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Abstract We study quadratic gravity R2 + R2[μν] in the
Palatini formalism where the connection and the metric
are independent. This action has a gauged scale symme-
try (also known as Weyl gauge symmetry) of Weyl gauge
field vμ = (�̃μ − �μ)/2, with �̃μ (�μ) the trace of the
Palatini (Levi-Civita) connection, respectively. The underly-
ing geometry is non-metric due to the R2[μν] term acting as
a gauge kinetic term for vμ. We show that this theory has
an elegant spontaneous breaking of gauged scale symme-
try and mass generation in the absence of matter, where the
necessary scalar field (φ) is not added ad-hoc to this pur-
pose but is “extracted” from the R2 term. The gauge field
becomes massive by absorbing the derivative term ∂μ ln φ of
the Stueckelberg field (“dilaton”). In the broken phase one
finds the Einstein–Proca action of vμ of mass proportional to
the Planck scale M ∼ 〈φ〉, and a positive cosmological con-
stant. Below this scale vμ decouples, the connection becomes
Levi-Civita and metricity and Einstein gravity are recovered.
These results remain valid in the presence of non-minimally
coupled scalar field (Higgs-like) with Palatini connection and
the potential is computed. In this case the theory gives suc-
cessful inflation and a specific prediction for the tensor-to-
scalar ratio 0.007 ≤ r ≤ 0.01 for current spectral index ns
(at 95% CL) and N = 60 efolds. This value of r is mildly
larger than in inflation in Weyl quadratic gravity of similar
symmetry, due to different non-metricity. This establishes a
connection between non-metricity and inflation predictions
and enables us to test such theories by future CMB experi-
ments.

1 Introduction

At a fundamental level gravity may be regarded as a theory of
connections. An example is the “Palatini approach” to grav-
ity due to Einstein [1,2], hereafter called EP approach [3–5].
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In this case the “Palatini connection” (�̃) is apriori indepen-
dent of the metric (gαβ) and is actually determined by its
equations of motion, from the action considered. For simple
actions, �̃ plays an auxiliary role only, with no dynamics. For
example, for an Einstein action in the EP approach the varia-
tion principle gives that �̃ is actually equal to the Levi-Civita
connection (�). With this solution for �̃, one then recovers
Einstein gravity – the metric formulation and EP approach
are equivalent.

However, this equivalence is not true in general, for com-
plicated actions, with matter present, etc. [6–21]. For exam-
ple, for quadratic gravity actions of the type studied here in
the EP approach, the equations of motion of �̃ become com-
plicated second-order differential equations; further, some
components of �̃ even become dynamical in a sense dis-
cussed shortly, etc. The question remains, however, if such
general actions in the EP formalism and in the absence of
matter can recover dynamically the Levi-Civita connection
and Einstein gravity. If true, this would be similar to the orig-
inal Weyl quadratic gravity theory [22–25] as we showed
recently in [26,27]. The main goal of this paper is to answer
this question.

To address this question we study a gravity action in the
EP approach with gauged scale symmetry also called Weyl
gauge symmetry, see [26,27] for an example.1 This symme-
try, first present in Weyl gravity [22–24] is important for mass
generation, hence our interest. This symmetry demands us
to consider quadratic gravity actions, with no dimensionful
parameters. For such action we shall: (1) explain the sponta-
neous breaking of this symmetry and the emergence of Levi-
Civita connection, Einstein gravity and Planck scale in the
broken phase, even in the absence of matter. This answers the
above question; (2) study the relation of this action to Weyl
theory [22–24] of similar symmetry; (3) study its inflation
predictions.

1 See e.g. [22–47] for models with gauged scale symmetry and [48–72]
for conformal or global scale symmetry.
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In Sect. 2 we first review the R(�̃, g)2 gravity in the EP
approach, where R(�̃, g) denotes the scalar curvature in this
formalism. This action is local scale invariant. The connec-
tion is shown to be conformally related to the Levi-Civita
connection. When “fixing the gauge” of this symmetry, the
“auxiliary” scalar field φ introduced to “linearise” the R2

term decouples. As a result, one finds that �̃ = � and Ein-
stein action is obtained.

In Sects. 3 and 4 we study the quadratic action R(�̃, g)2 +
R[μν](�̃)2 in the EP approach, hereafter called “EP quadratic
gravity”. Here we used the notation R[μν] ≡ (Rμν −Rνμ)/2.
In this action the trace �̃μ of the Palatini connection (assumed
symmetric) is dynamical in the sense that R[μν](�̃)2 is a
gauge kinetic term for �̃μ or, more exactly, for the vector
field2 vμ ∼ �̃μ − �μ, (�̃μ ≡ �̃α

μα, �μ ≡ �α
μα). With �̃

independent of gμν, one notices that the local scale symmetry
of this action is actually a gauged scale symmetry, of gauge
field vμ.

A consequence of the gauged scale symmetry is that EP
quadratic gravity is non-metric3 i.e. ∇̃μgαβ �= 0. This is due
to a dynamicalvμ ∼ �̃μ andvμ is the non-metricity field, also
called Weyl gauge field. Further, we find that the equations
of motion for �̃ are second-order differential equations. In
this case the usual EP approach in f (R) theories to solve
algebraically for �̃ [4,5] does not work, due to local scale
symmetry and non-metricity. Nevertheless, we compute �̃

and find that EP quadratic gravity with �̃ onshell is equivalent
to a ghost-free second-order gauged scale invariant theory
with an additional dynamical field (“dilaton”). (Expressed
in terms of this field the differential equations of �̃ simplify
considerably and this is how they are solved).

The main result of this work (Sect. 3) is that the gauged
scale invariance of the above action is broken spontaneously
by a new mechanism [26,27] valid even in the absence of
matter; in this, the necessary scalar field (φ) is not added
ad-hoc to this purpose (as usually done), but is “extracted”
from the R2 term in the action; φ is thus of geometric origin.
After a Stueckelberg mechanism [74–76] the gauge field vμ

becomes massive, of massmv near the Planck scale M ∼ 〈φ〉,
by “absorbing” the derivative ∂μ ln φ of the Stueckelberg
field (also referred to as “dilaton”). Near the Planck scale
we obtain the Einstein–Proca action of vμ. Further, below
the scale mv ∝ M , the field vμ decouples and we recover
metricity, Levi-Civita connection and Einstein gravity; the
Planck scale M is then an emergent scale where this sym-

2 Unlike �̃μ and �μ, vμ ∝ �̃μ −�μ is indeed a vector (see Appendix).
We assume �̃α

μν = �̃α
νμ (no torsion).

