(GCMS-EI-SIM) and gas chromatography - negative chemical ionization with 

selected-ion monitoring (GCMS-NCI-SIM). The target compounds were HCB, 

heptachlor, heptachlor epoxide, aldrin, γ-BHC (Lindane), α-BHC, β-BHC, δ-BHC, 

trans-chlordane, cis-chlordane, dieldrin, pp-DDE, pp-DDD, pp-DDT, endrin, 

endrin aldehyde, endrin ketone, α-endosulfan,  β-endosulfan, endosulfan sulfate 

and methoxychlor. The surrogates were TCMX, DF-DDE and DB-DDE. The 

detection limit for this method was 0.01 μg/g. None of the target compounds was 

detected (less than 0.01 μg/g) in the surface sediments. 

 

5.3 Analysis of modern plants  

In order to establish representative biomarkers from the plants and assist in understanding 

their contribution to the OM in the sediments, modern plant samples adapted to aquatic 

(emergent and submerged) and terrestrial habitats were collected and analysed. The plant 

samples analysed were Phragmites australis from the 2LOLA site (northern marshes) and 

the CT site (southern marshes), Eucalyptus sp., Typha sp. and Chara australis from the 

MC site (northern marshes), Ranunculus sp. from the 2LOLA site (northern marshes). 

Eucalyptus sp. and Ranunculus sp. represent the terrestrial plants; Typha sp. and 

Phragmites australis represent the emergent plants; Chara australis represents the 

submerged/floating plants/algae.  
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5.3.1 n-alkanes 

The concentrations of total n-alkanes and some ratios are presented in Table 5.5. The total 

n-alkane (nC9-nC33) concentrations of the plant samples range from 10.6 to 432 µg/g (dry 

weight), and from 0.23 to 9.11 µg/g (TOC). The lowest values were observed in 

Ranunculus sp. (10.6 µg/g dry weight, 0.23 µg/g TOC) and then Chara australis (20.5 

µg/g dry weight, 0.49 µg/g TOC); those in terrestrial plants and emergent plants were 20-

40 times higher, with the highest values observed in Typha sp.  (432 µg/g dry weight, 9.11 

µg/g TOC). The concentration of the n-alkanes of the same species varied substantially 

between the sampling locations. For example, the concentrations of n-alkanes were 121 

µg/g dry weight and 2.71 µg/g TOC in Phragmites australis from the 2LOLA site; and 

were 202 µg/g dry weight and 4.71 µg/g TOC in the same species from the CT site. 
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Table 5.5  

TOC, n-alkane concentrations and proxy values of modern plants from the MM. 

 

 

Type of sample
Eucalyptus sp. 

(Monkeygar Creek)

Ranunculus sp. 

(buttercup)   

(Loudens Lagoon)

Typha sp.       

(cumbungi ) 

(Monkeygar Creek)

Phragmites 

australis  (reeds)      

(Loudens Lagoon)

Phragmites 

australis (reeds)      

(Monkeygar Creek)

Chara australis 

(charophyte) 

(Monkeygar Creek)

TOC (%) 53.8 44.0 41.9 47.4 43.0 46.1

Ʃ  n - alkanes          

(C9-33 µg/g DW)
305 10.6 432 121.2 202.2 20.5

Ʃ  n - alkanes       

(C9-33 µg/g TOC)
5.67 0.23 9.11 2.71 4.71 0.49

CPI 15.9 12.9 10.2 6.94 5.30 1.75

OEP 7.56 8.51 9.80 5.15 3.77 1.68

ACL 27.5 29.0 26.9 28.4 28.6 27.9

P aq 0.29 0.05 0.72 0.22 0.11 0.45

P wax 0.84 0.96 0.45 0.84 0.92 0.65

C17/C31 0.04 0.00 0.02 0.00 0.00 4.80

C27/C31 31.8 0.64 10.6 3.45 2.77 1.42
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        Figure 5.11 shows the abundance of the n-alkanes (nC9-nC33) in plant samples. 

Higher plants consist mostly of high molecular weight n-alkanes (C21 to C33) with strong 

odd-to-even preference and generally the most dominant n-alkane is C29 (except C25 n-

alkane in Typha sp. and C27 n-alkane in Eucalyptus sp.), similar to the study by Ficken et 

al. (2000) and Wiesenberg et al. (2004) that emergent aquatic plants and terrestrial 

vegetation have similar n-alkane distributions dominated by the long-chain homologues. 

This finding is particularly significant in above-ground biomass (stems and leaves) rather 

than roots (Wiesenberg et al., 2004). The dominance of C29 n-alkanes is also characteristic 

of C3 plants, in agreement with the result of Wiesenberg et al. (2004). Chara australis 

contains n-alkanes of wider range (nC12-nC31) with less significant odd-to-even preference 

and maximised at C17 n-alkanes, similar to an early study by Galpi et al. (1970).   
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Figure 5.11. The distribution of n-alkanes (C9-C33) in modern plants from the MM. 

(The histograms portray relative abundance, with the mode set to 100. The white bar 

is even carbon numbers; the black bar is odd carbon numbers.) 

 

       As also shown in Table 5.5 (Page 262) and Figure 5.12 (Page 266), the CPI values are 

generally greater than 5.0 in higher plants and lowest (1.6) in Chara australis; the OEP 

values are greater than 5.0 in higher plants (except one of the Phragmites australis had 

OEP value of 3.8) and lowest (1.8) in Chara australis. The ACL values vary only slightly 

from 26.8 in Typha sp. to 29.0 in Ranunculus sp. with an average of 27.9 for the algae and 
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higher plants. The n-alkane composition and OEP varies greatly between higher plants and 

algae while the ACL values are less distinctive. The Paq values in these modern plants 

were compared to those found by Ficken et al. (2000): Ranunculus sp. (0.05) was less than 

0.10 as is commonly found in terrestrial plants while Eucalyptus sp. (0.29) was 

exceptionally higher; Phragmites australis (0.11 and 0.22) is within the range (0.10 - 0.40) 

for emergent macrophytes while Typha sp.  (0.72) is higher than the range; Chara 

australis (0.45) was a little higher than the range (0.40 - 1.00) for submerged/floating 

aquatic macrophytes. The Pwax values range from 0.45 in Typha sp. to 0.96 in Ranunculus 

sp. and are generally high among higher plants (0.84 in Eucalyptus sp., 0.84 - 0.92 in 

Phragmites australis, 0.96 in Ranunculus sp.) and low in algae (0.65 in Chara australis). 

The C27/C31 values are extremely high in Eucalyptus sp. (31.8) and Typha sp. (10.6); 

decreased to 2.77 - 3.45 in Phragmites australis, 1.42 in Chara australis, and 0.64 in 

Ranunculus sp.. Compared to the Paq, Pwax and C27/C31 values, the C17/C31 values appear to 

be more indicative of higher plants and algae: C17/C31 values were close to 0 in higher 

plants and 4.8 in Chara australis. Generally, except for the ACL value, the other n-alkane 

proxies are distinctive among various plant species.  
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Figure 5.12. The n-alkane proxies for modern plants from the MM are distinctive 

between higher plants and algae. (1. Eucalyptus sp., 2. Ranunculus sp., 3. Typha sp., 

4,5. Phragmites australis, 6. Chara australis) 
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5.3.2 n-alkanols  

The concentrations of total n-alkanols and some proxy ratios are presented in Table 5.6. 

The total n-alkanol (nC14-nC32) concentrations of the plant samples range from 0.05 to 

53.6 µg/g (dry weight), and from 0.001 to 1.13 µg/g (TOC). The highest value is in Typha 

sp. (53.6 µg/g dry weight, 1.13 µg/g TOC), followed by Chara australis (9.37 µg/g dry 

weight, 0.22 µg/g TOC); those in higher plants are generally 30- to 100- fold lower, with 

the lowest values observed in Ranunculus sp. (0.05 µg/g dry weight, 0.001 µg/g TOC).  

       Figure 5.13 (Page 269) shows the composition of n-alkanols (nC14-nC32) in plants. All 

the samples show strong even-to-odd number predominance (cf. Eglinton and Hamilton, 

1967). The most abundant n-alkanol is C32 in Phragmites australis and Eucalyptus sp.; C26 

in Ranunculus sp. and C14 in Typha sp. and Chara australis. These findings correspond to 

those reported previously (summarised in Section 5.1.2 and reference therein) in algae, 

photosynthetic bacteria, submerged/floating macrophytes, vascular land plants and 

emergent macrophytes. In particular, the composition of n-alkanols in Phragmites 

australis and Typha sp. accord with data from the same species reported by Cranwell 

(1984).  

         As also shown in Table 5.6 and Figure 5.14 (Page 270), the CPIOH values were high 

in Typha sp. (20.3) and Ranunculus sp. (30.1), and low in Chara australis (1.9). The ratios 

of short-chain/long-chain n-alkanols range from 0.02 to 4.41. Higher plants (i.e. 

Eucalyptus sp., Typha sp. and Phragmites australis) show a predominance of long-chain 

n-alkanols whereas algae (Chara australis) are the opposite.  
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Table 5.6  

TOC, n-alkanol concentrations and proxy values of modern plants from the MM. 

 

Type of sample
Eucalyptus sp. 
(Monkeygar Creek)

Ranunculus sp. 

(buttercup)   
(Loudens Lagoon)

Typha sp.       

(cumbungi ) 
(Monkeygar Creek)

Phragmites 

australis (reeds)      
(Monkeygar Creek)

Chara australis 

(charophyte) 
(Monkeygar Creek)

TOC (%) 53.8 44.0 41.9 43.0 46.1

Ʃ n - alkanols       

(C14-32 µg/g DW)
0.27 0.05 53.6 0.62 9.37

Ʃ n - alkanols       

(C14-32 µg/g TOC)
0.01 0.001 1.13 0.01 0.22

CPIO H - 30.14 20.27 - 1.94

ƩC14-20/ƩC21-30 0.02 0.31 1.24 0.03 4.41
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Figure 5.13. The distribution of n-alkanols (C14-C32) in modern plants from the MM. 

(The histograms portray relative abundance, with the mode set to 100. The white bar 

is even carbon numbers; the black bar is odd carbon numbers.) 
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Figure 5.14. The n-alkanol proxies for modern plants from the MM are less 

distinctive between higher plants and algae. (1. Eucalyptus sp., 2. Ranunculus sp., 3. 

Typha sp., 4. Phragmites australis, 5. Chara australis) 

0

1

2

3

4

5

0

5

10

15

20

25

30

35

C
P

I O
H

ƩC
1

4
-2

0
/Ʃ
C

2
1
-3

0

1         2         3         4         5   



 

 

271 

 

5.3.3 n-alkanoic acids   

The concentrations of total n-alkanoic acids and some ratios are presented in Figure 5.15 

(Page 273). The total n-alkanoic acid (nC9-nC30) concentrations of the plants ranges from 

0.64 to 287.4 µg/g (dry weight), and from 0.01 to 6.06 µg/g (TOC). As for the n-alkanols, 

the highest value is for Typha sp. (287.4 µg/g dry weight, 6.06 µg/g TOC), followed by 

Chara australis (184.9 µg/g dry weight, 4.41 µg/g TOC); the values in higher plants are 

generally 100- to 300- fold lower, with the lowest values in Eucalyptus sp. (0.64 µg/g dry 

weight, 0.01 µg/g TOC).  

        Figure 5.15 shows the composition of n-alkanoic acids (nC9-nC30)  in modern plants. 

Similar to n-alkanols, all the samples show strong even-to-odd number predominance (cf. 

Eglinton and Hamilton, 1967). Odd number n-alkanoic acids are presented only in small 

amounts in some samples. The most abundant n-alkanoic acid is C16 in Typha sp.; C30 in 

Phragmites australis and C10 in the other plant samples. The composition of n-alkanoic 

acids in Phragmites australis and Typha sp. are similar to the early studies by Cranwell 

(1984) and Wiesenberg et al. (2004).  However, the relative abundance of the high 

molecular-weight n-alkanols (C20-C30) found in higher plants in this study was slightly 

different from those found among leaf epicuticular waxes by Eglinton and Hamilton 

(1967), likely caused by species difference.  

      As also shown Table 5.7 and Figure 5.16 (Page 274), the ratios of short-chain/long-

chain n-alkanoic acids range from 1.10 to 26.8. Eucalyptus sp. and Ranunculus sp. show a 

predominance of short-chain n-alkanoic acids whereas Typha sp., Phragmites australis 

and Chara australis contain n-alkanoic acids with a broader spectrum of chain lengths. 
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Table 5.7  

TOC, n-alkanoic acid concentrations and proxy values of modern plants from the MM. 

 

Type of sample
Eucalyptus sp. 
(Monkeygar Creek)

Ranunculus sp. 

(buttercup)   

(Loudens Lagoon)

Typha sp.       

(cumbungi ) 

(Monkeygar Creek)

Phragmites 

australis (reeds)      

(Monkeygar Creek)

Chara australis 

(charophyte) 

(Monkeygar Creek)

TOC (%) 53.8 44.0 41.9 43.0 46.1

Ʃ n - alkanoic acids      

(C9-30 µg/g DW)
0.64 1.87 287.4 1.12 184.9

Ʃ n - alkanoic acids      

(C9-30 µg/g TOC)
0.01 0.04 6.06 0.03 4.41

ƩC9-20/ƩC21-30 11.9 26.8 1.10 1.10 2.97
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Figure 5.15. The distribution of n-alkanoic acids (C9-C30) in modern plants from the 

MM. (The histograms portray relative abundance, with the mode set to 100. The 

white bar is even carbon numbers; the black bar is odd carbon numbers.) 
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Figure 5.16. The n-alkanoic acid proxy of modern plants from the MM is less 

distinctive between higher plants and algae. (1. Eucalyptus sp., 2. Ranunculus sp., 3. 

Typha sp., 4. Phragmites australis, 5. Chara australis) 
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5.3.4 Sterols  

As shown in Table 5.8 (Page 277), the total concentrations of sterols (C27 to C29) in the 

modern plants studied here range from 0.65 µg g-1 (DW) and 0.01 µg g-1 TOC in 

Eucalyptus sp. to 80. 5 µg g-1 (DW) and 1.92 µg g-1 TOC in Chara australis. Among all 

samples, the concentrations of sterols decrease in the order C27, C28 and then C29. C29 

sterols were only detected in Ranunculus sp., Phragmites australis and Chara australis.  

        The most abundant sterol in the plant samples is cholesta-5,22E-dien-3β-ol with a 

wide range of concentrations (from 0.65 µg g-1 DW in Eucalyptus sp. to 77.1 µg g-1 DW in 

Chara australis). Cholesta-5,22E-dien-3β-ol was only detected in Eucalyptus sp.. For 

Ranunculus sp., campesterol was also found in abundance (2.08 µg g-1 DW). For Typha 

sp., cholesterol is the second most abundant sterol (7.77 µg g-1 DW), followed by 5α-

cholestan-3β-ol (2.69 µg g-1 DW) and 24-methylcholesta-5,6,22E-trien-3β-ol (1.32 µg g-1 

DW). Phragmites australis collected from different sites showed very different 

compositions. In a sample from the LOLA site (northern MM) only cholesta-5,22E-dien-

3β-ol (8.61 µg g-1 DW) was detected; whereas the sample from the MC site (southern MM) 

had a lower concentration of cholesta-5,22E-dien-3β-ol (1.28 µg g-1 DW) but contained 

24-methylcholesta-5,6,22E-trien-3β-ol (0.40 µg g-1 DW) and stigmasterol (0.12 µg g-1 

DW). The sterol composition of Chara australis was different from that of the higher 

plants, with the second most abundant compound    24-methylcholesta-5,6,22E-trien-3β-ol 

(2.59 µg g-1 DW) only 3 % of the cholesta-5,22E-dien-3β-ol (77.12 µg g-1 DW), followed 

by campesterol (0.45 µg g-1 DW), 5α-cholestan-3β-ol (0.15 µg g-1 DW) and 24-methyl-5α-

cholesta-22E-en-3β-ol (0.10 µg g-1 DW). The major diversity of sterols in Chara australis 

found in this study contrasts with an earlier study of Chlorophyceae (Chlorella 

minutissima) by Volkman et al. (2003) in which campesterol, 24-methylcholesta-5,24 
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(28)-dien-3β-ol, 24-methylcholesta-7,22-dien-3β-ol, sitosterol and stigmasterol were 

found to be the most common sterols. However, the Chlorophyceae are unicellular green 

algae, not closely related to the plant-like macroalgae Charophyceae. 

 

5.3.5 Summary  

The concentrations and compositions of n-alkanes, n-alkanols, n-alkanoic acids and sterols 

show considerable variation among higher plants (i.e. Eucalyptus spp., Ranunculus sp., 

Typha sp., Phragmites australis) and the macroalgae (i.e. Chara australis), as recorded in 

some proxy formulae. Such proxies are distinctive among various plant types and offer 

promise in organic source identification for the sediments (containing plant matter) from 

the MM.  



