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Abstract---Smart metering and fine-grained energy data are
one of the major enablers for the future smart grid and improved
energy efficiency in smart homes. By using the information
provided by smart meter power draw, valuable information
can be extracted as disaggregated appliance power draws by
non-intrusive load monitoring (NILM). NILM allows to identify
appliances according to their power characteristics in the total
power consumption of a household, measured by one sensor,
the smart meter. In this paper we present a NILM approach,
where the appliance states are estimated by particle filtering (PF).
PF is used for non-linear and non-Gaussian disturbed problems
and is suitable to estimate the appliance state. On/off appliances,
multi-state appliances, or combinations of them are modeled by
hidden Markov models (HMM) and their combinations result in a
factorial hidden Markov model (FHMM) modeling the household
power demand. We evaluate the PF-based NILM approach on
synthetic and on real data from a well-known dataset to show
that our approach achieves an accuracy of 90% on real household
power draws.

Index Terms---Particle filter, load disaggregation, non-
intrusive load monitoring, hidden Markov model, factorial hid-
den Markov model, state estimation

I. INTRODUCTION

The smart grid aims to improve the current grid to be more

efficient, reliable, and to support sustainable energy sources.

Modern smart meters provide fine-grained demand information

of households where the consumers not only gets the overall

cost of his/her consumption, future consumers of energy will get

the possibility to see which amount of power is used at which

point in time [1]. This will give the consumers the opportunity

to establish and to develop an energy-aware behavior, which

accordingly can lead to a reduction of the energy demand

as well as for the energy costs [2]. Different studies [2, 3]

showed that 20−40 of the overall consumption of a country is

determined by the domestic household consumption. Improving

the energy awareness on household level is one of the major

issues in future energy research. Smart meters are a key factor

to support and improve the future smart grid.

Smart meters provide the possibility to show the consumers

not only when and what quantity of power is consumed, it is

also possible to provide information about which appliance is
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consuming which amount of power at which time. Therefore,

the household energy demand is disaggregated to individual

appliances, which additionally can lead to energy savings of up

to 12% through a real-time energy feedback on appliance level

[2]. One possible way to provide energy data on appliance level

would be to equip each device at home with a metering and

monitoring unit, but this approach comes with high acquisition,

installation and communication costs. Another approach based

on a single sensor monitoring the overall energy consumption

of a house1 on the grid connection point was introduced by G.

Hart [4] and was designated firstly under the name nonintrusive

appliance load monitoring. Recently, the terms non-intrusive

load monitoring (NILM) and load disaggregation are used in

the same context as the term proposed by Hart and are used

synonymously in this paper. NILM aims to identify appliances

according to the appliance power characteristics. Different

appliance types such as refrigerators and water kettles have

different power characteristics. Some appliances consume their

power in an on/off switching manner whereas others consume

the power in a continuous manner according to the load [5].

NILM approaches use this information with smart algorithms

and techniques to identify and classify single appliances in the

total power load. Until now, a variety of NILM algorithms

were proposed but no approach could solve the disaggregation

problem in all its diversity. Zeifman in [6] suggested that a

NILM approach should fulfill the following requirements to be

able to contribute positively for energy efficient management

systems and to solve the problem of aggregated power profiles:

• The selected feature should be the active power sample

at 1 Hz.

• The minimum acceptable accuracy of the algorithm is 80
to 90%.

• No algorithm training should be necessary.

• The algorithm should perform in real-time.

• The method should be scalable in the sense of robustness

and number of used appliances up to 20 to 30 devices.

• The types of used appliances should be diverse. It

should work for the following appliance types [5]: on/off

appliances, multi-state appliances, continuous consuming

appliances and permanent consuming devices.

Accordingly, we claim that a modern and novel load disag-

gregation algorithm should fulfill the presented requirements

due to its applicability with modern smart meters and due to

a simplified computational effort. The approach we propose

is based on the work in [7]. It is unsupervised and contains

1The household demand is the aggregated power demand of all used
appliances in the household.
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appliance models based on HMM. We model our household