3 Non-metricity means that under parallel transport along a curve a
vector changes its norm i.e. is path dependent; therefore, in realistic
theories with matter present (as here) it must be suppressed by a large
scale (e.g. Planck) to avoid atomic spectral lines changes that it would
otherwise induce [22]. In the absence of matter non-metricity can be
traded for torsion in related R2 theory [73].

metry is broken. These results remain true if the theory also
has matter fields (Higgs, etc.) non-minimally coupled with
Palatini connection, while respecting gauged scale invari-
ance (Sect. 4). Briefly, the EP quadratic gravity is a gauged
scale invariant theory broken à la Stueckelberg, even in the
absence of matter, to an Einstein–Proca action with a positive
cosmological constant and a potential for the scalar fields –
if present. This answers the main goal of the paper.

Another theory where the connection is not determined
by the metric itself is the original Weyl quadratic gravity of
gauged scale invariance [22–24] (also [25]). With hindsight,
it is then not too surprising that the above results are sim-
ilar to those in [26–28] for Weyl theory. This theory came
under early criticism from Einstein [22] for its non-metricity
implying e.g. changes of the atomic spectral lines, in con-
trast to experiment; however, if the Weyl “photon” (vμ) of
non-metricity is actually massive (mass ∼ M) by the same
Stueckelberg mechanism, metricity and Einstein gravity are
recovered below its decoupling scale (∼ Planck scale). Non-
metricity effects are then strongly suppressed by a large M
(their current lower bound seems low [77,78]). Hence, the
long-held criticisms that have implicitly assumed vμ be mass-
less are actually avoided and Weyl gravity is then viable [26–
28]. As outlined, in this work we obtain similar results in EP
quadratic gravity, up to different non-metricity effects.

We also study inflation in EP quadratic gravity (Sect. 5).
We consider this theory with an extra scalar field (Higgs-
like) with perturbative non-minimal coupling and Palatini
connection, that plays the role of the inflaton. We compute
the potential after the gauged scale symmetry breaking. With
the Planck scale a simple phase transition scale in our theory,
field values above M are natural. Interestingly, the inflaton
potential is similar to that in Weyl quadratic gravity [28], up
to couplings and field redefinitions (due to a different non-
metricity of the theory). Inflation in EP quadratic gravity has a
specific prediction for the tensor-to-scalar ratio 0.007 ≤ r ≤
0.010 for the current spectral index ns at 95% CL. This range
of r is distinct from that predicted by inflation in Weyl gravity
[28,47] and will soon be reached by CMB experiments [79–
81]. The conclusions are presented in Sect. 6 followed by an
Appendix.

2 Palatini R2 gravity

For later reference we first review R2 gravity in the EP for-
malism [82,83]. As discussed below, the action is local scale
invariant (unlike its Riemannian counterpart):

L1 = √
g

ξ0

4! R(�̃, g)2, ξ0 > 0, (1)
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where

R(�̃, g) = gμν Rμν(�̃),

Rμν(�̃) = ∂λ�̃
λ
μν − ∂μ�̃λ

λν + �̃λ
ρλ�̃

ρ
μν − �̃λ

ρμ�̃
ρ
νλ (2)

Rμν(�̃) is the metric-independent Ricci tensor in the EP
formalism. Our conventions are as in [84] with metric
(+,−,−,−), g ≡ | det gμν | and we assume there is no tor-
sion i.e. �̃

ρ
μν = �̃

ρ
νμ.

There is an equivalent “linearised” version of L1, found
by using an auxiliary field φ

L1 = √
g

ξ0

4! {−2 φ2R(�̃, g) − φ4}. (3)

Indeed, (1) is recovered if we use in (3) the solution φ2 =
−R(�̃, g) of the equation of motion of the scalar field φ.
With the connection �̃ independent of the metric, (3) and
(1) have local scale symmetry i.e. are invariant under a Weyl
transformation � = �(x) with4

ĝμν = �2gμν,
√
ĝ = �4√g,

φ̂ = 1

�
φ, R̂(�̃, ĝ) = 1

�2 R(�̃, g). (4)

Unlike in the metric case, Rμν(�̃) is invariant under (4) while
R(�̃, g) transforms covariantly, hence (1) and (3) are invari-
ant. L1 has a shift symmetry: ln φ → ln φ − ln �. In global
cases ln φ is the dilaton field generating a mass scale from
its vev (assumed to be non-zero); here, ln φ is similar to a
would-be Goldstone, as seen if we “gauge” symmetry (4)
(see later, Eq. (18)).

Let us solve the equation of motion for �̃, then find the
action for �̃ onshell.5 The change of Rμν(�̃) under a variation
of the connection is δRμν(�̃) = ∇̃λ(δ�̃

λ
μν) − ∇̃ν(δ�̃

λ
μλ),

where the operator ∇̃ is defined with connection �̃. Then
from (3) the equation of motion of �̃λ

μν gives

∇̃λ

(√
g gμνφ2) − 1

2

[
∇̃ρ

(√
g gρμφ2) δν

λ + (μ ↔ ν)
]

= 0.

(5)

Setting ν = λ and then summing over, then6

∇̃ρ

(√
g gρμφ2

)
= 0. (6)

4 From φ2 = −R(�̃, g), φ2 transforms under metric rescaling like
R(�̃, g), as expected for a scalar field.
5 Obviously, with �2 = ξ0φ

2/(6M2) (with M the Planck scale), one
can set φ to a constant (fix the “gauge” of local scale symmetry).
L1 becomes L1 = √−g {−(1/2)M2 R(�̃, g) − 3/(2ξ0)M4}. This is
the Palatini formulation of Einstein action; via equations motion then
∇̃μgαβ = 0 where ∇̃μ is computed with �̃. Hence �̃ is a Levi-Civita
connection. However, this approach obscures the role of local scale
symmetry, relevant later.
6 If we use φ2 = −R(�̃, g) in (5) and (6), one recovers the equation of
motion of �̃ found directly from (1) [82].

To simplify notation, introduce an auxiliary dimensionful
“metric” hμν ≡ φ2gμν , then

∇̃λ

(√
h hμν

)
= 0. (7)

This means that in terms of hμν , the connection is Levi-
Civita7

�̃α
μν(h) = (1/2) hαλ(∂μhλν + ∂νhλμ − ∂λhμν), (9)

or, in terms of gμν

�̃α
μν = �α

μν(g) + (1/2)
(
δα
ν uμ + δα

μuν − gαλgμνuλ

)
,

uμ ≡ ∂μ ln φ2, (10)

with Levi-Civita �α
μν(g) = (1/2)gαλ(∂μgλν + ∂νgλμ −

∂λgμν). Next, if we use the equation of motion of φ of solu-
tion φ2 = −R(�̃, g), Eq. (10) for �̃ (also (5), (6)) becomes a
second-order differential equation since ∂φ2 ∼ ∂R ∼ ∂2�̃,
and it is difficult to solve (and since solution �̃ of (10)
involves ∂gμν from �(g) then for �̃ onshell action (1) is
a four-derivative theory in gμν). An easy way out is to keep
φ an independent variable hereafter (no use of its equation
of motion), then Eqs. (5) and (6) have solution �̃ given by
the rhs of (10). For this solution, then

R(�̃, g) = R(g) − 3∇μu
μ − 3

2
gμνuμ uν, (11)

with the Ricci scalar R(g) for gμν while ∇ is defined with
the Levi-Civita connection (�). Using (11) in (3) of the same
metric, we find for �̃ onshell8

L1 = √
g

{
ξ0

2

[
−1

6
φ2R(g) − (∂μφ)2 − 1

12
φ4

]}
. (12)

L1 is a second order theory with an additional dynamical vari-
able demanded by symmetry (4) and is equivalent to action
(1) which for �̃ onshell is a four-derivative theory, as noticed.