 

 

277 

 

Table 5.8  

The concentrations and compositions of sterols in modern biota samples from the MM. 

 

Type of sample
Eucalyptus sp. 

(Monkeygar Creek)

Ranunculus sp. 

(buttercup)   
(Loudens Lagoon)

Typha sp.       

(cumbungi ) 
(Monkeygar Creek)

Phragmites 

australis  (reeds)      
(Loudens Lagoon)

Phragmites 

australis (reeds)      
(Monkeygar Creek)

Chara australis 

(charophyte) 
(Monkeygar Creek)

Coprostanol (µg/g DW) 0.00 0.00 0.00 0.00 0.00 0.00

Cholesta-5,22E-dien-3β-ol (µg/g DW) 0.65 3.00 25.49 8.61 1.28 77.1

Cholesterol (µg/g DW) 0.00 0.00 7.77 0.00 0.00 0.00

5α-Cholestan-3β-ol (µg/g DW) 0.00 0.00 2.69 0.00 0.00 0.15

24-methyl-5α-cholesta-22E-en-3β-ol 
(µg/g DW)

0.00 0.00 0.00 0.00 0.00 0.10

24-methylcholesta-5,6,22E-trien-3β-ol 
(µg/g DW)  

0.00 0.03 1.32 0.00 0.40 2.59

Campesterol (µg/g DW) 0.00 2.08 0.00 0.00 0.00 0.45

Stigmasterol (µg/g DW) 0.00 0.00 0.00 0.00 0.12 0.00

Ʃ Sterols (µg/g DW) 0.65 5.11 37.3 8.61 1.84 80.4

Ʃ C27 Sterols (µg/g DW) 0.65 3.00 35.9 8.61 1.31 77.3

Ʃ C28 Sterols (µg/g DW) 0.00 2.11 1.32 0.00 0.40 3.18

Ʃ C29 Sterols (µg/g DW) 0.00 2.08 0.00 0.00 0.12 0.45

Ʃ Sterols (µg/g TOC) 0.01 0.11 0.79 0.19 0.04 1.92
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5.4 Analysis of surface sediments from the northern and southern marshes 

The 12 surface sediment samples analysed include: from the northern MM, MRI-S1 and 

MRI-S2 from a channel ridge parallel to the Macquarie River, LOLA-S1, LOLA-S2, 

LOLA-S3 and 2LOLA-S1 from Loudens Lagoon, LSW-S1, LSW-S2 and LSW-S3 from 

Longstowe station; and from the southern MM, MC-C6 from Monkeygar Creek, CT-S1 

from east of Monkeygar Creek, and SL-C1 from South Lagoon. More detailed information 

of the sampling sites and sediment types is presented in the tables in the following sections.  

 

5.4.1 n-alkanes 

The total n-alkane (nC9-nC33) concentrations of the 12 surface sediment samples range 

from 2.74 to 23.1 µg/g (dry weight), and from 0.55 to 10.3 µg/g (TOC). The composition 

(Figure 5.17 Page 280) of these n-alkanes is dominated by long-chain compounds (nC23-

nC33) with strong odd-to-even preference in the majority of the samples. The most 

abundant n-alkane is nC29 in most of the samples, nC33 in CT-S1, nC31 in MC-C6 and 

exceptionally nC30 in LSW-S3. The absolute concentration and composition of n-alkanes 

varies from site to site, and even differ in nearby sampling sites with different 

environmental settings. For example, samples collected within the floodplain of a small 

channel (MRI-S2) show a dominance of long-chain n-alkanes (nC25-nC33); whereas mud 

samples from the channel (MRI-S1) show bimodal peaks both in long-chain n-alkanes 

(nC25-nC33) and short-chain n-alkanes (nC11-nC19). In general, the n-alkane compositions 

of all the surface sediment samples can be divided into two groups – one with a dominant 

peak in the long-chain compounds with strong odd-to-even preference (including MRI-S2, 

2LOLA-S1, LOLA-S1 and LOLA-S2); the other samples have additional peaks in short-
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chain compounds with moderate odd-carbon predominance or even-carbon predominance 

in some sites (including MRI-S1, LSW-S1, LSdW-S2, LSW-S3, LOLA-S3, SL-C1, CT-

S1 and MC-C6). The former samples indicate the contribution of macrophytes and 

vascular plants that grow within the watershed or nearby; the latter samples likely indicate 

the contribution of OM by microalgae and bacteria in samples collected from 

watercourses.  
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Figure 5.17. The relative abundance of n-alkanes (C9-C33) in surface sediments from the MM. (The white bar is even carbon numbers; the 

black bar is odd carbon numbers. The top row contains samples from dry sites, and the middle and bottom rows are samples from 

inundated sites.) 
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Table 5.9  

TOC, n-alkane concentrations and proxies of the surface sediments from the MM. 

 

 

Sample ID
Dry/Wet 

Sampling Site
Main Vegetation Cover TOC (%)

Ʃ n - alkanes   

(C9-33 µg/g DW)

Ʃ n - alkanes     

(C9-33 µg/g TOC)
CPI    OEP       ACL      Paq Pwax C17/C31 C27/C31

2LOLA-S1 Dry Phragmites australis 3.91 9.88 2.53 4.87 2.78 29.6 0.12 0.90 0.00 0.42

MRI-S2 Dry Woodland plants 2.00 4.56 2.28 1.29 1.10 28.8 0.15 0.89 0.00 3.60

LOLA-S2 Dry Phragmites australis & Ranunculus sp. 3.93 4.15 1.06 12.3 6.72 28.3 0.24 0.81 0.00 0.98

LOLA-S1 Dry Phragmites australis  (dead) 2.07 4.69 2.27 3.37 2.03 28.0 0.34 0.74 0.00 2.30

MC-C6 Wet Surrounded by Typha sp. 5.36 9.00 1.68 9.43 2.21 30.5 0.02 0.98 0.08 0.07

LSW-S3 Wet Surrounded by woodland plants 5.18 10.07 1.95 1.56 0.85 29.3 0.02 0.99 0.33 0.85

MRI-S1 Wet Woodland plants 1.36 6.42 4.72 3.62 2.28 29.0 0.09 0.93 0.51 1.07

LSW-S1 Wet Woodland plants 1.61 6.33 3.93 10.6 7.61 28.8 0.17 0.88 0.53 1.79

LOLA-S3 Wet Phragmites australis 2.25 2.47 1.10 2.93 2.04 28.4 0.18 0.87 - -

CT-S1 Wet Woodland plants & Phragmites australis 1.80 20.79 11.6 5.68 2.06 30.3 0.23 0.81 0.41 0.52

LSW-S2 Wet Woodland plants & Phragmites australis 8.55 23.09 2.70 5.28 0.97 29.3 0.24 0.76 0.05 0.00

SL-C1 Wet Wooldland plants & Phragmites australis 2.85 14.27 5.0 2.89 1.56 28.9 0.24 0.81 0.42 0.81
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      The CPI values of the surface sediment samples (Table 5.9, Page 281) range from 1.29 

to 12.3. These surface sediments are considered to be deposited in relatively recent times 

and under climate conditions similar to present. The variation of the CPI values is mainly 

a result of the different organic sources (Matsumoto and Watanuki, 1990). Most of the 

samples with high CPI values (>5) and strong odd-to-even preference indicate n-alkanes 

that originate mainly from higher plants; the other samples with CPI values within the 

range 1-5 likely indicate n-alkanes originating from both higher plants, bacteria and algae 

(Cranwell et al., 1987). Comparatively, the OEP values were less variable and mostly 

around 1.0-2.0 in these surface sediment samples, except for two extremely high values 

found in LOLA-S2 (6.7) and LSW-S1 (7.6). The ACL values vary from 28.0 to 30.5 with 

an average of 29.1, generally higher than for algae (i.e. Chara australis) and closer to 

higher plants (i.e. Ranunculus sp. and Phragmites australis) analysed in the previous 

section, indicating a dominant contribution of OM from these higher plants. The very high 

values of CPI and OEP found in LOLA-S2, LSW-S1 and MC-C6 may be attributed to 

recent input of higher plants to the OM in these sites. Most of the surface samples show 

intermediate values of 0.1-0.4 corresponding to a mixture of inputs from terrestrial, 

emergent and submerged/floating aquatic macrophytes and charophytes as observed in the 

field. The variation of Paq ratios among the several field sites indicates different 

proportions of plant species input to the OM in the sediments. The higher Paq (e.g. LOLA-

S1, LOLA-S2, LSW-S2, CT-S1 and SL-C1) reflects sediments from the lagoons/swamps 

which had abundant submerged/floating aquatic plants in their shallower parts and were 

bordered by a fringe of emergent macrophytes and terrestrial plants. The relative low Paq 

(e.g. MC-C6, LSW-S3) corresponds to sediments from sites which had fewer 

submerged/floating and emergent plants. The Pwax ratio was applied to these surface 
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sediments to assess the relative proportion of waxy and terrestrial plants to total 

hydrocarbons (Zheng et al., 2007) and results show that the values range between 0.74 and 

0.99. A low Paq ratio and high Pwax ratio reflects the dominant contribution of higher 

plants to the surface sediments. Most of the C17/C31 values are close to 0 except for a few 

high values (~0.50) found in MRI-S1, LSW-S1, LSW-S3, CT-S1 and SL-C1, indicating 

that algae and bacteria were not the main contributors to the sediment OM. Most of the 

low C27/C31 values, indicative of the dominance of C3 wetland grasses, were found in the 

sediments where the Phragmites australis and Typha sp. grew (e.g. LOLA-S2, 2LOLA-S1, 

MC-C6).   

            Most of the surface sediment samples analysed are very similar in the relative 

abundance of n-alkanes as found in modern plants (discussed previously in Section 5.3.1). 

Figure 5.18 (Page 285) and Figure 5.19 (Page 286) exemplify the distribution of n-alkane 

biomarkers extracted from sediments and modern plants. The surface sediments from the 

LOLA site (Figure 5.18 left graph) show the dominance of high molecular weight n-

alkanes (nC23-nC31), with strong odd-to-even preferences; similar to the values obtained 

from Phragmites australis and Ranunculus sp. growing at this site indicating their 

contribution to the OM of the sediments. The n-alkane proxy values (Figure 5.18 right 

graph) for the sediments fall within the range of those from the two plant species. The 

surface sediment from the MC site (Figure 5.19 left graph) also shows odd-to-even carbon 

preference for all alkanes but with dominance in higher molecular weight n-alkanes (nC27-

nC33). Extant Typha sp. from this site has n-alkanes with lower molecular weight n-

alkanes (nC23-nC31), indicating that Typha sp. may not be the main contributor of OM to 

the sediment. Chara australis, which shows a bimodal carbon-number distribution with a 

mode at nC17, may contribute to the small peaks in lower molecular weight n-alkanes in 
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the sediment. Thus, Typha sp. and Chara australis cannot be considered the main organic 

source for the sediments at the MC site. The high molecular-weight n-alkanes are likely to 

originate from other sources and very likely C3 wetland grasses which are abundant in 

nC31 n-alkanes (Seki et al., 2010). The n-alkane proxies (Figure 5.19 right graph) also do 

not support a significant source of Typha sp. and Chara australis to the sediment. Only the 

CPI, OEP and C17/C31 values of the sediments are within the range of the two plants. The 

very high ACL and Pwax and low Paq and C27/C31 may be attributed to C3 wetland grasses. 

The dominant OM source for the MC site needs to be further investigated with more data 

from C3 wetland grasses. 
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Figure 5.18. The distribution of n-alkanes (C9-C33) in surface sediments and plant 

samples from the LOLA site (left) and their n-alkane proxies (right). 
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Figure 5.19. The distribution of n-alkanes (C9-C33) in surface sediments and plant 

samples from the MC site (left) and their n-alkane proxies (right).

(The white bar is even carbon numbers;
the black bar is odd carbon numbers.)
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          Figure 5.20 shows a ternary diagram illustrating the relative abundance of the three 

most abundant n-alkanes (nC27, nC29 and nC31) in plants and surface sediments. 

Eucalyptus sp. and Typha sp. contain more C27 n-alkanes; Phragmites australis and 

Ranunculus sp. contain more C29 n-alkanes whereas Chara australis contains more C31  

n-alkanes. The surface sediment samples mostly cluster close to the extant plant samples 

growing in these sites, again supporting the input of n-alkanes from plants to these surface 

sediments (Schwark et al., 2002; Wiesenberg et al., 2004).  

 

 

Figure 5.20. The relative abundance of the three most abundant n-alkanes (nC27, 

nC29 and nC31) in plants and surface sediments. (● surface sediments from the 

northern Macquarie Marshes; ▲ surface sediments from the southern Macquarie 

Marshes; × plant samples including 1. Eucalyptus sp., 2. Typha sp., 3, 4. Phragmites 

australis. 5. Ranunculus sp., 6. Chara australis)    
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5.4.2 n-alkanols 

The total n-alkanol (nC14-nC30) concentrations (Table 5.10, Page 290) of the 12 surface 

sediment samples range from 1.67 to 15.2 µg/g (dry weight), and from 0.58 to 7.37 µg/g 

(TOC). The relative abundances (Figure 5.21, Page 291) of these n-alkanols are dominated 

by long-chain compounds (nC22-nC30) with strong even-to-odd preference in most of the 

samples. The most abundant n-alkanol is nC28 in samples from MRI-S1, MRI-S2,  

LSW-S1, LSW-S2, LSW-S3 and MC-C6 and nC26 in the remaining 6 samples. As for the 

n-alkanes, the concentration and relative abundances of n-alkanols varied depending on 

the environmental settings. In general, the n-alkanol composition of most of the surface 

sediment samples show a dominant peak in the long-chain compounds (nC22-nC30) with 

strong even-to-odd preference, indicating a strong contribution of terrestrial higher plants 

(Castañeda et al., 2011). There were also additional peaks in the short-chain compounds 

with moderate odd-carbon predominance or even-carbon predominance (nC14-nC21), 

probably due to the input of algae and photosynthetic bacteria (Volkman et al., 1999).  

        Unlike the n-alkanes, most of the surface sediments analysed differed in the 

composition and relative abundance of n-alkanols compared to the modern plants (Section 

5.3.2). The reason for this needs to be further investigated. 

         The CPIOH values of the surface sediments (Table 5.10, Page 290) range from 3.51 

to 9.41, generally lower than those reported in peat bogs (Andersson and Meyers, 2012). 

These values are lower than Typha sp. and Ranunculus sp. and higher than Phragmites 

australis and charophytes (discussed in the previous section), indicating probable mixed 

sources. The ratios of short-chain/long-chain n-alkanols ranges from 0.02 to 0.19, 
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indicating long-chain predominance which is likely a contribution of higher plants (Duan 

and Ma, 2001; Castañeda et al., 2011). 

 

 



 

290 

 

Table 5.10  

TOC, n-alkanol concentrations and proxies of the surface sediments from the MM. 

Sample ID
Dry/Wet 

Sampling Site
Main Vegetation Cover TOC (%)

Ʃ n - alkanols   

(C14-30 µg/g DW)

Ʃ n - alkanols     

(C14-30 µg/g TOC)
CPIO H       ƩC14-20/ƩC21-30

MRI-S1 Wet Woodland plants 1.36 5.18 2.59 7.47 0.04

MRI-S2 Dry Woodland plants 2.00 1.67 0.58 3.95 0.19

LOLA-S1 Dry Phragmites australis  (dead) 2.07 3.82 0.98 5.98 0.07

LOLA-S2 Dry Phragmites australis 3.93 7.02 0.82 5.05 0.06

LOLA-S3 Wet Phragmites australis 2.25 4.33 2.41 7.71 0.04

2LOLA-S1 Dry Phragmites australis 3.91 15.2 7.37 6.98 0.12

LSW-S1 Wet Woodland plants 1.61 8.65 2.20 7.24 0.08

LSW-S2 Wet Woodland plants & Phragmites australis 8.55 14.2 6.30 6.47 0.12

LSW-S3 Wet Surrounded by woodland plants 5.18 7.42 4.60 8.08 0.03

MC-C6 Wet Surrounded by Typha sp. 5.36 9.25 1.79 9.41 0.02

CT-S1 Wet Woodland plants & Phragmites australis 1.80 7.77 1.45 4.58 0.08

SL-C1 Wet Wooldland plants & Phragmites australis 2.85 4.94 3.63 3.51 0.09
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Figure 5.21. The relative abundance of n-alkanols (C14-C30) in surface sediments from the MM. (The white bar is even carbon numbers; 

the black bar is odd carbon numbers.) 
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Figure 5.22. The relative abundance of n-alkanoic acids (C14-C30) in surface sediments from the MM. (The white bar is even carbon 

numbers; the black bar is odd carbon numbers.) 
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5.4.3 n-alkanoic acids  

The total n-alkanoic acid (nC9-nC30) concentrations (Table 5.11, Page 295) of the 12 

surface sediment samples range from 6.61 to 87.08 µg/g (dry weight), and from 2.52 to 

38.68 µg/g (TOC). The most abundant n-alkanoic acid is nC18 in most of the samples 

except nC29 in MRI-S1, and likely originates from algae and photosynthetic bacteria 

(Robinson et al., 1984; Volkman et al., 1999). The relative abundances (Figure 5.22, Page 

292) of n-alkanoic acids in most samples are dominated by long-chain compounds (nC22-

nC30) with strong even-to-odd preference in most of the samples. This is similar to the 

results reported from Lake Wandakara, Uganda indicating that they are primarily derived 

from terrestrial plants (Eglinton and Hamilton, 1967; Russell et al., 2009). The absolute 

concentration and relative abundance of n-alkanoic acids varies from site to site with 

different environmental settings, depending on the organic input. Most of the surface 

sediment samples analysed also differ in composition and relative abundance of n-

alkanoic acids compared to the plants (discussed Section 5.3.3), although generally closer 

to the higher plants (Typha sp., Phragmites australis, Eucalyptus spp.) than the algae 

(Chara australis). Degraded plant biomass is commonly depleted in mid-chain and 

enriched in long-chain n-alkanoic acids (Wiesenberg et al., 2004), so it is assumed that the 

composition of n-alkanoic acids in the surface sediments indicates the plant biomass input 

into OM of sediments.   