consumption using the FHMM. The problem of disaggregating

aggregated appliances is computationally complex and suffers

on non-linearity if instead of on/off and multi-state appliance,

non-linear appliances such as a drill are used. It suffers

from non-Gaussian noise according to appliances which have

activities not consciously noticed or where the existence

of the appliance is not known. To solve the problem, the

Viterbi algorithm [8] could be used to compute the inference

of the HMM. Nevertheless, in the case of an FHMM, the

Viterbi algorithm is no longer usable for computing the

inference. Therefore, approximation methods such as Gibbs

sampling [9] should be applied. Recent NILM approaches

which are stressing this topic are based on approximating

FHMM interference by Kolter [10] or make use of structural

variational approximation methods by Zoha [11]. The work of

Zoha uses several appliance features such as active, reactive

power. Our proposed approach is based on simple active power

features in 1 second granuality. This supports a wide range

of state-of-the-art smart meters. However, we propose the

well-known estimation approach of sequential Monte Carlo

or PF to estimate disaggregated appliance states. PF is a

suitable approach for state estimation problems with non-

linear behavior and non-Gaussian noise in different areas of

application such as industrial systems [12]. We show that PF is

an alternative to current proposed NILM solutions which meets

the requirements identified by [6]. We evaluate our approach

on synthetic household power draws to show the ability of

the algorithm to detect appliance states of up to 18 different

appliances and we test the approach on the well-known REDD

data set [13] to make the proposed approach comparable and

real-world tested. The remainder of this paper is organized

as follows: In Section II, we describe how an appliance and

how the total household consumption is modeled by the HMM

and the FHMM. In Section III, we provide information about

basic knowledge of particle filtering and how particle filtering

can be used to estimate appliance states using measured data,

followed by Section IV, which explains how the evaluation of

the proposed approach is established, which evaluation metric

is used and which test scenarios are evaluated. Moreover,

Section VI shows the results of the proposed algorithm based

on the evaluation mechanisms defined in Section IV. Finally,

the proposed approach and the achieved results are discussed

in Section VII, related work is presented in Section VIII and

we concluded this work in Section IX.

II. HOUSEHOLD AND APPLIANCE MODEL

The load of a household is characterized by the power

profiles of household’s appliances. Thus, the total power load

is the aggregated sum of power profiles, where each appliance

is modeled by a HMM and the total power consumption is

modeled by FHMM. In the following, we describe in detail

how the appliance and household model is generated and

established.

To model the time series behavior of an appliance we describe

each appliance as a HMM [14]. An HMM is probabilistic

graphical model describing time series as a Markov model in

which the states are not directly observable. The state of an

HMM are characterized by a probability distribution function.

States cannot be directly observed, but can be estimated

from the available measurements. The HMM model has n
hidden states s = {s1, . . . sn} as well as a transition matrix

A = {ai,j ≤ i, j ≤ n} representing the state transition from si
to sj . In detail, aij = P (xt+1 = sj | xt = si)), where aij > 0
and

∑n

j=0 aij = 1. The terms xt are the states observable at

each time slice t, which represents the power consumption of

an appliance in a particular state. The HMM of an appliance is

a discrete-time model, because the observed time T is separated

into equally spaced time slices t. Furthermore, an emission

matrix B must be defined for the HMM, which represents a

symbol in an actual state. In the appliance model, the emission

matrix shows the possible power values in each state of an

appliance. Finally, the initial probability π = P (x1 = si) must

be defined for the HMM. The vector z = {z1, z2 . . . zt} is the

result of the hidden states x = {x1, x2, . . . xt}, where the next

state of the HMM is dependent on the HMM’s current state

and is independent of past states. This is the Markov property

P (xt+1 | xt, xt−1 . . . x1) = P (xt+1 | xt). In Figure 1, an

example for a general model of an on/off appliance model to

generate the hidden states is shown. In this work we consider

on/off devices and multi-state appliances with several power

states. Thus, the appliances are dependent on more than two

different states and accordingly, the parameter matrices of the

HMM {π,A,B} grow by the number of states n. To establish

a desired appliance type such as a standby device, the definition

of A and B is the crucial task of the appliance model design.

The two matrices A and B have to be learned online or offline

with or without knowledge about the HMM. The knowledge of

the HMM includes for example information of the appliance

structure (such as an on/off appliance) or information about a

generic appliance structure which is refined during operation

time [15]. In this paper, A and B have been selected either

randomly in a predefined range or based on learned models

from measured appliance power profiles.

The household power profile can be observed as the ag-

gregate power profile of N different appliances such as

Y = {y1, y2, . . . yt} and is generated by the state sequence

of x = {x(1), x(2), . . . xN}, which is the superposition of the

appliance states at each time slice x(n) = {x
(n)
1 , x

(n)
2 . . . x

(n)
t }.

The household model is based on an FHMM. An FHMM is

commonly used to model multiple independent hidden states

and to decrease the number of parameters in contrast to using

a standard HMM with a large set of operational states. The

general structure of an FHMM is represented in Figure 1.

III. STATE ESTIMATION

In the following sections, we discuss background information

on particle filtering and how to apply particle filtering to the

problem of appliance state estimation. We start with Bayesian

estimation, explain the shortcomings of using Bayesian esti-

mation with non-linear problems and non-Gaussian noise and

present the particle filter as a solution for this problem.

A. Sequential Bayesian Estimation

According to the Bayesian approach, the state of a physical

system xt at time t can be inferred from the probability density

function (PDF) of a state given all the measurement y1:t until
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Fig. 1: In this figure the appliance models for on/off or multi-state appliances, a sketch of the FHMM model and the power

draw of the aggregated power trends for 3 appliances are presented.

time t. The sequential Bayesian estimation has two primary

steps at every time instance t:

• State prediction predicting the state as the expectation of

the prediction PDF

p
(

xt | yt−1

)

=

∫

p
(

xt−1 | yt−1

)

p (xt | xt−1) dxt−1, (1)

where p
(

xt−1 | yt−1

)

is the posterior PDF available from time

t-1 and p (xt | xt−1) is the state transition probability given by

the system process model.

