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Abstract We investigate the field equations of the con-
formally invariant models of gravity with curvature-matter
coupling, constructed in Weyl geometry, using the Palatini
formalism. We consider the case in which the Lagrangian
is given by the sum of the square of the Weyl scalar, the
strength of the field associated to the Weyl vector, and a
conformally invariant geometry-matter coupling term, con-
structed from the matter Lagrangian and the Weyl scalar.
After substituting the Weyl scalar in terms of its Rieman-
nian counterpart, the quadratic action is defined in Riemann
geometry and involves a nonminimal coupling between the
Ricci scalar and the matter Lagrangian. For the sake of gen-
erality, a more general Lagrangian, in which the Weyl vector
is nonminimally coupled with an arbitrary function of the
Ricci scalar, is also considered. By varying the action inde-
pendently with respect to the metric and the connection, the
independent connection can be expressed as the Levi-Civita
connection of an auxiliary Ricci scalar- and Weyl vector-
dependent metric, which is related to the physical metric by
means of a conformal transformation. The field equations are
obtained in both the metric and the Palatini formulations. The
cosmological implications of the Palatini field equations are
investigated for three distinct models corresponding to differ-
ent forms of the coupling functions. A comparison with the
standard �CDM model is also performed, and we find that
the Palatini type cosmological models can give an acceptable
description of the observations.
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1 Introduction

The remarkable success of Einstein’s theory of general rel-
ativity [1] and of its variational formulation [2] gave a huge
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impetus not only to gravitational physics, but also to math-
ematics. From a mathematical point of view, general rela-
tivity is based on Riemannian geometry, with the metric of
the spacetime describing all the properties of the gravita-
tional interaction. Almost immediately after the birth of gen-
eral relativity, in an attempt to unify the electromagnetic and
gravitational interactions in a fully geometric background,
Hermann Weyl proposed a generalization of the Riemann
geometry by introducing a supplementary geometric quan-
tity, called nonmetricity [3–7]. The basic idea in Weyl’s geo-
metric approach was to permit the length and orientation
of arbitrary vectors to change under parallel transport. In
Riemannian geometry, only a change in the orientation of
the vectors is allowed. The geometry obtained in this way
is called Weyl geometry, and it represents a consistent and
systematic generalization of Riemannian geometry. In trying
to provide a physical interpretation for his geometry, Weyl
identified the vector part of the connection with the poten-
tial four-vector of the electromagnetic field. However, this
identification is problematic. Immediately after the publi-
cation of Weyl’s theory, Einstein [8] pointed out that such
an identification would imply that identical atoms moving
on closed trajectories in electromagnetic fields would have
different physical properties (and sizes), implying that the
atoms would also have different electromagnetic spectra. The
change in frequency due to the size change is clearly incon-
sistent with the well-known observational properties of the
spectral lines. Einstein’s criticism led to the abandonment of
the physical Weyl theory in its initial formulation. However,
later on, Weyl proved that a satisfactory theory of the electro-
magnetic interaction is obtained by replacing the scale factor
with a complex phase. This remarkable result is at the origin
of U(1) gauge theory [9].

Even though Weyl’s geometric theory failed in its attempt
of unifying gravity and electromagnetism, as a geometric
theory it has many attractive features. It appears in many
physical contexts, for example in foundations of quantum
mechanics, elementary particle physics, scalar tensor theo-
ries of gravity, fundamental approaches to gravity, and cos-
mology. Hence, Weyl geometry has an important research
potential, yet to be fully explored, which may provide some
deeper insights into the fundamental problems of gravita-
tion, cosmology, and elementary particle physics [10–15].
Gravitational theories satisfying the requirement of confor-
mal invariance can be obtained using actions built up with
the help of the Weyl tensor Cαβγ δ . The corresponding action
is given by S = −(1/4)

∫
Cαβγ δCαβγ δ√−gd4x [16–21].

Gravitational field theories described by actions of this type
are called conformally invariant, or Weyl type gravity theo-
ries, and their properties and implications have been exten-
sively investigated in the literature [16–21].

A particularly interesting theoretical issue is the possible
relation between the Standard Model of elementary parti-

cle physics and its extensions, and Weyl geometry. The link
between elementary particle physics and geometry is pro-
vided by the concept of scale invariance, since this symmetry
may also appear at the quantum level [22,23]. All physical
scales, including the new physical scales beyond the Standard
Model, can be generated spontaneously by vacuum expec-
tation values of the fields. Moreover, scale symmetry can
maintain the classical hierarchy of scales [24,25]. The new
vector part of the connection in Weyl geometry is called, in
the modern interpretation, the dilatational gauge vector, or
the Weyl vector.

A systematic study of the relation between the Standard
Model (SM) of elementary particles and Weyl conformal
geometry was initiated and performed in [26–32] by con-
sidering a minimal embedding, with no new fields beyond
the SM spectrum and Weyl geometry. The action has the
Weyl gauge symmetry D(1), originating from the background
geometry. The model is based on Weyl quadratic gravity,
which experiences a spontaneous breaking of D(1) symme-
try by a geometric Stueckelberg mechanism, with the Weyl
gauge field acquiring mass from the spin-zero mode of the
R2 term in the action.

To describe the properties of the gravitational field, as
well as physics beyond SM, in [32] the following action was
proposed

S0 =
∫ [

1

4!
1

ξ2 R̃
2 − 1

4
F̃2

μν − 1

η2 C̃
2
μνρσ

]√−gd4x, (1)

where R̃ is the Weyl scalar, defined in the Weyl geometry,
and F̃μν is the strength of the Weyl vector ωμ, while C̃μνρσ

denotes the conformally invariant Weyl tensor.
In obtaining the gravitational field equations from a given

action, several approaches can be used. The most common
is the metric formalism, in which the action is varied with
respect to the metric tensor gμν . One can also use the Pala-
tini formalism, introduced by Einstein [33–35], where the
metric and the connection  are considered as independent
variables. To derive the field equations, the Lagrangian is var-
ied with respect to both g and . Finally, in the metric-affine
formalism, which generalizes the Palatini approach, the mat-
ter part of the action also depends on the connection, and is
varied with respect to it [36–39].

In the case of the Einstein–Hilbert action, the Palatini vari-
ation leads to the Einstein gravitational field equations, giv-
ing the same result as when varying the metric only. How-
ever, this is not generally true for other gravitational type
actions. For example, when used for an f (R) type gravita-
tional Lagrangian, originally introduced in [40–43], its met-
ric version in the Palatini formalism leads to second-order dif-
ferential equations instead of the fourth-order ones obtained
from the metric variation [44–56]. Moreover, in vacuum, the
Palatini formalism f (R) field equations reduce to the field
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equations of standard general relativity in the presence of a
cosmological constant. This result guarantees that the Pala-
tini type f (R) theory automatically passes the solar system
tests. Secondly, basic aspects of general relativity, such as
the presence of black holes and gravitational waves, are pre-
served in the Palatini approach. However, to date no real cri-
terion has been found indicating which variational formalism
is better to apply. On the other hand, the Palatini variational
procedure seems to be more attractive, since, when applied
to the Hilbert–Einstein action, one obtains standard general
relativity without the need to specify in advance the relation
between metric and connection.

Quadratic gravity with Lagrangian R2 + R2[μν] was inves-
tigated in the Palatini formalism in [30] by considering both
the connection and the metric independently. The action has
a gauged scale symmetry (or Weyl gauge symmetry) with
respect to the Weyl gauge field ωμ = ̃μ − μ, where ̃μ

and μ are the traces of the Weyl and Levi-Civita connec-
tions, respectively. In this approach, the underlying geometry
is non-metric due to the presence of the R2[μν] term acting as
a gauge kinetic term for ωμ. This theory has a spontaneous
breaking of gauged scale symmetry and mass generation in
the absence of matter. Interestingly, the necessary scalar field
ϕ is not added ad hoc, but it appears naturally from the R2

term. By absorbing the derivative term of the Stueckelberg
field, the gauge field becomes massive. In the broken phase,
the Einstein–Proca action of ωμ of mass proportional to the
Planck scale M ∼< ϕ > and a positive cosmological con-
stant are obtained. Below the Planck scale, ωμ decouples,
the connection becomes Levi-Civita, and the metricity con-
dition and Einstein’s general relativity are recovered. These
results remain valid in the presence of a non-minimally cou-
pled Higgs-like scalar field.