      The CPIFA values of the surface sediment samples (Table 5.11) range from 0.57 to 

6.86. Generally the samples from the watercourses (MRI-S1, LSW-S1, LSW-S3 and MC-

C6) have lower CPIFA values (<2.0). The reason for this still needs to be investigated. The 

ratios of short-chain/long-chain n-alkanoic acids are lower than 1.0 in the surface sediment 

samples except for one sample MRI-S2 (2.93), indicating long-chain predominance which 
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is likely due to contributions of terrestrial higher plants (Eglinton and Hamilton, 1967; 

Russell et al., 2009).
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Table 5.11  

TOC, n-alkanoic acid concentrations and proxies of the surface sediments from the MM. 

 

 

Sample ID

Dry/Wet 

Sampling 

Site

Main Vegetation Cover TOC (%)
Ʃ n - alkanoic aicds   

(C9-30 µg/g DW)

Ʃ n - alkanoic aicds     

(C9-30 µg/g TOC)
CPIFA ƩC9-20/ƩC21-30

MRI-S1 Wet Woodland plants 1.36 6.61 3.31 0.57 0.34

MRI-S2 Dry Woodland plants 2.00 22.4 7.86 6.72 2.93

LOLA-S1 Dry Phragmites australis  (dead) 2.07 54.0 13.8 6.86 0.46

LOLA-S2 Dry Phragmites australis 3.93 21.5 2.52 3.12 0.49

LOLA-S3 Wet Phragmites australis 2.25 19.0 10.6 3.40 0.46

2LOLA-S1 Dry Phragmites australis 3.91 33.0 16.0 6.05 0.47

LSW-S1 Wet Woodland plants 1.61 28.6 7.28 1.90 0.56

LSW-S2 Wet Woodland plants & Phragmites australis 8.55 87.1 38.7 5.86 0.99

LSW-S3 Wet Surrounded by woodland plants 5.18 23.1 14.3 1.37 0.82

MC-C6 Wet Surrounded by Typha sp. 5.36 33.8 6.54 2.04 0.48

CT-S1 Wet Woodland plants & Phragmites australis 1.80 47.3 8.82 5.60 0.49

SL-C1 Wet Wooldland plants & Phragmites australis 2.85 51.8 38.1 6.22 1.07
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         Figure 5.23 shows a ternary diagram illustrating the relative composition of the three 

most abundant n-alkanoic acids (nC22, nC24 and nC26) in plants and surface sediments. 

Chara australis, Ranunculus sp. and Phragmites australis contain more C22 n-alkanoic 

acids; Eucalyptus sp. contains more C24 n-alkanoic acids while Typha sp. contains more 

C26 n-alkanoic acids. Unlike the n-alkanes, the n-alkanoic acids from the surface sediment 

samples tend to cluster close to the higher plants (Phragmites australis, Eucalyptus sp. and 

Typha sp., in particular the latter two), indicating more n-alkanoic acid input to the 

sediments from these plants than from Chara australis and Ranunculus sp.. 

 

 

Figure 5.23. The relative abundance of the three most abundant n-alkanoic acids 

(nC22, nC24 and nC26) in plants and surface sediments. (● surface sediments from the 

northern Macquarie Marshes; ▲ surface sediments from the southern Macquarie 

Marshes; × plant samples including 1. Chara australis, 2. Ranunculus sp., 3. 

Phragmites australis, 4. Eucalyptus sp., 5. Typha sp.)   
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5.4.4 Sterols 

The total concentrations of sterols (C27 to C29) (Table 5.12, Page 299) range from 2.57 µg 

g-1 in Louden Lagoon (dry) in the northern MM (LOLA-S3) to 20.2 µg g-1 in a swamp 

bank in the northern MM (LSW-S2). The concentrations are comparable to those reported 

in shallow marine sediments (4 - 183 µg g-1) (O'Leary et al., 1999) and lower than those in 

river sediments (28.9 - 63.9 µg g-1) (Volkman et al., 2008) and creek sediments (22.8 - 148 

µg g-1) (O'Leary et al., 1999). In general, samples collected from a watercourse or nearby 

(i.e., samples from LSW, MC and CT sites) contain more sterols than those collected from 

sites where the vegetation cover was declining (samples from LOLA, MRI and SL sites). 

The lowest concentration occurs at the site (LOLA) that was dry at the time of collection. 

When the absolute concentration was calculated according to the relative contribution of 

OM in each sample, the ranking of total sterol abundance between the sampling sites was 

different. The higher concentration (10.1 µg g-1 TOC) was found in a bat colony site 

(LSW-S1) where there was fresh bat faecal input to the surface sediments. This was 

followed by samples from or nearby watercourses, and then samples from dry sites. 

Samples that had similar absolute sterol concentrations differed in their relative 

concentrations of OM due to the variation of organic content in the sediments. An 

example is LOLA-S2 (11.8 µg g-1, 2.99 µg g-1 TOC) and CT-S1 (12.1 µg g-1, 6.75 µg g-1 

TOC). These two samples were collected from sites with different vegetation cover – 

LOLA-S2 was collected from dead reed beds (Phragmites australis) while CT-S1 was 

collected from a drier place where the reed beds had been replaced by more drought-

tolerant species. As recorded in the sediments, the contributions of total OM and sterols to 

the sediments varied widely between those species.  
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        Because many of the sterol biomarkers are not unique to just one species, examining 

the entire sterol profile may provide some information to distinguish the contribution of 

individual sources.  Ratios calculated by the absolute amount of one particular compound 

or compound group may also assist in source identification. The most abundant sterols 

found in the surface sediments, identified by GC-MS (Figure 5.24, Page 300), were 

cholesterol, cholestanol, 24-methylcholest-5-en-3β-ol, campesterol, 24-methyl-5α-

cholestanol, stigmasterol, stigmastanol, sitosterol, and sitostanol, in decreasing abundance 

order of C29, C28 and C27 sterols.  Sitosterol was the most abundant compound. None of 

the C30-sterols, which are common in marine sediments (e.g. Fernandes et al., 1999; Duan  

2000), was found in a recognisable amount. As shown in Figure 5.25 (Page 301), for most 

samples, the C27, C28, C29 sterols constituted about 15 %, 25 % and 60 % of the total 

sterols. A few exceptions include LSW-S1 and MC-C6 which contained more C27 sterols 

while samples from other sites contained more C28 sterols. Compared to the modern plant 

samples (Section 5.1.3), there were more sterols detected in surface sediments. Apart from 

the most common plants grown in/near where the sediments were collected, there were 

probably other sources of sterols. As the sterols are similar to those found in river 

sediments (Volkman et al., 2008), it is likely that higher plants and microalgae both 

contribute to the OM in the sediments (Volkman, 2003; Volkman et al., 2007; 2008).  
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Table 5.12  

Sterol concentrations of the surface sediments. 

 

coprostanol (µg/g DW) 0.06 0.03 0.14 0.21 0.04 0.05 0.23 0.30 0.10 0.24 0.05 0.02

epicholestanol (µg/g DW) 0.02 0.01 0.07 0.11 0.03 0.05 0.05 0.01 0.03 0.07 0.02 0.01

epicoprostanol (µg/g DW) 0.01 0.01 0.08 0.09 0.02 0.03 0.06 0.05 0.02 0.06 0.01 0.02

cholesta-5,22E-dien-3β-ol (µg/g DW) 0.06 0.02 0.02 0.02 0.00 0.14 0.09 0.03 0.04 0.06 0.04 0.01

cholesterol (µg/g DW) 0.65 0.33 0.43 0.48 0.12 0.60 1.81 0.63 0.42 1.37 0.36 0.17

5α-cholestan-3β-ol (µg/g DW) 0.34 0.25 0.83 1.03 0.16 0.52 1.32 1.95 0.71 1.14 0.17 0.17

24-methylcholesta-5,22E-dien-3β-ol (µg/g DW) 0.49 0.34 0.29 0.40 0.09 0.35 0.70 0.57 0.37 1.14 0.37 0.10

24-methyl-5α-cholesta-22E-en-3β-ol (µg/g DW) 0.20 0.08 0.26 0.33 0.10 0.38 0.16 0.03 0.14 0.28 0.06 0.04

ergosterol (µg/g DW) 0.22 0.27 0.05 0.14 0.09 0.31 0.22 2.30 0.28 0.20 0.16 0.41

24-methylcholesta-5,24(28)-dien-3β-ol (µg/g DW) 0.22 0.15 0.76 0.71 0.11 0.69 0.39 0.74 0.29 0.98 0.34 0.21

campesterol (µg/g DW) 0.69 0.56 1.07 1.33 0.37 1.83 1.38 1.38 0.97 1.90 2.56 0.71

24-methyl-5α-cholestanol (µg/g DW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

stigmasterol (µg/g DW) 0.17 0.14 0.63 0.84 0.14 0.78 0.50 0.49 0.26 0.90 0.40 0.25

stigmastanol (µg/g DW) 0.02 0.00 0.00 0.15 0.02 0.00 0.04 0.12 0.02 0.04 0.08 0.00

β-sitosterol (µg/g DW) 4.46 3.40 3.16 3.53 0.85 3.79 7.81 10.1 5.44 4.25 6.52 1.56

sitostanol (µg/g DW) 0.65 0.51 1.92 2.37 0.42 1.49 1.52 1.52 0.96 1.96 1.02 0.60

Ʃ sterols (C27-29 µg/g DW) 8.26 6.09 9.71 11.8 2.57 11.0 16.3 20.2 10.0 14.6 12.1 4.29

Ʃ sterols (C27-29 µg/g TOC) 6.08 3.05 4.70 2.99 1.14 2.82 10.1 2.37 1.94 2.72 6.75 1.50

SL-C1MRI-S1 MRI-S2 LOLA-S1 LOLA-S2 LOLA-S3 2LOLA-S1 LSW-S1 LSW-S2 LSW-S3 MC-C6 CT-S1
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Figure 5.24. GC-MS chromatograph of two surface-sediment samples from the 

northern and southern MM.  
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Figure 5.25. Relative-abundance sterol profiles (C27 to C29) of the surface sediments 

in the MM. 

 

          Table 5.13 summarises the most abundant sterols (used as biomarker-sterols, 

relative abundance > 1 %) found among microorganisms, higher plants, animals and 

human faeces, indicated by ‗*‘. The green areas are sterols found in surface sediment 

samples in this study. Potential sources of sterols in surface sediment samples can be 

interpreted by matching the data with biomarkers from known sources. As indicated in the 

table (the green shaded areas), there is a great variety of sterol sources including 

Bacillariophyceae (diatoms), Chlorophyceae (green algae, e.g. filamentous), 

Charophyceae (charophytes), Cyanobacteria (blue-green algae), higher plants (e.g. 

Phragmites australis, Eucalyptus spp.) and likely birds (e.g. duck, swan, rosella, magpie). 

However, the contributions of each individual source requires further investigation. 
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Table 5.13  

Major sterols in various microorganisms, higher plants and animal faeces. 

 
√ Composition>1 %  

Green areas indicate compounds found in surface sediments of the MM in this study. Accordingly, the green shaded areas indicate possible sources for the sterols in the surface sediments. 

Sterol nomenclature: coprostanol (5β-C27Δ0), ergosterol (C27Δ5,22), cholesterol (C27Δ5), cholestanol (5α-C27Δ0), campestanol (C28Δ0), campesterol (C28Δ5),  24-methylcholesta-5,22E-dien-3β-ol (C28Δ5,22),  

24-methyl-5α-cholesta-22E-en-3β-ol (C28Δ22), 24-methylcholesta-5,7,22-trien-3β-ol (C28Δ5,7,22), 24-methylcholesta-5,24(28)-dien-3β-ol (C28Δ5,24(28)), 24-methylcholesta-5,22-dien-3β-ol (C28Δ7,22),  

24-methylcholest-7-en-3β-ol (C28Δ7), 24-methylcholesta-5,24(28)-dien-3β-ol (C28Δ7,24(28)), sitosterol (C29Δ5), stigmasterol (C29Δ5,22), 5β-stigmasterol (5β-C29Δ22), stigmastanol (C29Δ22),  

sitostanol (5α-C29Δ0), 24-ethylcoprostanol (5β-C29Δ0), 24-ethylcholesta-5,7-dien-3β -ol (C29Δ5,7), isofucosterol (C29Δ5,24(28)),  24-ethylcholest-7-en-3β-ol (C29Δ7) 

References: Leeming et al., 1996; Volkman, 2003; Volkman, 2008;  Sonibare, 2009  

5β-C27Δ0
C27Δ5,22

C27Δ5
5α-C27Δ0

C28Δ0
C28Δ5

C28Δ5,22
C28Δ22

C28Δ5,7,22
C28Δ5,24(28)

C28Δ7,22
C28Δ7

C28Δ7,24(28)
C29Δ5

C29Δ5,22
5β-C29Δ22

C29Δ22
5α-C29Δ0

5β-C29Δ0
C29Δ5,7

C29Δ5,24(28)
C29Δ7

Microorganism

bacillariophyceae √ √ √ √ √
chlorophyceae √ √ √ √ √
cyanobacteria √ √ √ √
yeasts & fungi √ √ √
euglenophyceae √ √ √ √ √
Methylotrophic bacteria

Plants √ √
seagrass √ √ √ √ √
angiosperms √ √
Animals faeces

duck √ √ √ √ √ √ √ √ √ √ √
magpie √ √ √ √ √ √ √ √
rosella √ √ √ √ √ √ √
swan √ √ √ √ √
cow √ √ √ √ √ √ √ √ √ √ √
horse √ √ √ √ √ √ √ √ √ √ √ √
sheep √ √ √ √ √ √ √ √ √ √ √ √
possum √ √ √ √ √ √ √ √ √ √ √
pig √ √ √ √ √ √ √ √
human √ √ √ √ √ √ √ √ √
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         Coprostanol, a compound commonly biosynthesised by mammals has long been 

established as faecal biomarker (e.g. Leeming et al., 1996; Bull et al., 2003; Tindale et al., 

2009), was found in very low amounts in almost all the surface sediment samples with 

exception of the sample collected near the bat colony site (concentration of coprostanol in 

LSW-S1 is 0.23 µg g-1 (DW) and 14.0 µg g-1 (TOC)). Although the Nature Reserve is 

surrounded by livestock grazing areas, coprostanol is unlikely to originate from faecal 

pollution, which can be confirmed by examining the relative abundance of other 

compounds or compounds groups. In this study, the ratio of 

coprostanol/(coprostanol+cholestanol) is 0.08 to 0.22, which is much lower than the 

reported value (0.7) of faecal matter from human or higher animals (Grimalt et al., 1990).  

       The relative abundance of coprostanol, cholestanol and cholesterol are presented in a 

triplot (Figure 5.26), showing that sterols from the surface sediment samples plot well 

away from the faecal values of herbivores (horse, cow, sheep), mammals (possum, pig) 

and humans, and are closer to birds (magpie, duck, rosella) in their composition of 

coprostanol but differ in cholesterol and cholestanol. Bird guano may have some 

contribution to the total coprostanol, and this contribution could be greater when large 

waterbird colony events occur in the marshes. However, this needs to be further confirmed 

by other proxies as coprostanol is not the major sterol in bird faeces and is either absent or 

present at very low levels (Leeming et al., 1996).   

     Another possibility is that coprostanol may be formed in anaerobic sediment from 

precursors (such as sitosterol) in these wetland environments as indicated by the ratio of 

coprostanol/total sterols (less than 0.02) (Leeming et al., 1996). It seems very unlikely that 

the potential runoff of faecal pollution from anthropogenic sources (e.g. humans or 

grazing animals) has had a significant impact on these natural reserve marshes.  
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Figure 5.26. Relative abundance of coprostanol, cholestanol and cholesterol from 

various sources.  