Lagrangian (12) has local scale symmetry so one may like
to “fix the gauge”. We choose the Einstein or unitarity gauge
reached by a φ-dependent transformation �2 = φ2/〈φ〉2 that
is gauge-fixing φ to a constant (vev); in this gauge M2 =
ξ0〈φ〉2/6 is the Planck mass. From (12)

L1 =
√
ĝ

{−1

2
M2 R̂(ĝ) − 3

2ξ0
M4

}
. (13)

7 One shows ∇̃hμν = 0 by using

∇̃λh
μν = −hμσ hνρ∇̃λhσρ, and ∇̃λ

√
h = (1/2)

√
h hαβ ∇̃λhαβ .

(8)

8 From (12) the equation of motion for gμν and its trace give that on the
ground state φ2 = −R and R(Rμν − 1/4gμν R) = 0 which is similar
to that found directly from equivalent action (1), see also footnote 6.
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Hence Einstein action (13) is recovered as a gauge fixed
form of (12); symmetry (4) is now spontaneously broken
and φ decouples9 [85]; this may be expected since the local
scale symmetry current of (12) is vanishing [86–88] (this
will change in Sect. 3.3). With φ “gauge fixed” to a constant,
Eqs. (7) and (10) give hμν ∝gμν and �̃ = � so the theory is
metric.10,11

3 Palatini quadratic gravity with gauged scale
symmetry

3.1 The Lagrangian and its expression for onshell �̃

Consider now the following EP quadratic gravity, with
α = constant and R[μν] ≡ (Rμν − Rνμ)/2

L2 = √
g

{
ξ0

4! R(�̃, g)2 − 1

4α2 R[μν](�̃) Rμν(�̃)

}
. (14)

With Rμν(�̃) from Eq. (2) and �̃α
μν symmetric in (μ, ν), L2

has a more intuitive form

L2 = √
g

{
ξ0

4! R(�̃, g)2 − 1

4α2 Fμν(�̃)Fμν(�̃)

}
. (15)

This is a natural extension of L1 of Eq. (1), with the second
term above indicating we now have a dynamical trace (�̃μ)

of the Palatini connection, as seen from the notation below:

Fμν(�̃) = ∇̃μvν − ∇̃νvμ; vμ = (1/2)(�̃μ − �μ(g)),

(16)

with �̃μ ≡ �̃λ
μλ and �μ ≡ �λ

μλ. Since �̃α
μν = �̃α

νμ and

∇̃μvν = ∂μvν − �̃α
μνvα , then we have Fμν = ∂μvν −∂νvμ =

(∂μ�̃ν − ∂ν�̃μ)/2 = −R[μν], and Eqs. (14) and (15) are
equivalent. While �μ(g) does not contribute to Fμν(�̃)2, it
is needed to ensure that vμ is a vector under coordinate trans-
formation (which is not true for �̃μ or �μ, see Appendix). vμ

is the Weyl field12 and measures the trace of the deviation of
the Palatini connection �̃ from Levi-Civita connection �(g).
L2 is quadratic in R but for �̃ offshell resembles a second
order theory.

9 There is no gauge field here to “eat” would-be Goldstone ln φ but in
Sect. 3, vμ of (18) will “eat” ln φ.
10 This result is also valid for Palatini f (R) action instead of (1); we do
not consider it here since it violates Weyl scale symmetry, but (unlike
here) the trace of the equation of motion of gμν is non-trivial, giving
f ′(R) = constant, which fixes R, then hμν ∝ gμν , �̃ = � so metric-
ity/Einstein action is recovered [3–5].
11 This situation is different from the Riemannian R(g)2 gravity [89]
(Eq. 2.11), also [90], where in the Einstein frame a kinetic term for φ

remains present in (13) (being absent in Eq. (12)).
12 Definition (16) of gauge field vμ is general, it also applies to Weyl
gravity of similar symmetry (Appendix).

As in previous section, write L2 in an equivalent “lin-
earised” form useful later on

L2 = √
g

{
− ξ0

12
φ2 R(�̃, g) − 1

4α2 Fμν(�̃)2 − ξ0

4! φ4
}

.

(17)

The equation of motion for φ has solution φ2 = −R(�̃, g)
which replaced in L2 recovers (15).

Since �̃ does not transform under (4) and with �μ(g) =
∂μ ln

√
g that follows from the definition of Levi-Civita con-

nection, then L2 is invariant under (4) extended by

v̂λ = vλ − ∂μ ln �2. (18)

The invariance of L2 under transformations (4) and (18), is
referred to as gauged scale invariance or Weyl gauge sym-
metry, with a (dilatation) group isomorphic toR+, as in Weyl
gravity.

Let us then compute the connection �̃λ
μν from its equation

of motion which is

∇̃λ(
√
g gμνφ2)

−
{

1

2
δν
λ

[
∇̃ρ(

√
g gμρφ2)−6

√
g

α2ξ0
∇ρF

ρμ

]
+ (μ ↔ ν)

}
= 0.

(19)

Here ∇̃μ and ∇μ are evaluated with the Palatini (�̃) and Levi-
Civita (�) connections, respectively. Setting λ = ν and sum-
ming over gives (compare against Eq. (6))

∇̃ρ

(√
g gμρ φ2

)
= 10

α2

1

ξ0

√
g∇ρF

ρμ, (20)

which is an equation of motion for the trace �̃μ ∼ vμ. Replac-
ing (20) back in (19) leads to

∇̃λ(
√
g gμνφ2) − 1

5

{
δν
λ ∇̃ρ(

√
g gρμφ2) + (μ ↔ ν)

}
= 0.