A comparative study of inflation in two theories of
quadratic gravity with gauged scale symmetry was per-
formed in [30]. Specifically, the original Weyl quadratic grav-
ity and a theory defined by a similar action but in the Palatini
approach were obtained by replacing the Weyl connection
by its Palatini counterpart. These two theories have differ-
ent vectorial non-metricities, induced by the gauge field ωμ.
In the absence of matter, these theories have a spontaneous
breaking of gauged scale symmetry, where the necessary
scalar field is of geometric origin and some of the quadratic
action. The Einstein–Proca action, the Planck scale, and the
metricity appear in the broken phase after the Weyl vector
field acquires mass through the Stueckelberg mechanism and
then decouples. In the presence of nonminimally coupled
matter, the scalar potential is similar in both theories. For
small field values, the potential is Higgs-like, while for large
field values inflation is possible. Both theories have a small
tensor-to-scalar ratio r ∼ 10−3, slightly larger in the Palatini
case. For a sufficiently small coupling parameter ξ1 ≤ 10−3,

Weyl’s theory gives a dependence r (ns) similar to that in
Starobinsky inflation [57–59].

It was pointed out in [60] that the model of the cos-
mic inflation with an asymptotically flat potential could be
obtained from the Palatini quadratic gravity, formulated in
Weyl geometry, by adding the matter field in such a way
that the local gauged conformal symmetry is broken in both
kinetic and potential terms.

A possible way to explain the recent cosmological data
indicating the presence of an accelerated expansion of the
universe and of dark matter (for a review of the observa-
tional evidence for acceleration, see [61]) is to postulate that
at galactic and extragalactic scales, Einstein’s general the-
ory of relativity must be replaced by a more general action
that describes the gravitational phenomenology beyond the
solar system [62,63]. Hence, observational evidence seems
to strongly point towards the necessity of going outside the
strict limits of general relativity, and for looking to new grav-
itational theories that may solve (or account) for the dark
energy and dark matter problems. Therefore, the Einstein
gravitational field equations that provide a very good expla-
nation of the gravitational processes in the solar system must
be replaced by a new set of field equations.

A possible generalization of the standard Einstein the-
ory is represented by gravitational theories implying a
curvature-matter coupling [64–70]. In this type of model,
the Hilbert–Einstein action of standard general relativity
S = ∫ (

R/2κ2 + Lm
)√−gd4x , where R is the Ricci scalar

and Lm is the matter Lagrangian, is replaced by more gen-
eral actions of the form S = ∫

f (R, Lm)
√−gd4x [66], or

S = ∫
f (R, T )

√−gd4x [67], where T is the trace of the
matter energy–momentum tensor. Similar couplings between
matter and geometry are also possible in the presence of non-
metricity and torsion [68–70]. For in-depth reviews and dis-
cussions of theories with curvature-matter coupling, see [71–
75]. The curvature-matter coupling approach leads to gravita-
tional theories having a much richer physical and mathemat-
ical structure as compared with standard general relativity.
They also provide interesting explanations for the accelerat-
ing expansion of the universe and possible solutions for the
dark energy and dark matter problems, respectively. But these
types of theories also face a number of very difficult mathe-
matical and physical problems. For the Palatini formulation
of the f (R, Lm) theory, see [76].

For the f (R, T ) gravity theory [67], in which a nonmin-
imal coupling between the Ricci scalar and the trace of the
energy–momentum tensor is introduced, its Palatini formula-
tion was investigated in detail in [77] by considering the met-
ric and the affine connection as independent field variables.
For this type of theory, the independent connection can be
expressed as the Levi-Civita connection of an auxiliary met-
ric, depending on the trace of the energy–momentum tensor
and related to the physical metric by a conformal transfor-
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mation. The field equations also led to the non-conservation
of the energy–momentum tensor. The thermodynamic inter-
pretation of the Palatini formulation of the theory was also
discussed. The cosmological implications of the theory were
also explored for several functional forms of the function f ,
and it was shown that the models could give an acceptable
description of the observational cosmological data.

An investigation of the coupling between matter and
geometry in conformal quadratic Weyl gravity was per-
formed in [78]. To construct the physical model and the
gravitational action, a coupling term of the form Lm R̃2 was
assumed in the Lagrangian, where R̃ is the Weyl scalar. It
is important to note that this coupling explicitly satisfies
the conformal invariance of the theory under the assump-
tion that the matter Lagrangian is conformally invariant. By
expressing R̃2 using an auxiliary scalar field and of the Rie-
mannian Ricci scalar, the gravitational action can be lin-
earized, leading in the Riemann space to a conformally invari-
ant f (R, Lm) type theory, with the matter Lagrangian non-
minimally coupled to the Ricci scalar.

The gravitational field equations of the theory can be
obtained in the metric formalism, together with the energy–
momentum balance equations. Similarly to other theo-
ries with geometry-matter coupling, the divergence of the
matter energy–momentum tensor does not vanish, and an
extra force, depending on the Weyl vector and the matter
Lagrangian, does appear in the geodesic equations of motion.
The theory can be interpreted thermodynamically as describ-
ing irreversible matter creation from the gravitational field.
The generalized Poisson equation and the Newtonian limit of
the equations of motion were also considered in detail. Con-
straints on the magnitude of the Weyl vector can be obtained
from the study of the perihelion precession of a planet in
the presence of an extra force, and an explicit estimation of
the numerical value of a constant Weyl vector in the solar
system is obtained from the observational data of Mercury.
The cosmological implications of the theory have been con-
sidered for the case of a flat, homogeneous and isotropic
Friedmann–Lemaitre–Robertson–Walker geometry. It turns
out that the conformally invariant f (R, Lm) model gives a
good description of the cosmological observational data for
the Hubble function up to a redshift of the order of z ≈ 3.

It is the goal of the present paper to consider the Palatini
formulation of the conformally invariant f (R, Lm) grav-
ity theory proposed in [78], which intrinsically contains a
curvature-matter coupling. The gravitational action is con-
structed directly in the framework of Weyl geometry, with
the Lagrangian density given by the sum of the square of
the Weyl scalar R̃ (the analogue of the Ricci scalar in Weyl
geometry), the strength Fμν of the geometric field associ-
ated with the Weyl vector ωμ, and a conformally invariant
geometry-matter coupling term Lm R̃2, constructed from the
matter Lagrangian and the Weyl scalar. After substituting

the Weyl scalar R̃ in terms of its Riemannian counterpart R,
one obtains a quadratic action defined in Riemann geometry,
which contains a nonminimal coupling between the Ricci
scalar and the matter Lagrangian. For the sake of generality,
we consider in our analysis a more general Lagrangian in
which the Weyl vector is nonminimally coupled to an arbi-
trary function of the Ricci scalar. By varying the action inde-
pendently with respect to the metric and the connection, it
turns out that the independent connection can be expressed as
the Levi-Civita connection of an auxiliary Ricci scalar- and
Weyl vector-dependent metric. This metric is related to the
physical metric by means of a conformal transformation. We
obtain the field equations in both the metric and the Palatini
formulations. The cosmological implications of the Palatini
field equations are investigated for three distinct theoretical
models corresponding to different (simple) forms of the cou-
pling functions. The conformally invariant quadratic Weyl
model is investigated in detail. A comparison with the stan-
dard �CDM model is also performed. Our main findings
indicate that the Palatini type cosmological models can give
an acceptable description of the cosmological observations,
at least up to a redshift of the order of z ≈ 2.