 

        Despite the initial source contributions, the profiles of compounds may be altered in 

some environments after deposition and therefore can be used also as indicator of the post-

depositional environment. Figure 5.26 shows the surface sediment samples are clustered in 

two groups – one with more cholestanol than cholesterol representing more anaerobic 

conditions with an abundance of water; the other with more cholesterol than cholestanol 

representing drier sediments. 
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5.4.5 Other organic markers in surface sediments 

5.4.5.1 α-phellandrene 

α-phellandrene, a biomarker from Eucalyptus sp. (Jacobs and Pickard, 1981), was detected 

in some of the surface sediments by GC-MS and the mass spectrum is shown in Figure 

5.27. The presence of this compound is not a contaminant because it is not present in any 

of the blank samples. As is also shown in Figure 5.27, the peak of α-phellandrene was 

more significant in the surface sediments at the sites where Eucalyptus sp. was abundant. 

For example, the surface-sediment sample from a floodplain site (CT-S1) shows a 

distinctive α-phellandrene peak, in the GC-MS chromatogram, whereas there is no 

detectable α-phellandrene in the reed bed (Phragmites australis) site (2LOLA-S1). 

Therefore, we attempted to seek this particular compound in the core profiles and to use it 

as a specific biomarker for Eucalyptus sp. (see the following Section 5.5). 
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Figure 5.27. GC-MS total ion-current chromatogram of two surface-sediment samples and the mass spectrum of α-phellandrene (inset). 

CT-S1-01

Time
26.45 26.50 26.55 26.60 26.65 26.70 26.75 26.80 26.85 26.90 26.95 27.00 27.05 27.10 27.15 27.20 27.25 27.30 27.35 27.40 27.45 27.50 27.55 27.60

%

0

100

26.45 26.50 26.55 26.60 26.65 26.70 26.75 26.80 26.85 26.90 26.95 27.00 27.05 27.10 27.15 27.20 27.25 27.30 27.35 27.40 27.45 27.50 27.55 27.60

%

0

100

10 SEP 07 06 Magnet EI+ 
TIC

7.87e4

26.90

26.55

26.73

27.56

27.45
27.17

10 SEP 07 04 Magnet EI+ 
TIC

1.34e6

26.56

Reed bed site in northern MM (2LOLA-S1)

Floodplain site in southern MM (CT-S1)

Octadecane

CT-S1-01

m/z
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

%

0

100

10 SEP 07 06 958 (26.903) Magnet EI+ 
1.56e493

92

91
7757 6967

65
71

81 85 89

136

94
10597

134
111 119 125

178137
176152151 153 165 179 246207191 205 219

211
239221 234 248

α-phellandrene C10H16 m/z 136

Octadecane



 

 

307 

 

5.4.5.2 Polycyclic aromatic hydrocarbon (PAHs) 

Among the 18 PAHs of interest (Figure 5.3, Page 242), perylene is the only one present in 

some of the surface sediments. It occurs in samples from the LSW site (LSW-S1 and 

LSW-S2), MRI site (MRI-S1), 2LOLA site (2LOLA-S1) and the SL site (SL-C1), and is 

more abundant in the northern MM than the southern MM. It is more likely of  terrestrial 

origin rather than from fire/combustion origin. The reasons are: 1) perylene is the only 

compound present, and in very small amounts, while the other pyrogenic PAHs (e.g. 

benzofluoranthenes, indeno[1,2,3,cd]pyrene and benzo[ghi]perylene) are absent; 2) the 

northern marshes has more vegetation cover than the southern marshes and thus the input 

of terrestrial plants to the organic markers might be greater.  

         The PAHs formed during combustion of wild fires will remain in the gas phase at 

temperatures above 150 °C but rapidly condense onto fly-ash particles at lower 

temperatures (Harvey, 1991; Wilcke, 2000). Such ash deposited on the soil surface 

influences the soil chemistry (Kim et al., 2003). This ash can be easily removed by aeolian 

or fluvial processes unless incorporated in an anoxic environment (e.g. in the sediments of 

a lake) (O‘Dwyer and Taylor, 2009, and references therein). Kim et al. (2003) found that 

five months after a forest fire occured, the concentrations of PAHs in burnt soils were 

similar to those in unburnt soils. In the semi-arid Macquarie Marshes, vegetation fires 

likely occurred during drier years when there was little water (Leblanc et al., 2012). 

Rainfall and/or wind erosion after the fire can be expected to remove the ashes with 

pyrogenic PAHs and erase their record in the sediments. This also indicates that the 

perylene found in some of the surface sediment samples is not from combustion but from 

terrestrial plants. Accordingly the use of pyrogenic PAHs as indicators for palaeofires is 

not ideal for studying sediments from semi-arid areas like the Macquarie Marshes.  
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5.4.5.3 Organochlorine pesticides (OCPs) 

The surface sediment samples analysed for OCPs are ―modern samples‖ that are less than 

50 years old and from a time when cotton farming was established and pesticides and 

insecticides (e.g. DDT, DDE and DDD) extensively used in these areas (Cotton Australia, 

2008). It is more likely that OCPs will be present in detectable amounts in these surface 

sediment samples rather than those from deeper core sections.  

       None of the target compounds was detected (less than 0.01 μg/g) in these surface 

sediments. Table 5.14 (Page 310) lists the concentrations of some of the commonly found 

OCPs in various locations, most of which are sediments from fluvial systems or wetland 

systems (Iwata et al., 1994; Burt and Ebell, 1995; Iwata et al., 1995; Mortimer, 1998; 

Doong et al., 2002; Marburger et al., 2002; Negoita et al., 2003; Imo et al., 2007; Minh et 

al., 2007; Hong et al., 2008; Liu et al., 2008; Leadprathom et al., 2009; Xiao et al., 2009; 

Zheng et al., 2009; Kim et al., 2010). The concentrations of OCPs in surface sediments 

from the Macquarie Marshes are within the low range of other background sites.  

          The MM samples were handled under strictly controlled laboratory procedures to 

ensure no contamination and high precision, and recoveries of the surrogates were high (> 

80 %). Thus there are two possible interpretations: either the OCPs existed only at a very 

low level that could not be detected using standard methods (detection limit 0.01 μg/g); or 

they are not present in these surface sediments due to their loss by volatilisation, 

degradation and/or transportation after their deposition. Furthermore, OCPs have been 

banned for two or three decades (including in Australia), so that any concentration in the 

surface sediments would have been reduced by the processes mentioned above. Connell et 

al. (2002) found a decline of OCPs in Australian marine environments after their banning 
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in the period from the 1970s to 1980s, and observed a relatively low concentration (1.7 

μg/g) in urban area sediments collected in the early 1990s, with a half-life of 1.1-3 years 

for various compounds. Assuming the concentration of DDT in the Macquarie Marshes 

sediment was 1.7 μg/g in 1990, when the sediment was collected in 2008, it would have 

degraded to 0.33 ng/g with a half-life of 2 years. Moreover, in the Macquarie Marshes 

wetlands system, the environmental setting is relatively unstable with alternating dry and 

wet periods. During dry periods, the surface sediment samples may be sub-aerially 

exposed, subjected to more intense sunlight and higher temperature, which would 

accelerate the degradation of OCPs.  

 

  



 

310 

 

Table 5.14  

Concentration of OCPs in surface soils/sediments from various locations (unit: ng/g). 

ΣDDTs ΣHCHs Dieldrin HEP Aldrin HCB

Macquarie Marshes, NSW Australia Spring 2007/2008 surface soil/mud <10 <10 <10 <10 <10 <10 this study

Southern Metropolitan Coastal Waters off 

Perth, WA Australia
1991 sediment <1-2.2 Burt and Ebell 1995

Swan River, WA Australia 1990 sediment 3.4 Iwata et al. 1994

Sydney, NSW Australia 1990 sediment 6.3-1700 Iwata et al. 1994

Derwent River, Tasmania Australia 1990 sediment 1-58 Iwata et al. 1994

Brisbane River and Urban Creeks, Australia 1996 sediment 0.2-49 Mortimer 1998

South to middle parts of Lake Baikal, Russia Summer 1992 sediment 0.014-2.7 0.019-0.12 0.005-0.16 Iwata 1995

Wetland restoration areas in central Florida, 

USA 
1996 flooded soil 5463-8883 144-626 Marburger 2002

Wolong Natural Reserve, China Spring & Autumn 2005 sediment
0.64 in Spring,     

0.37 in Autumn

0.64 in Spring,     

0.40 in Autumn

0.083 in Spring, 

0.13in Autumn
Zheng 2009

Mengjin wetland, China sediment 0-64.58 Xiao 2009

South coast of the Yangtze estuary, China Autumn 2002 sediment 3.4-25.7 6.2-14.6 Liu 2008

Coastal wetland with high tidal ranges, Korea Spring-Summer 1998
sediment (intertidal 

and subtidal)

0.0061-7.9 intertidal, 

0.51-2 subtidal

0.11-0.84 intertidal, 

0.68-1.8 subtidal

ND-0.22 intertidal, 

0.014-0.023 subtidal

ND-3.1 intertidal, 

0.24-10 subtidal
Kim 2010

Okinawa rivers of Okinawa wetland, Japan Autumn 2005 to Summer 2006 surface sediment 12.3 2.6 ND 1.4 Imo 2007

Da-han River and Erh-jen River,Taiwan Autumn 1997 to Spring 1998 sediment 0.21-8.81 0.57-14.1 0.12-5.8 0.05-0.15 Doong 2002

Chanthaburi River, eastern part of Thailand Spring & Autumn 2006
surface sediment       

(0-5 cm)
0.1-28.2 0.5-49.5 0.1-8.3 0.4-13.0 0.1-8.3 Leadprathom 2009

Mekong River delta, South Vietnam Autumn 2003, Summer 2004 sediment <0.01-110 <0.02-1.3 <0.006-0.08 Minh 2007

Northeast coast of Vietnam Spring 2003/2004 surface sediment 0.31-274 ND-0.85 ND-1.05 ND-0.03 Hong 2008

Eastern coast of Antarctica Winter 1998 surface soil 0.11-1.22 0.86-4.69 Negoita 2003

* ΣDDTs - o,p'-DDD + o,p'-DDE + o,p'-DDT+ p,p'-DDE+ p,p'-DDT
  ΣHCHs - (α- + β- + γ- + δ-) isomers
  HEP - heptachlor

  HEP-ox - heptachlorepoxide 

  HCB - hexachlorobenzene

** ND - Not detectable

Sampling Site Sampling Time Sample Type
Concentration (ng/g dry weight)

Reference
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5.4.6 Summary  

The concentration and composition of n-alkanes, n-alkanols, n-alkanoic acids and sterols 

in surface sediments of the MM vary depending on the sampling site due to the various 

organic input and depositional environments. The organic compounds found in the 

modern plants are recognised in the surface sediments and can be used as proxies to reveal 

the source of OM. The analysis of concentration, composition and relevant proxies of n-

alkanes, n-alkanols, n-alkanoic acids and sterols of the surface sediments all point to a 

mixed input of terrestrial plants (i.e., Eucalyptus spp.), aquatic plants (i.e. Ranunculus sp. 

and Typha sp.) and algae (i.e. Chara australis) to the OM; and comparatively, the higher 

plants have a greater input to the total OM. 

      Among all the compounds analysed, the n-alkane group seemed to be the most reliable 

and offered more information for discriminating various organic sources as well as the 

depositional environment. Their application can be summarised as: the CPI and OEP 

values allow the distinction between higher plants and algae; the ACL values may not 

vary much between samples but the small shift to a higher value is likely attributed to 

more terrestrial higher-plant input; the Paq and Pwax are mainly indicative of the 

proportions of terrestrial, emergent and submerging plants; the C17/C31 values indicate the 

abundance of algae and the C27/C31 values indicate the relative abundance of 

trees/emergent plants and C3 wetland grasses. 

       Coprostanol, a possible biomarker for bird guano was found in the surface sediments 

but its application is not promising, because it occurs in very low amounts and cannot be 

tracked uniquely to a source.  
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        α-phellandrene, a biomarker from Eucalyptus spp., was detected in some of the 

surface sediments and will be applied to trace the vegetation change in the sediment cores. 

         Pyrogenic organic markers including PAHs were not found in detectable levels in 

the surface sediments and are not strong indicators of palaeofire. Perylene was the only 

one of the 18 PAHs analysed that is present in some of the surface sediments but it is 

considered to be derived from unburnt terrestrial higher plants. 

          OCPs, compounds that might indicate cotton-farming herbicide and pesticide 

residues, were not found in detectable levels in the surface sediments.  

          The analysis of organic markers in surface sediments showed that in the semi-arid 

Macquarie Marshes wetland system, the conventional organic marker n-alkanes worked 

well for studying the organic sources and their depositional environment. Accordingly, 

these are given prominence in the study of the MM sediment cores. 
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5.5 Analysis of sediment cores from the northern Marshes 

Based on the results obtained from the study of surface sediments, the analysis of organic 

markers in the sediment cores will focus mainly on the northern marshes which has better 

vegetation cover and the sediments are more organic-rich.  

        The n-alkane data for core MMB3 was from a preliminary study and samples were 

analysed by Dr Jianfang Hu in the State Key Laboratory of Organic Geochemistry, 

Guangzhou Institute of Geochemistry, Chinese Academy of Science. The proxies of CPI, 

(C27+C29)/C31 and OEP (Figure 5.28) show a gradual change of vegetation in the 

watershed since  the 1940s AD (when the construction of the Burrendong Dam occurred) 

– from algae and aquatic plant dominant to emergent and terrestrial plant dominant, 

suggesting a loss of wetland areas (Yu et al., 2011). 

 

      The other cores analysed in this thesis are LSW, LOLA and 2LOLA. Their n-alkane 

contents and relevant proxies (CPI, OEP, ACL, Paq, Pwax, C17/C31 and C27/C31) that may 

reflect the various vegetation types will be analysed to trace vegetation change. α-

phellandrene, detected in some of the surface sediments as a specific biomarker for 

Eucalyptus spp., was also examined in the core profiles and its abundance was semi-

quantified by GC. 
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Figure 5.28. Bulk organic and n-alkane proxies for core MMB3. 
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5.5.1 Core LSW  

The LSW profiles of the total n-alkanes and some proxies (Figure 5.29) show that the dry 

weight of total n-alkane (C9-C33) content increases towards the younger part of the core. 

However, when calculated based on the TOC values these n-alkanes reach a maximum at 

a core depth of ~ 53 cm (~1880 AD). Because this site had been inundated for a relatively 

long time, the n-alkane proxies will better reveal the OM source input. The CPI values are 

mostly between 1 and 5, indicating a mixed source of higher plants and algae in this site 

for a relatively long time (~ 1000 years). The OEP values are greater than 2 throughout the 

core, indicating odd over even carbon-number predominance. The highest CPI and OEP 

values occur at a depth of 15 cm (~2001 AD). The ACL values remain relatively constant 

around 26.5 from 82 cm to 45 cm and are greater than 28.0 above 30 cm in the core 

probably associated with greater input of terrestrial higher plants. The Paq values generally 

increase from 82 cm to 77 cm, remain relatively stable, decrease sharply from 45 cm to 30 

cm and remain relatively constant above 30 cm in the core. The trend of Pwax values 

appears to change antithetically to the Paq values. The Paq and Pwax values suggest a 

change from a submerged plant dominant ecosystem to an environment dominated by 

emergent and terrestrial plants, a shift likely driven by a change from wetter to drier 

conditions. The C17/C31 and C27/C31 values fluctuate along the core. Generally, the C17/C31 

values are higher in the older part of the core (53cm to 83 cm) while the C27/C31 values are 

lower, indicating a larger input of aquatic and C3 wetland grasses, indicating relatively 

wetter conditions for the pre-European period. 
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Figure 5.29. The n-alkane proxies for core LSW. 
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          In general, the n-alkane proxies permit the distinction of two phases: 

1) Pre-European settlement: Before European arrival (~ 1880 AD), the climate was 

relatively wet and this site was inundated with deep water which favoured the growth of 

aquatic plants/algae. This is shown by constant CPI, OEP values, relatively low ACL, Pwax 

and C27/C31 values and high Paq and C17/C31 values. It also accords with the findings of the 

δ13C and C/N values discussed in Chapter 3. 

2) Post- European settlement: After European arrival (~ 1880 AD), there were more 

terrestrial higher plants (e.g. woodland vegetation like Eucalyptus spp.) growing in this 

site as indicated by shifts to higher ACL and Pwax values and lower Paq values. The climate 

was relatively warmer and the water was shallower than before. It is likely that the 

frequency of inundation and the amount of water became less regular in the past ~100 

years as recorded in the upper 45 cm of sediments. From 45 cm to 30 cm (~ 1915-1991 

AD), a sharp decrease of Paq, C17/C31 and C27/C31 values suggests a decrease of submerged 

(e.g. Chara australis) and emergent (e.g. Phragmites australis) plants; while the increase 

of Pwax values suggests the increase of drought-tolerant terrestrial higher plants (e.g. 

