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Abstract We consider the Palatini formulation of f (R, T )

gravity theory, in which a non-minimal coupling between
the Ricci scalar and the trace of the energy-momentum ten-
sor is introduced, by considering the metric and the affine
connection as independent field variables. The field equa-
tions and the equations of motion for massive test particles
are derived, and we show that the independent connection
can be expressed as the Levi-Civita connection of an auxil-
iary, energy-momentum trace dependent metric, related to
the physical metric by a conformal transformation. Simi-
lar to the metric case, the field equations impose the non-
conservation of the energy-momentum tensor. We obtain the
explicit form of the equations of motion for massive test par-
ticles in the case of a perfect fluid, and the expression of the
extra force, which is identical to the one obtained in the met-
ric case. The thermodynamic interpretation of the theory is
also briefly discussed. We investigate in detail the cosmolog-
ical implications of the theory, and we obtain the generalized
Friedmann equations of the f (R, T ) gravity in the Palatini
formulation. Cosmological models with Lagrangians of the
type f = R − α2/R + g(T ) and f = R + α2R2 + g(T ) are
investigated. These models lead to evolution equations whose
solutions describe accelerating Universes at late times.
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1 Introduction

The observational discovery of the recent acceleration of
the Universe [1–5] has raised the fundamental theoretical
problem if general relativity, in its standard formulation, can
fully account for all the observed phenomena at both galac-
tic and extra-galactic scales. The simplest theoretical expla-
nation for the observed cosmological dynamics consists in
slightly modifying the Einstein field equations, by adding to
it a cosmological constant � [6]. Together with the assump-
tion of the existence of another mysterious component of the
Universe, called dark matter [7,8], assumed to be cold and
pressureless, the Einstein gravitational field equations with
the cosmological constant included, can give an excellent fit
to all observed data, thus leading to the formulation of the
standard cosmological paradigm of our present days, called
the � Cold Dark Matter (�CDM) model. However, despite
its apparent simplicity and naturalness, the introduction of
the cosmological constant raises a number of important the-
oretical and observational question for which no convincing
answers have been provided so far. The �CDM model can fit
the observational data at a high level of precision, it is a very
simple theoretical approach, it is easy to use in practice, but
up to now no fundamental theory can explain it. Why is the
cosmological constant so small? Why is it so fine-tuned? And
why did the Universe begin to accelerate only recently? And,
after all, would a cosmological constant really be necessary
to explain all observations?

From a theoretical point of view two possible answers to
the questions raised by the observation of the recent acceler-
ation of the Universe can be formulated. The first, called the
dark energy approach, assumes that the Universe is filled by
a mysterious and unknown component, called dark energy
[9–12], which is fully responsible for the acceleration of the
Universe, as well as for its mass–energy balance. The cos-
mological constant � corresponds to a particular phase of
the dynamical dark energy (the ground state of a potential,
say), and the recent de Sitter phase may prove to be just an
attractor of the dynamical system describing the cosmologi-
cal evolution. A second approach, the dark gravity approach,
assumes the alternative possibility that at large scales the
gravitational force may have a very different behavior as
compared to the one suggested by standard general relativity.
In the general relativistic description of gravity, the starting
point is the Hilbert–Einstein action, which can be written

down as S = ∫ (
R/2κ2 + Lm

) √−g d4x , where R is the
Ricci scalar, κ is the gravitational coupling constant, and Lm

is the matter Lagrangian, respectively. Hence in dark grav-
ity type theories for a full understanding of the gravitational
interaction a generalization of the Hilbert–Einstein action is
necessary.

There are (at least) two possibilities to construct dark
gravity theories. The first is based on the modification of
the geometric part of the Hilbert–Einstein Lagrangian only.
An example of such an approach is the f (R) gravity the-
ory, introduced in [13,14], and in which the geometric part
of the action is generalized so that it becomes an arbi-
trary function f (R) of the Ricci scalar. Hence in f (R)

gravity the total Hilbert–Einstein action can be written as
S = ∫ (

f (R)/2κ2 + Lm
)√−g d4x . The recent cosmologi-

cal observations can be satisfactorily explained in the f (R)

theory, and a solution of the dark matter problem, interpreted
as a geometric effect in the framework of the theory, can also
be obtained [15]. For reviews and in depth discussions of
f (R) and other modified gravity theories see [16–24].

A second avenue for the construction of the dark gravity
theories consists in looking for maximal extensions of the
Hilbert–Einstein action, in which the matter Lagrangian Lm

plays an equally important role as the Ricci scalar. Hence in
this more general approach one modifies both the geomet-
ric and the matter terms in the Hilbert–Einstein action, thus
allowing a coupling between matter and geometry [25,39].
The first possibility for such a coupling is to replace the grav-
itational action by an arbitrary function of the Ricci scalar
and the matter Lagrangian Lm, thus obtaining the so-called
f (R, Lm) class of modified gravity theories [26]. This class
of theories has the potential of explaining the recent acceler-
ation of the Universe without the need of the cosmological
constant, and can give some new insights into the dark mat-
ter problem, and on the nature of the gravitational motion.
The cosmological and physical implications of this theory
have been intensively investigated [27–37]. For a review of
f (R, Lm) type theories see [38].

A second extension of the Hilbert–Einstein action can
be obtained by assuming that the gravitational field cou-
ples to the trace T of the energy-momentum tensor of the
matter. This assumption leads to the f (R, T ) class of grav-
itational theories [39]. f (R, T ) theory may give some hints
for the existence of an effective classical description of the
quantum properties of gravity. As pointed out in [40], by
using a non-perturbative approach for the quantization of
the metric, proposed [41–43], as a consequence of the quan-
tum fluctuations of the metric, a particular type of f (R, T )

gravity naturally emerges, with the Lagrangian given by
L = [

(1 − α)R/2κ2 + (Lm − αT/2)
]√−g, where α is a

constant. This interesting theoretical result suggests that a
deep connection may exist between the quantum field theo-
retical description of gravity, which naturally involves parti-
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cle production in the gravitational field, and the correspond-
ing effective classical description of the f (R, T ) gravity the-
ory [44]. The astrophysical and cosmological implications of
f (R, T ) gravity theory were investigated in [45–66].

Einstein’s theory of general relativity can be obtained by
starting from two different theoretical approaches, called the
metric and the Palatini formalism, respectively, the latter
being introduced by Albert Einstein [67–69]. In the Palatini
variational approach one takes as independent field variables
not only the ten components gμν of the metric tensor, but also
the components of the affine connection �α

βμ, without assum-
ing, a priori, the form of the dependence of the connection on
the metric tensor, and its derivatives [70,71]. When applied to
the Hilbert–Einstein action, these two approaches lead to the
same gravitational field equations. Moreover, the Palatini for-
malism also provides the explicit form of the symmetric con-
nection as determined by the derivatives of the metric tensor.
However, in f (R) modified gravity, as well as in other modi-
fied theories of gravity, this does not happen anymore. In fact
it turns out that the gravitational field equations obtained by
using the metric approach are generally different from those
obtained by using the Palatini variation [70,71]. An important
difference is related to the order of the field equations. The
metric formulation usually leads to higher-order derivative
field equations, while in the Palatini formalism the obtained
gravitational field equations are always second-order partial
differential equations. A number of new algebraic relations
also do appear in the Palatini variational formulation, which
describe the subtle relation between the matter fields and the
affine connection, which can be determined from a set of
equations that couples it not only to the metric, but also to
the matter fields. The astrophysical and cosmological impli-
cations of the Palatini formulation of f (R) gravity have also
been intensively investigated [72–76].

Based on a hybrid combination of the metric and Palatini
mathematical formalisms, an extension of the f (R) gravity
theory was proposed in [77] and was used to construct a new
type of gravitational Lagrangian [77,78]. A simple example
of such an hybrid metric-Palatini theory can be constructed
by adopting for the gravitational Lagrangian the expression

R+ f
(
R(g, �̃)

)
, where R(g, �̃) is the Palatini scalar curva-

ture. A similar formalism that interpolates between the metric
and Palatini regimes was proposed in [79,80] for the study
of f (R) type theories. This approach is called C-theory. A
generalization of the hybrid metric-Palatini gravity was intro-
duced in [81].

Despite the intensive investigations of the theoretical and
observational aspects of the modified gravity theories with
geometry–matter coupling, their Palatini formulation and
properties have attracted considerably less attention. The
Palatini formulation of the linear f (R, Lm) gravity was
introduced in [82], where the field equations and the equa-

tions of motion for massive test particles were derived.
The independent connection can be expressed as the Levi-
Civita connection of an auxiliary, matter Lagrangian depen-
dent metric, which is related to the physical metric by
means of a conformal transformation. Similar to the met-
ric case, the field equations impose the non-conservation of
the energy-momentum tensor. The study of Palatini formu-
lation of f (R, T ) gravity was initiated in [83]. Analogously
to its metric counterpart, the field equations impose of the
f (R, T ) gravity in the Palatini formulation implies the non-
conservation of the energy-momentum tensor, which leads
to non-geodesic motion, and to the appearance of an extra
force.

It is the purpose of the present paper to derive the grav-
itational field equations of the generalized f (R, T ) type
gravity models, with non-minimal coupling between matter,
described by the trace of the energy-momentum tensor, and
geometry, characterized by the Ricci scalar By taking sepa-
rately two independent variations of the gravitational action
with respect to the metric and the connection, respectively,
we obtain the field equations and the connection associated
to the Ricci tensor, which, due to the coupling between the
trace of the energy-momentum tensor and the geometry, is
also a function of T . The metric that defines the new indepen-
dent connection is conformally related to the initial space-
time metric, with the conformal factor given by a function of
the trace of the energy-momentum tensor, and of the Ricci
scalar. After the conformal factor is obtained, the gravita-
tional field equations can be written down easily in both
metrics. Similar to the case of the metric f (R, T ) gravity,
after taking the divergence of the gravitational field equations
we obtain the important result that the energy-momentum
tensor of the matter is not conserved. Similar to the metric
case, the motion of the particles is not geodesic, and due to
the matter–geometry coupling, an extra force arises. How-
ever, this force has the same expression as in the metric case,
and therefore no new physics is expected to arise during the
motion of massive test particles in the Palatini formulation
of f (R, T ) gravity. As the next step in our analysis we inves-
tigate in detail the cosmological implications of the Palatini
formulation of the f (R, T ) gravity theory. We obtain the
generalized Friedmann equations, which explicitly contain
the extra terms generated by the coupling between the trace
of the energy-momentum tensor and geometry. The general
properties of the cosmological evolution are obtained, includ-
ing the behavior of the deceleration parameter, of the effec-
tive energy density and pressure, and of the parameter of the
equation of state of the dark energy. Cosmological models
with Lagrangians of the type L = R − α2/R + g(T ) and
L = R + α2R2 + g(T ) are considered in detail, and it is
shown that these models lead to evolution equations whose
solutions tend to a de Sitter type Universe at late times.
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The present paper is organized as follows. After a brief
review of the metric formalism, the field equations of
f (R, T ) gravity theory are obtained by using the Palatini
formalism of gravitational theories in Sect. 1. The energy
and momentum balance equations are obtained, after taking
the divergence of the energy-momentum tensor, in Sect. 3.
The thermodynamical interpretation of the theory is also
briefly discussed. The cosmological implications of the Pala-
tini f (R, T ) theory is investigated in Sect. 4. We discuss and
conclude our results in Sect. 5. The details of the deriva-
tion of the field equations in the metric formalism are given
in Appendix A, while the divergence of the matter energy-
momentum tensor is derived in Appendix B. The explicit
computations of the various geometric quantities for the
Friedmann–Robertson–Walker geometry are presented in
Appendix C.

2 Palatini formulation of f (R, T ) gravity

In the present section, after a brief review of the metric formu-
lation of f (R, T ) gravity theory, we derive the field equations
of the theory by using the Palatini formalism.

2.1 The metric formalism

The f (R, T ) gravity theory is described by the action [39]1

S =
∫ [√−g

16π
f (R, T ) + √−gLm

]
d4x, (1)

where g ≡ det
(
gμν

)
, f is an arbitrary function of the Ricci

scalar R = R(g) and of the trace T = gμνTμν of the matter
energy-momentum tensor Tμν ; the matter Lagrangian Lm

is assumed to be independent of ∂λgμν . Tμν is generally
obtained as [89]

Tμν ≡ −2√−g

{
∂

(√−gLm
)

∂gμν
+ ∂λ

[
∂

(√−gLm
)

∂ (∂λgμν)

]}

= −2√−g

∂
(√−gLm

)

∂gμν
= −2

∂Lm

∂gμν
+ gμνLm. (2)

To describe the variation of the energy-momentum tensor
with respect to the metric, we also introduce the tensor �μν ,
defined as

�μν ≡ gαβ δTαβ

δgμν
. (3)

1 Throughout this article we use the natural system of units with
c = G = 1. For the metric tensor we adopt the signature convention
(−,+,+,+).