The present paper is organized as follows. In Sect. 2, after
a brief review of the fundamentals of Weyl geometry, the
gravitational action in the presence of conformally invariant
and an arbitrary geometry-matter coupling are written down,
and the field equations are obtained by varying the action with
respect to both metric and connection. The Palatini formula-
tion of the conformally invariant f (R, Lm) gravity theory is
presented in detail in Sect. 3. The cosmological implications
of the Palatini formulation of the f (R, Lm) gravity theory
are presented in Sect. 4. We discuss and conclude our results
in Sect. 5.

2 Gravitational field equations in quadratic Weyl
geometric gravity

In this section, after briefly reviewing the fundamentals
of Weyl geometry, we introduce the simplest conformally
invariant gravitational action in Weyl geometry in the pres-
ence of matter, constructed from the square of the Weyl scalar
R̃ and the strengths of the Weyl vector Fμν . Moreover, we
add to the gravitational action a geometry-matter coupling
term of the form Lm R̃2. This action can be reformulated in
the ordinary Riemann geometry by taking into account the
straightforward relation between the Weyl and Ricci scalars.
Moreover, the gauge condition on the Weyl vector is also
imposed, and thus we obtain a gravitational action, defined
in the ordinary Riemann geometry, which contains the square
of the Ricci scalar, the coupling between the Ricci scalar and
the square of the Weyl vector, some other contributions from
the Weyl geometry, and the geometry-matter coupling term.
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The field equations for this model are derived by using both
metric and Palatini formalisms.

2.1 Basics of Weyl geometry

We begin our investigation of the Palatini formulation of the
quadratic Weyl gravity in the presence of geometry-matter
coupling by presenting first some basic elements of Weyl
geometry. In the (pseudo)-Riemannian space in which Ein-
stein’s gravitational field equations are formulated, the metric
tensor gμν satisfies the metricity condition ∇μgαβ = 0. From
this condition one can immediately obtain the Levi-Civita
connection, as given by

ρ
μν(g) = 1

2
gρβ (∂νgβμ + ∂μgβν − ∂βgμν). (2)

By taking ν = ρ and summing over, we obtain μ ≡
ν

μν = ∂μ ln
√−g, where −g is the square root of the deter-

minant of the metric tensor g. Weyl conformal geometry, as
well as the corresponding gravity theory, is characterized by
the presence of a vectorial non-metricity, which implies that
the covariant divergence of the metric tensor does not vanish,
as in the Riemann geometry. Hence, the basic properties of
the Weyl geometry follow from the non-metricity condition

∇̃λgμν = −ωλgμν, (3)

where ωλ is the Weyl vector field. From this definition we
immediately obtain ωλ = (−1/4)gμν∇̃λgμν . By using the
definition of ∇̃μ in the Weyl connection ̃

ρ
μν , we obtain

∇̃λgμν = ∂λgμν − ̃
ρ
μλgρν − ̃

ρ
νλgμρ. (4)

After performing a cyclic permutation of the indices, we find

̃ρ
μν = ρ

μν(g) + 1

2
gρλ (∇̃λgμν − ∇̃μgνλ − ∇̃νgλμ). (5)

By taking into account Eq. (3), we obtain the Weyl con-
nection

̃ρ
μν = ρ

μν(g) + 1

2

[
ωνδ

ρ
μ + ωμδρ

ν − gμνω
ρ
]
. (6)

The Weyl connection ̃
ρ
μν is symmetric, with the property

̃
ρ
μν = ̃

ρ
νμ. Hence, it follows that the standard Weyl geom-

etry is torsionless. Additionally, ̃ is invariant with respect
to the Weyl local gauge transformation �(x) of the metric
gμν

ĝμν = �2(x)gμν,
√

−ĝ = �4√−g. (7)

With respect to these geometric transformations, the Weyl
gauge field ωμ transforms according to the rule

ω̂μ = ωμ − ∂μ ln �2. (8)

Equations (7) and (8) define a local gauged scale trans-
formation. Using the relation gαβ∇̃λgαβ = 2∇̃λ ln

√−g, for
the Weyl vector field we obtain the simple expression

ωλ = −1

2
∇̃λ ln

√−g. (9)

We now take ν = ρ in Eq. (6), and after summing over,
we find

̃μ = μ(g) + 2ωμ. (10)

The Riemann and Ricci tensors in Weyl geometry, as well
as the Weyl scalar, are defined similarly to their definition in
Riemannian geometry, but with the replacement of the Levi-
Civita connection 

ρ
μν(g) by the Weyl connection ̃

ρ
μν . Thus,

we obtain

R̃λ
μνσ (̃, g) = ∂ν̃

λ
μσ − ∂σ ̃λ

μν + ̃λ
νρ ̃ρ

μσ − ̃λ
σρ ̃ρ

μν, (11)

and

R̃μσ (̃, g) = R̃λ
μλσ (̃, g), R̃(̃, g) = gμσ R̃μσ (̃, g).

(12)

Since ̃ is invariant under the gauge transformations (7)
and (8), it follows that the Riemann and Ricci tensors of the
Weyl geometry are also scale-invariant. Due to the presence
of gμν in the Weyl scalar curvature R̃(̃, g), the Weyl scalar
also transforms covariantly according to

R̂(̃, g) = 1

�2 R̃(̃, g). (13)

Using the expression of ̃, we finally obtain

R̃(̃, g) = R(, g) − 3∇μωμ − 3

2
gμνωμων, (14)

where R(, g) is the Riemann scalar curvature, while ∇μωμ

is defined by the Levi-Civita connection.

2.2 Conformally invariant Weyl gravity

Before beginning the in-depth investigation of the Palatini
formulation of the conformally invariant Weyl gravity, we
first need to mention that the Ricci tensor R̃[μν] has an anti-
symmetric component R̃[μν] ≡ (1/2)

(
Rμν − Rνμ

)
, given

explicitly by
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R̃[μν] = 1

2

(
∂μ̃ρ

ρν − ∂ν̃
ρ
ρμ

)
. (15)

If one introduces the Weyl gauge field ωμ = (1/2)(
̃μ − μ

)
, then one can easily show that R̃[μν] takes the

form of the strength tensor of a Maxwell type field,

R̃[μν] = ∂μων − ∂νωμ ≡ F̃μν(ω). (16)

In the following we will consider the simplest version of
the Weyl conformal gravity in the presence of matter, with
action given by

SW
(
̃, g, Lm

)
=

∫ [ 1

4!
1

ξ2 R̃
2
(
̃, g

)
− 1

4
R̃2[μν]

− 1

4!γ 2 Lm R̃2
(
̃, g

) ]√−gd4x, (17)

where ξ and γ are two coupling constants. By taking into
account Eq. (29) for R[μν], we obtain the following action
for the conformally invariant Weyl type gravitational theory
in the presence of matter

SW
(
̃, g, Lm, ω

)
=

∫ [
1

4!
1

ξ2

(

1 − ξ2

γ 2 Lm

)

R̃2
(
̃, g

)

− 1

4
F̃2

μν(ω)

]√−gd4x . (18)

The action (18) is defined in Weyl geometry, with the
field strength tensor F̃μν given by F̃μν = ∇̃μων − ∇̃νωμ =
∇μων − ∇νωμ.

After substituting R̃
(
̃, g

)
with its Riemannian counter-

part obtained from Eq. (14), we find the corresponding action
in Riemann geometry as given by

SR (, g, Lm, ω)

= 1

4!
1

ξ2

∫ {(

1 − ξ2

γ 2 Lm

) [

R2 (, g)

−3R (, g)
(
ω2 + 2∇μωμ

)
+ 9

(∇μωμ
)2

+9ω2∇μωμ + 9

4
ω4

]

− 6ξ2 F̃2
μν

}√−gd4x, (19)

where we have denoted ω2 = gμνω
μων .