• Measurement update where upon receiving the measure-

ment, the predicted state is computed as expectation of

the posterior PDF

p (xt | yt) =
p
(

xt | yt−1

)

p (yt | xt)
∫

p
(

xt | yt−1

)

p (yt | xt) dxt
, (2)

where the p (yt | xt) is the likelihood PDF given by the

measurement model of the system. The Kalman Filter (KF)

[16] can be used to solve the integrals in Eq. 1 and Eq. 2 if the

system is linear with additive white Gaussian noise. In contrast,

if the physical systems are non-linear, then these integrals are

intractable. Often, non-linear state estimation methods such as

PF are used to approximate these integrals.

B. Particle Filter (PF)

PF calculates weighted particles or Monte Carlo samples

to approximate the PDFs as in Eq. 1 and Eq. 2. Particles are

propagated over time to obtain new particles and the weights,

resulting in a series of PDF approximations. The approximation

of the PDF becomes more accurate with an increasing number

of samples. In many cases, the sampling of the required PDF is

not possible. In such cases, the samples drawn from a different

PDF (importance PDF) are used to approximate the required

PDF. It is called importance sampling. Let
{

xi0:t,wi
t

}Np

i=1
be the

set of random samples, xi
0:1, drawn form the importance density

q (x0:t | y1:t) and their associated weights, wi
t, for 1 . . . Np

where Np is the number of particles. Then the required PDF

can be approximated as

p (x0:t | y1:t) ≈

Np
∑

i=1

wi
tδ

(

x0:t − xi
0:t

)

, (3)

where δ is the unit dirac function and the weights are defined

as
wi

t =
p
(

xi
0:t | y1:t

)

q
(

xi0:t | y1:t

) . (4)

In the case of sequential importance resampling (SIS) [16], the

samples and corresponding weights
{

xi0:t−1,wi
t−1

}Np

i=1
which

approximate p
(

x0:t−1 | y1:t−1

)

are known at time t. If the

importance density for approximating p (x0:t | y1:t) is chosen

in such a way that

q (x0:t | y1:t) = q (xt | x0:t−1, yt) q
(

x0:t−1 | y1:t−1

)

, (5)

then the new samples xi
0:t ≈ q(x0:t|y1:t) can be obtained by

augmenting the existing samples xi
0:t−1 ≈ q(x0:t−1|y1:t−1)

with the new state xi
t ≈ q(xt|x0:t−1, y1:t). The corresponding

weight update equation is given as

wi
t = wi

t−1

p
(

yt | xit
)

p
(

xi
t | xi

t−1

)

q
(

xit | xi0:t−1, yt

) . (6)

Now, the required PDF at time t can be approximated as

p(x0:t|y1:t) ≈

Np
∑

i=1

wi
tδ(xt − xi

0:t). (7)

However, the SIS algorithm suffers from the degeneracy

problem in which all but a few particles have negligible

weights. Due to the degeneracy, large computational effort

is expended for updating the particles with less contribution

to the approximation of the required PDF. One solution to

overcome degeneracy is resampling. The resampling process

eliminates particles with negligible weights by replacing

them with particles with large weights
{

x∗i
0:t,w∗i

t

}Np

i=1
. Several

resampling techniques are proposed in [16]. Then, the PDF

can be approximated as

p (x0:t | y1:t) ≈

Np
∑

i

w∗i
t δ

(

xt − x∗i
t

)

. (8)
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The PF algorithm is given as: At time t,
{

x∗it−1,w∗i
t−1

}Np

i=1
are

known. The new samples are generated by

xi
t ∼ p

(

xt | x∗it−1

)

|
Np

i=1.

The weights are updated by

wi
t = p

(

yt | xit
)

|
Np

i=1.

Resampling: The particles are resampled by using the auxiliary

resampling [16] as
{

x∗it ,w∗i
t

}

|
Np

i=1 = Resampling
{

xit,wi
t

}

|
Np

i=1.

The state estimate is given by the sample mean of the

resampled particles xi∗t .

C. Particle Filter based Load Disaggregation - PALDi

PF is an alternative choice to disaggregate power loads for

several reasons. Firstly, to model appliances and their usage in a

realistic way, a probabilistic modeling method such as a HMM

is necessary. To infer the most probable state of the HMM for

each appliance, the posterior density of the whole appliance

state space has to be estimated according to the observation.

This could be estimated online by particle filtering (PF). The

advantage of PF in the sense of aggregated power loads is the

fact that PF can handle large state spaces as in the case of

several appliances with multiple operation states. Moreover, PF

could be used as an approximation technique for the FHMM.

Secondly, on/off and multi-state appliances behave in a linear

way whereas a continuous behaving appliance such as a drill or

dimmer show non-linear behavior. This motivates the usage of

PF to make the proposed NILM approach usable for all kinds

of appliance types. Third, the appliance model generated by

the HMM and household power consumption established by

the FHMM suffers from non-Gaussian noise. In particular, the

used appliance could suffer from noise due to inaccuracies as

well as the aggregated power consumption could be disturbed.

Considering the aggregated power consumption, all appliance

and corresponding power draws are regarded as non-Gaussian

noise if these appliances are not known by the estimation

process. In detail, each HMM represents an appliance with

its hidden appliance states xt and its recognizable power

consumptions as observation value of the HMM. For each

HMM it is necessary to describe offline the structure, the

transition matrix and the observations. All appliance HMMs

are conducted by the FHMM where all hidden appliance states

of the HMMs are aggregating their power consumptions to

the total household power consumption. The total household

demand is represented by the observation of the FHMM. The

PF is used to estimate the posterior density of the FHMM

according to the appliance models and the observed household

power consumption. The output of the PF are power values

for each appliance which are aggregated at each point in time.