Eucalyptus spp.). Hogendyk (2007) described two dry phases in 1895-1946 AD and 1979 

AD onwards that caused the decline of wetland vegetation and favoured the growth of 

drought-tolerant terrestrial plants. Despite the wet phase of 1947-1978 AD, the 

construction of upstream dams in the 1950s to 1970s greatly reduced the inflow of water 

to the Marshes (Kingsford and Johnson, 1998; Kingsford, 2000; Herron et al., 2002). 

From 30 cm to 15 cm (~ 1991-2001 AD), the slight increase of the C17/C31 value is 

probably due to more aquatic plants resulting from three major floods, as recorded in 1990, 

1998 and 2000 AD (Hogendyk, 2007). However, the terrestrial higher plants remained 
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dominant as shown by high Pwax and C27/C31 values and low Paq values. From 15 cm 

towards the younger part of the core (2001-2008 AD), the climate recorded is drier and 

there were fewer floods. The vegetation cover at this site is still dominated by terrestrial 

higher plants as shown by constant ACL, Paq and Pwax values. The decrease of CPI, OEP, 

C17/C31 and C27/C31 values can probably be explained by accelerating degradation due to a 

lower water table during the dry years (Kvenvolden, 1970; Kuder and Kruge, 1998; Xie et 

al., 2004).  

       The compound α-phellandrene was not detected in the older part of the core (> 50 cm, 

i.e. older than ~ 1880 AD). Semi-quantification results (Figure 5.29, Page 316) showed 

this compound is present at this site since ~1880 AD, remained constant until 2000 AD 

and increasing in the most recent 10 years. The data reinforce the findings by n-alkane 

proxies discussed previously that terrestrial higher plants gradually replaced the wetland 

plants since ~ 1880s and were more dominant since the 1990s. 

    

5.5.2 Core LOLA 

Core LOLA profiles of the total n-alkanes and some proxies are shown in Figure 5.30 

(Page 320). Similarly to core LSW, the total n-alkanes (dry weight) tended to increase 

from 0.17 to 3.57 µg/g (dry weight) towards the younger part of the core, in particular 7-

fold from 18 cm to the surface. The total n-alkanes (TOC) also generally increased from 

0.55 to 6.01 µg/g (TOC) towards the younger part of the core but fluctuated significantly 

along the core – two major peaks were found at depths of 185 cm and between 125 cm to 

140 cm; followed by two small peaks at depths of 78 cm and 58 cm. The  older sediments 

(>2 ka) have more organic input compared to the younger sediments (<2 ka). The trends 

of the CPI and OEP values are similar. The CPI values remain stable (1.50) from 183 cm 
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to 148 cm (~28.4 ka to 27.5 ka), then fluctuate between 2.36 to 5.47 up to 18 cm (~0.23 ka) 

and sharply increase to 7.64 near the core top. The OEP values remain relatively stable 

(1.17-1.42) from 183 cm to 148 cm (~28.4 ka to 27.5 ka), then fluctuate between 1.99 and 

5.14 up to the top. The ACL values fluctuate between 25.8 to 29.1 along the core. The Paq 

and Pwax values show opposed trends in the core profile. From 204 cm to 140 cm (> 27 ka) 

and 66 cm to 50 cm (~ 0.95 ka to 0.74 ka), the increase of the Paq values and decrease of 

the Pwax values indicate more emergent, submerged and floating macrophytes to terrestrial 

plants. In contrast, from 140 cm to 66 cm (~27.5 ka to 0.95 ka) and 50 cm to the core top 

(~0.74 ka to present), the decrease of Paq values and increase of Pwax values indicates more 

terrestrial plants to emergent, submerged and floating macrophytes. The C17/C31 values 

fluctuate substantially along the core. Three high C17/C31 values occur at 139 cm (0.80, 

age unknown), 123 cm (0.80, age unknown) and 2 cm (0.58, modern sediment) while 

there are two low values (0.06) at 51 cm (~0.74 ka) and 28 cm (~0.40 ka). The C27/C31 

fluctuates from 0.52 to 1.66 along the core. 

        Previous taxonomic study (APPENDIX B), inorganic geochemical and bulk C, N 

contents (Chapter 3) show the large hiatus between the Late Pleistocene and Late 

Holocene (~27.5 ka at 149 cm depth and ~ 2.29 ka at 108 cm) is barren of biological 

remains. The n-alkane proxies provide more information on the variation of the organic 

inputs to the sediments and allow the reconstruction of palaeovegetation change for the 

past ~ 50 ka in core LOLA, as follows. 
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Figure 5.30. The n-alkane proxies for core LOLA. 
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         From 208 cm to 185 cm (~50.5 to 28.4 ka), the Paq and Pwax values indicate mixed 

vegetation types of submerged/emerging plants. Considering the modern marshes had not 

formed (Yonge and Hesse, 2009), it is likely this site used to be a deep-water lake 

inundated since ~ 50 ka. The active fluvial in MBD in this time span (Bowler, 1978) 

contributed to the high water level. However, the vegetation species may be different to 

modern ones as shown in the ACL values differentiating to the modern wetland plants and 

surface sediments.  

          From 185 cm to 146 cm (~28.5 to 27.5 ka), it is likely that a relatively warm and 

wet period was dominant as the Paq, C17/C31 and C27/C31 values increased while the ACL 

and Pwax values decreased. The sediments are interpreted as being from palaeochannels 

(APPENDIX B), in agreement with the distinguishable fluvial history of the Macquarie 

catchment from 27-12 ka found by Watkins and Meakin (1996) and Young et al. (2002). 

This interpretation is also in agreement with studies from other Australian rivers which 

showed that more water was available during pre-Last Glacial Maximum time (~ 23 ka) 

(Magee et al., 1995). The vegetation types were likely mainly aquatic plants/algae. The 

shrub woodland vegetation type, modelled as predominant in the Last Glacial Maximum 

(LGM) for south-eastern Australia (Ray and Adams, 2001), may not have been present in 

this site.  

          Most of the proxies show distinctive peaks in the section from 146 cm to 108 cm 

where a hiatus in the sedimentation record occurs (from ~ 27.5 ka to 2.29 ka): the n-alkane 

contents (TOC) were at their highest; the ACL shifted to lower values (around 26.5) 

probably due to the input of algae/aquatic plants; the Paq value reached very high values 

while the Pwax value was at its lowest; the C17/C31 value reached its peaks with 

contributions from algae/aquatic plants; the C27/C31 value also reached its lowest, likely 
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attributable to the input of C3 wetland grasses (Seki et al., 2010). The wetland vegetation 

was probably different from the modern environment as the bulk δ13C values (discussed in 

Chapter 3) were more negative and ACL values (around 26.5) were lower than the modern 

wetland plants and surface sediments. Flooding and blooming of aquatic plants/algae were 

probably at their highest of the whole record (dated back to 50.5 ka) as none of the proxies 

show similar values/trends in other parts of the core. The lithology (Chapter 3, Section 

3.2.1) of this core also shows a change of sediment colour at ~ 123 cm. It is suspected the 

section between 140 to 120 cm represents the sediments deposited when the Macquarie 

Marshes were formed (8 to 6 ka) (Yonge and Hesse, 2009), and which were deposited on 

the palaeosediments. However this interpretation needs to be confirmed by more dating 

results and other proxies. 

         From 123 cm to 98 cm (unknown age to ~1.97 ka), it is estimated that the climate 

became relatively drier and there was less water available as indicated by the fluctuations 

of the n-alkane proxies. It is likely that the wetland plants/algae were largely replaced by 

drought-tolerant plants, which is also demonstrated by the shift of the bulk δ13C value to 

the range of C4 plants (discussed in Chapter 3). Desiccation is demonstrated by sub-aerial 

exposure via carbonate nodules, oxide mottling and organic debris. There is no similar 

record of dry climate in the MDB or southeastern rivers around 2 ka (e.g. Bowler, 1978; 

Tomkins and Hesse, 2004; Yonge and Hesse, 2009; Pietsch et al., 2013); however, a high 

salinity caused by the drought was recorded in the lake level work in western Victoria at 

2.3 ka (Wilkins et al., 2013).  

        From 98 cm to 78 cm (~1.97 to 1.33 ka), a minor return to a relatively wet phase is 

shown by the increase of the n-alkane content (TOC), Pwax and C17/C31 values as well as a 

decrease of OEP, ACL, Paq and C27/C31 values. This wet phase is also mirrored in the lake 
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level work in western Victoria (Wilkins et al., 2013). However, the wetland was not as 

prosperous as at 6-8 ka, as the ACL, Paq and Pwax values are different from the wetland 

formation period.  

         From 78 cm to 17 cm (~1.33 to 0.23 ka), possible oscillations of dry and wet phases 

is recorded in the sediments by the fluctuation of the n-alkane proxies. It is likely that this 

site remained inundated during this period, as the Paq values still indicate the dominance of 

aquatic plants. Because this lagoon functioned as lateral pondage receiving water only 

after other areas within the marshes had been inundated, the water table would fluctuate 

responding to the climate and affect the growth of different aquatic plant/algae species. 

Despite the oscillations of dry-wet phases, the vegetation types seemed to remain 

relatively constant as the CPI, OEP, ACL, Paq and Pwax values were relatively constant. 

The relative abundance of various plants affected by the water table in this lagoon 

probably caused the variations of the n-alkane proxies. The fluctuation of the C17/C31 

values, in particularly two extremely low values (~ 0) observed at depths of 51 cm (~0.74 

ka) and 28 cm (~0.40 ka), likely indicated the change of relative abundance of aquatic 

plants and terrestrial plants due to the sharp lowering of the water table during the dry 

period. The C27/C31 values tend to increase upcore in this section, indicating the 

continuing decline of C3 wetland grasses in this time interval. 

          From 17 cm to the core top (~0.23 ka to present), the increase of CPI, ACL and Pwax 

values and decrease of the Paq values indicate more input of terrestrial higher plants to the 

OM during the last 100 years. As the climate was generally dry and warm in the past 100 

years (Hogendyk, 2007), the increase of the C17/C31 values was probably associated with 

the decline of C3 wetland grass. The reason why the C27/C31 values decreased in this time 

period still needs to be investigated.            
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5.5.3 Core 2LOLA 

Compared to the neighbouring core LOLA, the organic profile of core 2LOLA is less 

variable (Figure 5.31). The total n-alkanes (dry weight) increase from 0.29 µg/g at 143 cm 

to 1.79 µg/g at 25 cm up core, with higher values to 27.0 µg/g at the top. The total n-

alkane (TOC) profile is almost parallel, showing a relatively smaller range (0.41-3.76 µg/g 

TOC). Except for the two peaks at 100 cm and 15 cm, the CPI and OEP values are 

relatively stable. The ACL values decrease from 27.7 at 143 cm to 26.5 at 123 cm, 

fluctuate between 26.5 to 27.3 from 123 cm to 52 cm then increase to 28.7-29.6 in the 

upper 40 cm. The Paq and Pwax values show the opposite trend in the core profile, generally 

indicating mixed non-emergent and emergent plants before 50-60 years ago and more 

terrestrial plants more recently. The C17/C31 values show a peak of 0.80 at 123 cm and 

fluctuate between 0.02 and 0.34 in the other parts of the core. The C27/C31 values range 

from 0.37 to 4.99 and show more fluctuation than the C17/C31 values. 
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Figure 5.31. The n-alkane proxies for core 2LOLA. 
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         Generally, the n-alkane profiles of core 2LOLA can be divided into two sections: 

from 143 cm to 52 cm represents a relatively wet phase when this site remained inundated; 

the upper 52 cm a relatively dry phase in the past 50-60 years with the invasion of higher 

terrestrial plants as indicated by an increase of the CPI, OEP, ACL, Pwax and C27/C31 

values;.  

          The profiles of the CPI, OEP, ACL, Paq and Pwax proxies in core 2LOLA are similar 

to the upper 78 cm of core LOLA and the ages are comparable. The 143 cm to 90 cm 

section (~1.19 to 0.93 ka) in core 2LOLA resembles the relative wet phase in 80 cm to 60 

cm section in core LOLA (~1.33 to 0.83 ka). From the hiatus section 90 cm to 65 cm 

(~0.93 to 0.16 ka), most of the n-alkane proxies are relatively constant indicating that this 

site has had a relatively constant vegetation mix. The sediments of core LOLA in this time 

period may provide a high-resolution record of the dry/wet phases. It is likely that there 

were significantly hydrological changes that caused the fluctuation of floods in the main 

water channel and of water tables of the lagoons in the margin depression areas of the 

marshes. However, these naturally occurring climate changes did not cause a severe 

decline of the wetland ecosystem as recorded in the sediments where the plant species 

remained relatively constant. Compared to core LOLA, core 2LOLA records more 

information for the past ~160 years in the upper 65 cm of its sediments. From 65 cm to 52 

cm (~ 1840 AD to unknown year), most of the proxies remained relatively constant, 

indicating similar vegetation cover as those since ~ 1 ka. From 52 cm to 41 cm (unknown 

year - ~1960 AD), a change of wetland vegetation to more terrestrial plants is indicated by 

the large shift in n-alkane proxies. This is also demonstrated in core LSW. From 42 cm to 

14 cm (1950s - 1960s), there was rapid sediment accumulation and an increase of the CPI, 

OEP and C27/C31 values. These are indicative of a reduction in wetland plants which were 
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replaced by drought-tolerant terrestrial plants. For the upper 14 cm of sediments (~1950 

AD onwards), the n-alkane proxies show various changes. The CPI, OEP and C27/C31 

values decrease sharply and the C17/C31 values slightly increase, likely indicating a relative 

wetter environment. However the increase of ACL and Pwax values and decrease of Paq 

values attributable to a larger input of terrestrial higher plants may be explained by the 

presence trees around the lagoon.   

         In the 2LOLA profiles (Figure 5.31, Page 325), α-phellandrene was completely 

absent below a core depth of ~ 40cm. This compound remained relatively constant from ~ 

40 to 10 cm (~ 1950 AD) and increased significantly near the surface. It indicates that 

Eucalyptus spp. may only have started growing near this site in the 1950s. It reinforces the 

findings from the n-alkane proxies that this site had remained inundated with wetland 

plants since ~ 1 ka. Although terrestrial higher plants (e.g. Eucalyptus spp.) have been 

gradually replacing the wetland plants since European arrival (~ 1880s AD) as observed in 

other part of the marshes (cores MMB3 and LSW), they did not appear to be adjacent to 

this lagoon until the 1950s.  

 

5.5.4 Carbon-13 compound-specific isotope analysis of the mid- to long-chain n-

alkanes in core MMB3 

Compound-specific isotope analysis generates isotopic data for individual compounds. 

Carbon compound-specific isotope analysis allows the separation of the isotopic 

signatures of various sources from the bulk OM, and thus discriminates C3 or C4 plant 

dominated ecosystems better and more precisely (Rieley et al., 1991b; Meyers, 1994; Lane 

et al., 2011). Identical δ13C values of bulk OM could be interpreted as indicating a 

constant source for the sedimentary carbon, whereas the compound-specific δ13C values 
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may indicate a difference in input over time (Rieley et al., 1991b). Analysing stable 

carbon-isotope of both bulk OM and specific organic compounds have been found to be 

particularly useful for reconstructing past terrestrial vegetation dynamics that may be 

responding to climate forcing (e.g. Meyers, 1994; Brincat et al., 2000; Lane et al., 2011). 

Moreover, stable carbon-isotopes can be used to detect increased drought stress in 

vegetation on a landscape scale if species assemblages remain fairly constant. The δ13C 

value of terrestrial plant tissue typically increases by as much as 3-4 ‰ during periods of 

drought stress and leads to a shift in the average δ13C value in OM in soils/sediments 

(Lane et al., 2011, and references therein). 

         In this thesis, the isotope composition of the mid-high chain n-alkane was analysed 

and discussed. As shown in Table 5.15, the δ13C values of individual n-alkanes in the C23-

33 range vary between -21.5 ‰ to -39.3 ‰, suggesting a mixed OM input, i.e. C3 and C4 

plants, and algae (Rieley et al., 1991b; da Silva et al., 2008). This finding is also 

corroborated by the bulk δ13C, C/N values and the organic molecular markers discussed 

previously. The isotope values of the dominant n-alkanes (C23-C33) were more depleted in 

13C than those for the TOC, with offsets from 1.4 ‰ to 6.5 ‰ against the δ13CTOC, 

probably due to biosynthetic fractionation (Hayes, 1993).  
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Table 5.15  

Carbon-isotope data (δ13
C in ‰ vs V-PDB) for the bulk TOC and the individual mid 

to long-chain n-alkanes as a function of depth in core MMB3. 