By performing a gauge transformation of the Weyl vector
field, we can always find a gauge in which ∇μωμ = 0. Hence,
by imposing the gauge condition on the Weyl vector, the
action in the Riemann geometry becomes

SR (, g, Lm, ω)

= 1

4!
1

ξ2

∫ { (

1 − ξ2

γ 2 Lm

)[

R2 (, g)

−3R (, g) ω2 + 9

4
ω4

]

− 6ξ2 F̃2
μν

}√−gd4x . (20)

For the sake of generality, and with the main goal of con-
sidering the Palatini versions of the Weyl gravitational theo-
ries constructed generally from Weyl geometry, in the follow-
ing we consider a general action, not necessarily conformally
invariant, which in the equivalent Riemann geometry can be
formulated as

S =
∫ {

1

2
f1 [R(g, )]G (Lm) + f2 [R(g, )]G (Lm) ω2

+9

4
G (Lm) ω4 − 1

4
F̃2

μν

}√−gd4x, (21)

where fi (R), i = 1, 2, and G (Lm) are arbitrary functions of
the Ricci scalar R = gμν R̄μν and of the matter Lagrangian.
The only condition for the functions fi (R), i = 1, 2, and
G (Lm) is the requirement that they are analytical functions
of the Ricci scalar R and the matter Lagrangian Lm ; that is,
they must possess a Taylor series expansion about any point
R and Lm . The conformally invariant Weyl geometric gravity
is a particular case of the action (21).

From its mathematical definition it turns out that the Rie-
mann tensor R̄ρ

μνλ is constructed entirely in terms of the Rie-

mannian connection ̄ . The Ricci tensor is defined according
to [79,80]

R̄μν = ∂λ̄
λ
μν − ∂ν̄

λ
μλ + ̄λ

μν̄
α
λα − ̄α

μλ̄
λ
να. (22)

In the Palatini approach, the gravitational action is for-
mally the same as in the standard general relativistic case,
but the Riemann tensor and the Ricci tensor are constructed
with the independent connection ̄. The variational proce-
dure consists in varying the action independently with respect
to both the metric and the connection. Thus, the connection
̄λ

μν is obtained by varying the gravitational field action, and
it is not directly constructed from the metric by using the
Levi-Civita formalism.

2.3 Gravitational field equations

In the following we will consider the field equations obtained
from the action (21) in the Palatini formalism. In order to do
so we need to vary the gravitational action independently
with respect to the metric and the connection.

In the following we define the Ricci scalar in terms of the
two independent variables

(
g, ̄

)
as
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R = gμν R̄μν, (23)

with R̄μν defined in Eq. (22).
We also introduce the matter energy–momentum tensor

of the matter according to the definition

Tμν = − 2√−g

δ
(√−gLm

)

δgμν
, (24)

thus obtaining

δLm

δgμν
= −1

2
Tμν + 1

2
Lmgμν. (25)

2.3.1 The metric field equations

By taking the variation of the action (21) with respect to
the metric only, and taking into account that g and ̄ are
independent variables, thus keeping the connection constant,
we immediately obtain
[

1

2
f ′
1(R) + f ′

2(R)ω2
]

R̄μν + f2(R)ωμων + 9

2
ω2ωμων

−1

2

[
1

2
f1(R) + f2(R)ω2 + 9

4
ω4

]

gμν

+1

2

[
1

2
f1(R) + f2(R)ω2 + 9

4
ω4

]

×G ′ (Lm)

G (Lm)

(
Lmgμν − Tμν

)

− 1

2G (Lm)
T̃ (ω)

μν = 0, (26)

where by a prime we have denoted a derivative with respect
to the argument f ′

i (R) = d fi (R)/dR, i = 1, 2, G ′ (Lm) =
dG (Lm) /dLm , and we have denoted

T̃ (ω)
μν = 1

2
√−g

δ

δgμν

(√−gF̃2
μν

)
. (27)

Alternatively, the metric field equations can be written as

R̄μν + G (Lm)

F

[
2 f2(R) + 9ω2

]
ωμων

− K

2F

[(

1 − G ′ (Lm)

G (Lm)
Lm

)

gμν + Tμν

]

− 1

F
T̃ (ω)

μν = 0,

(28)

where we have denoted

F
(
R, ω2, Lm

)
=

[
f ′
1(R) + 2 f ′

2(R)ω2
]
G (Lm) , (29)

and

K
(
R, ω2, Lm

)
=

[

f1(R) + 2 f2(R)ω2 + 9

2
ω4

]

G (Lm) ,

(30)

respectively.

2.3.2 Variation with respect to the Weyl vector

By taking the variation of the action (21) with respect to the
Weyl vector ω, we obtain the evolution equation

∇μ F̃
μν + 2 f2(R)G (Lm) ων + 9G (Lm) ω2ων = 0. (31)

In Riemann geometry, the Weyl field strength tensor F̃μν ,
due to its antisymmetry properties, automatically satisfies the
equations

∇σ F̃μν + ∇μ F̃νσ + ∇ν F̃σμ = 0. (32)

By using the mathematical relations F̃μν = gαμgβν

F̃αβ = gαμgβν
(∇αωβ − ∇βωα

) = ∇μων − ∇νωμ, we
immediately find

∇μ F̃
μν = ∇μ∇μων − ∇μ∇νωμ

= ∇μ∇μων − Rν
βωβ − ∇ν

(∇μωμ
)
, (33)

where the definitions of the Riemann tensor [79],

(∇μ∇ν − ∇ν∇μ

)
Aα = −Aβ Rα

βνμ, (34)

and its contraction,

(∇μ∇ν − ∇ν∇μ

)
Aμ = Aβ Rβν, (35)

where used. Therefore, it follows that the Weyl vector satis-
fies the generalized wave equation

�ων − Rν
βωβ + 2 f2(R)G (Lm) ων + 9G (Lm) ω2ων = 0,

(36)

where the gauge condition for ωμ, ∇μωμ = 0, has also been
used.

2.3.3 Variation with respect to the connection

In the Palatini formalism, the next step in obtaining the field
equations requires the variation of the action with respect to
the independent connection ̄. The variation can be done by
using the Palatini identity

δ R̄μν = ∇̄λ

(
δ̄λ

μν

) − ∇̄μ

(
δ̄λ

νλ

)
, (37)
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where ∇̄λ is the covariant derivative associated with the con-
nection ̄. In the following, we assume that the Weyl vector
ω, as well as the Weyl field strength F̃μν and the matter
Lagrangian Lm , are independent on the connection ̄.

By taking the variation of the action (21) with respect to
the connection ̄, we obtain

δS

δ̄
= 1

2

∫
Bμν

[∇̄λ

(
δ̄λ

μν

) − ∇̄μ

(
δ̄λ

νλ

)] √−gd4x, (38)

where we have denoted

Bμν =
[

1

2
f ′
1(R) + f ′

2(R)ω2
]

G (Lm) gμν. (39)

Integrating by parts, we immediately find

δS

δ̄
= 1

2

∫
∇̄λ

[√−g
(
Bμνδ̄λ

μν − Bλνδ̄α
να

)]
d4x

+1

2

∫
∇̄μ

[√−g
(
Bμνδλ

α − Bλνδμ
α

)]
δ̄α

λνd4x . (40)

In δS/δ̃, the first term is a total derivative, and thus it
can be removed. Hence, the variation of the action (21) with
respect to the connection becomes

∇̄μ

[√−g
(
Bμλδν

α − Bλνδμ
α

)] = 0. (41)

One can further simplify Eq. (41) by taking into account
that when α = ν, ∇̄μ(

√−gBμλ) = 0. Substituting back to
Eq. (41), one obtains

∇̄α

{√−g
[
f ′
1(R) + 2 f ′

2(R)ω2
]
G (Lm) gμν

}
= 0, (42)

or equivalently,

∇̄α

{√−gF
(
R, ω2, Lm

)
gμν

}
= 0, (43)

where F is defined in Eq. (29).
Equation (42) shows that the connection ̄ is compatible

with a conformal metric. We now introduce a new metric
hμν , conformal to gμν , and defined according to

hμν ≡
[
f ′
1(R) + 2 f ′

2(R)ω2
]
G (Lm) gμν

≡ F
(
R, ω2, Lm

)
gμν. (44)