The PF has the characteristic to randomly adjust the estimated

power observation for each appliance in predefined ranges.

The reason for that is to estimate and to compensate appliance

inaccuracy in the appliance power consumption. However, the

PF itself is not providing the information in which state an

appliance is operating, it delivers power values which are given

to a decision making process. The decision making process has

knowledge of the power demand of each appliance operation

state. It decides accordingly in which state each appliance is

at each point in time by a simple thresholding approach.

IV. EVALUATION SETTINGS

In the following, the evaluation settings for the simulations

on synthetic data are described and the evaluation metric for

proposed approach is defined.

A. Settings on Synthetic Data

To generate a synthetic total power load P (t), on/off

appliances are modeled by their power demand pd, the average

usage time ton and the average occurrence frequency of an

appliance fon. This parameters {pd, fon, ton} are initialized as

follows.

• Power demand pd is a uniformly distributed variable in

the range pd ∈ {100, 3000} in Watts (W),

• Average usage time ton is a uniformly distributed variable

in the range ton ∈ {60, 3600} in seconds (s) and

• Average occurrence fon is a uniformly distributed variable

in the range fon ∈ {1, 10} in average number of

occurrence per day.

The information of {pd, fon, ton} is fed into the transition

matrix A and the observation matrix B. Thus, for an on/off

appliance the on probability is pon = fon/T , where T = 86400
and the off probability poff = 1/ton. The observation matrix

is built up by B = {0, pd}, where B = 0 belongs to the

appliance off state and B = pd belongs to the on state. Multi-

state appliances are defined in a similar way. The transition

matrix A is defined in a way that the on probability is chosen

equivalently for on/off appliances. The transition states from
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one state to the other state are defined by ton and is the

same for each transition from one state to another state. The

probability of staying in the same state is calculated by 1 minus

the sum of all other transition probabilities. The observation

power demand matrix Bm is defined by the power demand

values for each appliance state. Unless stated otherwise, we

used a sampling frequency of 1 second, one simulation run

corresponds to one day of 86400 seconds and in general 100

simulation runs for each test scenario and configuration were

computed.

B. Real-World Dataset: REDD

We decided to use the REDD dataset as real-world dataset

because the data was recorded for several appliances and houses

over several days [13] and it is well-known in the research

community. For our evaluations we used house 1, where each

appliance is defined by the recorded apparent power. We choose

6 different appliances which are common in households and

are affecting the energy consumption of an household in a

significant way [3]. The REDD dataset offers submetered power

profiles, i.e. the devices are known and the load is already

disaggregated. We calculated an overall power profile based

on the submetered data which was fed into PALDi2. PALDi

is a model based state estimation approach, thus for each used

appliance the transition matrix A and the observations matrix

B has to be determined. For this we used the MATLAB pre-

programmed HMM functions to construct the matrices A and

B. According to the appliance types, we used on/off appliances

and multi-state appliances, where we give the algorithm the

possibility to adjust its used power demand for each iteration.

The used sampling frequency is one second.

C. Evaluation Metrics

To evaluate the performance and the precision of the

proposed approach, we use the normalized root mean square

error (RMSE) and the accuracy of the classification. The

normalized RMSE is formulated as

RMSE =

√

E((Θ̂−Θ))2

max(Θ)−min(Θ)
, (9)

where Θ represents the true total power load, Θ̂ the estimated

total power load produced by PALDi and max(Θ) and min(Θ)
the maximum and minimum power value of the total power

load. To be able to formulate the accuracy of the classification

process, the following classification terms have to be defined

such as TP (number of times an appliance is correctly detected

as ON), FP (number of times an appliance is wrongly detected

as ON), FN (number of times an appliance is wrongly detected

as OFF) and TN (number of times an appliance is correctly

detected as OFF). The classification terms TP, FP, FN and TN

are straightforward for On/Off appliances. Considering multi-

state appliances we remark that we consider only the operating

state if an appliance is on or off and not, if a device is in a

certain operating state. With the mentioned classification terms,

2The submetered power profiles have a varying sampling frequency and
are partially out of order which makes it necessary to adjust the sampling
frequency on an equal level using interpolation
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Fig. 3: Household Power Load of one day generated by the

synthetic HMM model.

the overall classification result is calculated by combining TP,

FP, FN and TN to the accuracy metric

ACC =
TP + TN

TP + TN + FP + FN
∈ [0, 1], (10)

where ACC represents how accurate appliance states can be

detected by the proposed approach. Both presented metrics are

computed by the mean of the achieved metric value for each

simulation run whereas the metric value for each simulation

run is computed by mean of the reached metric values on

appliance level.

V. EVALUATION SCENARIOS

A. Synthetic Dataset

In the following, different test scenarios are described. The

used appliance model is defined by the synthetic HMM model

of Section IV-A. An example for the power load generation

by the FHMM household model is shown in Figure 3.