(21)

Therefore, the set of Eq. (19) is equivalent to the combined
set of Eqs. (21) and (20).13

Let us find �̃λ
μν from (21). Note that if one used the equa-

tion of motion of φ of solution φ2 = −R(�̃, g), then (21)
would be a second-order differential equation for �̃α

μν , since

∇̃λφ
2 ∼ ∂φ2 ∼ ∂R(�̃, g) ∼ ∂2�̃, with further complica-

tions. It is however easier to simply regard φ hereafter as an
independent variable14 (i.e. no use of its equation of motion)
in terms of which one then easily computes �̃ algebraically,

13 Unlike in (19), setting λ = ν in (21) brings no information – this
was “moved” into 4 equations in (20).
14 The consequence of doing so is that φ acquires a kinetic term and
becomes dynamical (see also Sect. 2).
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as we do below. To find a solution to (21) we first introduce,
based on an approach of [8]:

∇̃λ

(√
g gμνφ2

)
= (−2)

√
g φ2(δ

μ
λ V ν + δν

λ Vμ), (22)

where Vμ is some arbitrary vector field (to be determined
later). Vμ is introduced since, due to underlying symme-
try, Eq. (21) with λ = ν summed over is automatically
respected for fixed μ (= 0, 1, 2, 3); this is leaving four unde-
termined components, accounted for by Vμ. Further, if in
Eq. (21) one replaces ∇̃(..) terms by the rhs of (22) one eas-
ily shows that (21) is indeed verified. Hence, instead of find-
ing �̃ from (21), it is sufficient to compute �̃ from (22),15

which is easier. To this end, multiply (22) by gμν and use
gμν∇̃λgμν = −2∇̃λ ln

√
g, to find that

Vλ = −(1/2) ∇̃λ ln
(√

g φ4
)

. (23)

From (22) and (23)

∇̃λ (φ2gμν) = (−2)
(
gμν Vλ − gμλVν − gνλVμ

)
φ2, (24)

so the theory is non-metric. From (24) we find the solution16

�̃ to (21) in terms of Vλ:

�̃α
μν = �α

μν(φ
2g) − (

3 gμν Vλ − gνλ Vμ − gλμ Vν

)
gλα,

with �α
μν(φ

2g) = �α
μν(g)

+1/2
(
δα
ν ∂μ + δα

μ ∂ν − gαλgμν ∂λ) ln φ2. (25)

�α
μν(g) is Levi-Civita connection of gμν . From (25), �̃λ =

�λ(φ
2g) + 2Vλ and with (16) and (23)

vλ = −(1/2) ∇̃λ ln
√
g, (26)

and finally, Vλ = vλ−∂λ ln φ2. With this relation between Vλ

and vλ, the solution �̃ in (25) is finally expressed as a function
of vλ, φ, and will be used shortly to compute the action for
�̃ onshell (see Eq. (29) below17). Notice that solution �̃ of
(25) and also (24), are invariant under transformations (4)
and (18) for any �(x) since φ2gμν , Vλ,

√
gφ4 are invariant.

15 One cannot solve algebraically (22) as done in Palatini f (R) theories
[3–5] due to non-vanishing rhs (dynamical �̃μ) and to the conformal
symmetry of L2, absent in f (R) theories, see discussion in [91], p.5–6.
16 Use that ∇̃λgμν = ∂λgμν − �̃

ρ
μλgρν − �̃

ρ
νλ gμρ , for cyclic permuta-

tions of indices and combine them.
17 As a remark, recall that Eq. (19) for �̃ were shown to be equivalent
to the combined set of (21), (20) and we solved (21) with solution
�̃α

μν in (25) expressed in terms of Vμ ∼ �̃μ. We have four remaining

equations in (20) for �̃μ itself, that could in principle be used to also
“fix” �̃μ ∼ Vμ or equivalently vμ, since Vμ = vμ − ∂μ ln φ2; however
we do not do this step since vμ is a massless, dynamical gauge field
enforcing gauged scale symmetry (18) of initial action (14), (17). Then
what information does (20) bring? With Eq. (22) for λ = ν, Eq. (20) is
actually ∇̃ρFρμ +α2ξ0φ

2Vμ = 0, which is just the equation of motion
of vλ; this may be seen from final Lagrangian (29) which has all �̃α

μν

onshell (expressed in terms of �̃μ) but �̃μ is kept offshell, for the reason
mentioned; vλ may be integrated out after becoming massive, see later.

As expected, vλ is the Weyl field of non-metricity defined
as Qλμν ≡ ∇̃λgμν , since from (26) the trace Qμ

λμ = −4 vλ.
Non-metricity is a consequence of the dynamical vλ, see (20).
Equation (26) is similar to that in Weyl quadratic gravity of
same symmetry (e.g. [33]).

Finally, from solution (25) and (2) we compute Rμν(�̃)

and scalar curvature18 R(�̃, g)

R(�̃, g) = R(g) − 6gμν∇μ∇ν ln φ − 6(∇μ ln φ)2

−12
(∇λV

λ + V λ∂λ ln φ2) − 6Vμ Vμ. (28)

R(g) is here the usual Ricci scalar and Vλ = wλ − ∂λ ln φ2.
Using (28) in (17), then finally

L2 = √
g

{
− ξ0

12

[
φ2R(g) + 6(∂μφ)2

]

+ξ0

2
φ2 (vμ − ∂μ ln φ2)2 − 1

4 α2 F
2
μν − ξ0

4! φ4
}

. (29)

This is the “onshell” Lagrangian of EP quadratic gravity of
Eq. (14) and is gauged scale invariant. L2 is a second-order
scalar–vector–tensor theory of gravity which is ghost-free
according to [92] for a torsion-free connection as here (this
is also obvious from (30) below). This is relevant since initial
action (14) which (offshell) was of second order is actually a
four-derivative theory in the metric19 for �̃ onshell; indeed,
R(�̃, g)2 in (14) with replacement (28) contains the higher
derivative term R2(g) + · · · ; this four-derivative theory has
an equivalent second-order formulation with additional φ, as
shown in Eq. (29). Finally, if vμ = ∂μ ln φ2 (“pure gauge”),
the model is Weyl integrable and (29) recovers (12).

Lagrangian (29) (also initial (15)) is similar to that of Weyl
quadratic gravity [26,27], up to a Weyl tensor-squared term
not included here. However, unlike in Weyl theory, here �̃

is φ-dependent; also, in Weyl theory non-metricity follows
from the underlying Weyl conformal geometry, while here it
emerges after we determine �̃ from its equation of motion.

3.2 Stueckelberg breaking to Einstein–Proca action

Given L2 in (29) with gauged scale symmetry we would like
to “fix the gauge”. We choose the Einstein gauge obtained
from (29) by transformations (4) and (18) of a special �2 =
18 Rμν(�̃) has the following expression (which by contraction with gμν

gives R(�̃, g) of (28)):

Rμν(�̃) = Rμν(g) − 3gμν

(∇λVλ + V λ∂λθ
)

(27)
− (∇μVν − ∇νVμ) − 6 VμVν + 1/2 (∂μθ)(∂νθ)

− 1/2 gμνg
αβ(∂αθ)(∂βθ) − 1/2 gμν∇λ∂λθ

+ 1/2 ∇ν∂μθ − 3/2 ∇μ∂νθ, θ ≡ ln φ2.