For a perfect fluid characterized by its energy density ρ

and isotropic pressure P only, the energy-momentum tensor
is given by

Tμ
ν = (ρ + P)uμuν + Pδμ

ν , (4)

where the four-velocity uμ satisfies the normalization condi-
tion uμuμ = − 1. In the comoving frame its components are
uμ = (− 1, 0, 0, 0), and in this frame the components of the
energy-momentum tensor become Tμ

ν = (− ρ, P, P, P).
The components of the affine connection are defined to be

�ρ
μν(g) = gρσ

2

(
∂νgσμ + ∂μgσν − ∂σ gμν

)
, (5)

which are currently regarded as functions of the metric. In
the following we assume that the connection is symmetric,
that is, �

ρ
μν = �

ρ
νμ. Varying Eq. (1) with respect to gμν , we

obtain

δS =
∫ √−g

16π

[
fRδR(g) + fT δT − gμν

2
f δgμν

− 8πTμνδg
μν

]
d4x, (6)

where fR ≡ ∂ f
∂R , fT ≡ ∂ f

∂T and

δR(g) = Rμν(g)δg
μν + gμνδRμν(g). (7)

From the condition δS = 0 we obtain the field equations of
f (R(g), T ) gravity theory as (for the computational details
see Appendix A),

[
Rμν(g) + gμν� − ∇μ∇ν

]
fR + (

Tμν + �μν

)
fT

−gμν

2
f = 8πTμν. (8)

The field equations (8) can be rewritten with the help of
the Einstein tensor Gμν(g) = Rμν(g) − gμνR(g)/2 as

Gμ
ν(g) = 1

fR

{
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

+δ
μ
ν

2
[ f − R(g) fR] + (∇μ∇ν − δμ

ν�
)
fR

}
. (9)

From Eq. (9) it follows that the matter energy-momentum
tensor is not conserved, and its divergence is given by [52]
(for the computational details see Appendix B),

∇μT
μ
ν = fT

8π − fT

[ (
Tμ

ν + �μ
ν

) ∇μ ln | fT | + ∇μ�μ
ν

−1

2
∇νT

]
≡ Qν . (10)
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2.2 Palatini formulation of f (R, T ) gravity

2.2.1 Field equations from metric variation

An alternative formulation of gravitational theories can be
obtained within the Palatini formalism, which consists in
taking separately in the gravitational action two indepen-
dent variations, with respect to the metric and the connec-
tion, respectively. The action is formally identical to the met-
ric one, but the Riemann tensor and the Ricci tensor are
constructed with the independent symmetric connection �̃.
Hence in the Palatini formulation the gravitational action of
f (R, T ) gravity is given by

S =
∫ [√−g

16π
f
(
R

(
g, �̃

)
, T

)
+ √−gLm (g, ψ)

]
d4x .

(11)

In Eq. (11) the Ricci scalar is defined as

R
(
g, �̃

)
= gμν R̃μν

(
�̃

)
, (12)

with the Ricci tensor R̃μν

(
�̃

)
expressed only in terms of

the Palatini connection �̃, with the connection coefficients
�̃λ

μν determined self-consistently through the independent
variation of the gravitational field action Eq. (11), and not
constructed directly from the metric by using the usual Levi-

Civita definition. In the following we define R̃μν

(
�̃

)
with

the help of the yet undetermined Palatini connection as

R̃μν

(
�̃

)
= ∂λ�̃

λ
μν − ∂ν�̃

λ
μλ + �̃λ

μν�̃
α
λα − �̃α

μλ�̃
λ
να. (13)

The matter Lagrangian Lm (g, ψ) is assumed to be a function
of the metric tensor g and of the physical fields ψ only.

We vary now the gravitational action (11) with respect to

the metric tensor gμν , under the assumption δ R̃μν

(
�̃

)
= 0,

that is, by keeping the connection constant. As a result we
immediately obtain the field equations

R̃μν

(
�̃

)
fR = 8πTμν − (

Tμν + �μν

)
fT + gμν

2
f. (14)

By contracting the above equation with gμν we obtain for
the Ricci scalar (12) the expression

R
(
g, �̃

)
fR = 8πT − (T + �) fT + 2 f, (15)

where � = �
μ
μ. In terms of the Einstein tensor

Gμν

(
g, �̃

)
= R̃μν

(
�̃

)
− 1

2
gμνR

(
g, �̃

)
, (16)

the Palatini field equations can be written as

Gμν

(
g, �̃

)
= 1

fR

{
8π

(
Tμν − gμν

2
T

)

−
[(
Tμν + �μν

) − gμν

2
(T + �)

]
fT − gμν

2
f

}
. (17)

2.2.2 The Palatini connection

We vary now the gravitational action (11) with respect to the
connection �̃, by keeping the metric constant, so that

δR
(
g, �̃

)
= gμνδ R̃μν

(
�̃

)
. (18)

According to the Palatini identity [82], we have

δ R̃μν

(
�̃

)
= ∇̃λ

(
δ�̃λ

μν

)
− ∇̃ν

(
δ�̃λ

μλ

)
, (19)

where ∇̃λ is the covariant derivative associated with �̃. Hence
the variation of the action (11) with respect to �̃ leads to

δS =
∫ √−g

16π
Aμν

[
∇̃λ

(
δ�̃λ

μν

)
− ∇̃ν

(
δ�̃λ

μλ

)]
d4x, (20)

where we have denoted

Aμν = fRg
μν. (21)

We integrate now by parts to obtain

16πδS =
∫

∇̃λ

[√−g
(
Aμνδ�̃λ

μν − Aμλδ�̃α
μα

)]
d4x

−
∫

∇̃λ

[√−g
(
Aμνδλ

α − Aμλδν
α

)]
δ�̃α

μν d4x . (22)

The first term in Eq. (22) is a total derivative, and thus after
transforming it into a surface integral it vanishes. Therefore
the variation of the action with respect to the connection �̃

becomes

∇̃λ

[√−g
(
Aμνδλ

α − Aμλδν
α

)] = 0. (23)

Equation (23) can be significantly simplified by taking into
account that for α = λ the equation is identically zero. Hence
for the case λ �= α, we find

∇̃λ

(√−g fRg
μν

) = 0. (24)

Equation (24) shows that the connection �̃ is compatible with
a conformal metric g̃μν , conformally related to the initial
metric gμν by means of the relations

g̃μν ≡ fRgμν = Fgμν, (25)
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with the conformal factor F defined as

F ≡ fR
(
R

(
g, �̃

)
, T

)
. (26)

Moreover, we have

√−g̃g̃μν = √−g fRg
μν =

√
−F4g

(
F−1gμν

)
, (27)

where g̃ ≡ det
(
g̃μν

)
. Thus Eq. (24) gives the geometric

interpretation of the Palatini connection �̃ as the Levi-Civita
connection corresponding to the metric g̃μν , conformally
related to gμν ,

�̃λ
μν = 1

2
g̃λρ

(
∂ν g̃ρμ + ∂μg̃ρν − ∂ρ g̃μν

)
. (28)

2.2.3 Conformal geometry and g frame field equations

Since the metrics gμν and g̃μν are conformally related, the
connection �̃ can be expressed in terms of the Levi-Civita
connection �, whose components are given in Eq. (5), as

�̃λ
μν = �λ

μν + 1

2F

(
δλ

μ∂ν + δλ
ν∂μ − gμν∂

λ
)
F. (29)

In terms of the tensor Rμν(g), constructed from the metric
by using the Levi-Civita connection (5), the Ricci tensor R̃μν

in the conformally transformed metric is given by [84,85]

R̃μν = Rμν(g)+ 1

F

[
3

2F
∇μF∇νF−

(
∇μ∇ν + gμν

2
�

)
F

]
.

(30)

Since R̃ ≡ g̃μν R̃μν = F−1R
(
g, �̃

)
and G̃μν ≡ R̃μν −

g̃μν R̃/2 = Gμν

(
g, �̃

)
, the Ricci scalar (12) and the Ein-

stein tensor in Eq. (17) can be obtained in the conformally
related frames [84,85]:

R
(
g, �̃

)
= F R̃ = R(g) + 3

F

[
1

2F
(∇F)2 − �F

]
(31)

and

Gμν

(
g, �̃

)
= G̃μν = Gμν(g) + 1

F

{ (
gμν� − ∇μ∇ν

)
F

+ 3

2F

[
∇μF ∇νF − gμν

2
(∇F)2

]}
, (32)

respectively, with all the covariant derivatives and algebraic
operations performed with the help of the metric gμν .

By using the expression of the Einstein tensor as given
by Eq. (32) in Eq. (17), we obtain finally the f (R, T ) field
equations of the Palatini formulation expressed solely in the
g frame:

Gμν(g) + 1

F

{ (
gμν� − ∇μ∇ν

)
F + 3

2F

[
∇μF ∇νF

−gμν

2
(∇F)2

]}
= 1

F

{
8π

(
Tμν − gμν

2
T

)

−
[(
Tμν + �μν

) − gμν

2
(T + �)

]
fT − gμν

2
f

}
. (33)

The Ricci scalar can be obtained:

R (g) + 3

F

[
1

2F
(∇F)2 − �F

]

= 1

F
[8πT − (T + �) fT + 2 f ] . (34)

2.2.4 Field equations in the g̃ frame

In the previous subsection we have obtained the gravitational
field equations in the Palatini formulation of f (R, T ) gravity
as expressed in terms of the metric tensor gμν . This approach
usually involves higher-order differential equations for the
physical and geometrical quantities. An alternative approach,
which keeps the order of the differential equations of the
model not higher than two would be to solve first the grav-
itational field equations in the conformal metric g̃μν , and to
recover the metric gμν with the use of the conformal trans-
formation (25). To obtain the field equations in the conformal
frame we follow the procedure introduced in [83].

First we multiply the Palatini field equation (14) with
g̃λμ = fR−1gλμ, thus obtaining

R̃λ
ν = 1

F2

[
8πT λ

ν − (
T λ

ν + �λ
ν

)
fT + δλ

ν

2
f

]
, (35)

where R̃λ
ν is now a function of the metric g̃ only. As for the

energy-momentum tensor, we have, respectively,

Tμν → T̃μν = −2√−g̃

∂
(√−g̃Lm

)

∂ g̃μν
= −2

∂Lm

∂ g̃μν
+ g̃μνLm

(36)

and

Tμ
ν → T̃μ

ν = −2g̃μλ ∂Lm

∂ g̃λν
+ δμ

ν Lm = Tμ
ν . (37)

That is, the mixed components Tμ
ν of the energy-momentum

tensor are conformally invariant. Additionally, we have

�μ
ν → �̃μ

ν = �μ
ν, T → T̃ = T, � → �̃ = �. (38)
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By contracting Eq. (35) by taking ν = λ we obtain the
expression of the Ricci scalar in the conformal frame, thus

R̃ = 1

F2 [8πT − (T + �) fT + 2 f ] . (39)

Therefore in the conformal frame the full set of the Einstein
equations can be written with f = f

(
F R̃ = R

(
g, �̃

)
, T

)

as

G̃μ
ν = R̃μ

ν − δ
μ
ν

2
R̃ = 1

F2

{
8π

(
Tμ

ν − δ
μ
ν

2
T

)

−
[(
Tμ

ν + �μ
ν

) − δ
μ
ν

2
(T + �)

]
fT − δ

μ
ν

2
f

}
. (40)

These equations determine the conformal metric g̃ as a
function of the thermodynamic parameters that enter in the
definition of the matter energy-momentum tensor.

2.3 The Newtonian limit

To investigate the Palatini f (R, T ) gravity under the weak
field, slow motion and static approximation, namely the New-
tonian limit, we assume the metric to be a Minkowski metric
plus a perturbation, given by

gμν = ημν + γμν, γμν � 1. (41)

Hence gμν = ημν − γ μν and the relation gαλgλβ = δα
β

still holds. In this context, we also assume the conformal
metric (25) to be nearly flat, so that

g̃μν = Fgμν = ημν + γ̃μν, (42)

where γ̃μν � 1 is of the same order as γμν . Hence F ≈ 1.
From Eqs. (41) and (42) we obtain

(F − 1)ημν = γ̃μν − Fγμν. (43)

If we take F = e2W and expand it to F = 1 + 2W , then the
above equation shows that W = (γ̃ − γ ) /2 (4 + γ ), where
γ̃ ≡ ημνγ̃μν and γ ≡ ημνγμν . Thus W ∼ O(γ ) ∼ O(γμν).