1) Scenario for a varying number of aggregated appliances:

The number of active appliances in a house depends on the time

of day, weekday and season as wells as on personal variances,

since every person has different appliances and usage habits.

Therefore, we simulated 100 different appliance compositions,

whose size varies in the range N ∈ [9, 12, 15, 18] in the case

of on/off appliances. We compute the accuracy and the RMSE

of PALDi with a particle number of Np = 100.

2) Scenario for the influence on a varying number of

used particles: The efficiency of the particle filter is mainly

dependent on the number of used particles. In this test

scenario, the dependence on the particle number in the range

of Np ∈ {100, 200, 500, 1000} is evaluated. To make an

assumption on how the particle parameter Np influences the

performance of PALDi, we compute the accuracy and RMSE.

The experiment is made for on/off appliances on synthetic

appliance models. The number of used appliances is N = 12.

3) Scenario for the influence on an imperfect appliance

model: In this paper, the used appliance model is depen-

dent on the transition matrix A and the observation matrix

B. Matrix A consists of the parameters pon, poff and the

matrix B is dependent on the average power demand pd.

In case of the power demand pd, the used value can vary
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from appliance to appliance and from time to time due to

the imperfect manufacturing process of a device and the

environmental circumstances. Accordingly, we modify the

used power demand of each appliance proportional to its

size in the range σp ∈ {5%, 10%, 20%}, we give the particle

filter the knowledge that the power demand is changing and

approximate the current disturbed power value by the particle

filter estimation. The evaluation is done for on/off appliances

(N = 12). Furthermore, the appliance model is dependent on

the frequency of occurrence, which is represented by fon and

depends on the average running time represented by ton . The

values fon and ton define the on and off probabilities of each

device. Thus, we evaluate the estimation behavior on varying

fon and ton by doubling the usual and saved parameter values.

We change the values for fon and ton, where PALDi does

not have any information about the imperfect appliance model.

Our approach modifies and compensates naturally imperfect

model probabilities by scanning the search space with different

particles. The variation for fon and ton simulates the human

behavior to choose independently at any time either to use or

not to use an appliance. The simulations are done for N = 12,

Np = 100 for on/off appliances generated by synthetic data.

4) Scenario for the extension from on/off to multi-state

appliances. The general load disaggregation issue: The general

and most simple appliance model is the on/off appliance model.

However, many appliances are working in a multi-state manner

having several states with a specific amount of power for each

state. By considering multi-state devices in load disaggregation,

the problem of identifying appliances gets more complicated.

We introduce a set of realistic devices in Table I, where we

represent the appliances with their power demand for each

operating state, the average run time ton, which specifies the

mean number of seconds to run in a state and the average

frequency of occurrence fon, which indicates how often a

device is turned on per day3. For the evaluation of PALDi, the

accuracy in total and on appliance level and the RMSE are

listed in Table I. In total, 10 whole days were simulated where

12 random appliances out of all devices were chosen for each

day. The number of used particles is Np ∈ {100, 1000}.

5) Scenario for analyzing the run-time performance of

PALDi: In this scenario, we assess the execution time of

our algorithm on 1000 data samples. We ran PALDi and

measured the mean run-time of one sample computation.

We vary the number of particles in the range Np ∈
{100, 200, 500, 1000} and the number of appliances in the

range N ∈ {6, 8, 10, 12, 14, 16}. The used appliance models

are based on the devices in Table I. We used a MacBook Pro

2.8 GHz Dual Core i7, 8 GB and Mac OS operating system

to execute the algorithm for this scenario.

B. REDD Dataset

In this test scenario, PALDi is applied on real data from

the well-known REDD dataset. In the evaluation, we compute

the accuracy and the RMSE, where the RMSE indicates on

the one hand the estimation precision and on the other hand

how good multi-state appliance can be detected. We used three

variation of PALDi:

3The times fon and ton are assumed to the same for each appliance state.
Thus, the running time of state 1 and state 2 of a desired device are the same.

N 9 12 15 18

Accuracy 0.9538 0.9365 0.9190 0.8964
RMSE 0.1137 0.1677 0.1966 0.2413

TABLE II: Accuracy and normalized RMSE error for varying

number of appliances N ∈ {9, 12, 15, 18}.

Np 100 200 500 1000

Accuracy 0.9365 0.9445 0.9586 0.9599
RMSE 0.1677 0.1292 0.0889 0.0831

TABLE III: Accuracy and normalized RMSE error for varying

number of particles Np ∈ {100, 200, 500, 1000}.

• without noise adaptation behavior where the PF uses the

exact power demand of the observation matrix of the

HMM

• noise adaptation behavior where the PF varies the power

demand of the observation matrix in predefined ranges to

compensate inaccurate appliance models

• resetting behavior where the PF is setting its posterior

estimations to a random composition of samples each

expired minute.

The number of particles is chosen as Np = 100.

VI. EXPERIMENTS

A. Synthetic Dataset

1) Scenario for a varying number of aggregated appli-

ances: In this scenario we are evaluating the accuracy and

the RMSE of PALDi for a varying number of appliances

N ∈ {9, 12, 15, 18}. We calculate the mean values over

100 simulation runs and over all used appliances. Table II

shows that the accuracy is decreasing by increased number of

appliances. Also the RMSE increases by an increased number

of appliances. As reason we assume that our household power

load generated by synthesis shows a high degree of overlapping

appliances. This could be seen in Figure 3 where a produced

power profile generated by synthetic data is shown. Power

peaks up to 8kW are shown, where several appliances are

running at the same time.