19 This agrees with e.g. [19] that in general in a Palatini model its metric
part leads to a fourth order theory.
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ξ0φ
2/(6M2) fixing φ to a constant (〈φ〉 �= 0). After removing

the hats (ˆ) on transformed g,vμ, R, we find

L2 = √
g

{
−1

2
M2R(g) + 3 M2 vμ vν g

μν

− 1

4α2 F
2
μν − 3

2ξ0
M4

}
. (30)

This is the Einstein–Proca action for the gauge field vμ with
a positive cosmological constant, in which we identified M
with the Planck scale (M) as seen from Eq. (29)

M2 ≡ ξ0〈φ〉2/6. (31)

The initial gauged scale invariance is broken by a gravita-
tional Stueckelberg mechanism [74–76]: the massless φ is
not part of the action anymore, but vμ has become massive,
after “absorbing” the derivative ∂μ(ln φ) of the Stueckelberg
field (dilaton) in Eq. (29). Note that ∂μ(ln φ) is actually the
Goldstone of special conformal symmetry – this Goldstone
is not independent but is determined by the derivative of the
dilaton [93]. The number of degrees of freedom (dof) other
than graviton is conserved in going from (29) to (30), as it
should be for spontaneous breaking: massless vμ and dynam-
ical φ are replaced by massive vμ (dof = 3). The mass of vμ

is m2
v = 6α2M2 which is near Planck scale M (unless one

fine-tunes α � 1).
Using the same transformation �, from (24)

∇̃λgμν = (−2)(gμνvλ − gμλvν − gνλvμ). (32)

This has a solution �̃ that is immediate from (25) for φ con-
stant and Vλ replaced by vλ. Finally, after the massive field vμ

decouples, metricity is recovered below mv , so ∇̃λgμν = 0
and �̃ = �(g). Briefly, Einstein action is a “low energy”
limit of Einstein–Palatini quadratic gravity, and the Planck
scale M ∼ 〈φ〉 is a phase transition scale (up to coupling
α).20

For comparison, in Weyl quadratic gravity e.g. [26,27],
non-metricity is different21

∇̃λgμν = −gμν vλ. (33)

Interestingly the different non-metricity of these theories
(giving different �̃) has phenomenological impact, see
Sect. 5. In both theories the non-metricity scale is mv ∼
Planck scale and is large enough (current bounds [77,78] are
low ∼ TeV) to suppresses unwanted effects e.g. atomic spec-
tral lines spacing. Past critiques of non-metricity assumed a
massless vμ.

20 A special case: consider (17) with φ2 = 6M2/ξ0=constant, i.e. a
different initial action with no symmetry! then (28) and (29) simplify;
we still find (30) but there is no dynamical φ and thus no Stueckelberg
mechanism.
21 Contracting (32) and (33) by gμν gives the same non-metricity trace,
justifying our normalization of vμ Eq. (16).

Finally, let us remark that the above spontaneous symme-
try breaking mechanism for initial action (14) is special since
it takes place in the absence of matter. Indeed, the necessary
scalar (Stueckelberg) field ln φ was not added ad-hoc to this
purpose, as usually done in the literature; instead, this field
was “extracted” from the R2 term in the initial, symmetric
action (14) and is thus of geometric origin. This situation is
similar to Weyl quadratic gravity where this mechanism was
first noticed [26,27].

3.3 Conserved current

Equations (20) and (22) show there is now a non-trivial cur-
rent due to dynamical vμ ∼ �̃μ

Jμ = √
g gρμ φ (∂ρ − 1/2 vρ) φ, ∇μ J

μ = 0, (34)

This is conserved since Fμν in (20) is anti-symmetric. To
obtain (34) we used that the lhs of (20) and of (22) (with
λ = ν) are equal and replacedVλ = vλ−∂λ ln φ2. The current
Jμ is the same as that in Weyl quadratic gravity [26] (Eq. 18)
which has similar symmetry but different non-metricity. The
presence of this conserved current extends to the case of the
gauged scale symmetry a similar conservation for a global
scale symmetry [64]. For a Friedmann–Robertson–Walker
metric with φ only t-dependent such current conservation
in the global case naturally leads to φ=constant [64] and
a breaking of scale symmetry. In our case, since Eq. (30)
has φ=constant (assumed 〈φ〉 �= 0), then from (34) one has
∇μvμ = 0 which is a condition similar to that for a Proca
(massive) gauge field, leaving 3 degrees of freedom for vμ

in (30).

4 Palatini quadratic gravity: adding matter

In this section we re-do the previous analysis in the presence
of a scalar χ which can be the SM Higgs, with non-minimal
coupling withPalatini connection to the EP quadratic gravity.

The general Lagrangian of the field χ , with gauged scale
invariance, Eqs. (4) and (18) is

L3 = √
g

[
ξ0

4! R(�̃, g)2 − 1

4α2 F2
μν − 1

12
ξ1χ

2 R(�̃, g)

+1

2
(D̃μχ)2 − λ1

4! χ
4
]

, (35)

with the potential dictated by this symmetry and with

D̃μχ = (∂μ − 1/2 vμ) χ. (36)

Under (4) and (18) the Weyl-covariant derivative transforms

as ˆ̃Dμχ̂ = (1/�) D̃μχ . As in previous sections, replace
R(�̃, g)2 → −2φ2R(�̃, g) − φ4 to find an equivalent “lin-
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earised” L3

L3 = √
g

[
−1

2
ρ2 R(�̃, g) − 1

4α2 F2
μν

+1

2
(D̃μχ)2 − V(χ, ρ)

]
, (37)

where

V(χ, ρ) ≡ 1

4!
[

1

ξ0
(6ρ2 − ξ1χ

2)2 + λ1χ
4
]

,

and ρ2 = 1

6
(ξ1χ

2 + ξ0φ
2). (38)

Notice that we also replaced the scalar field φ by the new,
radial direction field ρ; ln ρ transforms as ln ρ → ln ρ−ln �

and acts as the (would-be) Goldstone of the symmetry.
The equation of motion for �̃λ

μν is similar to (19) but with
a replacement φ → ρ and with an additional contribution
from the kinetic term of χ . Following the same steps as in
the previous section, we eliminate the contributions of the
kinetic terms of χ and vμ to the equation of �̃ and find an
equation similar to (21) with φ → ρ:

∇̃λ(
√
ggμνρ2) − 1

5

{
δν
λ ∇̃σ (

√
ggσμρ2) + (μ ↔ ν)

}
= 0.