Let us now consider the Palatini field equation (14) under
the Newtonian limit. First we obtain the g-frame Ricci tensor:

Rμν(g) = 1

2

(
∂λ∂μγνλ + ∂λ∂νγμλ − ∂2γμν − ∂μνγ

)
.

(44)

Omitting all higher-order terms with respect to O(γμν) and
taking into account the gauge

∂μ

(
γμν − 1

2
ημνγ

)
= 0, (45)

then some algebra gives the expression of the Ricci ten-
sor (30) as

R̃μν = −1

2
∂2 (

γμν + 2ημνw
) − 2∂μνw. (46)

With the use of the above equations, and preserving only the
first-order terms, the field equation (14) becomes

−1

2
∂2γ̃μν − 2∂μνw − ημν

2
f = 8πTμν − (

Tμν + �μν

)
fT .

(47)

For perfect fluids, Tμ
ν = diag(−ρ, P, P, P) and �

μ
ν =

δ
μ
ν P − 2Tμ

ν (see Eq. (61)); besides, in the Newtonian limit,
P → 0 and ∂0 → 0. Hence we can obtain immediately the
generalized Poisson equation in the Palatini formulation of
f (R, T ) gravity:

−1

2

∇2γ̃00 = (8π + fT ) ρ − f

2
. (48)

The same result can also be found in [83].

2.4 Violation of the equivalence principle

An interesting feature of the modified gravities, including
their Palatini extensions, is the violation of the equivalence
principle. In Palatini f (R) gravity this problem was dis-
cussed in [86]. In the following we will generalize some
results from the case of f (R) theory to the Palatini f (R, T )

gravity. In the conformal frame the field equations of the
Palatini f (R, T ) gravity are given by Eq. (40), where f =
f
(
F R̃, T

)
= f

(
R

(
g, �̃

)
, T

)
.

In the weak field limit we can represent the gravitational
Lagrangian as

f
(
R

(
g, �̃

)
, T

)
= R(g, �̃) + εK

(
R

(
g, �̃

) )
+ ε′g(T ),

(49)

where ε, ε′ are constants, K
(
R(g, �̃)

)
is an arbitrary func-

tion of the argument R(g, �̃), while g is an arbitrary func-
tion of the trace of the matter energy-momentum tensor.
In the limit of small ε, ε′, with ε, ε′ → 0, it follows that
f − R(g, �̃)F ≈ 0. In addition, by neglecting the matter
energy-momentum tensor Tμ

ν for weak sources, it follows
that Eq. (40) becomes G̃μ

ν ≈ 0, which leads to g̃μν ≈ ημν ,
or, equivalently,

gμν ≈ F−1ημν ≈
(

1 − ε
∂K

∂R

)
ημν. (50)
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The above equation tells us that, similar to the metric and
the Palatini formulation of f (R) gravity [86], in the Palatini
formulation of f (R, T ) gravity it is impossible to recover
the flat Minkowski metric even in local frames with external
gravitational fields screened. This result violates the basic
postulate of general relativity according to which in locally
free falling frames the non-gravitational laws of physics are
those of special relativity [86]. Since this postulate assumes
that the Einstein equivalence principle holds, it follows that,
similar to Palatini f (R) theory, in the Palatini formulation
of f (R, T ) gravity the equivalence principle does not hold
exactly. The deviation of the current metric with respect to
the Minkowski metric is ημν − gμν ≈ ε (∂K/∂R) ημν .

In order to give a quantitative estimate for the deviation
of the f (R, T ) metric from the Minkowski metric we will
consider the cosmological case, to be discussed in detail in
Sect. 4. We assume that the gravitational action takes the form
f (R(g, �̃), T ) = R(g, �̃) + α

16π
R2(g, �̃) + 8πβT , where

α, β → 0, as an example. From Eq. (141), to be derived in
Sect. 4, it follows that F = 1+β0αρ = 1+β0αρ0a−β1 , where
ρ0 is the present-day matter density, a is the scale factor, β0 =
1−3w+β(3−5w), β1 = 3(1+β)(1+w)/[1+β(3−w)/2],
and w is the parameter of the matter equation of state. By
estimating all quantities at the present time t = t0, then when
α, β → 0, and w = 0, a (t0) = 1, the deviation ε (∂K/∂R)

from the Minkowki metric can be obtained:

1 − F−1 = 1 − [1 + β0|t=t0 αρ0a
−β1|t=t0
0 ]−1

≈ (1 + 3β) αρ0 ≈ αρ0 ≈ α
3H2

0

8π
, (51)

where H0 is the present-day value of the Hubble function, and
we have assumed for the present-day density of the Universe
the critical value.

Recently the first results obtained by the MICROSCOPE
satellite, whose aims are to constrain the weak equivalence
principle in outer space by determining the Eötvös param-
eter η, have been published [87]. The Eötvös parameter is
defined as the normalized difference of accelerations between
two bodies i and j , located in the same gravitational field.
The MICROSCOPE determinations give for η the value
η = (− 1±27)×10−15 at a 2σ confidence level [87]. These
results allow one to constrain possible sources of violation of
the weak equivalence principle, like, for example, the exis-
tence of light or massive scalar fields with coupling to matter
weaker than the gravitational coupling [88]. For a massive
scalar field of mass smaller than 10−12 eV, the coupling is
constrained as |αC | < 10−11, if the scalar field couples to
the baryon number, and to |αC | < 10−12 if the scalar field
couples to the difference between the baryon and the lepton
numbers, respectively. We expect a similar order of magni-
tude for the coupling between matter and geometry in both
the metric and the Palatini formulations of f (R, T ) gravity.

3 Energy and momentum balance equations

An interesting and important consequence of modified grav-
ity theories with geometry–matter coupling is the non-
conservation of the matter energy-momentum tensor. This
property of the theory has a number of far reaching physi-
cal implications, and it may represent the main link between
the interpretation of f (R, T ) theory as an effective classical
description of the quantum theory of gravity. In the present
section we obtain the general expression of the divergence
of the energy-momentum tensor in f (R, T ) gravity theory,
and, by using it, we obtain the energy-momentum balance
equations, which describe the energy transfer processes from
geometry to matter, and the deviations from the geodesic
motion, respectively.

3.1 The divergence of the matter energy-momentum tensor

We begin our analysis by calculating first the divergence of
the Einstein tensor in the Palatini frame. Since ∇μGμν(g) =
0, Eq. (32) yields

∇μG̃μν = ∇μ
[
G̃μν − Gμν(g)

]

= 2 (∇ν� − �∇ν) w + 2�w∇νw + 2∇μw∇μ∇νw

+∇ν (∇w)2

= − 2Rμν(g)∇μw + 2�w∇νw + 4∇μw∇μ∇νw,

(52)

where to simplify the calculation we have taken F = e2w,
and we have used the mathematical identities [84]

(∇ν� − �∇ν) φ = gαβ
(∇ν∇α∇β − ∇α∇β∇ν

)
φ

= gαβ (∇ν∇α − ∇α∇ν) ∇βφ

= gαβ Rμ
βαν∇μφ

= − Rμν∇μφ (53)

and

∇ν (∇φ)2 = ∇ν

(∇μφ∇μφ
) = ∇μφ∇ν∇μφ

+∇μφ∇ν∇μφ = 2∇μφ∇ν∇μφ

= 2∇μφ∇ν∇μφ, (54)

respectively, where φ (xμ) is an arbitrary scalar. We have also
used the relation gαβ Rμβαν = −gαβ Rβμαν = −Rμν in the
last step of Eq. (53). Note that the above two identities are
valid in both the metric and the Palatini formulations [84].

Substituting Eq. (30) into Eq. (52), we find

∇μG̃μν = −2Rμν(g)∇μw + 2�w∇νw + 4∇μw∇μ∇νw

= −2R̃μν∇μw = −∇μF

F
R̃μν. (55)
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The covariant divergence of the field equation (17) yields

(note that Gμν

(
g, �̃

)
= G̃μν and gμνR

(
g, �̃

)
= g̃μν R̃)

∇μ
[
FGμν

(
g, �̃

)]
+ gμν

2
R

(
g, �̃

)
∇μF

=
[
G̃μν − R̃μν + g̃μν

2
R̃

]
∇μF = 0

= ∇μ

[
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

]

+δ
μ
ν

2

[
∇μ f − F∇μR

(
g, �̃

)]

= ∇μ

[
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

] + fT
2

∇νT, (56)

where we have used Eq. (55).
One can check now by comparison with Eq. (10) that the

above expression gives the same result as in the metric for-
mulation, except for the functional form of the function f ,

∇μT
μ
ν = fT

8π − fT

[ (
Tμ

ν + �μ
ν

)∇μ ln | fT | + ∇μ�μ
ν

−1

2
∇νT

]
, f = f

(
R

(
g, �̃

)
, T

)
. (57)

From its definition with the use of Eq. (2), the tensor �μν

for perfect fluids can be obtained:

�μν = gαβ

[
δgαβ

δgμν
Lm + gαβ

∂Lm

∂gμν
− 2

∂2Lm

∂gμν∂gαβ

]

= gμνLm − 2Tμν − 2gαβ ∂2Lm

∂gμν∂gαβ
, (58)

where the relation

δgαβ

δgμν
= −gαμgβν (59)

can be derived from the relations

gαβ
(
δgαβ + gαμgβνδg

μν
) = gαβδgαβ + gμνδg

μν = 0,

⇒ δgαβ = −gαμgβνδg
μν. (60)

For perfect fluids we fix Lm to be P [52], while Tμ
ν takes

the form of (4), then

�μν = gμνP − 2Tμν, �μ
ν = δμ

ν P − 2Tμ
ν ; (61)

T = δν
μT

μ
ν = −ρ + 3P, � ≡ δν

μ�μ
ν = 4P − 2T .

(62)

Hence

Tμν + �μν = gμνP − Tμν (63)

and

T + � = 4P − T = ρ + P. (64)

Multiplying Eq. (57) by uν [46] we obtain the f (R, T )

perfect-fluid energy balance equation,

ρ̇ + 3(ρ + P)H = − fT
8π + fT

[
(ρ + P)uμ∇μ ln | fT |

+uμ∇μ

(
ρ − P

2

) ]
, f = f

(
R

(
g, �̃

)
, T

)
, (65)

where we have denoted H = (∇μuμ
)
/3, and ˙ = d/ds =

uμ∇μ.
Multiplying (57) by the projection operator hν

λ, defined
as hν

λ ≡ δν
λ + uνuλ [46], with the properties uνhν

λ = 0,
hν

λ∇μuν = ∇μuλ, and hνλ∇ν = (
gνλ + uνuλ

) ∇ν = ∇λ +
uλuν∇ν , respectively, we obtain the (non-geodesic) equation
of motion of massive test particles:

uν∇νu
λ = d2xλ

ds2 + �λ
μνu

μuν = −hνλ∇ν P + hνλQν

ρ + P
,

(66)

where

hνλQν = fT /2

8π + fT
hνλ∇ν(ρ − P). (67)

3.2 Balance equations in the conformal frame

In the following for notational simplicity we define first a
mixed-component vector field,

Vμ
ν ≡ 8π

(
Tμ

ν − δ
μ
ν

2
T

)
− δ

μ
ν

2
f

−
[ (

Tμ
ν + �μ

ν

) − δ
μ
ν

2
(T + �)

]
fT . (68)

Since ∇̃μG̃
μ
ν ≡ 0, from Eq. (40) we at once get the conser-

vation equations in the conformal frame:

∇̃μV
μ
ν − 2Vμ

ν ∇̃μ ln |F |
= 2FG̃μ

ν∇̃μF − 2Vμ
ν ∇̃μ ln |F | = 0

= ∇μV
μ
ν +

(
�̃

μ
λμ − �

μ
λμ

)
V λ

ν −
(
�̃λ

νμ − �λ
νμ

)
Vμ

λ

−2Vμ
ν ∇̃μ ln | F |

= ∇μV
μ
ν + 2Vμ

ν

(
∂μ − ∇̃μ

)
ln |F | − V

2
∂ν ln |F | , (69)

where V ≡ δν
μV

μ
ν = − [8πT − (T + �) fT + 2 f ] =

−FR
(
g, �̃

)
according to Eq. (15), and we have used Eq.