Hence, we obtain
√−hhμν = √−g

[
f ′
1(R) + 2 f ′

2(R)ω2
]
G (Lm) gμν

= √−gF
(
R, ω2, Lm

)
gμν, (45)

where h is the determinant of the metric hμν . Thus, Eq. (42)
becomes the definition of the Levi-Civita connection ̄ of
hμν , giving

̄λ
μν = 1

2
hλρ

(
∂νhμρ + ∂μhνρ − ∂ρhμν

)
. (46)

By taking into account the explicit form of hμν we obtain

̄λ
μν = 1

2

gλρ

F

[
∂ν

(
Fgμρ

) + ∂μ

(
Fgνρ

) − ∂ρ

(
Fgμν

)]
, (47)

where we have denoted F = F
(
R, ω2, Lm

) = [
f ′
1(R)

+2 f ′
2(R)ω2

]
G (Lm).

In terms of the Levi-Civita connection λ
μν associated to

the metric g,

λ
μν = 1

2
gλρ

(
∂νgμρ + ∂μgνρ − ∂ρgμν

)
, (48)

̄λ
μν can be expressed as

̄λ
μν = λ

μν +∂ν ln
√
Fδλ

μ +∂μ ln
√
Fδλ

ν −gμνg
λρ∂ρ ln

√
F .

(49)

The tensor R̄μν , constructed from the metric by using the
Levi-Civita connection as defined in Eq. (49), is given in
terms of the Ricci tensor Rμν by [38,39]

R̄μν = Rμν(g) + 3

2

1

F2

(∇μF
)
(∇νF)

− 1

F

(

∇μ∇ν + 1

2
gμν�

)

F. (50)

The Ricci scalar and the Einstein tensor can be immedi-
ately obtained as

R̄ = R (g) − 3
1

F
�F + 3

2

1

F2

(∇μF
) (∇μF

)
, (51)

and

Ḡμν = R̄μν − 1

2
gμν R̃ = Gμν(g) + 3

2

1

F2

(∇μF
)
(∇νF)

− 1

F

(∇μ∇ν − gμν�
)
F − 3

4

1

F2 gμν (∇λF)
(∇λF

)
,

(52)

respectively, with all covariant derivatives taken with respect
to the metric gμν .

2.3.4 Gravitational field equations in the Palatini
formalism

By using the expression of the Ricci tensor given by Eq. (51),
the gravitational field equation Eq. (28) can be written as
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Ḡμν + 1

2

[

R − 3
1

F
�F + 3

2

1

F2

(∇μF
) (∇μF

)
]

gμν

+G (Lm)

F

(
2 f2(R) + 9ω2

)
ωμων

− K

2F

[(

1 − G ′ (Lm)

G (Lm)
Lm

)

gμν + Tμν

]

− 1

F
T̃ (ω)

μν = 0.

(53)

By substituting the expression of the Einstein tensor as
given by Eq. (52) into the field equation Eq. (53), we obtain
the gravitational field equation of the Weyl geometric gravity
theory in the presence of a nonminimal coupling between
matter and geometry in the Palatini formalism as

Gμν + 3

2

1

F2

(∇μF
)
(∇νF) − 1

F

(∇μ∇ν

)
F − 1

2F
gμν�F

+1

2
Rgμν + G (Lm)

F

[
2 f2(R) + 9ω2

]
ωμων

− K

2F

[(

1 − G ′ (Lm)

G (Lm)
Lm

)

gμν + G ′ (Lm)

G (Lm)
Tμν

]

− 1

F
T̃ (ω)

μν = 0. (54)

Taking the trace of the metric field equation Eq. (28), we
obtain

R̄ + G (Lm)

F

(
2 f2(R) + 9ω2

)
ω2

− K

2F

[

4

(

1 − G ′ (Lm)

G (Lm)
Lm

)

+ G ′ (Lm)

G (Lm)
T

]

= 0, (55)

where the trace T (ω) μ
μ of the energy–momentum tensor of

the Weyl field identically vanishes, T (ω) μ
μ = 0.

By using Eq. (51), we find the equation determining R as
a function of ω as

R (g) − 3
1

F
�F + 3

2

1

F2

(∇μF
) (∇μF

)

+ G (Lm)

F

(
2 f2(R) + 9ω2

)
ω2

− K

2F

[

4

(

1 − G ′ (Lm)

G (Lm)
Lm

)

+ G ′ (Lm)

G (Lm)
T

]

= 0. (56)

Also, the covariant divergence of the energy–momentum ten-
sor becomes

∇αTαν

= 4G2

G ′K

(

f2 + 9

2
ω2

)
(
ωα∇νωα + ων∇αωα

−ων∇α ln F + ωαων

∇αLm

G

)

+ (Tαν − gανLm)∇α ln

(
FG

G ′K

)

− 2G

G ′K

[

(FRαν − Tαν) − 1

2
gμν

×
(

K + 4F�F − 6∇αF∇αF

F

)]

∇α ln F

+ 4G2ωαων

G ′K
∇α f2 + ∇νLm

+ G

FG ′K
(5∇αF∇ν∇αF − 3F∇ν�F

+ F2∇νR − F∇νK )

+ 36G2ωαωμ

G ′K
(ων∇μωα + ωαFμν). (57)

As one can see from Eq. (57), the covariant divergence
of the matter energy–momentum tensor is not conserved in
the Weyl geometric formulation of f (R, Lm) theory. This
result is similar to the one obtained in the metric case [78],
and it is essentially a direct consequence of the presence of
the geometry-matter coupling. From a physical point of view,
this result can be interpreted as describing irreversible parti-
cle production, and an energy transfer from gravity (geome-
try) to matter [73]. This creation process may play an impor-
tant role in cosmology and may also provide a mechanism to
explain the late acceleration of the universe [77].

3 Palatini formulation of quadratic Weyl gravity with
matter-curvature coupling

The general formalism developed in the previous sections can
be immediately applied to the case of conformally invariant
actions. In the particular case of the simplest conformally
invariant Weyl action (20), with

f1(R) = 1

12ξ2 R
2 (

g, ̄
)
, (58)

f2(R) = − 1

8ξ2 R
(
g, ̄

)
, (59)

and

G (Lm) = 1 − ξ2

γ 2 Lm, (60)

respectively. Then we obtain immediately

F
(
R, ω2, Lm

)
= 1

2ξ2

(
R

3
− ω2

2

)(

1 − ξ2

γ 2 Lm

)

, (61)

and

K
(
R, ω2, Lm

)
=

(
1

12ξ2 R
2 − 1

4ξ2 Rω2 + 9

2
ω4

)

×
(

1 − ξ2

γ 2 Lm

)

, (62)
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respectively. The conformally related metric hμν is given by

hμν = 1

2ξ2

(
R

3
− ω2

2

)(

1 − ξ2

γ 2 Lm

)

gμν. (63)

3.1 Palatini formulation of quadratic Weyl gravity in
vacuum

If we neglect the effect of the matter by taking Lm = 0, then
G (Lm) = 1, and

F
(
R, ω2

)
= 1

6ξ2

(

R − 3

2
ω2

)

, (64)

and

K
(
R, ω2

)
= 1

4ξ2

(
R2

3
− Rω2

)

+ 9

2
ω4, (65)

respectively. The metric field equations of the Palatini for-
malism of the quadratic Weyl geometric gravity take the form

(

R − 3

2
ω2

)

R̄μν − 3

2
(R − 36ω2)ωμων

−1

4

(
R2 − 3ω2R + 54ω4

)
gμν − 6ξ2T̃ (ω)

μν = 0. (66)

The metric hμν conformal to gμν is obtained as

hμν = 1

6ξ2

(

R − 3

2
ω2

)

gμν, (67)

and it depends on the Ricci scalar as well as the Weyl vector.
The Palatini field equation (68) can be written down straight-
forwardly, as well as the scalar equation (66) relating R and
ω, and they are given by

Gμν + 3

2

1

F2

(∇μF
)
(∇νF) − 1

F

(∇μ∇ν

)
F − 1

2F
gμν�F

+1

2
Rgμν + 1

F

[
9ω2 − 1

4ξ2 R
]
ωμων − K

2F
gμν

− 1

F
T̃ (ω)

μν = 0, (68)

and

R − 3
1

F
�F + 3

2

1

F2

(∇μF
) (∇μF

) + 1

F

(
9ω2

− 1

4ξ2 R
)
ω2 − 2K

F
= 0, (69)

respectively.