(39)

This gives (see previous section):

∇̃λ(ρ
2gμν) = (−2)ρ2(gμν Vλ − gμλVν − gνλVμ), (40)

where Vμ = (−1/2)∇̃μ ln(
√
gρ4) = vμ − ∂μ ln ρ2. From

(40) one finds the solution for Palatini connection �̃α
μν in

terms of vμ ∼ �̃μ, with a result similar to (25) but with
φ → ρ. We use this solution for the connection back in the
action and find for �̃ onshell22

L3 = √
g

{−1

2
[ρ2R(g) + 6(∂μρ)2] + 3ρ2(vμ − ∂μ ln ρ2)2

− 1

4α2 F2
μν + 1

2
(D̃μχ)2 − V(χ, ρ)

}
. (41)

L3 has a gauged scale symmetry and extents (29) in the pres-
ence of scalar field χ .

Finally, we choose the Einstein gauge by using transfor-
mation (4) and (18) of a particular � = ρ/M which essen-
tially sets ρ̂ to a constant (vev). In terms of the new variables
(with a hat) we find

L3 =
√
ĝ

{
−1

2
M2 R(ĝ) + 3M2v̂μv̂μ − 1

4α2 F̂
2
μν

+1

2
(

ˆ̃Dμχ̂)2 − V(χ̂, M)
]}

, (42)

22 As in Sect. 3, the trace �̃μ ∼ vμ is kept offshell since we do not
integrate out massless dynamical vμ.

with ˆ̃Dμχ̂ = (∂μ − 1/2 v̂μ)χ̂ and we identify M with
the Planck scale (M = 〈ρ̂〉). As in the absence of matter,
we obtained the Einstein–Proca action of a gauge field that
became massive after Stueckelberg mechanism of “absorb-
ing” the derivative term ∂μ(ln ρ). A canonical kinetic term
of χ̂ remained present in the action, since only one degree of
freedom (radial direction ρ) was “eaten” by vμ. The mass of
vμ is m2

v = 6α2M2. The potential becomes

V = 3M4

2 ξ0

[
1 − ξ1χ̂

2

6 M2

]2

+ λ1

4! χ̂4. (43)

For a “standard” kinetic term for χ̂ , similar to a “unitary
gauge” in electroweak case, we remove the coupling v̂μ∂μχ̂

in the Weyl-covariant derivative in (42) by a field redefinition

v̂′
μ = v̂μ − ∂μ ln cosh2

[
σ

2M
√

6

]
,

χ̂ = 2M
√

6 sinh

[
σ

2M
√

6

]
, (44)

which replaces ˆχ → σ . After some algebra, we find the final
Lagrangian

L3 =
√
ĝ

{
−1

2
M2 R̂ + 3M2 cosh2

[
σ

2M
√

6

]
v̂′
μv̂′μ

− 1

4α2 F̂
′ 2
μν + ĝμν

2
∂μσ∂νσ − V̂(σ )

}
(45)

with

V̂(σ ) = V̂0

{[
1 − 4ξ1 sinh2 σ

2M
√

6

]2

+16 λ1ξ0 sinh4 σ

2M
√

6

}
, V̂0 ≡ 3

2

M4

ξ0
. (46)

In (45) one finally rescales v̂′
μ → α v̂′

μ for a canonical gauge
kinetic term.

For small field values, σ � M , then χ̂ ≈ σ (up to
O(σ 3/M2)) and a SM Higgs-like potential is recovered,23

see Eq. (43). For ξ1 > 0 it has spontaneous breaking of
the symmetry carried by σ i.e. electroweak (EW) symme-
try if σ is the Higgs; this is triggered by the non-minimal
coupling to gravity (ξ1 �= 0) and Stueckelberg mechanism.
The negative mass term originates in (38) due to the φ4 term
(itself induced by R̃2). The mass m2

σ ∝ ξ1M2/ξ0 may be
small enough, near the EW scale by tuning ξ1 � ξ0. It may
be interesting to study if the gauged scale symmetry brings
some “protection” to mσ at the quantum level.

L3 of (45) is similar to that in Weyl quadratic gravity with
a non-minimally coupled scalar/Higgs field [26–28],24 up

23 We shall see shortly that inflation “prefers” ultraweak or vanishing
values for λ1 in (38) and (43).
24 For comparison to Weyl gravity Lagrangian see e.g. eqs. (39)–(41)
in [26] and eqs. (21), (22) in [27].
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to a rescaling of the couplings (ξ1, λ1) and fields (σ ). This
difference is due to the different non-metricity of the two
theories, Eqs. (32) and (33). Both cases provide a gauged
scale invariant theory of quadratic gravity coupled to matter.
They both recover Einstein gravity in their broken phase,
see Eq. (45), and also metricity below the scale mv ∼ αM
(α ≤ 1). This result may be more general – it may apply to
other theories with this symmetry and can be used for model
building.

To conclude, mass generation (Planck scale, vμ mass) and
Einstein gravity emerge naturally from spontaneous breaking
of gauged scale symmetry in Einstein–Palatini theories, even
in the absence of matter. Actions (14) and (35) were inspired
by Weyl quadratic gravity of similar breaking [27]; but in
a more general case, additional operators may be present
in (14) and (35); for a list of all quadratic operators and a
complementary study see [14]. The mechanism of symmetry
breaking should remain valid in their presence if one includes
the terms in (14): R2 that ’supplied’ the scalar field and
R2[μν] generating the symmetry and non-metricity. However,
in such general case it is unclear that one can still solve alge-
braically the second-order differential equations of motion
of �̃ (Eq. (19)) without simplifying assumptions, since these
equations acquire new terms of different indices structure
and new states will be present (ghosts, etc.).

5 Palatini R2 inflation

In this section we consider an application to inflation of the
action in the previous section.

For large field values, the potential in (46) can also be
used for inflation (hereafter Palatini R2 inflation), with σ as
the inflaton.25 For a Friedmann–Robertson–Walker metric
(FRW) (1,−a2(t),−a2(t),−a2(t)) and compatible back-
ground vμ(t) = (v0(t), 0, 0, 0) the gauge fixing condition
∇μvμ = 0 gives that vμ(t) redshifts to zero vμ(t) ∼ 1/a3(t).
Then the coupling vμ − σ in (45) is vanishing and therefore
vμ(t) cannot affect inflation; this means we have single-field
inflation of potential (46) and standard slow-roll formulae
can be used. Further, since M is just a phase transition scale,
field values σ ≥ M are natural. V̂(σ ) is similar to that in
Weyl gravity R2-inflation, see [28,47] for a detailed analy-
sis26; however, as mentioned, the couplings and field normal-
ization in the potential differ (for same initial couplings and
non-metricity trace); hence the spectral index ns and tensor-
to-scalar ratio r are different, too, and need to be analyzed
separately.

25 Unlike in Starobinsky models, there is no scalaron here, its counter-
part was “eaten” by massive vμ.
26 For related works on inflation in the Einstein–Palatini formalism see
e.g. [95–104].