(28). Taking into account that F is a scalar and ∇̃μF =
∇μF = ∂μF , then

∇μV
μ
ν = V

2
∂ν ln |F | , (70)
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or equivalently

∇μ

[
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

] − ∇ν

2

[
FR

(
g, �̃

)
− f

]

= −
R

(
g, �̃

)
∂νF

2
, (71)

where we have used the relation 8πT − (T + �) fT + f =
FR

(
g, �̃

)
− f on the left hand side. Hence one can easily see

that the equations above are exactly the same as the energy
balance equation (57).

3.3 Thermodynamic interpretation of f (R, T ) gravity
theories

For the sake of completeness we briefly present the thermo-
dynamic interpretation of f (R, T ) gravity theories, as dis-
cussed in [46]. The non-conservation of the matter energy-
momentum tensor strongly suggests that, due to the matter–
geometry coupling, a particle creation processes may take
place during the cosmological evolution. This phenomenon
is also specific to quantum field theories in curved space-
times, as pointed out in [90–92], and it is a consequence
of a time varying gravitational field. Hence, f (R, T ) the-
ory, which also involves particle creation, may lead to the
possibility of a semiclassical description of quantum field
theoretical processes in gravitational fields.

3.3.1 Particle and entropy fluxes, and the creation pressure

Particle creation implies that the covariant divergence of
the basic equilibrium quantities, including the particle and
entropy fluxes, as well as of the energy-momentum tensor,
are now different from zero. Consequently, all the balance
equilibrium equations must be modified to include particle
creation [93–95]. In the presence of gravitationally generated
matter, the balance equation for the particle flux Nμ ≡ nuμ,
where n is the particle number density, becomes

∇μN
μ = ṅ + 3Hn = n�, (72)

where � is the particle production rate, which can be
neglected in the case that � � H . The entropy flux vector
is defined to be Sμ ≡ suμ = nσuμ, where s is the entropy
density, and σ is the entropy per particle. The divergence of
the entropy flux gives

∇μS
μ = nσ̇ + nσ� ≥ 0. (73)

If we consider a specific σ which is constant, then

∇μS
μ = nσ� = s� ≥ 0, (74)

that is, the variation of the entropy is entirely due to (adiabatic
gravitational) particle creation processes. Since s > 0, from
the above equation it follows that the particle creation rate
must satisfy the condition � ≥ 0, that is, gravitational fields
can generate particles, but the inverse process is prohibited.
The energy-momentum tensor of a fluid in the presence of
particle creation must also be modified to take into account
the second law of thermodynamics, so that [96]

Tμν = Tμν
eq + �Tμν, (75)

where Tμν
eq denotes the equilibrium component (4), and

�Tμν is the correction due to particle creation. Due to the
isotropy and homogeneity of space-time, the extra contri-
bution to the equilibrium energy-momentum tensor must be
represented by a scalar process. Generally one can write

�T 0
0 = 0, �T j

i = −Pcδ
j
i , (76)

where Pc is the dynamic creation pressure that describes phe-
nomenologically the thermodynamic effect of particle cre-
ation in a macroscopic system. In a covariant representation
we have [96]

�Tμν = −Pch
μν = −Pc

(
gμν + uμuν

)
, (77)

which immediately gives uμ∇ν�Tμν = 3HPc. Therefore
in the presence of particle creation the total energy balance
equation uμ∇νTμν = 0, which follows from Eq. (75), imme-
diately gives

ρ̇ + 3H (ρ + P + Pc) = 0. (78)

The thermodynamic quantities must also satisfy the Gibbs
law, which can be formulated as [94]

nT d
( s

n

)
= nT dσ = dρ − ρ + p

n
dn, (79)

where T is the thermodynamic temperature of the system.

3.3.2 Thermodynamic quantities in f (R, T ) gravity

After some simple algebraic manipulations the energy bal-
ance Eq. (93) can be reformulated as

ρ̇ + 3H (ρ + P + Pc) = 0, (80)

where the creation pressure Pc is defined as
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Pc = − fT (1 + w) ρ

8π + fT

{
ln | fT | + 1 − w

2 (1 + w)
− 1

3H

×
[
∇μ

(
uμ ln | fT |)+ 1

(1 + w) ρ
∇μ

(
uμ (1−w) ρ

2

)]}
,

(81)

where we have denoted w = P/ρ. Then the generalized
balance equation (93) can be derived from the divergence of
the total energy momentum tensor Tμν , defined as

Tμν = (ρ + P + Pc) u
μuν + (P + Pc) g

μν. (82)

On the other hand under the assumption of adiabatic particle
production, with σ̇ = 0, the Gibbs law gives

ρ̇ = (ρ + P)
ṅ

n
= (ρ + P) (� − 3H) , (83)

which together with the energy balance equation gives imme-
diately the relation between the particle creation rate and the
creation pressure as

� = −3HPc
ρ(1 + w)

. (84)

In the framework of f (R, T ) gravity theory we obtain for
the particle creation rate the general expression

� = fT
8π + fT

{
3H

[
ln | fT | + 1 − w

2 (1 + w)

]

−
[
∇μ

(
uμ ln | fT |)+ 1

(1 + w) ρ
∇μ

(
uμ (1 − w) ρ

2

)]}
.

(85)

Hence the condition� ≥ 0 imposes a strong constraint on the
physical parameters of the theory. In the case of pressureless
dust, with P = 0, w = 0, under the assumption fT > 0,
we obtain the following general cosmological constraint that
must be satisfied by the function fT for all times:

3H

(
ln | fT | + 1

2

)
≥ ∇μ

(
uμ ln | fT |)+ 1

2ρ
∇μ

(
ρuμ

)
. (86)

The divergence of the entropy flux vector can be reformu-
lated in terms of the creation pressure as

∇μS
μ = − 3nσHPc

ρ(1 + w)
. (87)

Finally, we consider the temperature evolution in a system
with particle creation. In order to fully determine the time
behavior of a relativistic fluid we must add two equations
of state for the density and pressure, which have the general

form ρ = ρ(n, T ) and p = p(n, T ), respectively. Then we
obtain

ρ̇ =
(

∂ρ

∂n

)

T
ṅ +

(
∂ρ

∂T

)

n
Ṫ . (88)

By using the energy and particle balance equations we find

− 3H (ρ + P + Pc) =
(

∂ρ

∂n

)

T
n (� − 3H) +

(
∂ρ

∂T

)

n
Ṫ .

(89)

With the use of the thermodynamic identity [96]

T
(

∂P

∂T

)

n
= ρ + P − n

(
∂ρ

∂n

)

T
, (90)

Equation (89) yields the temperature evolution of a relativis-
tic fluid in the presence of matter creation:

Ṫ
T =

(
∂P

∂ρ

)

n

ṅ

n
. (91)

In the particular case (∂P/∂ρ)n = w = constant, we obtain
for the temperature–particle number dependence the simple
expression T ∼ nw.

3.3.3 The case w = −1

Based on the homogeneous and isotropic Friedmann–
Robertson–Walker metric, and on the energy conservation
equation ρ̇ + 3H(1 + w)ρ = 0, in [97], general cosmo-
logical thermodynamic properties with an arbitrary, varying
equation-of-state parameter w(a), where a is the scale fac-
tor, were discussed. The w = − 1-crossing problem of w

was explicitly pointed out, and the behaviors of the quanti-
ties (ρ(a), μ(a), T (a), etc.) at/near w = −1 were discussed.
As a result of this study it was concluded that all cosmologi-
cal quantities must be regular and well defined for all values
of w(a), and indeed they are [97]. In the present thermody-
namical approach we have assumed that matter is created in
an ordinary form, and therefore all our previous results are
valid for w ≥ 0. However, the thermodynamic approach and
the interpretation of f (R, T ) gravity can be extended to the
case w < 0. In the following we will consider this problem,
and we show that our results are valid, in the sense of regu-
larity and of being well defined, even in the case of w = −1.
In particular, we concentrate on the temperature evolution
equation,

Ṫ
T =

(
∂P

∂ρ

)

n

ṅ

n
, (92)
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which still holds even if w = P/ρ = −1. The demonstra-
tion is as follows. First we consider the perfect-fluid energy-
momentum balance equation,

ρ̇ + 3(ρ + P)H = − fT
8π + fT

[
(ρ + P)uμ∇μ ln | fT |

+uμ∇μ

(
ρ − P

2

)]
, f = f (R(g, �̃), T ). (93)

When w = −1, Eq. (93) becomes

ρ̇ = − fT
8π + fT

uμ∇μρ ≡ −3HPc, (94)

where Pc is the matter creation pressure. Under the assump-
tion of adiabatic particle production, with σ̇ = 0, the Gibbs
law gives

ρ̇ = (ρ + P)
ṅ

n
= 0, (95)

where σ is the entropy per particle. That is, from the above
two equations, we obtain

ρ̇ = Pc = 0. (96)

Since ρ = ρ (n, T ), we have

ρ̇ =
(

∂ρ

∂n

)

T
ṅ +

(
∂ρ

∂T

)

n
Ṫ = 0. (97)

Combining the above equation and the thermodynamic iden-
tity [96]

T
(

∂P

∂T

)

n
= ρ + P − n

(
∂ρ

∂n

)

T
= −n

(
∂ρ

∂n

)

T
, (98)

it immediately follows that Eq. (92) still holds even for neg-
ative values of w = − 1. If w = −1 = constant, we can find
from Eq. (92) that nT is a constant, or T ∼ 1/n. This rela-
tion shows that for very low density “dark energy” particles
their thermodynamic temperature is extremely high, while
high particle number (density) systems have a very low tem-
perature. In the limit n → ∞, the temperature of the “dark
energy” made system tends to zero.

4 Cosmology of Palatini f (R, T ) gravity

In the present section we investigate the cosmological impli-
cations of the Palatini formulation of f (R, T ) gravity. We
assume that the Universe is flat, homogeneous and isotropic,
with the metric given in comoving coordinates by the
Friedmann–Robertson–Walker metric,

ds2 = gμνdxμdxν = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
,

(99)

where a(t) is the scale factor. We also introduce the Hubble
function, defined as H = ȧ/a. We assume that the matter
content of the Universe consists of a perfect fluid that can be
characterized by two thermodynamic parameters, the energy
density ρ, and the pressure P , respectively. As for the rela-
tions of the geometric quantities in the g and g̃ frames, their
detailed computation is presented in Appendix C.

4.1 Generalized Friedmann equations in Palatini f (R, T )

gravity

Substituting the expression of the perfect-fluid energy-
momentum tensor as well as Eqs. (61), (62) and (C11) into
the Palatini field Eq. (33), from the 00 component we obtain
the first modified Friedmann equation as

3H2 = 1

2F

[
8π (ρ + 3P) + (ρ + P) fT

+ f − 3Ḟ2

2F
− 6H Ḟ

]
. (100)

Similarly, with the help of Eqs. (61), (62) and (C12), we can
obtain the second modified Friedmann equation from the ‘i i’
components of Eq. (33),

2Ḣ + 3H2 = −1

2F

[
8π (ρ − P) + (ρ + P) fT

− f − 3Ḟ2

2F
+ 2F̈ + 4H Ḟ

]
. (101)

Note that the first modified Friedmann equation (100) can be
written more compactly as

(
H + Ḟ

2F

)2

= 8π (ρ + 3P) + (ρ + P) fT + f

6F
. (102)

Finally, we substitute Eqs. (61) and (C10) into Eq. (34) and
obtain the trace equation

FR
(
g, �̃

)
− 2 f = 8πT − (T + �) fT

= 6F
(
Ḣ + 2H2

)

−3

(
Ḟ2

2F
− F̈ − 3H Ḟ

)
− 2 f. (103)

By eliminating the term 3H2 between the two generalized
Friedmann equations we obtain the evolution equation for the
Hubble function as given by
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Ḣ = −1

2F

[
(8π + fT ) (ρ + P) − 3Ḟ2

2F
+ F̈ − H Ḟ

]
.

(104)

The f
(
R

(
g, �̃

)
, T

)
→ f

(
R

(
g, �̃

))
limits of the two

modified Friedmann equations can be given by

6H2F − f = 8π (ρ + 3P) − 3Ḟ2

2F
− 6H Ḟ (105)

and

−2F
(

2Ḣ + 3H2
)
+ f = 8π (ρ − P)− 3Ḟ2

2F
+2F̈+4H Ḟ .