2) Scenario for the influence on a varying number of used

particles: We simulated 100 different appliance compositions

to be able to make an assumption how the number of used

particles influences the accuracy and RMSE of PALDi. Thus,

in Table III the accuracy and RMSE versus the number of

used appliances is listed. It is apparent that with increasing

particle number also the accuracy is increasing and theRMSE is

decreasing. We also claim that for the problem of 12 different

appliances a particle number of 500 to 1000 is sufficient.

By increasing the number of devices we recommend also

to increase the number of particles as the accuracy with an

increased number of appliances is decreasing (see Table II) and

a increased number of particles improves the load disaggregator

result in both, reached accuracy and RMSE value (see Table

III).

3) Scenario for the influence on an imperfect appliance

model: The first part of this scenario deals with imperfect mod-

eling of the power demand pd for a used appliance model. The

power demand pd is changed by σp ∈ {0%, 5%, 10%, 20%} in

positive and negative direction. PALDi has the possibility to
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Accuracy
Name Pstate1 Pstate2 Pstate3 Pstate4 avg. run time avg. occurrence Np = 100 Np = 1000

Watter Kettle 1980 0 - - 120 10 0.9987 0.9996
Stove 870 0 - - 1200 5 0.9452 0.9955

Freezer 170 0 - - 120 100 0.9408 0.9756
Iron 1430 0 - - 1800 2 0.9870 0.9946

Refrigerator 78 0 - - 300 150 0.9349 0.9569
Toaster 700 0 - - 250 2 0.9931 0.9976

Vacuum Cleaner 1100 0 - - 800 2 0.9581 0.9986
Air Condition 1000 0 - - 200 200 0.9817 0.9898

Hair Dryer 1530 0 - - 600 2 0.9944 0.9948
Boiler 1300 0 - - 1200 4 0.9849 0.9830

Waffle Iron 950 0 - - 600 2 0.9492 0.9851
Curling Iron 90 0 - - 100 3 0.9871 0.9929

Mixer 80 0 - - 180 2 0.9892 0.9872
Coffee Machine 10 1150 0 - 120 5 0.9660 0.9155
Clothes Dryer 250 1800 0 - 3600 1 0.9161 0.9131

Clothes Washer 170 650 0 - 3600 1 0.9278 0.9192
Microwave 5 1650 0 - 300 4 0.9268 0.9608
Dishwasher 5 200 1200 0 3600 2 0.9323 0.9817

Total ACC - - - - - - 0.9619 0.9745
RMSE - - - - - - 0.1099 0.0395

TABLE I: A selection of typical on/off and multi-state appliances described by the power demand for each state, average usage

time and average occurrence per used observation window. It further shows the accuracy on appliance level, and in total and

the reached RMSE of PALDi for a different number of particles Np ∈ {100, 1000}.

σp 0 5 10 20

Accuracy 0.9365 0.9027 0.8693 0.8430
RMSE 0.1677 0.2470 0.3025 0.3340

TABLE IV: Accuracy and normalized RMSE error for

noise interfered power magnitudes in the range σp in

{0%, 5%, 10%, 20%}.

σdon no influence f̂on = 2 · fon t̂on = 2 · ton
Accuracy 0.9365 0.8939 0.9229
RMSE 0.1677 0.1 0.0693

TABLE V: Accuracy and normalized RMSE error for noise

interfered f̂on and t̂on

vary the estimated power value from the appliance model set

power demand in a priori determined ranges to improve the

estimation result. In Table IV, the accuracy and the RMSE for

the simulations are shown. The performance is decreasing by

a varying appliance model. Moreover, an additional problem

for the algorithm is that similar consuming appliances can

be confusing to the approach if the power demand difference

between two devices is in the range of the imperfect appliance

power demands. Furthermore, to consider also the frequency

of appliance occurrence fon, we change also this parameter

by f̂on = 2 · fon to simulate a commonly appliance usage

frequency per day. The accuracy and the RMSE is presented in

Table V. Our proposed approach has a decreased accuracy if

fon is not the same as the true predefined value. However, the

proposed algorithm tries to compensate this by probabilistic

scanning the appliance state space from sample to sample each

time. The minor loss of accuracy is acceptable considering that

PALDi has no information about the model difference. Beside

the probability to switch a device on, an important parameter

of the appliance model is when to switch an appliance off.

