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Abstract: The East Kunlun Orogen on the northern margin of the Tethyan orogenic system records a
history of Gondwana dispersal and Laurasian accretion. Uncertainties remain regarding the detailed
histories of northern branches of the Paleo-Tethys Ocean in East Kunlun Orogen (Buqingshan Ocean).
Based on a synthesis of sedimentary, structural, lithological, geochemical, and geochronological
data from the East Kunlun Orogen and adjacent regions, this paper discusses the spreading and
northward consumption of the Paleo-Tethys Ocean during Late Paleozoic–Early Mesozoic times.
The main evolutionary stages are: (1) during Carboniferous to Middle Permian, the Paleo-Tethys
Ocean (Buqingshan Ocean) was in an ocean spreading stage, as suggested by the occurrence of
Carboniferous MORB-, and OIB-type oceanic units and Carboniferous to Middle Permian Passive
continental margin deposits; (2) the Buqingshan Ocean subducted northward beneath the East
Kunlun Terrane, leading to the development of a large continental magmatic arc (Burhan Budai arc)
and forearc basin between ~270–240 Ma; (3) during the late Middle Triassic to early Late Triassic
(ca. 240–230 Ma), the Qiangtang terrane collided with the East Kunlun–Qaidam terranes, leading to
the final closure of the Buqingshan Ocean and occurrences of minor collision-type magmatism and
potentially inception of the Bayan Har foreland basin; (4) finally, the East Kunlun Orogen evolved into
a post-collisional stage and produced major magmatic flare-ups and polymetallic mineral deposits
between Late Triassic to Early Jurassic (ca. 230–200 Ma), which is possibly related to asthenospheric
mantle upwelling induced by delamination of thickened continental lithosphere and partial melting
of the lower crust. In this paper, we propose that the Wilson cycle-like processes controlled the Late
Paleozoic–Early Triassic tectonic evolution of East Kunlun, which provides significant implications
for the evolution of the Paleo-Tethys Ocean.

Keywords: paleo-tethys; kunlun; forearc basin; accretionary complex; Indosinian; magmatic arc;
ophiolite; granites; oceanic island basalts

1. Introduction

The East Kunlun Orogen (EKO), stretching more than 1000 km W-E, is located along
the northern margin of the Tibet–Qinghai Plateau in Western China [1–15]. As early as
the late 20th century, some pioneering explorations (e.g., Sino-French traverse) have been
made in the Kunlun ranges, which established the preliminary tectonic framework of
the Kunlun [1,16,17]. Since the 21st century, much work has been conducted and further
suggested that EKO involves the tectonic evolution of the Proto-Tethys Ocean during
Neoproterozoic to Early Paleozoic and the Paleo-Tethys Ocean during Late Paleozoic–Early
Mesozoic time [12,18–23]. The Proto-Tethys Ocean was closely related to the breakup of
the supercontinent Rodinia and likely closed in the Silurian time based on occurrences
of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks, A-type granites,
Cu-Ni-Co sulfide deposits, and foreland basins [24–31]. Subsequently, the Paleo-Tethys
Ocean gradually opened in Kunlun and Qinling area during Middle Devonian [32]
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The northernmost branch of the Paleo-Tethys Ocean in China is locally referred to as the
Buqingshan Ocean in the EKO and can be linked to the Mianlue Ocean further to the east in
the Qinling region, and the Kangxiwa Ocean to the west in West Kunlun (Figure 1b) [33–37].
Previous researchers have reconstructed the general tectonic framework and evolution
history of this ocean from Late Paleozoic to the Mesozoic. However, some debate continues
regarding the details of its evolutionary history. Controversies mainly include: (1) when
the ocean began to subduct and when it closed; (2) spatiotemporal relationships amongst
Buqingshan tectonic complexes, Early–Middle Triassic strata, and multiple magmatic
episodes; (3) when the Qiangtang terrane collided with the consolidated Kunlun–Qaidam
terrane and then docked to the southern margin of Laurasia; and (4) when these blocks as-
sembled and formed the East Asia continent. Some researchers argue that the Paleo-Tethys
Ocean closed in the Late Permian, and then entered a syn-collisional stage in the Early
Triassic and a post-collisional stage in the Middle–Late Triassic [38–42]. Others suggest that
the Paleo-Tethys Ocean closed in the late Middle Triassic (Ladinian), subsequently evolving
to a post-collisional stage in the Late Triassic based on the Late Permian–Early Triassic
arc granites and Late Triassic collision-type magmatism [22,34,43–50]. Recently, some new
data suggested that Permian to Triassic magmatism in the EKO occurred in an island arc
setting, which indicates continuous northward subduction of the Paleo-Tethys Ocean until
the Late Triassic [12,13,51]. Most previous research has focused on the geochronology and
geochemistry of magmatic rocks. The tectonic affinities of multiple magmatic phases, basin
analysis of Late Paleozoic–Triassic strata, and overall spatiotemporal relationships still
await detailed investigation.
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Figure 1. (a) Simplified tectonic map of Asia showing cratons and sutures (modified from Zuza and 
Yin [52]), and (b) tectonic framework of the Northern Tibetan Plateau (modified from Roger et al. 
and Xu et al. [11,51]). Kara—Karakum; NQT—North Qiangtang terrane; SQT—South Qiangtang 
terrane; QD—Qaidam; BT—Bayan Har terrane; LH—Lhasa terrane; QLO—Qinling Orogen; 
QILO—Qilian Orogen; EKO—East Kunlun Orogen; WKO—West Kunlun Orogen. 
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Fault of East Kunlun and the Buqingshan accretionary complex (Buqingshan AC), respec-
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Yin [52]), and (b) tectonic framework of the Northern Tibetan Plateau (modified from Roger et al. and
Xu et al. [11,51]). Kara—Karakum; NQT—North Qiangtang terrane; SQT—South Qiangtang terrane;
QD—Qaidam; BT—Bayan Har terrane; LH—Lhasa terrane; QLO—Qinling Orogen; QILO—Qilian
Orogen; EKO—East Kunlun Orogen; WKO—West Kunlun Orogen.