(106)

If we go one step further and take f
(
R

(
g, �̃

))
→

R
(
g, �̃

)
, then f = R(g) = 6

(
Ḣ + 2H2

)
and the above

two equations reduce to

6H2 − 6
(
Ḣ + 2H2

)
= −6

(
Ḣ + H2

)
= 8π (ρ + 3P)

(107)

and

−2
(

2Ḣ + 3H2
)

+ 6
(
Ḣ + 2H2

)

= 2Ḣ + 6H2 = 8π (ρ − P) . (108)

That is,

Ḣ + H2 = −4π

3
(ρ + 3P) (109)

and

H2 = 8π

3
ρ. (110)

Hence the first modified Palatini f (R, T ) Friedmann equa-
tion (100) reduces to the ordinary second Friedmann equation
(109) when f (R, T ) → R.

4.2 The energy balance equation

With the help of Eq. (C2), we can directly work out the covari-
ant divergence of the energy-momentum tensor (4) as

∇μT
μ
i = ∂μT

μ
i + �μ

μνT
ν
i − �ν

μi T
μ
ν

= ∂i T
i
i + �

μ
μi T

i
i − �0

0i T
0
0 − 3�1

11T
1
1

= 0, i = 1, 2, 3, (111)

and

∇μT
μ
0 = ∂μT

μ
0 + �μ

μνT
ν
0 − �ν

μ0T
μ
ν

= ∂0T
0
0 + �

μ
μ0T

0
0 − �0

00T
0
0 − 3�1

10T
1
1

= −ρ̇ − 3H(ρ + P). (112)

Substituting the above two equations and Eqs. (61) and (62)
into the already known Palatini f (R, T ) energy balance
equation (93),

∇μT
μ
ν = fT

8π − fT

[ (
Tμ

ν + �μ
ν

) ∇μ ln | fT |

+∇μ�μ
ν − 1

2
∇νT

]
, (113)

we obtain

ρ̇+3H(ρ+P) = fT
8π

[
Ṗ − 3ρ̇

2
−

(
3H + ḟT

fT

)
(ρ + P)

]
.

(114)

When f (R, T ) → f (R), the energy balance equation
reduces to the ordinary conservation equation,

ρ̇ + 3H(ρ + P) = 0. (115)

4.3 Deceleration parameter and equation of state of the
Universe

An important cosmological parameter, indicating the accel-
erating/decelerating nature of the cosmological dynamics is
the deceleration parameter q, defined to be

q = d

dt

(
1

H

)
− 1 = − Ḣ

H2 − 1. (116)

Using Eqs. (100) and (104), we immediately obtain

q = 3
(8π + fT ) (ρ + P) − 3Ḟ2

2F + F̈ − H Ḟ

8π (ρ + 3P) + (ρ + P) fT + f − 3Ḟ2

2F − 6H Ḟ
− 1.

(117)

For a vacuum Universe with ρ = P = 0, the condition
for accelerated expansion, q < 0, reduces to

F̈ − 3Ḟ2/2F − H Ḟ

f − 3Ḟ2/2F − 6H Ḟ
<

1

3
. (118)

The deceleration parameter can also be defined, by anal-
ogy with the standard general relativistic cosmology, in terms
of the effective parameter weff of the equation of state of the
Universe as

q = 1 + 3weff

2
, (119)
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giving

weff = 2q − 1

3
. (120)

By using the above definition we obtain for the effective
parameter of the equation of state of the Universe the expres-
sion

weff = 2
(8π + fT ) (ρ + P) − 3Ḟ2

2F + F̈ − H Ḟ

8π (ρ+3P)+(ρ + P) fT + f − 3Ḟ2

2F − 6H Ḟ
− 1.

(121)

4.4 The de Sitter solution

Next, we investigate the possibility of the existence of a de
Sitter type solution in the framework of the Palatini formu-
lation of f (R, T ) gravity. The de Sitter solution corresponds
to H = H0 = constant, and Ḣ = 0, respectively. Assuming
that the Universe is filled with a pressureless dust, we have
P = 0, and T = −ρ. Moreover, we adopt for the function
f the functional form f (R, T ) = k(R) + g(T ), where for
simplicity we take g(T ) = 8πβT , with β a constant. Then
the energy balance equation (114) takes the form

(
1 + 3β

2

)
ρ̇ = −3H0 (1 + β) ρ, (122)

with the general solution given by

ρ(t) = ρ0e
−α̃t , (123)

where ρ0 is an integration constant, and we have denoted

α̃ = 3H0 (1 + β)

1 + 3β/2
. (124)

Equation (104) becomes

F̈ − 3Ḟ2

2F
− H0 Ḟ + 8π (1 + β) ρ0e

−α̃t = 0. (125)

In the limit of large times the last, exponential term in the
above equation becomes negligibly small, and hence we can
approximate the solution of Eq. (125) by

F(t) ≈ F0(
eH0t − 1

)2 , (126)

where F0 is an arbitrary constant of integration, and without
any loss of generality we have taken the second integration

constant as zero. Then the first generalized Friedmann equa-
tion (100) gives the Lagrangian function of the model as

f (t) = 6H2
0 F + 3Ḟ2

2F
+ 6H0 Ḟ + 8π (1 + β) T . (127)

On the other hand the trace of Eq. (103) gives (note that in
the following R = R(g))

FR + 3

(
Ḟ2

F
+ 4H0 Ḟ

)
= 8π (1 + β) T + 2 f, (128)

or

R(t) = 12H2
0 + 24π (1 + β)

T

F
. (129)

Equations (127) and (129) give a parametric representa-
tion of f as a function of R, with t taken as a parameter. Once
the function t = t (R) is obtained from Eq. (129), by substi-
tuting it in Eq. (127) we can find the explicit dependence of
f on R.

4.5 Comparison with the metric f (R, T ) cosmology

Using the Friedmann–Robertson–Walker metric, and the
field equation (9), we can similarly derive the two Fried-
mann equations in the metric formulation. The cosmological
equations in metric f (R, T ) gravity are different from their
counterparts in the Palatini formalism, due to the presence of
some dynamical terms related to fR , and they are given by

3H2 = 1

2F

[
8π (ρ + 3P) + (ρ + P) fT

+ f + 3 f̈ R + 3H ḟR

]
, (130)

2Ḣ + 3H2 = −1

2F

[
8π (ρ − P) + (ρ + P) fT

− f − f̈ R − 5H ḟR

]
. (131)

Besides, the deceleration parameter q = −Ḣ/H2 − 1 can
be obtained:

q = 3
(8π + fT ) (ρ + P) + f̈ R − H ḟR

8π (ρ + 3P) + (ρ + P) fT + f + 3 f̈ R + 3H ḟR
−1.

(132)

For ρ = P = 0, an accelerated Universe with q < 0
requires that

f̈ R − H ḟR
f + 3 f̈ R + 3H ḟR

<
1

3
. (133)
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The condition for accelerated expansion in the metric
f (R, T ) gravity is very different from the similar condition
given by Eq. (118), in the Palatini formulation of the theory.
The presence of the extra term, 3Ḟ2/2F , in Eq. (118) may
have a significant effect on the transition from the decelerat-
ing to the accelerating phase. In the Palatini formulation the
moment of the transition to the accelerated expansion with
q ≤ 0 is determined by the equation

f̈ R − ḟ 2
R/ fR + H ḟR − f/3 = 0, (134)

with fR = fR
(
R

(
g, �̃

)
, T

)
, while in the metric f (R, T )

gravity the same condition is given by the much simpler
expression

6H ḟR + f = 0, (135)

with f = f (R(g), T ). It is interesting to note that the condi-
tions for the transition to an accelerated expansion in the vac-
uum case are independent in both approaches on fT . How-
ever, the Palatini formulation of f (R, T ) gravity allows for
a much richer cosmological dynamics, as compared to the
metric formulation.

As for the energy-momentum balance equation and the
non-geodesic equation of motion of massive test particles:
since they are all derived from the divergence of the energy-
momentum tensor, and since ∇μT

μ
ν is the same in the two

formalisms, independently of the functional form of f , the
energy balance equations and the equations of motion have
the same functional form in both approaches.

4.6 Specific cosmological models in the Palatini f (R, T )

gravity

In the present section we will investigate two specific cosmo-
logical models in the framework of the Palatini formulation
of f (R, T ) gravity. We will assume that the action of the
gravitational field has the general form

f (R, T ) = R
(
g, �̃

)
+ k

(
R

(
g, �̃

))
+ 8πβg(T ), (136)

where β is a constant, and k
(
R

(
g, �̃

))
and g(T ) are arbi-

trary functions of the Ricci scalar and the trace of the matter
energy-momentum tensor. For the function g(T ) for sim-
plicity we will assume a simple linear dependence on T , so

that g(T ) = T . As for the function k
(
R

(
g, �̃

))
, we will

consider two cases, corresponding to the Starobinsky model

k(R) ∼ R2
(
g, �̃

)
[98], and the 1/R

(
g, �̃

)
case, respec-

tively.

4.6.1 f (R, T ) = R
(
g, �̃

)
+ α

16π
R2

(
g, �̃

)
+ 8πβg(T )

We consider a Palatini f (R, T ) model, specified by a func-
tional form of f (R, T ) given as

f (R, T ) = R
(
g, �̃

)
+ α

16π
R2

(
g, �̃

)
+8πβg(T ), (137)

where α, β are constants, g(T ) is a function that depends
on T solely, and for simplicity we set g(T ) = T . For
this Lagrangian we immediately find F = fR = 1 +
(α/8π) R

(
g, �̃

)
, fT = 8πβgT , gT ≡ ∂g(T )/∂T = 8πβ.

Moreover, we assume that the cosmological fluid satisfies
a linear barotropic equation of state of the form P = wρ,
w = constant.

Consequently, from the trace of (15) of the Palatini field
equations we first obtain

(
1 + αR

8π

)
R = 8πT − 8πβ (T + �) + 2 f, (138)

thus

R = 8π [(1 − 3w) + β(3 − 5w)] ρ ≡ 8πβ0ρ. (139)

When β → 0, β0 → 1 − 3w, and R
(
g, �̃

)
→ −8πT ,

respectively. Substituting Eq. (139) back into the expressions
of f (R, T ) and F , we obtain

f = 8π

[
β0 + β0

2

2
αρ + β(3w − 1)

]
ρ (140)

and

F = 1 + β0αρ. (141)

Substituting Eqs. (139)–(141) into the Friedmann Eq. (102),
we find

[
H + β0αρ̇

2 (1 + β0αρ)

]2

= 1 + β
2 (3 − w) + β0

2

4 αρ

(1 + β0αρ)

8πρ

3
.

(142)

Substitution of the expression of fT into the balance equation
(114) gives

ρ̇ = −β1Hρ, (143)

where we have denoted

β1 ≡ 3(1 + β)(1 + w)

1 + β
2 (3 − w)

. (144)
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When β → 0, then β1 = 3(1 + w). Substituting Eq. (143)
into Eq. (142), we find

[
1 + β0

(
1 − β1

2

)
αρ

]2

1 + β0αρ
H2

= 8πρ

3

[
1 + β

2
(3 − w) + β0

2

4
αρ

]
. (145)

Taking into account the limit αρ → 0, we have the series
expansion

(1 + β0αρ)

[
1 + β

2 (3 − w) + β2
0

4 αρ

]

[
1 + β0

(
1 − β1

2

)
αρ

]2 ≈ β2 + β3αρ, (146)

where we have denoted β2 = 1 + β(3 − w)/2 and β3 =
β0 {β0/4 − [1 + β(3 − w)/2] (1 − β1)}. Then Eq. (145)
takes the form

H2 = 8πρ

3
(β2 + β3αρ) . (147)

Equation (143) can be immediately integrated to give

ρ = ρ0a
−β1 . (148)

Hence Eq. (147) becomes a first-order differential equation,

ȧ =
√

8π

3
ρ0a

1−β1

√
β2aβ1 + β3αρ0, (149)

with the general solution given by

a(t) =
(

2π

3
β1

2β2ρ0t
2 − β3

β2
αρ0

) 1
β1

. (150)

In the limit of large times we obtain a(t) ∼ t2/β1 , and
H(t) = (2/β1) (1/t), respectively. The deceleration param-
eter in this model is given by q = β1/2 − 1, and once the
coefficient β1 satisfies the condition β1/2 < 1, the Universe
will experience an accelerated evolution. For an arbitrary w,
the condition for a power law type accelerated expansion
is β < − (1 + 3w) /4w, a condition which shows that, for
w > 0, β must take negative values.