 

 

 

 

Depth (cm) CTOC C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 

2 -27.2 -33.3 -31.9 -32.1 -32.6 -32.0 -32.2 -31.6 -31.5 -31.7 -26.2

6 -28.0 -32.5 -32.0 -31.1 -35.0 -31.4 -30.9 -31.5 -31.7 -31.3 -28.0

13 -26.6 -31.3 -30.4 -30.3 -30.6 -29.7 -30.3 -29.0 -31.3 -28.0 -26.7 -25.1

19 -26.9 -31.3 -30.4 -29.8 -30.8 -29.0 -29.1 -28.6 -30.5 -27.5 -31.2 -24.6

26 -27.2 -32.1 -30.8 -30.1 -30.3 -29.8 -32.4 -30.3 -31.9 -30.5 -39.3 -26.1

34 -27.4 -32.3 -29.7 -29.7 -29.7 -30.8 -34.8 -33.5 -32.5 -35.5 -33.5

41 -27.0 -32.6 -29.9 -29.8 -29.6 -30.9 -32.8 -32.9 -35.1 -35.0 -37.6 -33.2

47 -27.0 -32.8 -30.9 -30.3 -29.9 -30.8 -31.4 -32.5 -33.0 -34.4 -33.7 -32.1

54 -26.9 -34.2 -31.3 -30.8 -30.3 -30.9 -33.0

61 -27.1 -35.8 -30.7 -30.0 -26.8 -30.5 -30.1 -32.9 -31.4 -34.1

67 -28.1 -35.1 -30.3 -31.0 -30.4 -31.9 -32.5 -33.0 -34.2

74 -26.4 -33.6 -31.7 -29.5 -29.8

81 -27.6 -30.7 -29.1 -29.4 -21.5 -30.5

87 -27.7 -34.3 -29.7 -27.8 -29.8 -30.7 -27.6 -31.0 -31.9

94 -27.0 -31.0 -29.5 -30.0 -27.8 -29.0 -29.2 -31.8

Average
a -27.2 -32.9 -30.5 -30.1 -29.6 -30.5 -31.1 -31.7 -32.1 -32.2 -33.7 -28.6

Δδ (‰)b 1.8 5.1 2.9 4.3 13.5 3.0 7.2 4.8 4.6 7.9 12.5 8.9
a
 Average=downcore averaged isotopic composition for individual n-alkanes.

b Δδ (‰)=maximum observed range of δ13
C values.
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Figure 5.32. Carbon-isotope data (δ13
C in ‰ vs V-PDB) for the bulk TOC and the individual mid to long-chain n-alkanes as a function of 

depth in core MMB3.
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          The bulk δ13C values (TOC) of core MMB3 display a range of 1.8 ‰, while those 

for each individual compound display ranges from 2.9 ‰ to 13.5 ‰ (Table 5.15, Page 329; 

Figure 5.32, Page 330). None of the individual compounds displays similar trends to each 

other, nor to the TOC δ13C values, suggesting that they derive from more than one organic 

source. In the lower part from 93 cm to 20 cm (752 to 36 years old), the trend of C27, C29 

and C31 n-alkanes generally resemble that of the TOC. As the abundance of C27, C29 and 

C31 n-alkanes reflects the input of vascular plants (Meyers, 2003), the resemblance of δ13C 

values to TOC indicates their near-constant contributions to OM in the sediments before 

the construction of Burrendong dam (~ 50 years ago). In the upper 12 cm (<33 years old), 

the trend of C24 and C26 n-alkanes resembles that of the TOC. 

         From 93 to 26 cm, the decrease of δ13C values (more 13C depleted) with the increase 

of carbon chain length was only observed among C27 to C31 terrestrial-origin n-alkanes 

(Table 5.15, Page 329), a feature also noted in lake sediments (e.g. Rieley et al., 1991b; 

Brincat et al., 2000). In the upper 26 cm, the trend was opposite. This change also 

occurred around ~ 50 years ago at the construction of Burrendong Dam, indicating the 

impact of the dam to the deposition of OM.   

          The study by da Silva et al. (2008) found that the difference in isotope composition 

of odd to even n-alkanes in lacustrine sediments revealed different origins and occurred 

only during low lake levels, while no great difference was observed during high lake level. 

Here the δ13C values of the long-chain n-alkanes (C25-33) for some of the core sections 

(between 61 cm to 2 cm depth) are plotted in Figure 5.33. From 93-26 cm downward in 

the core, the n-alkane isotope patterns are irregular. The reason for that still needs to be 

investigated. In the upper 26 cm, the ‗zig-zag‘ patterns is more apparent indicating that the 

odd carbon number n-alkanes are more enriched in 13C than the even ones. According to 
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da Silva et al. (2008), this is probably due to low water levels and which, in the MM, 

corresponds to reduced water flow after the construction of Burrendong Dam.  

 

 

 

Figure 5.33. Long-chain n-alkane (C25-33) δ13
C patterns in sediments from various 

depths within the core. (Top graph shows sediments from depths of 61-34 cm with 

irregular n-alkane δ13
C patterns; the lower graph shows sediments from depths of 

26-2 cm with regular ‘zig-zag’ n-alkane δ13
C patterns)  
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       A binary mixing model has been widely used where the plant community has 

undergone a change in the photosynthetic pathway of the dominant vegetation 

(Biedenbender et al., 2004 and reference therein): 

 

δ13Cmeas=x(δ13C4)+(1-x)(δ13C3) 

 

where δ13Cmeas = measured δ13C values, δ13C4= δ13C value for C4 vegetation, δ13C3= δ13C 

value for C3 vegetation, and x = proportion C4 vegetation.  

        In this thesis, estimates of the relative abundance of C3 and C4 plants recorded in the 

sediment core were calculated based on the n-alkane compound-specific isotopic values. 

As the δ13C value of n-alkanes in modern plants were not measured in this study, the 

endmenber values of -33.5 ‰ for C3 vegetation and -24.9 ‰ for C4 vegetation were 

chosen based on the data of C4 grassland and C3 woodland in central Queensland, 

Australia, with a semi-arid climate similar to the Macquarie Marshes (Krull et al., 2006). 

The δ13Cmeas value is the weighted average δ13C values of the odd-numbered C27-C31 n-

alkanes, typical of terrestrial higher plants. For comparison, it was also calculated based 

on the bulk organic matter as the δ13Cmeas value, -35.2 ‰ for C3 vegetation and -21.7 ‰ 

for C4 vegetation (Rommerskirchen et al., 2006; Castañeda et al., 2009). The results are 

presented in Figure 5.34.  
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Figure 5.34. Core MMB3 profile of bulk organic isotope (δ13
CTOC), abundance-

weighted average of C29-31 n-alkanes (mean δ13
C29-31), the relative abundance of C3 

and C4 calculated by TOC and by mean δ13
C29-31. 
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plants over the ~300 years recorded in this core; the proportion of C3 plants calculated 

based on abundance-weighted mean δ13C29-31 values ranges from 45 % to 88 % (mean 

72 %), suggesting a dominance of C3 plants over the whole record. The dominant 

vegetation in the wetland ecosystems from historical records (Shelly, 2005) and present 

observations are C3 wetland plants such as Phragmites australis, Typha sp., Ranunculus 

sp., and Eucalyptus spp.. Accordingly, the relative abundances of C3 and C4 plants 

calculated by the mean δ13C29-31 are more reliable compared with those calculated by 

δ13CTOC.    

        Based on the above analysis, the past C3 and C4 vegetation changes at this site can be 

interpreted as following. From 87 cm to 67 cm (~300 to 140 years ago), C3 plants were 

increasing from 65 % to 88 % while C4 plants were decreasing, indicating relatively more 

flooding of the marshes. From 67 cm to 34 cm (~140 to 43 years old), the C3 plants 

reduced from ~ 90 % to ~ 80 % and fluctuated between ~ 80 % and 85 %. It indicated 

relatively more flooding of marshes. From 34 cm to 20 cm (~43 to 36 years old), the C3 

plants decreased sharply to 45 %. Because the climate was relatively wet during the past 

30-62 years (Hogendyk, 2007), the reduction of C3 plants and increase of C4 plants is 

more likely affected by a drier depositional environment as the water flowing through the 

Marshes was greatly reduced after the construction of Burrendong dam ~ 50 years ago. 

The increase in C3 plants in the upper 20 cm of the core did not explain a wet climate as it 

is recorded ‗dry phase‘ in the past 30 years (Hogendyk, 2007). The reason for that needs 

to be further explored. 

        In conclusion, the specific carbon-isotope analysis of individual n-alkanes reinforces 

the findings by molecular biomarkers that wetland/woodland C3 vegetation is the 

dominant contributor to the OM in the sediments, in particular using n-alkanes. The 
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variation of the individual n-alkane δ13C values along core MMB3 indicate the variation 

of the wetland vegetation in response to natural dry/wet cycles as well as anthropogenic 

water regulation, which is associated with the construction of the Burrendong dam in the 

1950s. Compared to the organic biomarkers, the specific carbon-isotope data permit semi-

quantification of the relative abundances of C3 and C4 plants.  

          Studies of the hydrogen isotope composition (δD) of n-alkanes has the potential to 

indicate temperature, precipitation, relative humidity and hydrological cycles of the past, 

thus the combination of δD and δ13C can provide better source information on biomarkers 

than single-element isotope analysis (Xie et al., 2004; Seki et al., 2010 and references 

therein). In future studies, it would be useful to obtain the δD values to better assess 

source and delivery processes of OM to the sediments.  

            It would also be useful in a future study to obtain compound-specific isotopic 

values on modern plants growing in the Marshes to assist in calculating their contributions 

to the OM. 
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5.5.5 Summary  

The analysis of n-alkane proxies and α-phellandrene from the cores from the northern 

Macquarie Marshes provides a history of vegetation changes in the Marshes since ~ 50 ka. 

Despite variation in the modern environmental settings among these core sites, their data 

are complementary and permit generation of a history of the Marshes from before their 

formation, through to more detailed changes that occurred in the past 1000 years and in 

the post-European period.  

       The n-alkane proxies suggest that the site where the present Macquarie Marshes are 

had been inundated since ~ 50 ka and experienced dry/wet climate cycles during this time 

span. The high-resolution record obtained for the past 200 years provides information on 

the impact of both natural and anthropogenic changes in the Marshes and the response of 

vegetation associated with them. 

 ~50.5 to 28.4 ka: The site was inudated and the vegetation was mainly submerged 

and emergent plants different to the modern species. 

 ~28.4 to 27.5 ka: The relative warm and wet climate in particular in the pre-Last 

Glacial Maximum favoured the growth of aquatic plants/algae.  

 ~27.5 to 2.29 ka: There is no clear record of this time interval due to the erosive 

(or non-depositional) hiatus in the sediments. However, the establishment of 

wetlands (8-6 ka) is suspected to be recorded in sections with the highest water 

table and the blooming of aquatic plants/algae, although the wetland plants were 

probably different from the modern ones.  

 ~1.97 ka: A period of dryness as non-aquatic C4 plants were observed in the 

sediments. It is likely that C4 plants were introduced to the Marshes at this time. 
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 ~1.97 to 1.33 ka: There was a recovery with more water and associated aquatic 

plants. However, the wetland might not be as prosperous as at 8-6 ka.  

 ~1.33 to 0.23 ka: There were oscillations s of dry-wet phases with variation of 

relative abundance of submerged and emergent plants. These naturally occurring 

climate or hydrological changes did not cause a decline of the wetland ecosystem 

as the record in the sediments shows that plant species abundance remained 

relatively constant.  

 Post-settlement (~1880s AD): The introduction of terrestrial higher plants to the 

wetlands started about ~120 years ago (after European arrival in the 1880s) as 

recorded in the sediments in most of the cores. However, most of the wetland 

plants continued to survive (in particular in inundated depression areas like 

lagoons and swamps) until the 1950s. The proportions of C3 plants calculated 

based on mean δ13C29-31 n-alkane values in one core were ~ 80-90 %, indicating the 

dominance of C3 plants after the European settlement. 

 1950s - 1970s AD: The construction of dams in the upper reaches of the 

Macquarie River have sharply reduced the water flowing into the wetlands and 

greatly accelerated the decline of wetland plants and animals. The wetland 

vegetation cover had been largely replaced by drought-tolerant terrestrial plants, as 

is seen today. The proportions of C3 plants sharply reduced to 45%. Anthropogenic 

activities seemed to have a greater impact on the deterioration of wetlands than 

naturally occurring climate change. 
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CHAPTER 6  DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 

6.1 Discussion and conclusions 

In this thesis, the combination of OSL dating results and several multi-proxy methods, in 

particular, lipid biomarkers, n-alkanes and α-phellandrene, have been successful in 

studying the sediments in the Macquarie Marshes. Results from four cores yield a 

coherent palaeoenvironmental history of the Marshes for the past ~ 50 ka.  

 

1. Sedimentation 

The age and lithology of the four cores are presented in Figure 6.1 (Page 341). The red 

lines divide the cores into 5 sections according to their ages (before Year 2000):  

 section I (~ 50 ka to ~ 1 ka) representing the ―palaeo-period‖; 

 section II (~ 1 ka to ~ 180 a) representing the pre-European settlement period; 

 section III (~ 180 a to ~ 50 a) representing the post-European settlement period; 

 section IV (~ 50 a to ~ 30 a) representing the period after dam construction and 

water diversion; and, 

 section V (~ 30 a and younger) representing the ‗modern‘ environment.  

        Palaeoenvironmental information for section I is only available in core LOLA, a 

long-inundated lagoon away from the main watercourse; while those for sections II to V 

are better represented among the four cores and will generate a broader interpretation of 

the marshes.  

        The sedimentation rates estimated based on the ages vary depending on the 

environmental setting. In the lagoonal site (LOLA) which is less dynamic and tends to 

receive sediments only when flooded, the sedimentation rates are low and the ages are 
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older compared to sediments of other cores from the same depth. This is the case in the 

lower part of core LOLA with sediments older than ~ 1 ka. Although sedimentation rates 

vary at each sampling site, they generally decrease from section II to section III and to 

section V (Figure 6.1), probably due to reduction of floods. In section IV where the 

sediments were deposited during the construction of the dams and water diversion in the 

1950s to 1970s, there is a higher sedimentation near the main watercourse (MMB3) 

compared to the lagoonal site (2LOLA and LOLA). As is well known, the flow into the 

marshes has been greatly reduced after the construction of the dam. The sediments 

deposited near the main watercourse are likely run-off from the construction sites 

upstream and the sites further from the main watercourse receive less sediment due to less 

frequent flood. There is an age hiatus in core LSW between ~ 118 a to 23 a so that 

information for section IV is missing.  

       The physical properties (i.e. colour, particle size) and geochemical parameters (i.e. C, 

N and major-/trace-elements) of the four cores also differ in each section, probably due to 

the different depositional environments. However, the OSL data show that the quartz 

extracted from these cores is typical of fluvial quartz that is not fully bleached before 

burial, indicating that this site has been inundated for much of the time since ~ 50 ka.   
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Figure 6.1. Lithology and ages of cores MMB3, LSW, 2LOLA and LOLA. 
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2. Vegetation  

The n-alkane proxies CPI, OEP and ACL, which are indicative of vegetation types (i.e. 

algae/aquatic plants or terrestrial higher plants), are plotted for the four core profiles in 

Figure 6.2. The proxies in the palaeo-sediments (> ~ 1 ka) in section I of core LOLA 

generally indicate the abundance of algae and aquatic plants relative to inundation and wet 

environment. The fluctuation of the proxies in the age hiatus (~ 27.5 ka to 2.29 ka) is 

likely related to the formation of marshes. The presence of C4 plants during the dry period 

around ~ 1.97 ka revealed by δ13C values is also recorded here. The proxies in section II 

and the lower part of section III are similar among the four cores with CPI values less than 

3, OEP ~ 2 to 3 and ACL ~ 26 to 27. It is likely that in this time period (~ 1 ka to ~ 180 a) 

the vegetation cover was mainly aquatic plants and algae and the marshes were inundated. 

The gradual shifts of the proxies to higher values were observed in most of the cores in 

section III indicating the introduction of higher plants after European arrival (~ 1880s AD). 