Therefore, the parameter ton is varied which defines the average

running time of an appliance. We change the parameter by

t̂on = 2·ton and evaluate the performance of PALDi. Accuracy

and RMSE are shown in Table V.
4) Scenario for the extension from on/off to multi-state

appliances. The general load disaggregation issue: In the

previous scenarios, the proposed approach was evaluated

according to synthetic data of on/off appliances. In this scenario

the accuracy and RMSE of on/off and multi-state appliance

according to Table I are evaluated. In this table, the simulation

results for the accuracy and the RMSE are shown. Accordingly,

the algorithm works with simple on/off appliances and with

multi-state appliances.
5) Scenario for analyzing the run-time performance of

PALDi: An important as well as critical point of using PF for

the estimation process is the runtime. Therefore, we made this

evaluation where the runtime for varying number of appliances

and varying number of particles is reviewed. Table VI shows

a linear behavior of run time in relation to the number of

appliances and the number of used particles. This evaluation

are based on MATLAB simulations and reaches running times

in millisecond range on desktop hardware. To improve the

computation, it is necessary to implement PALDi in a higher

performance programming language such as C. By using the

MATLAB C-converter, we could improve the runtime by a

factor of 5 on the same PC. Therefore, the algorithm can also

work in real world applications on a low-cost hardware such

as a Raspberry Pi.

B. REDD Dataset

To test the proposed approach on real data, we used the

REDD dataset, where a composition of appliances was chosen

to be detected. We choose general household appliances, which

are listed in Table VII. In this table also the accuracy results

on appliance level and in total as well as the RMSE are

presented. We tested the standard PF case with noise adaptation,

with no noise adaptation and with resetting behavior. The

best accuracy and RMSE are achieved with noise adaptation4

4Power estimated by PF can vary in the range of 10W
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t/ms Np = 100 Np = 200 Np = 500 Np = 1000

N = 6 0.69 1.55 5.95 22
N = 8 0.88 1.64 6.22 22
N = 10 0.97 1.79 7.02 22
N = 12 1.14 2.02 7.37 22.5
N = 14 1.29 2.16 7.8 24.2
N = 16 1.44 2.44 8.3 25

TABLE VI: Computation time in milliseconds for the calcu-

lation of one time sample over the number of used particles

Np ∈ {100, 200, 500, 1000} and the number of used appli-

ances N ∈ {6, 8, 10, 12, 14, 16}. This evaluation was done

with MATLAB simulation on the appliance of Table I.

House1
noise-adapt. no noise-adapt. resetting multi-state

Oven 0.9697 0.9538 0.9909 -
Fridge 0.8049 0.8503 0.7886

√
Dishwasher 0.5943 0.5690 0.7712

√
Kitchen Outlet 0.7062 0.6428 0.9832 -

Microwave 0.3489 0.3593 0.8833
√

Washing Dryer 0.9873 0.9868 0.9953 -

Total 0.7352 0.7270 0.9021 -
RMSE 0.167 0.207 0.0296 -

TABLE VII: Accuracy in total and on appliance level and

normalized RMSE error for PALDi on the REDD data set for

House 1.

and resetting behavior5. Noise adaptation overcomes appliance

model inaccuracies and the resetting behavior improves the

dynamic behavior of PALDi. The results also show that similar

appliances such as oven and microwave or dishwasher and

kitchen outlet have a decreased accuracy which is due to

the fact that the PF has no possibility to distinguish between

consuming appliances with identical consumption behavior.

The most import feature for the PF is the power demand which

is for similar appliances nearly the same. Moreover, Table VII

shows that a multi-state appliance model such as in the case

of the dishwasher (3 operation states) can be detected with

PALDi. In Figure 4 an example for a power load with the

REDD data set is shown and Figure 5 presents the estimated

power load by our approach PALDi. The minor difference

between the power loads are visible.

VII. DISCUSSIONS

In the previous sections different evaluation scenarios were

presented. We showed that the algorithm is dependent on the

number of used particles. The higher the number of particles the

higher the reached accuracy (Table III) is. With the variation

of the particle number it is also possible to overcome the

loss of accuracy (Table II) if the number of appliances is

increased. Moreover, the algorithm has the characteristics

to compensate imperfect appliance models. Power demand

differences of 5% are common power demand variation of

appliances, where we showed that PALDi can handle this

situation by randomly changing the output of the particle filter

in predefined ranges. The observation value of each HMM

represented by the observed power demand of each appliance

state can fluctuate within limits to compensate irregularities

in the appliance power demand. Considering the modeling of

5The posterior density is reseted every second

the appliance HMM, our evaluations show that an imperfect

modeling of the appliance switching frequency has a decreasing

effect on the accuracy of the load disaggregator whereas an

imperfect modeling of the average usage time of a device has

a minor to no effect on the performance of PALDi (Table V).

Therefore, the learning of the appliance model is simplified.

PALDi can work with general appliance models with known

structure such as on/off appliance or multi-state appliance

(Tabel I and VII) and common transition probabilities on

synthetic and real-world data. Additionally, also the common

power demand of each appliance state should be known. Our

approach not only handles the detection if a device is on or

off, it also detects in which operation state the appliance is

currently. However, PALDi is dependent on the choice of

power demand of the appliance. The power demand is the

main feature used for the estimation process. Accordingly, if

appliances with similar power demands are presented in the

same household, PALDi could not work proper any more, since

it has no feature and no hint to decide to which appliance the

current power demand belongs to. This is a general problem

for NILM algorithms which can be solved by improving the

distinctive features such as improving the used sampling rate

(e.g. from steady-state to transient behavior), to add further

features such as reactive power measurements or to modify the

sample-by-sample approach to a windowing approach. Finally,

a very important point to evaluate the performance of a NILM

approach is the degree of overlapping power draws. The more

devices are running simultaneously and are aggregating their

power profiles, the more complex the disaggregation problem

becomes. We showed this as well as the ability to perform

sufficient estimation results for power draws with high degree

of overlapping power by simulations on synthetic data (Table

II and I).