The potential is shown in Fig. 1 for perturbative values of
the couplings relevant for successful inflation. This demands
λ1ξ0 � ξ2

1 � 1, with the first relation from demanding
that the initial energy be larger than at the end of inflation
V̂0 > V̂min, respected by choosing a small enough λ1 for
given ξ0,1. Therefore, we shall work in the leading order in
(λ1ξ0).

The slow-roll parameters are:

ε = M2

2

{
V̂ ′(σ )

V̂(σ )

}2

= 4

3
ξ2

1 sinh2 σ

M
√

6
+ O(ξ3

1 ) (47)

η = M2 V̂ ′′(σ )

V̂(σ )
= −2

3
ξ1 cosh

σ

M
√

6
+ O(ξ2

1 ). (48)

Then

ns = 1 + 2 η∗ − 6 ε∗ = 1 − 4

3
ξ1 cosh

σ∗
M

√
6

+ O(ξ2
1 ),

(49)

where σ∗ is the value of σ at the horizon exit. With r = 16ε∗
we have27

r = 12 (1 − ns)
2 + O(ξ2

1 ). (50)

The contribution of ε is subleading for small ξ1 considered
here. The slope of the curves in the plane (ns, r), shown in
leading order in (50), is steeper than in Weyl R2 inflation
[28] (or Starobinsky model) where r = 3(1 − ns)2 +O(ξ2

1 ).
The exact numerical results for (ns, r) in our model, for

different e-folds number N , are shown in Fig. 1. From exper-
imental data ns = 0.9670 ± 0.0037 (68% CL) and r < 0.07
(95% CL) from Planck 2018 (TT, TE, EE + low E + lensing
+ BK14 + BAO) [105]. Using this data, Fig. 1 (right plot)
shows that a specific, small range for r is predicted in our
model for the current range for ns at 95% CL:

N = 60, 0.007 ≤ r ≤ 0.010, [Palatini R2 inflation].(51)

Similar values for r can be read from Fig. 1 for 55 ≤ N ≤ 65.
The lower bound on r comes from that for ns while the upper
one corresponds to a saturation limit, ξ1 → 0, with values
ξ1 < 10−3 having similar (ns, r). One should also respect
the constraint λ1 ≤ ξ2

1 /ξ0, giving λ1 ∼ 10−12 or smaller
(with the CMB anisotropy constraint ξ0 ≥ 6.89 × 108).

For comparison, in Weyl R2-inflation for same ns at 95%
CL one has a smaller r [28,47]

N = 60, 0.00257 ≤ r ≤ 0.00303, [Weyl R2 inflation].
(52)

27 There is also a constraint on the parametric space from the normal-
ization of CMB anisotropyV0/(24π2M4ε∗) = κ0, κ0 = 2.1×10−9 and
r = 16ε∗ with r < 0.07 [105] then ξ0 = 1/(π2rκ) ≥ 6.89 × 108. The
aforementioned condition λ1ξ0 � ξ2

1 is then respected for perturbative
ξ1, 1/ξ0 by choosing small λ1 � ξ2

1 /ξ0.
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Fig. 1 Left plot: The potential V̂(σ )/V̂0 for λ1ξ0 = 10−10 � ξ2
1 with

different ξ1 � 1. For larger λ1ξ0 the curves move to the left while
the minimum of the rightmost ones is lifted. Larger values of λ1ξ0 are
allowed, but inflation becomes less likely when λ1ξ0 ∼ ξ2

1 . The flat
region is wide for a large range of σ , with the width controlled by
1/

√
ξ1 while its height is V̂0 ∝ 1/ξ0. We have V̂/V̂min ∝ ξ2

1 /(λ1ξ0).

Right plot: The values of (ns , r) for different values of ξ1 that enable
values of ns = 0.9670 ± 0.0037 at 68% CL (blue band) and 95%
CL (light blue region). For each curve N = 60 efolds is marked by
a red point and the dark blue interval corresponds to 55 ≤ N ≤ 65.
Curves of ξ1 < 10−3 are degenerate with the red one while those with
ξ1 > 2.5 × 10−2 have N > 65

The different range for r in Eq. (51) versus Eq. (52) is impor-
tant since it enables us to distinguish these two inflation mod-
els based on gauged scale invariance, and is due to their dif-
ferent non-metricity.28,29 Such values for r ∼ 10−3 will soon
be reached by various CMB experiments [79–81] that will
then be able test both models. This establishes an interest-
ing connection between non-metricity and testable inflation
predictions.

Similar values for r were found in other recent inflation
models in Palatini R2 gravity [102–104] but these are not
gauged scale invariant. In the absence of this symmetry, other
successful models (e.g. Starobinsky model [106]) have cor-
rections to r from higher curvature operators (R4, etc.) of
unknown coefficients [108]. Such operators (and their correc-
tions) are not allowed here because they must be suppressed
by some effective scale whose presence would violate scale
invariance.30 Another advantage is that due to the gauged
scale symmetry Palatini R2 inflation is allowed by black-hole

28 For a more detailed comparison of Einstein–Palatini R2-inflation to
Weyl R2-inflation see [94].
29 In the Starobinsky model [106] for similar ns one has r ∼ O(10−3),
e.g. r = 0.0034 (N = 55) [107].
30 The dilaton field cannot suppress them itself since it is “eaten” to all
orders by the gauge field vμ.

physics (similarly for Weyl R2 inflation [28]), in contrast to
models of inflation with global scale symmetry.31

6 Conclusions

At a fundamental level gravity may be regarded as a the-
ory of connections. An example is the Einstein–Palatini (EP)
approach to gravity where the connection (�̃) is apriori inde-
pendent of the metric, and is determined by its equation of
motion, from the action. For simple actions �̃ plays an aux-
iliary role (no dynamics) and can be solved algebraically. In
particular, for Einstein action in the EP approach one finds
that the connection is actually equal to the Levi-Civita con-
nection (of the metric formulation); then Einstein gravity is
recovered, so the metric and EP approaches are equivalent.
However, this equivalence is not true in general, for com-
plicated actions, etc. In this work we considered quadratic
gravity actions in the EP approach, with the goal to show
that, while this equivalence does not hold true, one can still
find actions that recover dynamically the Levi-Civita con-
nection, metricity, Einstein gravity and Planck mass in some
“low-energy” limit, even in the absence of matter.

We studied EP quadratic gravity given by R(�̃, g)2 +
R[μν](�̃)2 which has local scale symmetry. R[μν](�̃)2 can

31 A global symmetry is broken since global charges can be eaten by
black holes which then evaporate [109].
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be regarded as a gauge kinetic term for the vector field
vμ ∼ �̃μ − �μ where �̃μ (�μ) denotes the trace of the
Palatini (Levi-Civita) connections, respectively. Hence this
theory actually has a gauged scale symmetry, with vμ the
Weyl gauge field. A consequence of this symmetry is that
the theory is non-metric i.e. ∇̃μgαβ �= 0 (due to dynamical
vμ ∼ �̃μ). At the same time, the equations of motion of the
connection (�̃) become complicated second-order differen-
tial equations and we showed how to solve themalgebraically
in terms of an auxiliary scalar φ that “linearises” the R(�̃, g)2

term. While initially the action appears to be of second order,
for �̃ onshell it is a higher derivative theory since R(�̃, g)2

contains a (four-derivative) metric contribution R(g)2 +· · · .
We showed that for �̃ onshell, the action is equivalent to a
second-order theory in which the initial auxiliary field φ has
become dynamical, while preserving the symmetry of the
theory.