As shown in most of the cores, the most significant increase of these proxies occurred in 

section IV indicating that there were more terrestrial higher plants growing in the marshes 

in the 1950s – 1970s after the construction of the dams and water diversion. The 

vegetation cover after dam construction is variable in several sites in the marshes.      
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Figure 6.2. n-alkane proxy profiles for cores MMB3, LSW, 2LOLA and LOLA. 
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          The n-alkane proxies Paq, C17/C31, C27/C31 and (C27+C29)/C31, which are indicative 

of the relative abundance of terrestrial, emergent and submerging plants, are plotted for 

the four core profiles in Figure 6.3 (Page 346). The profiles of α-phellandrene, indicative 

of Eucalyptus spp., are also plotted in the figure. These proxies in palaeo-sediments (> ~ 1 

ka) in section I of core LOLA generally indicate the abundance of algae and aquatic plants 

relative to inundation and wet environment. The highest Paq values and fluctuation of 

C17/C31, C27/C31 values in the age hiatus (~ 27.5 ka to 2.29 ka) are likely related to the 

formation of marshes. The relatively high Paq values (~ 0.6 to 0.8) in section II and in the 

lower part of section III are similar among the four cores while C17/C31, C27/C31 and (C27+ 

C29)/C31values fluctuated. It is likely that in this time period (~ 1 ka to ~ 180 a) the 

vegetation cover was mainly aquatic plants and algae and the marshes were inundated; 

however the relative abundance of algae, emergent and submerging plants differ in these 

sites depending on their environmental setting. The shifts of these proxies were observed 

in most of the cores in section III and the most significant changes are the decrease of Paq 

values likely affected by the introduction of higher plants. It is also likely that the water 

level dropped after European arrival (~ 1880s AD). However, the wetland vegetation 

probably remained until the 1950s. In section IV, Paq values sharply decreased to 0.2-0.4 

in lagoonal sites away from the main stream, indicating a decrease in water levels and the 

shift away from dominant algae and submerged plants to emergent, terrestrial plants. This 

is likely driven by the changes from wetter to drier conditions due to the water diversion 

since the construction of the dams in the 1950s. The biomarker for Eucalyptus spp., is 

observed in the core collected near the main watercourse (core LSW) in section III (~ 

1880s AD) but is only present in section IV in the core collected in the lagoon (core 

2LOLA) away from the main stream since the 1950s. This reinforces the findings from the 
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n-alkane proxies discussed previously that terrestrial higher plants (i.e. Eucalyptus spp.) 

gradually replaced the wetland plants after European arrival (~ 1880s AD) and spread 

more broadly since the 1950s. The increase of this biomarker in section V is observed in 

both cores indicating the increasing abundance of terrestrial higher plants in the marshes 

in the 1990s.  
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Figure 6.3. n-alkane proxies and α-phellandrene profiles of cores MMB3, LSW, 2LOLA and LOLA. 
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In general, the site where present Marshes are likely had been inundated since the late 

Pleistocene (prior to Aboriginal arrival, ~ 50 ka) and experienced dry/wet climate 

oscillations s during this time span. The vegetation types and their abundances varied with 

changes of water level responding to climate. There are several key milestones in the time 

span studied: 

 8 to 6 ka: Wetland plants did not appear in great abundance until the establishment 

of the Marshes in the mid-Holocene (Yonge and Hesse, 2009). The water level was 

highest, and the wetland plants (in particular aquatic plants/algae) probably 

different from the modern ones was also the most abundant in the record.  

 ~ 1.97 ka: A period of dryness led to the introduction and growth of C4 drought-

tolerant plants in this area, similar to the findings of high salt and low lake level in 

western Victoria at 2.3 ka (Wilkins et al., 2013). 

  ~1.33 to 0.23 ka: The wetlands experienced drastic climate fluctuations leading to 

the variation of water level and relative abundance of the vegetation types. 

However, these naturally occurring climate changes did not cause a severe decline 

of the wetland ecosystem and the wetland tended to self-recover.  

 1880s AD: After European arrival, terrestrial higher plants (i.e. Eucalyptus spp.) 

started growing with the wetland plants in the Marshes.  

 1950s to 1970s AD: Notable changes of vegetation occurred so that the wetland 

vegetation was largely replaced by drought-tolerant terrestrial plants as it appears 

today. As calculated by the n-alkane compound-specific isotope, C3 plants reduced 

from ~ 80 % to ~45 %. The construction of the upstream dams have sharply 

reduced the water flowing into the wetlands and accelerated the decline of wetland 
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biota. Anthropogenic activities seem to have a much greater impact on the 

deterioration of wetlands than natural climate change.  

 1970s AD onwards: The wetlands were still declining due to the long-term drought 

(until 2011). The vegetation cover in the Marshes is dominated by terrestrial higher 

plants (woodland plants, e.g. Eucalyptus spp.) rather than wetland plants. 

 

Although the Macquarie Marshes are still pristine regarding pesticides, the deterioration of 

the wetlands since European arrival (~ 120 years ago) is indicated by increasing terrestrial 

vegetation and diminishing aquatic biota. 

 

       To summarise, the three most important outcomes of this PhD project are:  

1) Establishment of a very good chronology for environmental changes occurring in the 

MM during the last 50 ka (based on Optically Stimulated Luminescence);  

2) Establishment of past vegetation changes based on organic geochemical proxies 

including TOC, n-alkanes and their numerical proxies, α-phellandrene, bulk and 

compound-specific n-alkane δ13C stable isotope; and, 

3) Assessment of natural and human-induced impacts on these wetlands. 
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6.2 Future work 

     Based on the results gathered, future work could be targeted:  

 To collect and study more sediment cores from the perimeters of the Nature 

Reserve Marshes. This would allow a better coverage of the marshes and to ‗map‘ 

the wetland areas responding to naturally occurring drought/flood in the long time 

scale. The anthropogenic impact (i.e. land clearing for agriculture usage) on the 

rapid shift of the primary organic producer in these cores will be more profound in 

the recent 200 years and will assist better underpin the direct human-induced 

changes.   

 To collect and analyse more representative modern plant samples from the 

Macquarie Marshes. In particular, the analysis of compound-specific isotope data 

(e.g. n-alkane δ13C stable isotope) will assist in the organic matter budgeting of 

various plant species.    

 To obtain more detailed and direct information on palaeo-temperature, 

precipitation, relative humidity and hydrological variability by measuring the 

hydrogen isotope composition (δD) of n-alkanes combined with δ13C data.  These 

would allow a better assessment of the sources and delivery processes of organic 

matter to the sediments. 
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APPENDIX A. OSL DATING  

 

A1.1 Environmental dosimetry 

A1.1.1 Determination of radionuclide concentrations by HRGS 

A high-resolution gamma spectrometer (HRGS) was used to quantify the radio activities 

(in Bq/kg) of radionuclide and other daughter products from the sediment cores, providing 

information to assess the radioactive disequilibrium in these samples. If the sediment is in 

radioactive equilibrium, the activities of the parent (e.g., 238U) and daughter (e.g., 226Ra) 

should be the same (Aitken, 1998).  

      Selected samples from each core were analysed at the CSIRO Land and Water 

Radionuclide Laboratory at Black Mountain, Canberra. Details on instrumentation and 

calibration standards are described in Olley et al. (1996). The results are shown in Table 

A.1.1. The 232Th decay chain appears to be in secular equilibrium as the ratios are 

compatible with unity for all the samples. In the 238U series, the daughter to parent ratios 

are constant among samples from core MMB3 and core LSW except for the near-surface 

sediment samples (MMB3-01, LSW02_Dose). In these two samples, the 210Pb 

concentrations exceed the 226Ra concentrations, as commonly found in fluvial sediments 

and believed to have been caused by atmospheric fallout (Olley et al., 1996). This is 

particularly true for surface sediment samples buried at the time (late 1950 to mid-1960s) 

when atmospheric nuclear tests were conducted. For the core LOLA samples, except 

LOLA-DR_03 (145-151 cm), the other three samples show disequilibrium in the 238U 

series with concentration of 226Ra >238U and 210Pb <226Ra. The concentration of 226Ra 

exceeding 210Pb can be explained by the escape of the intermediate gaseous nuclide 222Rn 

(a critical nuclide in the U decay chain) (Olley et al., 1996).  Except for the sediment 

sample LOLA-DR_04 (145-151 cm) which has a 226Ra/238U ratio of 1.53, the other two 
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deeply buried samples of core LOLA do not exceed 50 % disequilibrium. With the 

limitations of current analytical techniques, we would not be able to detect any 226Ra 

excess after about 11,000 years since deposition (Olley et al., 1996). We could only 

assume the disequilibrium has prevailed throughout the entire period of burial.  Also these 

two samples are buried relatively deep where the depositional environment is likely to be 

chemically closed, therefore the impact of disequilibrium for dose rate calculation could 

be assumed to be relatively small (<3 %) (Olley et al., 1996).  

      In addition to providing measures of the radionuclides contributing to the dose rate, 

HRGS also measures the activity concentration of 137Cs, which is not expected to be found 

in sediments older than 50 years old (Pietsch, 2009) and can be used as an independent 

age control (discussed in Chapter 4).  
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Table A.1.1  

Radionuclide concentrations determined by high-resolution gamma spectrometer. 

Sample ID Depth (cm) 

238
U Series 

232
Th Series 

40
K (Bq/kg) 238

U (Bq/kg) 
226

Ra (Bq/kg) 
210

Pb (Bq/kg) 
226

Ra/
238

U 
210

Pb/
226

Ra 
228

Ra 
(Bq/kg) 

228
Th 

(Bq/kg) 
228

Th/
228

Ra 

MMB3-01 0-5 24.3 ± 2.3 26.1 ± 0.4 39.9 ± 2.9 1.07 1.53 42.5 ± 0.9 42.9 ± 0.9 1.01 382.7 ± 9.5 

MMB3-02 56-61 23.1 ± 1.9 27.2 ± 0.5 28.8 ± 2.6 1.18 1.06 42.1 ± 1.0 44.8 ± 0.9 1.06 392.5 ± 10.4 

MMB3-03 87-89 22.7 ± 2.3 26.5 ± 0.5 27.0 ± 3.1 1.17 1.02 42.1± 1.0 42.9 ± 0.9 1.02 395.7 ± 10.2 

LOLA-DR_04 105-111 20.4 ± 1.9 31.1 ± 0.5 27.8 ± 2.1 1.53 0.89 41.8 ± 0.9 41.9 ± 0.8 1.00 408.6 ± 9.7 

LOLA-DR_03 145-151 21.7 ± 2.1 21.4 ± 0.5 22.8 ± 2.3 0.99 1.07 43.1 ± 1.1 43.9 ± 0.9 1.02 446.0 ± 11.7 

LOLA-DR_02 181-186 23.2 ± 2.4 30.9 ± 0.6 24.8 ± 2.6 1.33 0.80 48.0 ± 1.2 51.9 ± 1.1 1.08 510.8 ± 13.3 

LOLA-DR_01 201-207 19.6 ± 2.2 26.1 ± 0.5 25.4 ± 2.5 1.33 0.97 47.0 ± 1.0 47.0 ± 0.9 1.00 501.3 ± 11.7 

LSW02_Dose 23-28 32.9 ± 2.2 27.2 ± 0.5 45.7 ± 2.6 0.82 1.68 44.9 ± 1.0 43.9 ± 0.9 0.98 381.8 ± 9.4 

LSW04_Dose 65-68 19.3 ± 2.3 19.6 ± 0.4 19.2 ± 3.0 1.01 0.98 33.9 ± 1.0 33.2 ± 0.8 0.98 305.3 ± 8.4 
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A1.1.2 Determination of U, Th and K contents by XRF  

The determination of U, Th and K was performed in the School of Earth and 

Environmental Sciences, University of Wollongong. Sample preparation was described in 

Section 3.2.2.1. 

 

A1.1.3 Assessment of radionuclide concentrations by alpha and beta radiation 

counting 

Beta counting was performed using a low-level Risø beta counter (GM-25-2) in the OSL 

laboratory at University of Wollongong. The equipment comprises a gas flow counter (99 

% argon and 1 % butane), five individual Geiger-Mueller (GM) cylindrical detectors and a 

common guard counter that records the pulses derived from the beta emission from the 

sample (Bøtter-Jensen and Mejdahl, 1985).  The detectors are mounted in a row facing 

downwards to the sample material. The whole instrument is placed inside 10 cm-thick 

lead bricks to reduce the background signal derived from cosmic rays. Triplicates of the 

dried and ground sample material are placed inside four different plastic cylindrical 

containers of 25 mm diameter. The other two of the five positions are used for calibration 

standard material (Nussloch Loess, called ‗Nussi‘) and background material (MgO 

powder). The five positions are measured simultaneously in 24 ± 2 cycles of one hour 

each. The beta dose rate is calculated by the following equation   

49.1
C-C

C-C

MgOnussi

MgOsample 









r  

rβ is the beta dose rate; Csample, Cnussi, CMgO are the counts of sample, Nussi and MgO; 1.49 

Gy/ka is the known beta dose rate of Nussi.  
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       Alpha counting is performed by thick-source alpha counting (TSAC). The 

measurements comprise a sealed background count of the ZnS screen and an unsealed 

count of the sample material, as described in Soumana et al. (1997). Two ZnS screens of 

4.4 cm diameter are placed face to face (dull sides in, shiny sides out) in the sample cell, 

and counted for 24 hours prior to the measurement of the sample. Once completed, one of 

the two ZnS screens is removed from the cell and stored for the next measurement. The 

same finely milled sample materials are loaded on the dull side of the ZnS screen in 

Perspex sample holders. Though sealed with a rubber O-ring and screws, the cell is 

unsealed by placing fragments of toothpicks on the edge. The purpose of unsealing the 

samples is to allow the escape of radon from the sample. The sample is counted until at 

least 2,000 counts accumulate.  

      Beta counting (BC) determines the dose rate from U, Th and K while alpha counting 

determines the dose rate from U and Th; the radioactive contribution of K can be assessed 

by the results from those two procedures. The radionuclide concentration of U, Th and K 

are calculated by the conversion factors shown in Table A.1.2 below (Adamiec and 

Aitken, 1998).  

 

Table A.1.2  

Conversion factors. 

Beta dose 

rate (Gy/ka) 

1 ppm 

( or % for K) 
Bq/kg 

Gamma dose 

rate (Gy/ka) 

1 ppm 

( or % for K) 
Bq/kg 

U 0.15 0.011 U 0.11 0.0088 
Th 0.027 0.0067 Th 0.048 0.012 

K 0.78 270 K 0.24 32.5 
* These factors are used to convert radionuclide concentrations (ppm or %) and activities (Bq/kg) into dose 
rates (Gy/ka) for beta and gamma emissions. 
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A1.1.4 Comparison of radionuclide concentration results  

Radionuclide U, Th and K concentrations of the three cores determined by the HRGS, 

XRF and TSAC&BC are listed in Table A.1.3.  

        For samples from core MMB3, bulk materials from several depths (from surface 5-8 

cm, 27-29 cm, 48-51 cm, 55-57 cm, 85-88 cm) were used for XRF, alpha counting and 

beta counting (TSAC & BC). These bulk materials were collected from the sediment 

surrounding the core tubes, where quartz grains were extracted for OSL dating. Though 

the HRGS provides more reliable data and robust information to check the radionuclide 

disequilibrium in the samples, due to the limitation of core material and restriction of 

machine, only three samples were analysed by the HRGS.  These three samples were 

taken from the adjacent layers (from the surface 0-5 cm, 56-61 cm, 87-89 cm) of the bulk 

material, to represent the surface layer, the median layer (which had obvious changes in 

colour, texture and other physical, chemical, biological factors) and the bottom layer. As 

shown in Table A.1.3, the results of K by HRGS, XRF and TSAC&BC show a good 

correspondence. The average ratios of CTSAC&BC:CHRGS and CXRF:CHRGS for K 

concentrations are 1.07 and 1.05. The results of U are only comparable between the HRGS 

and TSAC&BC (with a CTSAC&BC:CHRGS ratio of 0.97) , while the XRF gives relatively 

lower values (with a CXRF:CHRGS ratio of 0.72). The results of Th between the HRGS and 

XRF are similar (with a CXRF:CHRGS ratio of 0.96), while the ones by the TSAC&BC are 

relatively lower (with a CTSAC&BC:CHRGS ratio of 0.67).  

        For samples from core LSW, bulk materials from several depths, which were selected 

for dating, were used for XRF, alpha counting and beta counting. Only two samples (24-

26 cm, 65-67 cm) were selected for the HRGS analysis. Results show that the 

concentrations of K and U calculated by the alpha and beta counting are similar to those 
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determined by HRGS. The average CTSAC&BC:CHRGS ratios of  for K and U are 0.98 and 

0.97; the concentrations of Th are more comparable between the XRF and HRGS, with an 

average CXRF:CHRGS ratio of  0.97 (compared to CTSAC&BC:CHRGS ratio of 0.88).  

        For samples from core LOLA, bulk materials from the sections selected for dating, 

were analysed by HRGS, XRF, alpha counting and beta counting. One eception in the 

HRGS analysis is LOLA-DR_05 (63-69 cm). The concentrations of K are more 

comparable between the HRGS and TSAC&BC, with an average CTSAC&BC:CHRGS ratios 

of  0.92. The concentrations of U and Th determined by the XRF are more comparable to 

the HRGS results, with average CXRF:CHRGS ratios of 0.92 and 0.94 individually. 

         Comparing the three methods, only K gave relatively similar concentrations while U 

and Th tended to vary among the several methods. The concentrations of U and Th 

presented in Table A.1.3 were determined by the TSAC – which explained why they (in 

particular Th) were lower than other methods. Ideally, HRGS is the best method to choose 

to determine radionuclide concentrations because it takes into consideration both the 

parent and daughter elements. Hence, in this study, we adopted the HRGS results where 

available and used the TSAC & BC results for other samples.  
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Table A.1.3  

U, Th and 
40

K concentrations determined by various methods. 