VIII. RELATED WORK

In general, NILM approaches can be divided into supervised

and unsupervised approaches [17]. The supervised approach

needs a labeled data set to train a classifier and can be

divided into optimization and pattern recognition [18] based

algorithms. In the optimization based approaches, the problem

of aggregated power profiles is modelled into an optimization

problem. A total power consumption and a database of known

power profiles of appliances are given. With this knowledge, a

random composition of database power profiles is selected to

approximate the total power consumption with minimal error

[19, 20, 21, 22]. In case of pattern recognition approaches,

proposed methods can be divided into clustering approaches [4],

neural networks algorithms [23] and support vector machines

based algorithms [23, 24]. The disadvantage of the supervised

classification approach is the required a priori information.

Accordingly, recent research in NILM is more concerned

with unsupervised algorithms, which is using unlabelled data.

Unsupervised algorithms do not need any training data. Recent

algorithms are based on blind source separation [25], on HMM

[26, 27], on FHMM [11], different variants of FHMM [10, 28]

and on source separation via non negative tensor factorization

[29]. Moreover, the work of [30] uses Kalman filtering instead

of PF for NILM. As mentioned in Section I the work of Hart

was the first NILM approach which used active and reactive



9

11PM 12PM 1AM 2AM
0

1,000

2,000

3,000

Time

P
o

w
er

in
W

Fig. 4: Total power load of 6 appliances of the REDD data

set for a time slice of several hours
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Fig. 5: Estimated total power load by PALDi of the power load

as in Figure 4 with noise adaptation and resetting behavior.

power records to establish an appliance model based on finite

state machine (FSM) by clustering. He used this information

to infer an appliance to be on or off. The proposed approach

uses a deterministic appliance model which is not appropriate

as a realistic appliance model because of its deterministic

behavior representation. Thus, a probabilistic appliance model

based on HMM is advantageous and occupies recent research

[26, 27, 11, 10, 28]. For exmple the work of [28] reports

an average accuracy of 83% for up to 10 appliances with

a 3 second sampling interval. The work of [10] obtains an

average accuracy of 87% for 7 appliances with a 60 second

sampling interval. The most related work is presented by

Zoha [11]. It shows an average accuracy of 90% for on/off

appliances and 80% for multi-state appliances (5 appliances

were tested) with a 3 second sampling interval. It defines

on/off and multi-state appliances and estimates the appliance

state space. Our proposed approach differs from [11] and the

initial work of Hart [4], as we use only the active or apparent

power as estimation feature6 instead of using several feature

combinations of active power, reactive power, apparent power

or power factor as in [11] and we tested our approach on

synthetic and real-world power draw. Moreover, we tested

PALDI on common household appliances in which the number

of aggregated appliances was 6 for real world data and up to

18 for synthetic consumption data in contrast to the work of

Zoha which used up to 5 appliances.

Unfortunately, there exists currently no accepted and approved

evaluation test case and metric, which makes a numerical

comparison between approaches complicated. Thus, a qualita-

tive evaluation is possible, as the fulfillment of the Zeifman

requirements.

IX. CONCLUSION

We propose an evaluation on the feasibility of particle

filtering on the problem of disaggregated power loads in house-

holds. We tested on/off and multi-state appliances modeled

by HMM superimposing their power draws by the use of a

FHMM. We suggest to use PF as NILM algorithm, because

6The use of one appliance feature is advantageous because of its applicability
to recent smart meters.

PF is applicable to estimate the inference of FHMM and

is suitable for non-linear problems with non-Gaussian noise.

PF is beneficial because of its characteristics to improve the

estimation performance by increasing the number of particles

and to search through the possible search space to compensate

imperfect appliance model assumptions. In Section I the

requirements of a method useful for NILM problems are

reviewed. We compare these requirements with the results

of the proposed approach:

• The used appliance model and household model is

defined by its power and time characteristics. A device is

characterized by its active power demand in 1s resolution.

• The total accuracy of PALDi is higher than 90% for real

data.

• No training during operating of PALDi is necessary. The

algorithm needs a general knowledge of the structure and

power demand of the used devices in the household. The

algorithm is only dependent on the previous state and not

on historic data.

• The algorithm is real-time capable with a running time

smaller than the measurement sampling time.

• The complexity of the proposed approach is based on

the direct proportional relation between the number of

particles and the number of used appliances. The higher

the number of particles the better is the result of PALDI

and the higher the number of appliances with constant

number of particles the lower is the accuracy of PALDI.

Thus, the number of particles has to be chosen appropriate

depending on the number of appliances.

• The proposed algorithm depends on the used appliance

model. Currently, the algorithm was tested with on/off

and multi-state appliances and will be extended and tested

with other appliance types like continuous consuming

appliance types.

In summary, the contribution of this paper is the the fulfilment

of the requirements presented by Zeifman [6] by keeping the

algorithm and the appliance model as simple as possible and by

evaluating the proposed approach with synthetic and real-world

data.
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