3.2 Palatini formulation of the linear/scalar representation
of Weyl geometric gravity

An alternative and equivalent description of the dynamical
properties of gravitational theories based on the action (18)
was considered in [32] (see also references therein), and it
is based on the introduction of an auxiliary scalar field φ0,
according to the definition

R̃2 + 2φ2
0 R̃ + φ4

0 = 0. (70)

After substituting R̃2 → −2φ2
0 R̃ − φ4

0 into the action 18
and performing its variation with respect to φ0, we obtain
the equation

φ0

(
R̃ + φ2

0

)
= 0, (71)

which gives for φ2
0 the expression

φ2
0 = −R̃. (72)

Therefore, through this substitution, we re-obtain the origi-
nal form of the Lagrangian as introduced in the initial Weyl
geometry. By substituting Eq. (70) into the action (18), using
Eq. (14) we obtain

SR
(
g, ̄

) = −
∫ {

1

2ξ2

[
φ2

0

6
R

(
g, ̄

) − 1

2
φ2

0∇μωμ

−1

4
φ2

0ωμωμ + φ4
0

12

]

+ 1

4
F̃2

μν

}√−gd4x . (73)

The action (73) is a particular case of the general action
(21), corresponding to f1(R) = 0 and f2(R) = R, respec-
tively. Hence, all the previous results obtained for the Pala-
tini version of the field equations derived for (21) can now be
applied to the linear/scalar version of quadratic Weyl gravity
by taking into account the particular forms of the functions
f1 and f2. The Palatini formulation of the theory for this
case was investigated extensively in [30,60], where it was
shown that the basic results obtained in the metric case also
remain valid in the Palatini formulation of the theory. More-
over, in the presence of the non-minimally coupled scalar
field (Higgs-like) with Palatini connection, the theory gives
successful inflation, and a specific prediction for the tensor-
to-scalar ratio 0.007 ≤ r ≤ 0.01 for the current spectral
index ns (at 95% CL) and N = 60 e-folds. The obtained
value of r is slightly larger than the value corresponding to
inflation in Weyl quadratic gravity of similar symmetry, due
to the presence of different forms of the non-metricity. Hence,
one can establish a relation between non-metricity and infla-
tionary predictions that enables the testing of the theory by
using future CMB observations.
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4 Cosmological applications

We will now investigate the cosmological applications of the
Palatini formulation of the conformally invariant f (R, Lm)

theory. In the following we consider a homogeneous and
isotropic universe, described by a flat FLRW spacetime, with
a line element given by

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (74)

wherea(t) is the scalar factor. Moreover, at this time we intro-
duce the Hubble function, defined according to H = ȧ/a.
We assume that the matter content of the universe can be
described as a perfect fluid, with Lagrangian Lm = −ρ,
where ρ is the matter energy-density, with the correspond-
ing energy–momentum tensor, defined in a comoving frame
given by

Tμ
ν = diag(−ρ, p, p, p). (75)

We also assume that the Weyl vector in the FLRW universe
has only a temporal component A0, and therefore it is given
by

Aμ = (A0, 0, 0, 0). (76)

This choice is suitable for cosmological applications,
since it maintains the isotropy and homogeneity of the space-
time. The Friedmann and Raychaudhuri equations of the
Palatini formulation of the Weyl geometric f (R, Lm) grav-
ity theory can be obtained straightforwardly from Eq. (68),
and they are given by

3H2 = 1

2
A2

0(9A
2
0 − 2 f2)

G

F
+ 1

2

K

F

− 3H
Ḟ

F
− 3

4

(
Ḟ

F

)2

+ 3

4

K

F

G ′

G
(ρ + p), (77)

and

Ḣ = −1

2
A2

0(9A
2
0 − 2 f2)

G

F
+ 1

2
H

Ḟ

F

+ 3

4

(
Ḟ

F

)2

− 1

2

F̈

F
− 1

4

K

F

G ′

G
(ρ + p), (78)

respectively. Also, the equation of motion of the Weyl vector
can be written as

Ä0 + 3Ḣ A0 + 3H Ȧ0 + G(9A2
0 − 2 f2) = 0. (79)

In the following, instead of the time variable t , we use the
redshift coordinate z, defined as

1 + z = 1

a
, (80)

and define the dimensionless Hubble function according to

h = H

H0
, (81)

where H0 is the current value of the Hubble parameter H =
ȧ/a.

To describe the decelerating/accelerating nature of the
cosmological evolution, we use the deceleration parameter
q, defined in the redshift space as

q = −1 + (1 + z)

h(z)

dh(z)

dz
. (82)

4.1 Simple cosmological toy models

We will consider first some simple solutions of the cosmo-
logical system of evolution equations Eqs. (77)–(79).

As a first example, we adopt for the functions f1, f2 and
G the following simple forms

f1 = α, f2 = βR, G = γ, (83)

where α, β and γ are constants.

4.1.1 de Sitter solution

The cosmological model described by the functions (83) has
an exact solution, corresponding to constant Weyl vector,
given by

A0 =
√

2

3
α

1
4 , H0 = 1

2
√

β
α

1
4 . (84)

As one can see from the above solution, α and β should
be constant, but γ remains arbitrary.

4.1.2 Models with constant A0

By assuming that the temporal component of the Weyl vec-
tor is a constant, the model (83) has a nontrivial solution,
corresponding to

A0 =
√

2

3
α

1
4 , γ = − 3

4β
, (85)

and with the dimensionless Hubble function given by

h(z) =
√

1

6

[
(6 − ε)(1 + z)3 + ε

]
, (86)

where we have denoted

ε = 3
√

α

3βH2
0

. (87)
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Fig. 1 The Hubble function h(z) and the deceleration parameters q(z) of the model (83), corresponding to the best-fit values of ε (dashed), ε = 3.2
(dot-dashed), and ε = 4.6 (dotted). The solid line corresponds to the �CDM model, and the error bars indicate the observational data with their
errors

In order to find the best-fit value of the parameter ε, we
use the likelihood analysis using the observational data on
the Hubble parameter in the redshift range z ∈ (0, 2). In the
case of independent data points, the likelihood function can
be defined as

L = L0e
−χ2/2, (88)

where L0 is the normalization constant, and the quantity χ2

is defined as

χ2 =
∑

i

(
Oi − Ti

σi

)2

. (89)

Here, i is the number of data points, Oi is the observa-
tional value, Ti represents the theoretical values, and σi rep-
resents the errors associated with the i th data point obtained
from observations. By maximizing the likelihood function,
the best-fit values of the parameters ε and H0 at 1σ confi-
dence level can be obtained as

ε = 3.883+0.345
−0.417,

H0 = 67.05+2.945
−3.021. (90)

The redshift evolution of the Hubble function and of the
deceleration parameter q for this model are represented in
Fig. 1. As one can see from the figure, despite its simplicity,
the present model can give an acceptable description of the
observational data, and at low redshifts it also reproduces the
predictions of the standard �CDM model for the behavior of
the Hubble function. However, some differences do appear
in the evolution of the deceleration parameter which, once
the quality of the observational data improves, may be able to
provide further cosmological tests of the Palatini formulation
of the f (R, Lm) theory. In Fig. 2 we have shown the corner

Fig. 2 The corner plot for the toy model (83)

plot corresponding to the above estimation of ε and H0 which
shows the best-fit values of the model parameter together with
their 1σ and 2σ confidence intervals.