4.6.2 f (R, T ) = R
(
g, �̃

)
− α2

3R
(
g,�̃

) + 8πβg(T )

Now let us consider the following f (R, T ) gravity Palatini
type model:

f
(
R

(
g, �̃

)
, T

)
= R

(
g, �̃

)
− α2

3R
(
g, �̃

) + 8πβg(T ),

(151)

which immediately gives F = 1 + α2R−2
(
g, �̃

)
/3.

From the trace of (15) of the Palatini field equations we
obtain

R2
(
g, �̃

)
+ �R

(
g, �̃

)
− α2 = 0, (152)

where we have denoted

� = 8π [T − (T + �)βgT + 2βg(T )] . (153)

The algebraic equation (152) has two distinct solutions. How-
ever, only one of them can be adopted as the physical solution,
more exactly the one which in the limit f → R, would give
R = −8πT , which is the trace of the Einstein field equation.
Hence when � ≤ 0, the physical solution of Eq. (152) is [99]

R
(
g, �̃

)
= −1

2

(
� −

√
�2 + 4α2

)
. (154)

In the following we will study this cosmological model
under the approximation α � |�| [99], which allows us
to find the evolution of the Universe at later times when
R

(
g, �̃

)
is relatively small. Under the adopted approxima-

tion we can expand R
(
g, �̃

)
to the order of O (|�|), and we

obtain

R
(
g, �̃

)
≈ −1

2
� + α, (155)

f
(
R

(
g, �̃

)
, T

)
≈ −2

3
� + 2

3
α + 8πβg(T ), (156)

F ≈ 1

3α
� + 4

3
. (157)

For simplicity, we set again g(T ) = T . Using the approx-
imations (155), (156) and (157), respectively, we can easily
obtain the Palatini f (R, T ) field equations for this model:

R̃μν = gμν

4
α + 8π

(
3

4
Tμν − 5gμν

16
T

)
− 8πβ

×
[(

3

4
�μν − 5gμν

16
�

)
+

(
3

4
Tμν − gμν

16
T

)]
.

(158)

When f (R, T ) → f (R), β → 0, and the above field equa-
tions reduce to the field equations considered within the Pala-
tini formulation of f (R) gravity, considered in [99],2:

2 Note that in our result there is a minus sign before α, when compared
with Eq. (24) in [99]. The reason is that a different solution has been
chosen in Eq. (17) of [99], while we have adopted the solution given by
our Eq. (154).
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R̃μν = gμν

4
α + 8π

(
3

4
Tμν − 5gμν

16
T

)
. (159)

With the equation of state w = P/ρ, and since T =
−ρ +3P for a perfect fluid, we have � = −8πβ0ρ; besides,
we already know from Eq. (143) that ρ̇ = −β1Hρ. Thus,
similar to Eq. (145), we have

[
1 − πβ0 (2 − β1)

ρ
α

]2

1 − 2πβ0
ρ
α

H2

=
[

1 + (3 + 4β) w + 2

3
β0

]
πρ + α

12
. (160)

In the first-order approximation in ρ/α we obtain

H2 = α

12
+

[
1

6
β0(5 − β1) + (3 + 4β)w + 1

]
πρ. (161)

Hence in the present model a cosmological constant α/12
is automatically generated, due to the 1/R modification of
the gravitational Lagrangian. Hence for ρ → 0, the Universe
will end in a de Sitter phase, with H = H0 = √

α/12 =
constant. For ρ �= 0, we have ρ = ρ0a−β1 , and the evolution
of the scale factor is determined by the equation

ȧ = a

√
α

12
+ β4ρ0

aβ1
, (162)

where we have denoted β4 = [
β0(5 − β1)/6 + (3 + 4β)w +

1
]
π , with the general solution given by

a(t) = 12
1
β1

{√
β4ρ0

α
sinh

[
sinh−1

⎛
⎝ a

β1
2

0

2
√

3
√

β4ρ0
α

⎞
⎠

+
√

αβ1 (t − t0)

4
√

3

]} 2
β1

, (163)

where we have used the initial condition a (t0) = a0.
For the Hubble function we obtain

H(t) =
√

α

2
√

3
coth

[√
αβ1 (t − t0)

4
√

3

+ sinh−1

(
aβ1/2

0√
12β4ρ0/α

)]
, (164)

while the deceleration parameter of this model is given by

q(t) = 1

2
β1sech2

[√
αβ1 (t − t0)

4
√

3

+ sinh−1
(

aβ1/2
0√

12β4ρ0/α

)]
− 1, (165)

where sech t = 1/cosh t . In the limit t → ∞, q → −1,
and hence the Universe ends in a de Sitter type accelerating
phase, independent of the matter equation of state.

a. The matter dominated phase The matter dominated phase
corresponds to the choice w = 0 in the matter equation of
state, that is, to a Universe filled with pressureless baryonic
matter. In order to investigate the behavior of the cosmolog-
ical model during matter domination, we consider the series
expansion of the cosmological parameters. Thus we obtain

a(t) ≈ a0 +
a

1− β1
2

0 β4ρ0

√
αa

β1
0

β4ρ0
+ 12

2
√

3
(t − t0)

+ 1

24
a1−β1

0

[
αaβ1

0 −6 (β1−2) β4ρ0

]
(t−t0)

2+ · · · ,

(166)

H(t) ≈ a
− β1

2
0

√
αaβ1

0 + 12β4ρ0

2
√

3
− 1

2
β1β4ρ0a

−β1
0

× (t − t0) + β2
1β4ρ0a

− 3β1
2

0

√
αaβ1

0 + 12β4ρ0

8
√

3

× (t − t0)
2 + · · · , (167)

q(t) ≈ 6 (β1 − 2) β4ρ0 − αaβ1
0

αaβ1
0 + 12β4ρ0

−
√

3αβ2
1a

β1
2

0 (β4ρ0)

√
αaβ1

0 + 12β4ρ0(
αaβ1

0 + 12β4ρ0

)
2

(t − t0)

+
αβ3

1β4ρ0

(
αaβ1

0 − 6β4ρ0

)

4
(
αaβ1

0 + 12β4ρ0

)
2

(t − t0)
2 + · · · .

(168)

These equations describe the main cosmological parame-
ters during the matter dominated era. The expansion is decel-
erating, and, depending on the model parameters, the deceler-
ation parameter can have a large range of positive values. The
transition to the accelerating phase occurs at a time interval
ttr , which in the first-order approximation is found as

ttr ≈ t0 +
a

− β1
2

0

√
αa

β1
0

3β4ρ0
+ 4

[
6 (β1 − 2) β4ρ0 − αaβ1

0

]

αβ2
1
√

β4ρ0
.

(169)

Since ttr must be greater than t0, it follows that in order
for the model to admit a matter dominated era followed by
a transition to an accelerated phase, the model parameters
must satisfy the condition 6 (β1 − 2) β4ρ0 − αaβ1

0 > 0, or,
equivalently,

(
1 + 3β

2

)
αaβ1

0

6β4ρ0
< 1, (170)
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a condition that can easily be satisfied by appropriately
choosing the free parameters in the gravitational action.

5 Discussions and final remarks

In the present paper we have considered in the framework
of the Palatini formalism the gravitational field equations for
the modified gravity f (R, T ) theory, implying a geometry–
matter coupling, with the trace of the energy-momentum ten-
sor included as a field variable in the gravitational action. We
have derived the field equations by independently varying
the metric and the connection in the f (R, T ) type gravita-
tional action, and we have formulated them in both the initial
metric frame and the conformal one, in which the indepen-
dent connection can be expressed as the Levi-Civita con-
nection of an auxiliary, energy-momentum trace dependent
metric, which is related to the physical metric by a conformal
transformation. Similar to the metric case [46] the energy-
momentum tensor of the matter is not conserved, and the
energy and momentum balance equations take the same form
as in the metric theory. Generally, Palatini type theories have
a number of special properties that make them especially
attractive for analyzing strong gravity phenomena, like, for
example, the dynamics of the early Universe or stellar col-
lapse processes [100–107]. The coupling of the trace of the
energy-momentum tensor with the curvature scalar generates
some extra terms in the gravitational field equations, which
strongly depend on the possible functional forms for the
geometry– energy momentum trace coupling. If, for exam-
ple, it would be possible to generate through the geometry–
energy momentum trace coupling some repulsive forces, then
one could obtain cosmological models that are non-singular
at extremely high densities and high geometric curvatures, or
one could even construct models for non-singular collapsing
stars as viable alternatives for the black hole paradigm.

To obtain such repulsive gravitational forces, in modi-
fied gravity theories with geometry–matter coupling no new
degrees of freedom in the matter side (exotic sources) or in
the gravitational side are required in the total action. In these
models the extra force is simply induced by the coupling
between matter and geometry. Our present results show that
Palatini type theories might play an important role in the phe-
nomenology of gravity at both high densities (energies), as
well as in the very low density limit. On the other hand, in
the variational process the assumption of the independence
between metric and connection is essential to obtain second-
order differential equations for the metric tensor. It is thus
possible to assume that at large/small scales the effective
descriptions of the gravitational forces, going beyond stan-
dard general relativity, could come from the Palatini formu-
lation of gravity theories.

In the Palatini type formulation of f (R, T ) gravity, the
equation of motion of massive particles is non-geodesic, and
in three dimensions and in the Newtonian limit, Eq. (66) can
be formally represented as an ordinary vector equation in
three dimensions of the form 
a = 
aN + 
a f where 
a rep-
resents the total acceleration of the particle, 
aN denotes the
Newtonian gravitational acceleration, while 
a f is the accel-
eration due to the presence of the extra force induced by
the coupling between geometry and matter. This shows that
one observational or experimental possibility of testing the
effects of the coupling between geometry and the trace of the
energy-momentum tensor could be in the physical domain
of extremely small particle accelerations, with values of the
order of 10−10 m/s2. Such an acceleration could explain the
observed behavior of test particles rotating around galax-
ies, which is usually explained by postulating the existence
of dark matter. However, as a possible astrophysical appli-
cation of the gravitational field equations derived with the
Palatini formalism one may consider an alternative view to
the dark matter problem, in which the mass discrepancy in
galaxies and clusters of galaxies as well as the galactic rota-
tion curves are explained by the existence of a non-minimal
coupling between matter and geometry.

We have also briefly investigated the intriguing feature
of the non-conservation of the energy-momentum tensor of
the matter in f (R, T ) gravity theory by interpreting it in
the framework of the thermodynamics of open systems. We
have interpreted this effect as describing phenomenologi-
cally the particle production in the cosmological fluid fill-
ing the Universe, with the extra terms induced by the non-
minimal coupling between R and T assumed to describe
particle creation processes, with the gravitational field act-
ing as a source for particles. We have explicitly obtained the
particle creation rates, the entropy flux, the creation pressure
and entropy generation rate in a covariant form, as func-
tions of the Lagrangian density f (R, T ) of the theory, and
of its derivatives, respectively. On the other hand it is natu-
ral to assume that such particle production processes are of
the same nature as the similar processes that appear in the
framework of quantum field theory in curved space-times.
A static gravitational field does not produce particles. But
a time dependent gravitational field can generate new parti-
cles. This interesting analogy between gravitational theories
with geometry–matter coupling and quantum field theory in
curved space-times may open the possibility of an effective
classical description of quantum gravity on small geometric
scales.

As a cosmological application of the Palatini formalism
of f (R, T ) theory we have briefly considered two classes
of cosmological models, corresponding to two choices of
the gravitational Lagrange density f (R, T ) = k(R)+ g(T ),
with k(R) ∼ R2 and k(R) ∼ 1/R, respectively. In both
cases we have assumed for the function g(T ) the simple
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form g(T ) ∼ T . We have explicitly shown that both models
can generate an accelerating expansion of the Universe, with
a power law and an exponential form of the scale factor,
respectively.