The main result is that our EP quadratic gravity action has
an elegant spontaneous breaking mechanism of gauged scale
invariance and mass generation valid even in the absence of
matter; in this, the necessary scalar field (φ) was not added
ad-hoc to this purpose (as usually done), but was “extracted”
from the R2 term, as mentioned, being of geometric origin.
The derivative ∂μ ln φ of this field acting as a Stueckelberg
field is “eaten” by vμ which becomes massive, of mass mv

proportional to the Planck scale M ∼ 〈φ〉. One obtains the
Einstein–Proca action for the gauge field vμ and a positive
cosmological constant. This is a “low-energy” broken phase
of the initial action. Below the scale mv ∼ M , the Proca
field vμ decouples and metricity and the Einstein action are
recovered. Non-metricity effects are strongly suppressed by
a large scale (∝ M), which is important for the theory to be
viable.

The above results remain valid in the presence of scalar
matter (Higgs, etc.) with a (perturbative) non-minimal cou-
pling to this theory with a Palatini connection; in such case
and following the Stueckelberg mechanism, the scalar poten-
tial also has a breaking of the symmetry under which this
scalar is charged, e.g. electroweak symmetry in the Higgs
case. This is relevant for building models with this symme-
try for physics beyond the SM.

To summarise, Einstein–Palatini quadratic gravity
R(�̃, g)2 + R2[μν](�̃) is a gauged theory of scale invariance
that is spontaneously broken to the Einstein–Proca action for
the Weyl field with a positive cosmological constant; if initial
action also contains (non-minimally coupled) scalar fields
with Palatini connection, a scalar potential is also present.

This picture is similar to a recent analysis for the original
Weyl quadratic gravity, despite the different non-metricity of
these two theories. With hindsight, this is not too surprising,
since in both theories there is a gauged scale symmetry and
the connection is not fixed by the metric, except that in Weyl
gravity non-metricity is present from the onset (due to under-

lying Weyl conformal geometry) while here it emerges for
�̃ onshell. It is worth studying further the relation of these
two theories, by including any remaining operators (on the
Einstein–Palatini side) that can have this symmetry.

There are also interesting predictions from inflation.
While the scalar potential is Higgs-like for small field val-
ues (� M), for large field values it can be used for inflation.
With the Planck scale M a simple phase transition scale, field
values above M are natural. The inflaton potential is similar
to that in Weyl quadratic gravity, up to couplings and field
redefinitions (due to different non-metricity of the two the-
ories). We find a specific prediction for the tensor-to-scalar
ratio, 0.007 ≤ r ≤ 0.01, for the current value of the spec-
tral index at 95% CL. This value of r is mildly larger than
that predicted by inflation in Weyl gravity. This enables us to
distinguish and test these two theories by future CMB exper-
iments that will reach such values of r . It also establishes an
interesting connection between non-metricity and inflation
predictions.

Acknowledgements The author thanks Graham Ross for helpful dis-
cussions on this topic at an early stage of this work.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No datasets were
generated or analysed during the current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix

For a self-contained presentation, we include here basic
aspects of the Palatini formalism used in the text. In the
(pseudo-)Riemannian geometry, the Levi-Civita connection
�(g) is determined by the metric. In general, however, the
connection can be introduced without reference to gμν . In the
Palatini approach the connection �̃ is apriori independent of
the metric and is determined by the equations of motion. To
ensure the covariant derivatives transform under coordinate
change (x → x ′(x)) as true tensors, Palatini connection has
a transformation law

�̃
′λ
μν = ∂xα

∂x ′μ
∂xβ

∂x ′ν
∂x

′λ

∂xρ
�̃

ρ
αβ + ∂x

′λ

∂xσ

∂2xσ

∂x ′μ∂x ′ν (53)
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with �̃′ = �̃′(x ′), �̃ = �̃(x). In the text we also assumed
�̃

ρ
μν = �̃

ρ
νμ (no torsion). The Levi-Civita connection �λ

μν(g)
has a similar transformation

�
′λ
μν(g) = ∂xα

∂x ′μ
∂xβ

∂x ′ν
∂x

′λ

∂xρ
�

ρ
αβ(g) + ∂x

′λ

∂xσ

∂2xσ

∂x ′μ∂x ′ν . (54)

Note that the difference of these connections transforms as a
tensor

�̃
′λ
μν − �

′λ
μν(g) = ∂xα

∂x ′μ
∂xβ

∂x ′ν
∂x

′λ

∂xρ
(�̃

ρ
αβ(x) − �

ρ
αβ(g)). (55)

Setting λ = ν and with the notation �̃μ ≡ �̃ν
μν , �μ ≡ �ν

μν ,
etc., then

�̃′
μ − �′

μ(g) = ∂xα

∂x ′μ (�̃α − �α(g)) (56)

and therefore vμ introduced in Sect. 3 transforms as a covari-
ant vector

v′
μ(x ′) = ∂xα

∂x ′μ vα(x) (57)

Further, the covariant derivatives used in the text are

∇̃νvμ = ∂νvμ − �̃λ
μνvλ, ∇̃νv

μ = ∂νv
μ + �̃

μ
λνv

λ. (58)

One also has ∇̃λgμν = ∂λgμν − �̃
ρ
μλgρν − �̃

ρ
νλgρμ, also used

in the text.
In Sect. 3 we introduced the gauge field vμ in Eq. (16).

This is general. For example, in Weyl gravity of similar
gauged scale symmetry, an identical formula exists for the
gauge field. To see this, note that in Weyl gravity [26,27],
see also Eq. (33) in the text, non-metricity is different from
EP quadratic gravity: ∇̃λgμν = −vλ gμν . Contracting this
equation with gμν and using ∇̃λ

√
g = (1/2)

√
g gμν ∇̃λgμν

we find vλ = (−1/2)∇̃λ ln
√
g. This is similar to Palatini

case, Eq. (26) in the text, although the connection is differ-
ent. From these last two equations, by writing the action of
∇̃λ on gμν one immediately finds

vμ = (1/2)(�̃μ − �μ(g)) (59)

with the trace of Levi-Civita connection �μ(g) = ∂μ ln
√
g.

Equation (59) was used as a definition for the gauge field in
Einstein–Palatini quadratic gravity, Eq. (16).
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