4.2 Conformally invariant models

Let us now consider a quadratic conformally invariant Weyl
geometric cosmological model, obtained by assuming for the
functions f1, f2, and G the forms

f1 = αR2, f2 = β, G = 1 − γ Lm . (91)

For the sake of simplicity, we will assume that the matter
Lagrangian has the form Lm = p. For a dust-dominated uni-
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Table 1 The best-fit values of the parameters α, β̄, and H0 for the
conformally invariant quadratic Weyl geometric model (91)

Parameter Best fit 1σ CI 2σ CI

α −0.73 −0.73 ± 0.02 −0.73 ± 0.04

β̄ −1.22 −1.22 ± 0.04 −1.22 ± 0.08

H0 67.64 67.64 ± 1.41 67.64 ± 2.77

verse, the Raychaudhuri and the Weyl vector field equations
can be simplified to

8βA2
0 − 9A4

0 + 48α
[
3Ḣ(6H2 + Ḣ + 9H Ḧ + ...

H)
]

= 0,

(92)

and

Ä0 + 3(H Ȧ0 + A0 Ḣ) + 9A3
0 − 2βA0 = 0, (93)

respectively. The Friedmann equation is algebraic with
respect to the energy density, and it can be used to obtain
ρ in terms of the Hubble function H , and A0. Now, let us
define the set of dimensionless variables

t = H0τ, H = H0h, A0 = H0 Ā0

ρ̄m = ρm

6κ2H2
0

, γ̄ = 6κ2H2
0 γ, β̄ = β

H2
0

, (94)

where H0 is the current value of the Hubble parameter, and
κ2 = 1/16πG. Transforming to the redshift coordinate z,
one can solve numerically the Eqs. (96) and (97) to obtain
the evolution of h and Ā0.

To find the best-fit value of the parameter ε, we employ
likelihood analysis using the observational data on the Hub-
ble parameter in the redshift z ∈ (0, 2) [81]. The best-fit

values of the model parameters α and β̄ and of the Hubble
parameter H0 are summarized in Table 1.

In Figs. 3 and 4 we have plotted the evolution of the Hubble
function h and of the deceleration parameter q, together with
the dust abundance �m = ρ̄/h2 and the re-scaled temporal
component of the Weyl vector Ā0/h2, as functions of the
redshift coordinate z.

We have assumed the lower 2σ limit (dashed), best fit
(dot-dashed), and upper 2σ limit (dotted) of the parameters
α and β̄ as given in Table 1. Also, the initial conditions we
have chosen are h′(0) = 0.45, h′′(0) = 0.75, Ā0(0) = 0.3,
and Ā′

0(0) = 0.2, respectively. It should be noted that the
value of the parameter γ̄ is chosen in such a way that the
current value of the dust density abundance becomes equal
to its �CDM value �m0 = 0.305.

As one can see from Fig. 3, the conformally invariant
geometric Weyl model can give an acceptable description of
the observational data, and it reproduces the predictions of
the �CDM model at low redshifts. However, very important
differences do appear in the matter behavior, on both a quan-
titative and qualitative level, which may indicate the presence
of very serious discrepancies between the present model and
�CDM. The temporal component of the Weyl vector is a
monotonically decreasing function of the redshift, and its
evolution does not depend significantly on the variation in
the numerical values of the model parameters.

4.3 Cosmology of the conformally invariant quadratic
Weyl geometric model

We now consider the general conformally invariant Weyl
geometric cosmological model, with for which the functions
f1, f2 and f3 are given by

Fig. 3 The Hubble function h(z) and the deceleration parameter q(z)
for the conformally invariant quadratic Weyl cosmological model (91),
for lower 2σ limit (dashed), best fit (dot-dashed), and upper 2σ limit

(dotted) of the parameters α and β̄ as given in Table 1. The solid line cor-
responds to the �CDM model, and the error bars are the observational
data with their errors
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Fig. 4 The redshift evolution of the dust density abundance �m(z)
and of the Weyl vector A0(z) for the conformally invariant quadratic
Weyl cosmological model (91), for lower 2σ limit (dashed), best fit

(dot-dashed), and upper 2σ limit (dotted) of the parameters α and β̄ in
Table 1. The solid line corresponds to the �CDM theory

f1 = 1

12ξ2 R
2, f2 = − 1

8ξ2 R,G = 1 − ξ2

γ 2 Lm . (95)

In the following, we will assume that the matter Lagrangian
has the form Lm = p. For a dust-dominated universe, one
can obtain the Raychaudhuri and Weyl equations as

4
...
H + 36H Ḧ + 8Ḣ(3H2 + Ḣ) + 4Ḣ2 + 48H2 Ḣ

− 4A2
0 Ḣ + 10H A0 Ȧ0 − 6H2A2

0

+ 2A0 Ä0 + 2 Ȧ2
0 − 9ξ2A4

0 = 0, (96)

and

Ä0 + 3(H Ȧ0 + A0 Ḣ) + 3

2ξ2 (2Ḣ + H2)A0 + 9A3
0 = 0,

(97)

respectively. Similarly to the previous case, the Friedmann
equation is algebraic with respect to the matter-energy den-
sity, and it can be used to obtain ρ in terms of the Hubble
function, and A0. Now, let us define the set of dimensionless
variables,

t = H0τ, H = H0h, A0 = H0 Ā0

ρ̄m = ρm

6κ2H2
0

, γ̄ = γ

3H0κξ2 , (98)

where H0 is the current value of the Hubble parameter and
κ2 = 1/16πG. As we have already pointed out in the previ-
ous section, the coupling constant ξ is dimensionless. Trans-
forming to the redshift coordinate z, one can solve numeri-
cally the system of Eqs. (96) and (97), respectively, to obtain
the evolution of h and Ā0.

To find the best-fit value of the parameter ε, we use again
the likelihood analysis, using the observational data on the

Table 2 The best-fit values of the parameter ξ and of the present day
value of the Hubble function H0 for the general conformally invariant
quadratic Weyl model (95)

Parameter Best fit 1σ CI 2σ CI

ξ −1.77 −1.77 ± 0.38 −1.77 ± 0.76

H0 70.91 70.91 ± 1.48 70.91 ± 2.91

Hubble parameter in the redshift range z ∈ (0, 2) [81]. The
best-fit values of the model parameter ξ and the Hubble
parameter H0 are summarized in Table 2.

In Figs. 5 and 6 we have plotted the evolution of the Hub-
ble function h(z) and of the deceleration parameter q(z),
together with the dust abundance �m = ρ̄/h2, and the re-
scaled temporal component of the Weyl vector Ā0/h2, as a
function of the redshift coordinate.

In the Figs. 5 and 6 we have presented the lower 2σ limit
(dashed curve), the best fit (dot-dashed curve), and the upper
2σ limit (dotted curve) of the parameter ξ , as given in Table 2.
The initial conditions we have chosen are h′(0) = 0.47,
h′′(0) = 0.71, Ā0(0) = 0.21 and Ā′

0(0) = −0.3, respec-
tively.

It should be noted that the value of the parameter γ̄ is
chosen in such a way that the current value of the dust density
abundance becomes equal to its �CDM value �m0 = 0.305.