In both metric and Palatini formulation of f (R, T ) grav-
ity, dark energy is interpreted as a material–geometrical fluid,
with a negative parameter of the equation of state, for which
the function f (R, T ) is not known a priori. Hence, similar to
the case of f (R) gravity, there is a need of a model indepen-
dent reconstruction of the Lagrangian of theory, which can
be done by using some relevant cosmographic techniques to
determine which f (R, T ) model is favored with respect to
others. In the case of f (R) gravity, a cosmographic approach
was introduced in [16], by assuming that the cosmological
principle is valid, and that dark energy can be described
as a geometric fluid. Then, after expanding the cosmolog-
ical observables (the Hubble parameter, the luminosity dis-
tance, the apparent magnitude modulus, the effective pres-
sure etc.) into a Taylor series, and matching the derivatives of
the expansions with cosmological data, one can obtain some
model independent constraints on the gravitational theory.
The coefficients of the power series of the expansion of the
scale factor, calculated at present time (at redshift z = 0) are
known as the cosmographic series. The importance of the
cosmographic approach is that it does not need the assump-
tion of a specific cosmological model. If the scalar curva-
ture is negligible, the Taylor series of the scale factor around
�t = t − t0 = 0 can be represented as [108]

1 − a(t)

H0
≈ �t + q0

2
H0�t + j0

6
H2

0 �t3 − s0

24
H3

0 �t4 +· · · ,

(171)

where the jerk parameter j is defined as j (t) = (
1/aH3

)(
d3

a/dt3
)
, while the snap parameter s is given by s(t) =(

1/aH4
) (
d4a/dt4

)
[110]. A strategy to infer the transition

redshift zda , which indicates the passage of the Universe from
a decelerating to an accelerating phase, was proposed, in the
framework f (R) gravity, in [109]. This goal can be achieved
by numerically reconstructing f (z), that is, the correspond-
ing gravitational Lagrangian f (R) re-expressed as a func-
tion of the redshift z, and by matching f (z) with cosmogra-
phy. The high-redshift f (R) cosmography was considered in
[110], by adopting the technique of polynomial reconstruc-
tion. Instead of considering the Taylor expansions that proved
to be non-predictive for redshifts z > 1, the Padé ratio-
nal approximations were considered, by performing series
expansions that converge in the domains of high redshifts. A
first step in this strategy is the reconstruction of the function
f (z), by assuming that the Ricci scalar can be inverted with
respect to the redshift z.

The cosmographic approach developed in [108–110] for
the case of f (R) gravity can also be extended to both

metric and Palatini f (R, T ) gravities. To be more spe-
cific, such an approach requires one to rewrite f (R, T )

or f
(
R

(
g, �̃

)
, T

)
into a function f (z). Similar to the

approach introduced in [16] for f (R) gravity in the metric
formulation, in order to handle high-z data one can rewrite
the f (R, T ) function into an f (z) function generally through
the use of Padé polynomials. As a next step data fitting based
on some general f (z) models is required. Hence one can gen-
eralize the approaches of [108–110] for the case of f (R, T )

theory, in both metric and Palatini formulations, and numer-
ically determine the coefficients of the series expansions for
R and T in the f (R, T ) models through cosmological data
fitting. The cosmographic approach could help distinguish
between the roles and weights of the functions R and T in
the gravitational action, and it could lead to a full comparison
of the theory with the cosmological observations.

The cosmology of Palatini f (R, T ) gravity represents a
promising way for the explanation of the accelerated phases
in the dynamics of the Universe, which is characterized by
its evolution in both very early and late stages. In the present
paper we have introduced some basic theoretical tools nec-
essary for the in-depth investigation of the cosmological and
astrophysical aspects of the Palatini formulation of f (R, T )

gravity.
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Appendix A: f (R, T ) field equations in the metric for-
mulation

We first introduce two basic formulas we are going to use,

2δ
√−g√−g

= gμνδgμν = −gμνδg
μν, (A1)

δ�ρ
μν = 1

2
gρλ · 2gσλδ�

σ
μν

= 1

2
gρλ

(∇μδgνλ + ∇νδgλμ − ∇λδgμν

)
, (A2)

where in Eq. (A2) we have taken into account the relations
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δ
(∇μgνλ

) = δ
(∇νgλμ

) = δ
(∇λgμν

) = 0. A variation δgμν

of the metric tensor then leads to

δT = δ
(
gαβTαβ

) =
(
Tαβ

δgαβ

δgμν
+ �μν

)
δgμν

= (
Tμν + �μν

)
δgμν, �μν ≡ gαβ δTαβ

δgμν
(A3)

and

δRμν = δ
(
∂ρ�ρ

μν − ∂ν�
ρ
μρ + �

ρ
ρλ�

λ
μν − �

ρ
νλ�

λ
μρ

)

= ∇ρδ�ρ
μν − ∇νδ�

ρ
μρ, (A4)

respectively, where the above relation is called the Palatini
identity. Then for the variation of the metric we obtain

δS =
∫ √−g

16π

[
fR

(
Rμνδg

μν + gμνδRμν

) + fT δT

−gμν

2
f δgμν − 8πTμνδg

μν
]

d4x

=
∫ √−g

16π

[
fR

(
Rμν +gμν�−∇μ∇ν

)+ fT
(
Tμν +�μν

)

−gμν

2
f − 8πTμν

]
δgμν d4x, � ≡ gαβ∇α∇β.

(A5)

Assuming that the variation of δgμν vanishes at infinity, then

∫ √−g

16π

(
gμνg

αβ fR∇α∇β − fR∇μ∇ν

)
δgμν d4x

=
∫ √−g

16π

(−gμνg
αβ∇α fR∇βδgμν + ∇μ fR∇νδg

μν
)

d4x

=
∫ √−g

16π

(
gμνg

αβδgμν∇β∇α fR − δgμν∇ν∇μ fR
)

d4x

=
∫ √−g

16π
δgμν

(
gμν� − ∇μ∇ν

)
fR d4x (A6)

and

δS =
∫ √−g

16π

[(
Rμν + gμν� − ∇μ∇ν

)
fR

+(
Tμν +�μν

)
fT − gμν

2
f (R, T )−8πTμν

]
δgμν d4x .

(A7)

Since δS = 0, from the above relation we obtain immedi-
ately the field equation (8) of f (R, T ) gravity theory.

AppendixB:Divergenceof thematter energy-momentum
tensor in the metric formalism

By taking the covariant divergence of Eq. (9), with the use
of the mathematical identity ∇μG

μ
ν(g) = 0 we obtain

∇μ

[
fRG

μ
ν(g)

] − Rμν(g)∇μ fR + δ
μ
ν

2
R(g)∇μ fR

=
[
Gμ

ν(g) − Rμ
ν (g) + δ

μ
ν

2
R

]
∇μ fR

= ∇μ

[
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

]

+δ
μ
ν

2

(∇μ f − fR∇μR
)

+ (�∇ν − ∇ν�) fR − Rμν(g)∇μ fR

= ∇μ

[
8πTμ

ν − (
Tμ

ν + �μ
ν

)
fT

] + fT
2

∇νT = 0, (B1)

where we have used the relations

(∇ν� − �∇ν) φ = gαβ
(∇ν∇α∇β − ∇α∇β∇ν

)
φ

= gαβ (∇ν∇α − ∇α∇ν) ∇βφ

= gαβ Rμ
βαν∇μφ

= −Rμν∇μφ

(B2)

and

∇ν f (R, T ) = fR∇νR + fT∇νT, (B3)

respectively.

Appendix C: The geometric quantities in the FRWgeom-
etry

For the metric (99), we have

∂λg
μν =

{
2aȧ, λ = 0 and μ = ν �= 0,

0, others.
(C1)

Hence the only nonzero components of the connection,
�

ρ
μν(g) = (gρσ /2)

(
∂νgσμ + ∂μgσν − ∂σ gμν

)
, are now

�0
i i = aȧ = a2H and �i

0i = �i
i0 = ȧ

a
= H, i = 1, 2, 3.

(C2)

In that case,

R00(g) = ∂ρ�
ρ
00 − ∂0�

ρ
0ρ + �ρ

σρ�σ
00 − �

ρ
0σ �σ

0ρ

= −3
(
Ḣ + H2

)
, (C3)

Rii (g) = a2
(
Ḣ + 3H2

)
, (C4)

and

R(g) = gμνRμν(g) = g00R00(g) + 3g11R11(g)

= 6
(
Ḣ + 2H2

)
. (C5)

Hence

G00(g) = R00(g) − g00

2
R(g) = 3H2, (C6)

Gii (g) = Rii (g) − gii
2

R(g) = −a2
(

2Ḣ + 3H2
)

. (C7)
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Substituting Eqs. (C3) and (C4) into Eq. (30) we obtain

R̃00

(
�̃

)
= R00(g) + 1

F

[
3 (∇0F)2

2F
−

(
∇0∇0 + g00

2
�

)
F

]

= −3
(
Ḣ + H2

)
+ 1

F

[
3Ḟ2

2F
−

(
F̈ + 1

2
F̈ + 3H

2
Ḟ

)]

= −3
(
Ḣ + H2

)
+ 3

2F

(
Ḟ2

F
− F̈ − H Ḟ

)
(C8)

and

R̃ii

(
�̃

)
= Rii (g) + 1

F

[
3 (∇i F)2

2F
−

(
∇i∇i + gii

2
�

)
F

]

= a2
(
Ḣ+ 3H2

)
+ a2

F

(
H Ḟ + H Ḟ

F̈

2
+ 3H Ḟ

2

)

= a2
[(

Ḣ + 3H2
)

+ 1

2F

(
F̈ + 5H Ḟ

)]
.

(C9)

Similarly, by substituting Eq. (C5) into Eq. (31) we find

R
(
g, �̃

)
= R(g) + 3

F

[
(∇F)2

2F
− �F

]

= 6
(
Ḣ + 2H2

)
− 3

F

(
Ḟ2

2F
− F̈ − 3H Ḟ

)
.

(C10)

Some combinations of the above equations lead to

G00

(
g, �̃

)
= R̃00

(
�̃

)
− g00

2
R

(
g, �̃

)

= G00(g) + 1

F

{
(g00� − ∇0∇0) F

+ 3

2F

[
∇0F ∇0F − g00

2
(∇F)2

]}

= 3H2 + 1

2F

(
3Ḟ2

2F
+ 6H Ḟ

)
(C11)

and

Gii

(
g, �̃

)
= R̃ii

(
�̃

)
− gii

2
R

(
g, �̃

)

= Gii (g) + 1

F

{ (
gii� − ∇i∇ j

)
F

+ 3

2F

[
∇i F ∇i F − gii

2
(∇F)2

]}

= a2
[
−

(
2Ḣ + 3H2

)
+ 1

2F

(
3Ḟ2

2F
− 2F̈ − 4H Ḟ

)]
.

(C12)

Note that for the above calculations we have used the relations

∇μF = ∂μF = (
Ḟ, 0, 0, 0,

)
, (C13)

∇0∇0F = (
∂00 − �λ

00∂λ

)
F = ∂00F = F̈, (C14)

∇i∇i F = (
∂i i − �λ

i i∂λ

)
F = −�0

i i∂0F = −a2H Ḟ, (C15)

and

�F = gμν∇μνF = gμν
(
∂μ∂ν − �λ

μν∂λ

)
F

=
(
−∂00 − 3g11�0

11∂0

)
F = −F̈ − 3ȧ

a
Ḟ

= −F̈ − 3H Ḟ, (C16)

respectively.

References

1. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks,
P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner
et al., Astron. J. 116, 1009 (1998)

2. S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent,
P. Castro, S. Deustua, S. Fabbro, A. Goobar, D. Groom et al.,
Astrophys. J. 517, 565 (1999)

3. R.A. Knop, G. Aldering, R. Amanullah, P. Astier, G. Blanc, M.
Burns, A. Conley, S. Deustua, M. Doi, R. Ellis et al., Astrophys.
J. 598, 102 (2003)

4. R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, K.
Barbary, M. Burns, A. Conley, K. Dawson, S. Deustua et al.,
Astrophys. J. 716, 712 (2010)

5. D.H. Weinberg, M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G.
Riess, E. Rozo, Phys. Rep. 530, 87 (2013)

6. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)
7. J.M. Overduin, P.S. Wesson, Phys. Rep. 402, 267 (2004)
8. H. Baer, K.-Y. Choi, J.E. Kim, L. Roszkowski, Phys. Rep. 555, 1

(2015)
9. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

10. T. Padmanabhan, Phys. Rep. 380, 235 (2003)
11. R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582

(1998)
12. S. Tsujikawa, Class. Quantum Gravity 30, 214003 (2013)
13. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)
14. J.D. Barrow, A.C. Ottewill, J. Phys. A Math. Gen. 16, 2757 (1983)
15. C.G. Böhmer, T. Harko, F.S. Lobo, Astropart. Phys.29, 386 (2008)
16. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D

70, 043528 (2004)
17. S. Nojiri, S.D. Odintsov, Int. J. Geometr. Methods Mod. Phys. 4,

115 (2007)
18. F. S. Lobo, arXiv preprint arXiv:0807.1640 (2008)
19. A. De Felice, S. Tsujikawa, arXiv preprint arXiv:1002.4928, p.

451
20. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)
21. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
22. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)
23. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.

Sp. Sci. 342, 155 (2012)
24. P. Avelino, T. Barreiro, C.S. Carvalho, A. da Silva, F.S. Lobo, P.