 
* TSAC&BC – U and Th concentrations were calculated by the TSAC, K concentration was calculated 
by the TSAC & BC 
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A1.1.5 Calculation of cosmic-ray dose rates 

Cosmic rays are composed of a ‗soft‘ component and a ‗hard‘ component. The soft 

component affects only the uppermost 50 cm of sediment; while the hard component can 

penetrate much deeper. The intensity of cosmic rays decreases with increasing depth of 

penetration (Prescott and Hutton, 1994).  

        In this study, calculations were made following the standard procedure as described 

in Prescott and Hutton (1994). Parameters used in this procedure are the location of the 

sample in terms of its latitude, longitude and altitude (in metres), as well as the overburden 

thickness and density during the burial history of the sample. Considering the density of 

most mineral soils is 2.65 g cm-3 and that of organic matter is about 1.30 g cm-3 (Mclaren 

and Cameron, 1996), an assumed bulk density of 1.80 g cm-3 was used in the cosmic dose 

rate calculation for MM samples. It was assumed that the overburden thickness of the 

samples in this study had not changed significantly during the post-depositional burial 

period. Because for all the samples studied, the cosmic ray dose rate only made up a very 

small fraction of the total dose rate (<10 %), minor adjustments to the present-day 

overburden thickness would affect the OSL ages insignificantly. Figure A.1.1 shows the 

trend of decreasing cosmic dose rate with increasing depth applied to all the samples 

studied here, and the dose rate tends to decrease more sharply in the near-surface sediment 

samples (upper 50 cm) than those from deeper.  
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Figure A.1.1. Change of cosmic-ray dose rate according to depth. 

 

A1.1.6 Assessment of water content and organic content  

Due to absorption, water and organic matter attenuate ionising radiation arising from beta 

particles and gamma rays that would otherwise reach the quartz grains. For example, the 

absorption coefficient per unit mass of water is higher by 50 % for alpha particles, by 25 

% for beta particles, and by 14 % for gamma radiation (Aitken, 1985). It is important to 

measure the water and organic content before conducting the total dose rate and age 

calculation. 

        Previous studies have shown that it is difficult to evaluate the representative water 

content of fluvial sediments, because the water table would have changed enormously 

during the burial time (Aitken, 1985; Olley et al., 1999; Folz et al., 2001). Most of the 

studies use laboratory (or ―present day‖) water content; while others try to work out a 

representative value based on laboratory water content and measured saturated water 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 50 100 150 200 250

C
o

s
m

ic
 d

o
s
e
 r

a
te

 (
d

ry
 G

y
/k

a
)

Depth (cm)

MMB3 LSW LOLA 2LOLA



 

379 

 

content (Olley et al., 1999; Rodnight et al., 2006). Aitken (1985) noted the use of an 80 % 

saturated water content is acceptable except in obviously dry environments. In cases like 

the Macquarie Marshes, to estimate the real water content of the samples becomes even 

harder, due to the alternating dry-wet periods. As is shown in Table 4.10 (Page 165), the 

laboratory measured water content values of MMB3 samples decrease with increasing 

depth of the core, with an extreme high value (155.85 %) on the top 4-6 cm layer. Typical 

saturated water content ranges from 20 % to 60 %, however it has been proved that in 

organic soils or volcanic soils, much higher water content values, over 100 %, are possible 

(Mclaren and Cameron, 1996). Considering the sampling site is a swamp, it is possible the 

surface sediments were saturated or over-saturated with water, which led to over 100 % 

water content. Laboratory experiments on measuring the saturated water contents of core 

LOLA materials, by measuring the weight change of drying and rewetting the sample, 

gave values mostly less than 50 % (range from 27.79 % to 50.55 %). Therefore, a value of 

80±10 % was used for this particular top layer sample.  

       The organic matter is usually determined by measuring the LOI (Loss On Ignition) 

which is done by weighing the sample before and after it has been oxidised at 500 ºC to 

550 ºC to produce carbon dioxide and ash, with carbonates being further oxidised at 900 

ºC to 1000 ºC. In this study, directly determined TOC (Total Organic Carbon) acquired 

during δ13C analysis was used to estimate the organic content.  

       An associated error of 10 % was used for the water and organic content values in 

calculating the errors of the dose rate.  
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A1.1.7 Calculation of total environmental dose rates  

The total environmental dose rate (Dr) is calculated from the sum of the beta and gamma 

dose rates (corrected for attenuation of beta particles, water and organic content, and beta 

attenuation) and the cosmic ray dose rate (Dc, corrected for water content), as described in 

the following equation (Madsen et al., 2005; Demuro, 2009): 

 

      
 

      
  WF

D

OCWF

UThK

OCWF

UUThThKK
D cUppmThppmKattUppmattThppmattK

r
76.111.114.112.125.11
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Where K%, Thppm and Uppm refer to the concentration of each element in ppm for Th and U 

and % for 40K; βK, βU and βTh are the beta dose rate conversion factors (Table A.1.2); γ K, γ 

U and γ Th are the gamma dose rate conversion factors (Table 4.8); Katt, Thatt and Uatt are 

the beta-dose attenuation factors from Mejdahl (1979); WF is the water content and OC is 

the organic content. For correcting beta and gamma dose attenuation, the value of 1.25 and 

1.14 are used for correcting water content (Aitken, 1985) and the values of 1.2 and 1.1 are 

used for correcting the organic content (Lian et al., 1995).  

       Alpha radiation can be neglected due to the short penetration of alpha particles, and 

the very low internal radioactivity of quartz (Madsen et al., 2005). The outer layers of 

quartz grains, which could have been irradiated by externally derived alpha particles, are 

removed during the acid treatment in sample preparation (Aitken, 1985). For beta dose 

calculation, the concentrations of radionuclides are subsamples of the dating sections. For 

gamma dose calculation, the concentrations of radionuclides are subsamples collected 

from a distance of 30 cm from the dating sections (assuming the 30 cm sphere of the 

radius was homogeneous). We also correct for the deduction of gamma dose according to 
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the depth of the core sections, in particularly for those collected from depths less than 30 

cm (Aitken, 1985). 

       The errors of final dose rate are calculated following the method reported in Demuro 

(2009). Results of dose rate and other parameters (water content and total organic carbon) 

are presented in  

Table 4.3 in Chapter 4. 

  

A1.2 Selection criteria for environmental dose determination 

This section describes the seven selection criteria applied to both single aliquot and single 

grain dose determination.  

A1.2.1 Signal intensity check 

The signal intensity check is carried out to ensure that there is no interference of 

background noise to the target OSL signal. Aliquots/grains can pass this check if the test 

dose OSL signal is three times higher than the background signal. As reported by Jacobs 

et al. (2003), the failure proportion of samples can be as high as ~70 %. In this study, 

almost all the single-aliquot samples from core MMB3 were acceptable, except for one 

aliquot from MMB3-4 sample. The failure proportions among single grains vary from site 

to site and at different depth, but were all lower than the reported extreme high value (70 

%). Generally, core LSW appeared to have higher proportions among all the sections 

compared with those from the other three cores. Even with two sampling sites which were 

close by, the signal intensity of the samples did not appear to be similar. These may 

indicate that the sources of grains were not the same or even if the grains originated from 

the same source, their exposure to sunlight differed to various extents.  
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A1.2.2 Recycling ratio check 

Aliquots/grains were rejected if the recycling ratio exceeded 1.1 or was lower than 0.9. 

Our single-grain results showed a failure from 10-20 %, indicating there were certain 

grains where the sensitivity change could not simply be corrected by their test dose alone. 

Those grains could be excluded by this recycling ratio check. Comparatively, core MMB3 

samples appeared to have greater failure proportions with one of the highest of 47 % 

(Table A.1.2).   

 

A1.2.3 IR depletion ratio check 

It has been shown that De analysis with the presence of feldspar will give rise to over-

dispersion values (OD) (Jacobs et al., 2006a), therefore it is very important to reject the 

contamination by feldspars from the data set. This procedure checks if the IR OSL 

depletion ratios were between 0.9 and 1.1 as discussed in Chapter 4, Section 4.6.1.3.1. 

Aliquots/grains that failed in this examination were more likely to have feldspar 

contamination. Our results showed that all the aliquots passed this check while only a 

small proportion (less than 10 %) of single grains failed. This proved that the sample 

preparations had been quite successful in extracting pure quartz.  

 

A1.2.4 Saturation and Monte Carlo fit check 

In Chapter 4, Figure 4.6 and Figure 4.15 show the typical dose response curves. Figure 

A.1.2 and Figure A.1.3 show a typical case where the Ln/Tn ratio is well above the 

maximum Lx/Tx value. These results indicate an inability to obtain a De value because 

there was no intersection with the dose response curve. These De were considered to be 

over-saturated and were rejected.  
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Figure A.1.2. Regeneration curve of the rejected single-aliquot data. (a. MMB3-3 

linear fit; b. MMB3-5 exponential+linear fit) 
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Figure A.1.3. Regeneration curve of single-grain data. (a. MMB3-2 linear fit; b. 

MMB3-5 exponential+linear fit) 
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lower natural De tended to be more flat than those with higher natural De. This is similar to 

what was found in the dose recovery test. For the samples with relatively higher natural 

dose, the regeneration dose points were relatively higher. It is very likely that the beta 

irradiation might have caused the rise of the Tx/Tn curve.  

 

 

 

Figure A.1.4. Tx/Tn Curve of single-aliquot data. (a. sample MMB3-3   b. sample 

MMB3-5)   
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Figure A.1.5. Tx/Tn Curve of single-grain data. (a. sample MMB3-2   b. sample 

MMB3-5)   
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A1.2.6 Decay curve check 

The decay curve provides insights into the optical behaviour of the quartz. A general 

observation made by Duller (2003) is that during measurement, the OSL signal from 

quartz tends to decrease rapidly and to a low residual level, while for feldspars the initial 

decrease in signal is slower and a significant ‗tail‘ is observed even after prolonged optical 

stimulation.  

     In this step, the decay curves of the natural dose and regeneration dose, as well as the 

test dose were inspected. The decay curves of the natural dose were shown in Chapter 4, 

Figures 4.6 and 4.15.  Variations of decay curves were observed in single grains among 

grains from different samples and even grains within the same sample. Grains were 

accepted when they showed a distinctive sharp peak within the 0.5 s of the decay curves 

and the signals in zero dose point were negligible (close to background signal). The 

samples with greater natural dose were more likely to have distinctive decay curves. Apart 

from those that did not have distinctive peaks, grains were strictly rejected when they 

showed more than one hump within 0.5 s of the decay curves, or their peaks tended to 

have noisy and long-lasting tails within 0.5 s of the decay curves. For samples with 

relatively lower natural dose, the criteria were basically the same except slightly less 

restricted for the natural dose decay curves as their signals were relatively lower, even 

though the failure proportions were relatively high.   

 

A1.2.7 Recuperation check 

As discussed in Chapter 4, a maximum of 5 % recuperation (Murray and Wintle, 2000) is 

set as one of the selection criteria to exclude the grains that might have undergone thermal 

transfer during the laboratory heating in the SAR protocol (Aitken and Smith, 1988). Such 

transfer can cause problems if it results in an OSL signal which is a significant fraction of 
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the natural signal, especially when dating young sediments (Madsen and Murray, 2009). 

Therefore it was necessary to check the recuperation for samples from the Macquarie 

Marshes.  

     In the dose recovery test, the proportion of grains that failed the recuperation selection 

criteria was relatively small (~6-8 %). A low proportion of failure was also found among 

most of the samples. Although most of the samples passed this check with recuperation 

values lower than 5 %, the absolute values were considerably higher (mostly with one 

decimal, some were close to 0.5 %). The recuperation values were calculated by dividing 

the sensitivity corrected dose at zero-dose point (Lx/Tx) by the sensitivity corrected natural 

dose (Ln/Tn). Lx/Tx values (close to 0) did not vary too much in most cases, so the 

recuperation values were more dependent on the Ln/Tn value. Where young surface 

sediment samples with natural values close to zero occurred, the lower Ln/Tn value was 

more likely to yield the greater recuperation value. Ballarini et al. (2007) also found 

higher recuperation values among their young samples with very low natural OSL 

response and they did not apply the rejection criterion of 5 % used in their study.  

     Madsen and Murray (2009) pointed out a rise in the De at higher temperature may be an 

indication of significant recuperation caused by the thermal transfer. In this study, the De 

seemed to be independent of the preheat temperatures used in the dose recovery test, and 

the failure proportion of recuperation checks were low in both the dose recovery tests. In 

this study, recuperations varied from sample to sample. Only samples from the deeper 

layers (more than 50 cm in depth) of the cores displayed recuperations values lower than 5 

%. Young samples tend to have higher recuperation values as their Tn/Ln values were 

usually low. Of the core sections studied here, in particular for the young surface/near-

surface sediment samples, we did not apply the strict criterion of 5 % and accepted 
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consistent recuperation values of grains from the same samples as long as they passed the 

other selection criteria.   

 

A1.2.8 Summary of the selection criteria 

From the above discussion, most of the single aliquots (more than 80 %) survived the 

seven selection criteria checks. Due to the inhomogeneity of the individual grains, a high 

proportion of failure was observed in signal intensity checks, recycling ratio checks and 

the decay curve checks among the single grain data (Table A.1.2).  
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Table A.1.2  

Single-grain data selection results. 

 
Criterion 1-Signal intensity check (reject Tn<3XBG) 
Criterion 2-Sensitivity correction-recycling ratios 
Criterion 3-IR depletion ratio check 
Criterion 4-Saturation and Monte Carlo fit check 
Criterion 5- Tx/Tn curve 
Criterion 6-Decade curve 
Criterion 7-Recuperation (<5 %) 

  

Failed 51 26 7 14

Passed 49 23 16 2

Failed 44 29 6 18

Passed 56 27 21 3

Failed 22 36 9 27

Passed 78 42 33 6

Failed 12 47 7 30

Passed 88 41 34 5

Failed 24 31 12 28

Passed 76 46 33 5

Failed 41 29 4 18

Passed 59 30 26 8

Failed 38 24 4 26

Passed 62 38 34 8

Failed 69 23 2 4

Passed 31 8 7 3

Failed 52 24 5 9

Passed 48 25 20 11

Failed 59 19 4 10

Passed 41 22 18 8

Failed 65 16 2 12

Passed 35 19 17 5

Failed 52 23 5 13

Passed 48 25 20 7

Failed 50 20 4 16

Passed 50 30 26 9

Failed 55 18 3 14

Passed 45 27 24 10

Failed 45 14 3 24

Passed 55 41 38 14

Failed 45 17 5 22

Passed 55 38 33 12

Failed 35 12 2 33

Passed 65 53 51 18

Failed 21 19 5 32

Passed 79 60 55 23

Failed 28 20 7 29

Passed 72 52 46 16

Failed 34 28 7 21

Passed 66 38 31 11

Failed 52 11 2 20

Passed 48 38 36 16

Failed 54 14 3 18

Passed 46 32 29 11

Failed 53 19 2 15

Passed 47 28 26 11

Failed 45 19 5 19

Passed 55 36 31 12

Failed 37 22 7 23

Passed 63 42 35 12

Failed 46 25 6 13

Passed 54 29 23 11

Failed 39 20 6 21

Passed 61 40 35 14

Failed 22 28 7 25

Passed 78 50 43 18

Failed 47 19 5 15

Passed 53 35 29 15

Failed 61 10 3 13

Passed 39 30 27 14

Failed 51 13 3 18

Passed 49 35 33 15

Failed 51 11 2 20

Passed 49 38 36 16

2LOLA-6 150 1000

2LOLA-7 159 1000

2LOLA-4 145 1000

2LOLA-5 137 1000

2LOLA-2 144 1000

2LOLA-3 175 1000

LOLA-9 120 1000

2LOLA-1 107 1000

LOLA-7 96 900

LOLA-8 119 1000

LOLA-5 159 1000

LOLA-6 111 1000

LOLA-3 164 1000

LOLA-4 98 900

LOLA-1 182 1000

LOLA-2 230 1000

LSW-8 68 500

LSW-9 118 1000

LSW-6 93 1000

LSW-7 99 1000

LSW-4 41 900

LSW-5 72 1000

LSW-2 112 1000

LSW-3 79 1000

MMB3-7 1000 92

LSW-1 24 800

MMB3-5 1000 105

MMB3-6 1000 100

Sample ID
Grains 

analysed

MMB3-3 800 45

MMB3-4 600 37

MMB3-1 800

Criterion 1 

(%)

Criterion 2 

(%)

Criterion 3 

(%)

Criteria 4-7 

(%)

57

MMB3-2 1000 37

Grains 

accepted

Passed    

Failed
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