Similarly to the previous cases, the model gives a good
description of the behavior of the Hubble function and of
the observational data with respect to both observations,
and the �CDM model. Significant differences do appear at
higher redshifts on the order of z ≈ 3. The evolution of the
matter-density parameter �m is significantly different from
its behavior in the �CDM model, on both quantitative and
qualitative levels. The matter density reaches a maximum
value at a redshift of z ≈ 0.9, and during the different phases
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Fig. 5 The Hubble function h(z) and the deceleration parameter q(z)
for the general quadratic conformally invariant Weyl geometric model
(95), for lower 2σ limit (dashed), best fit (dot-dashed), and upper 2σ

limit (dotted) of the parameter ξ in the Table 2. The solid line corre-
sponds to the �CDM model, and the error bars are the observational
data with their errors

Fig. 6 The dust density abundance �m(z) (left panel) and the re-scaled
temporal component of the Weyl vector A0(z) (right panel) for the gen-
eral conformally invariant Weyl geometric case (95), for lower 2σ limit

(dashed curve), best fit (dot-dashed curve), and upper 2σ limit (dotted
curve) of the parameter ξ as given in Table 2. The solid line corresponds
to the �CDM model

of the evolution the matter density can be both a time increas-
ing or a time decreasing function.

Thus, further precise observations of the matter density
behavior at higher redshifts may provide a powerful test of the
validity of the conformally invariant Weyl type cosmological
models with curvature-matter coupling.

5 Discussion and final remarks

In the present paper we have investigated the Palatini version
of a generalized f (R, Lm) type gravity model, originating
in the conformally invariant gravity theory proposed by Weyl
more than 100 years ago, based on his generalization of the
Riemann geometry. The present theory, constructed ab ini-
tio from Weyl geometry, contains a supplementary curvature
matter term as compared with the original Weyl theory and

most of its extensions. This term can be added in a confor-
mally invariant way to the gravitational action so that the
conformal invariance of the theory is not broken.

The requirement of the conformal invariance of the phys-
ical laws is a fundamental concept in theoretical physics,
as initially suggested by Weyl [3–6]. A highly attractive
idea, conformal invariance is analogous to the gauge prin-
ciple in the physics of elementary particles, where it played
a fundamental role in the advancement of modern physics.
There are strong similarities between the global transforma-
tions of units and the global gauge transformations. The laws
governing the realm of the elementary particle physics are
conformally invariant, which is not the case for Einstein’s
gravity. This aspect represents another important difference
between microphysics and the gravitational interaction. A
bridge between elementary particle physics and gravitation
can be constructed via the Weyl geometry, which naturally
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contains the principle of conformal invariance. The simplest
fully conformally invariant theory of gravity contains in its
action a quadratic term in the Weyl scalar, as well as the con-
tribution coming from the strength of the Weyl field. Once
a conformally invariant matter Lagrangian term is added,
the resulting theory is fully conformally invariant. However,
generally, the matter Lagrangian is not conformally invari-
ant, and to ensure the conformal invariance of the theory in
the presence of matter, a coupling of the matter Lagrangian to
curvature is also necessary. The metric version of this theory
was constructed and investigated in [78], where its cosmolog-
ical implications were also considered. In the present paper
we have extended the Weyl geometric f (R, Lm) theory by
assuming arbitrary couplings between matter and Weyl geo-
metric terms, couplings that may not guarantee the conformal
invariance of the considered models. However, even in the
presence of a broken conformal invariance, theoretical grav-
ity models based on Weyl geometry may prove relevant for
the interpretation of the present day observations.

To construct a f (R, Lm) type Weyl geometric model we
begin with the simplest possible conformally invariant action
containing the square of the Weyl scalar, the strength of the
Weyl vector, and a matter-curvature coupling term. Because
of the straightforward relation existing between the geomet-
ric terms in Weyl and Riemann geometries, Weyl models
can be equivalently reformulated in Riemann geometry. In
the case of the quadratic Weyl action, the equivalent grav-
itational action in the Riemann geometry contains a term
proportional to R2, coupled with matter, a term containing
the Ricci scalar, multiplied by ω2, and also coupled with mat-
ter, plus some other terms originating in Weyl geometry. In
our analysis we have generalized this model by considering
arbitrary functional couplings instead of the R2 and R terms
in the action.

To obtain the field equations, we have considered the inde-
pendent variation of the action with respect to the metric
and the independent connection. As a first result of these
variations it follows that the independent connection ̄ is
compatible with a conformal metric hμν , given by hμν =
F

(
R, ω2, Lm

)
gμν , with the conformal factor F a function

of the Ricci scalar, the matter Lagrangian, and the square of
the Weyl vector. The metric hμν is now assumed to be the
physical metric, and the associated Levi-Civita type connec-
tion can be represented in Riemann geometry as the sum of
the Levi-Civita connection of the metric g plus corrections
terms coming from the conformal factor F . Once the form
of the connection is known, the geometric quantities and the
Einstein field equations can be easily obtained, thus leading
to the Palatini formulation of the generalized Weyl geometric
gravity in the presence of curvature-matter coupling.

As a possible test of the Palatini formulation of the Weyl
geometric type f (R, Lm) theories, we have investigated
their cosmological implications. The cosmological evolution

equation (generalized Friedmann equations) can be obtained
in their general We have considered three specific models,
based on particular choices of the functions f1, f2 and G
that determine the mathematical structure of the theory. The
first (toy) model corresponds to an action of the form

S =
∫ [

1

2
αγ + βγ Rω2 + 9

4
γω4 − 1

4
F̃2

μν

] √−gd4x,

(99)

in which the matter Lagrangian has been approximated by a
constant. The corresponding cosmological model admits a de
Sitter solution, corresponding to a constant temporal compo-
nent of the Weyl vector. A second class of solutions obtained
from the action (99) correspond to models with varying Hub-
ble function, having fixed values of A0 and γ . Despite their
simplicity, these models can give an acceptable description
of the observational data for the Hubble function, and can
reproduce rather well the behavior of the Hubble function up
to redshifts of z ≈ 1.

The second (toy) cosmological model we have considered
is derived from the action

S =
∫ [

1

2
α (1 − γ Lm) R2 + βω2 + 9

4
(1 − γ Lm) ω4

−1

4
F̃2

μν

]√−gd4x, (100)

with α, β and γ constants. The Palatini version of this model
leads to third-order differential equations for the evolution of
the Hubble function. However, the model can describe well
the low redshift observations, but the differences between
the predictions of this model and those of the �CDM model
increase significantly with the redshift. The behavior of the
matter density parameter is very different as compared with
the �CDM model, suggesting the existence of periods in
which the matter density increases and decreases, respec-
tively.

Finally, the third cosmological model we have considered
is based on the Palatini variation of the Weyl geometric action

S =
∫ [

1

24ξ2

(

1 − ξ2

γ 2 Lm

)

R2 − 1

8ξ2

(

1 − ξ2

γ 2 Lm

)

ω2R

+9

4

(

1 − ξ2

γ 2 Lm

)

ω4 − 1

4
F̃2

μν

]√−gd4x, (101)

with ξ and γ constants. This model also gives third-order
ordinary differential evolution equations for the Hubble func-
tion. The fitting with the observational data enables the deter-
mination of the model parameters. There is good concor-
dance with observational data for the Hubble function up to
a redshift of around z ≈ 2. The differences between models
increase with increasing redshift. For low redshifts (z < 0.5),
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the matter density parameter of the model can reproduce the
�CDM behavior.

The temporal component A0 of the Weyl vector has sim-
ilar behavior in all three considered models, since it is a
monotonically decreasing function of redshift (a monotoni-
cally increasing function of time), indicating that it had much
higher values in the early universe. For the third considered
model, the Weyl vector takes negative values for redshifts
larger than 0.5.

To conclude, the results of our investigations performed in
the present work suggest that the Palatini formulation of the
Weyl geometric f (R, Lm) type theories of gravity may play
a relevant role in the description of gravitational processes
both at high matter densities, corresponding to the very early
universe, and at the low densities, specific to the present-day
universe. Other astrophysical and cosmological implications
of the Palatini formulation of Weyl geometric type theories
will be considered in a future study.
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