Martín-Moruno, J.P. Mimoso, N.J. Nunes, D. Rubiera-García, D.
Sáez-Gómez et al., Symmetry 8, 70 (2016)

25. O. Bertolami, C.G. Böhmer, T. Harko, F.S. Lobo, Phys. Rev. D
75, 104016 (2007)

26. T. Harko, F.S.N. Lobo, Eur. Phys. J. C 70, 373 (2010)
27. N.Montelongo Garcia, F.S.N. Lobo, Class. Quantum Gravity 28,

085018 (2011)
28. J. Wang, K. Liao, Class. Quantum Gravity 29, 215016 (2012)
29. T. Harko, F.S.N. Lobo, Phys. Rev. D 86, 124034 (2012)
30. T. Harko, F.S.N. Lobo, O. Minazzoli, Phys. Rev. D 87, 047501

(2013)
31. N. Tamanini, T.S. Koivisto, Phys. Rev. D 88, 064052 (2013)

123

http://arxiv.org/abs/0807.1640
http://arxiv.org/abs/1002.4928


430 Page 22 of 22 Eur. Phys. J. C (2018) 78 :430

32. Y.-B. Wu, Y.-Y. Zhao, Y.-Y. Jin, L.-L. Lin, J.-B. Lu, X. Zhang,
Mod. Phys. Lett. A 29, 1450089 (2014)

33. Z. Haghani, T. Harko, H.R. Sepangi, S. Shahidi, Int. J. Mod. Phys.
D 23, 1442016 (2014)

34. T. Harko, M.J. Lake, Eur. Phys. J. C 75, 60 (2015)
35. R. March, J. Páramos, O. Bertolami, S. Dell’Agnello, Phys. Rev.

D 95, 024017 (2017)
36. P.P. Avelino, R.P.L. Azevedo, Phys. Rev. D 97, 064018 (2018)
37. P.P. Avelino, L. Sousa, Phys. Rev. D 97, 064019 (2018)
38. T. Harko, F.S.N. Lobo, Galaxies 2, 410 (2014)
39. T. Harko, F.S. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84,

024020 (2011)
40. R.-J. Yang, Phys. Dark Univ. 13, 87 (2016)
41. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, Eur. Phys.

J. C 74, 2743 (2014)
42. V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, Eur. Phys.

J. C 75, 157 (2015)
43. V. Dzhunushaliev, arXiv:1505.02747 (2015)
44. X. Liu, T. Harko, S.-D. Liang, Eur. Phys. J. C 76, 420 (2016)
45. F.G. Alvarenga, A. de la Cruz-Dombriz, M.J.S. Houndjo, M.E.

Rodrigues, D. Saez-Gomez, Phys. Rev. D 87, 103526 (2013)
46. T. Harko, Phys. Rev. D 90, 044067 (2014)
47. E.H. Baffou, M.J.S. Houndjo, M.E. Rodrigues, A.V. Kpadonou,

J. Tossa, Phys. Rev. D 92, 084043 (2015)
48. P.H.R.S. Moraes, J.D.V. Arbanil, M. Malheiro, JCAP 06, 005

(2016)
49. Z. Yousaf, K. Bamba, M.Zaeem, ul Haq Bhatti, Phys. Rev. D 93,

124048 (2016)
50. M.E.S. Alves, P.H.R.S. Moraes, J.C.N. de Araujo, M. Malheiro,

Phys. Rev. D 94, 024032 (2016)
51. M. Zubair, S. Waheed, Y. Ahmad, Eur. Phys. J. C 76, 444 (2016)
52. M.-X. Xu, T. Harko, S.-D. Liang, Eur. Phys. J. C 76, 449 (2016)
53. A. Salehi, S. Aftabi, JHEP 1609, 140 (2016)
54. R. Zaregonbadi, M. Farhoudi, N. Riazi, Phys. Rev. D 94, 084052

(2016)
55. A. Das, F. Rahaman, B.K. Guha, S. Ray, Eur. Phys. J. C 76, 654

(2016)
56. H. Shabani, A.H. Ziaie, Eur. Phys. J. C 77, 31 (2017)
57. B.-M. Gu, Y.-P. Zhang, H. Yu, Y.-X. Liu, Eur. Phys. J. C 77, 115

(2017)
58. M. Zubair, H. Azmat, I. Noureen, Eur. Phys. J. C 77, 169 (2017)
59. M. Sharif, I. Nawazish, Eur. Phys. J. C 77, 198 (2017)
60. P.H.R.S. Moraes, P.K. Sahoo, Phys. Rev. D 96, 044038 (2017)
61. E.H. Baffou, M.J.S. Houndjo, M. Hamani-Daouda, F.G.

Alvarenga, Eur. Phys. J. C 77, 708 (2017)
62. F. Rajabi, K. Nozari, Phys. Rev. D 96, 084061 (2017)
63. G.A. Carvalho, R.V. Lobato, P.H.R.S. Moraes, J.D.V. Arbanil,

R.M. Marinho Jr., E. Otoniel, M. Malheiro, Eur. Phys. J. C 77,
871 (2017)

64. P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo, Eur. Phys. J. C 78, 46
(2018)

65. P.H.R.S. Moraes, R.A.C. Correa, G. Ribeiro, Eur. Phys. J. C 78,
192 (2018)

66. P.K. Sahoo, P. Sahoo, B.K. Bishi, S. Aygün, New Astron. 60, 80
(2018)

67. A. Einstein, Sitz. Königlich Preuss. Akad. Wiss. (Berlin) 1923,
76 (1923)

68. A. Einstein, Sitz. Königlich Preuss. Akad. Wiss. (Berlin) 137, 137
(1923)

69. A. Einstein, Sitz. Königlich Preuss. Akad. Wiss. (Berlin) 137, 32
(1923)

70. G.J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011)
71. G.J. Olmo, Introduction to Palatini Theories of Gravity and Non-

singular Cosmologies, Chapter of the Book “Open Questions in
Cosmology”, ed. by Gonzalo J. Olmo. InTech Publishing, Rijeka.
arXiv:1212.6393 (2012)

72. K. Enqvist, T. Koivisto, H.J. Nyrhinen, Phys. Rev. D 88, 104008
(2013)

73. D. Bazeia, L. Losano, R. Menezes, G.J. Olmo, D. Rubiera-Garcia,
Eur. Phys. J. C 75, 569 (2015)

74. C. Bambi, A. Cardenas-Avendano, G.J. Olmo, D. Rubiera-Garcia,
Phys. Rev. D 93, 064016 (2016)

75. M. Szydlowski, A. Stachowski, A. Borowiec, Eur. Phys. J. C 77,
603 (2017)

76. S.-L. Cao, S. Li, H.-R. Yu, T.-J. Zhang, RAA 18, 26 (2018)
77. T. Harko, T.S. Koivisto, F.S. Lobo, G.J. Olmo, Phys. Rev. D 85,

084016 (2012)
78. S. Capozziello, T. Harko, F.S. Lobo, G.J. Olmo, Int. J. Mod. Phys.

D 22, 1342006 (2013)
79. L. Amendola, K. Enqvist, T. Koivisto, Phys. Rev. D 83, 044016

(2011)
80. T.S. Koivisto, D.F. Mota, M. Sandstad, arXiv preprint

arXiv:1305.4754 (2013)
81. C.G. Böhmer, F.S. Lobo, N. Tamanini, Phys. Rev. D 88, 104019

(2013)
82. T. Harko, T.S. Koivisto, F.S. Lobo, Mod. Phys. Lett. A 26, 1467

(2011)
83. E. Barrientos, F.S.N. Lobo, S. Mendoza, G.J. Olmo, D. Rubiera-

Garcia, arXiv:1803.05525 [gr-qc] (2018)
84. T. Koivisto, Class. Quantum Gravity 23, 4289 (2006)
85. X. Meng, P. Wang, Gen. Relat. Gravity 36, 2673 (2004)
86. G.J. Olmo, Phys. Rev. Lett. 98, 061101 (2007)
87. P. Touboul, G. Métris, M. Rodrigues et al., Phys. Rev. Lett. 119,

231101 (2017)
88. J. Bergé, P. Brax, G. Métris, M. Pernot-Borràs, P. Touboul, J.-P.

Uzan, Phys. Rev. Lett. 120, 141101 (2018)
89. L.D. Landau, The Classical Theory of Fields (Elsevier, Oxfrod,

2013)
90. L. Parker, Phys. Rev. Lett. 21, 562 (1968)
91. L. Parker, Phys. Rev. 183, 1057 (1969)
92. S.A. Fulling, L. Parker, B.L. Hu, Phys. Rev. 10, 3905 (1974)
93. I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Proc. Natl. Acad.

Sci. 85, 7428 (1988)
94. M.O. Calvao, J.A.S. Lima, I. Waga, Phys. Lett. A 162, 223 (1992)
95. J. Su, T. Harko, S.-D. Liang, Adv. High Energy Phys. 2017,

7650238 (2017)
96. J.A.S. Lima, I.P. Baranov, Phys. Rev. D 90, 043515 (2014)
97. E.N. Saridakis, P.F. Gonzalez-Diaz, C.L. Siguenza, Class. Quan-

tum Gravity 26, 165003 (2009)
98. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
99. Dan N. Vollick, Phys. Rev. D 68, 063510 (2003)

100. B. Li, K.C. Chan, M.-C. Chu, Phys. Rev. D 76, 024002 (2007)
101. G.J. Olmo, H. Sanchis-Alepuz, S. Tripathi, Phys. Rev. D 80,

024013 (2009)
102. T.S. Koivisto, Phys. Rev. D 82, 044022 (2010)
103. M. Sharif, Z. Yousaf, Eur. Phys. J. C 73, 2633 (2013)
104. Y. Fan, P. Wu, H. Yu, Phys. Lett. B 746, 230 (2015)
105. M. Szydlowski, A. Stachowski, A. Borowiec, A. Wojnar, Eur.

Phys. J. C 76, 567 (2016)
106. A. Stachowski, M. Szydlowski, A. Borowiec, Eur. Phys. J. C 77,

406 (2017)
107. N. Kaewkhao, B. Gumjudpai, Phys. Dark Univ. 20, 20 (2018)
108. S. Capozziello, M. De Laurentis, O. Luongo, Ann. Phys. 526, 309

(2014)
109. S. Capozziello, O. Luongo, Proceedings of the Conference

Quantum Field Theory and Gravity, Tomsk, Russia 2014.
arXiv:1411.2350 (2014)

110. S. Capozziello, R.D. Agostino, O. Luongo, J. Cosmol. Astropart.
Phys. 05, 008 (2018)

123

http://arxiv.org/abs/1505.02747
http://arxiv.org/abs/1212.6393
http://arxiv.org/abs/1305.4754
http://arxiv.org/abs/1803.05525
http://arxiv.org/abs/1411.2350

	Palatini formulation of f(R,T) gravity theory, and its cosmological implications
	Abstract 
	1 Introduction
	2 Palatini formulation of f(R,T) gravity
	2.1 The metric formalism
	2.2 Palatini formulation of f(R,T) gravity
	2.2.1 Field equations from metric variation
	2.2.2 The Palatini connection
	2.2.3 Conformal geometry and g frame field equations
	2.2.4 Field equations in the tildeg frame

	2.3 The Newtonian limit
	2.4 Violation of the equivalence principle

	3 Energy and momentum balance equations
	3.1 The divergence of the matter energy-momentum tensor
	3.2 Balance equations in the conformal frame
	3.3 Thermodynamic interpretation of f(R,T) gravity theories
	3.3.1 Particle and entropy fluxes, and the creation pressure
	3.3.2 Thermodynamic quantities in f(R,T) gravity
	3.3.3 The case w=-1


	4 Cosmology of Palatini f(R,T) gravity
	4.1 Generalized Friedmann equations in Palatini f(R,T) gravity
	4.2 The energy balance equation
	4.3 Deceleration parameter and equation of state of the Universe
	4.4 The de Sitter solution
	4.5 Comparison with the metric f(R,T) cosmology
	4.6 Specific cosmological models in the Palatini f(R,T) gravity
	4.6.1 f(R,T) = R(g,tildeΓ) +  α16 π R2(g,tildeΓ) + 8πβg(T)
	4.6.2 f(R,T)=R(g,tildeΓ)-α2 3 R(g,tildeΓ)+8πβg(T)


	5 Discussions and final remarks
	Acknowledgements
	Appendix A: f(R,T) field equations in the metric formulation
	Appendix B: Divergence of the matter energy-momentum tensor in the metric formalism
	Appendix C: The geometric quantities in the FRW geometry
	References