In this paper, we integrate new sedimentary and detrital zircon geochronological
data from EKO with available magmatic, sedimentary, geochemical, and structural records
relevant to the Late Paleozoic–Mesozoic evolution of the EKO. Based on these data, we
aim to provide important insights into the development of the northern branch of the
Paleo-Tethys Ocean and reconstruct the paleogeography of the Northern Paleo-Tethys
Ocean in EKO.

2. Regional Geology

The EKO is located in the northern part of the Tibet–Qinghai Plateau, China (Figure 1a,b).
It consists, from north to south, of the North Kunlun terrane (NKT), the South Kunlun
terrane (SKT) and the Bayan Har terrane (BT) [14], which are separated by the Central Fault
of East Kunlun and the Buqingshan accretionary complex (Buqingshan AC), respectively
(Figure 2a,b).
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rocks (Figures 2a, 3 and 4) intruded by Paleozoic–Mesozoic granitoids and minor Neopro-
terozoic granites. 

Precambrian basement is mainly represented by the Paleoproterozoic Jinshuikou 
Group and the Mesoproterozoic Langyashan Formation. Jinshuikou Group can be subdi-
vided into Baishahe and Xiaomiao formations based on distinctive rock associations and 
metamorphic grades. Baishahe Formation is characterized by paragneiss, amphibolites, 
marbles, and schists. Metamorphic pressure–temperature (P–T) conditions estimated for 
the paragneiss and amphibolite from the Baishahe Formation are P = 0.45−1.19 kbar and 
T = 638−896 °C [93]. Xiaomiao Formation consists of schists, quartzites, and marbles inter-
layered with minor metabasalts. Protoliths of these rocks were a suite of mudstones, 
quartz sandstones, and limestones deposited in a rift basin setting [94]. Metamorphic 
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Baishahe and Xiaomiao formations may be assigned to the Paleoproterozoic and Meso-
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Figure 2. (a) Tectono-magmatic sketch map of the East Kunlun Orogen showing rock associations;
(b) integrated cross section showing tectonic units and rock associations. The location of Figure 3 is
outlined. 1©—Qimatag–Xiangride fault; 2©—Central fault of East Kunlun; 3©—South fault of East
Kunlun; NKT—North Kunlun terrane; SKT—South Kunlun terrane; BAC—Buqingshan accretionary
complex. Data sources: 1—Zhang et al. [53]; 2—Xiong et al. [54]; 3—Zhang et al. [55]; 4—Li et al. [56];
5—Chen et al. [57]; 6—Li et al. [58]; 7—Chen et al. [45]; 8—Shao et al. [59]; 9—Li et al. [60]; 10—Chen
et al. [44]; 11—Chen et al. [44]; 12—Li et al. [61]; 13—Liu et al. [62]; 14—Li et al. [63]; 15—Xiong
FH et al. [64]; 16—Ding et al. [65]; 17—Liu et al. [66]; 18—Deng et al. [67]; 19—Wei et al. [68]; 20—
Chang et al. [69]; 21—Wang et al. [70]; 22—Feng et al. [71]; 23—Wang et al. [72]; 24—Li et al. [73];
25—Xi et al. [74]; 26—Wu et al. [75]; 27—Wu et al. [20]; 28—Zhang [76]; 29—Sun et al. [77]; 30—Liu
et al. [78]; 31—Chen et al. [46]; 32—Zhang [76]; 33—Li et al. [79]; 34—Xiong et al. [64]; 35—Li et al. [49];
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36—Li et al. [50]; 37—Zhao et al. [80]; 38—Kong et al. [81]; 39—Zhang et al. [82]; 40—Chen et al. [46];
41—Xue et al. [83]; 42—Xiong et al. [27,28]; 43—Xiong et al. [84]; 44—Xin et al. [85]; 45—Wu et al. [20];
46—Song et al. [86]; 47—Yao et al. [87]; 48—Chen et al. [88]; 49—Ding et al. [89]; 50—Xia et al. [90];
51—Huang et al. [40]; 52—Liu et al. [18]; 53—Zhang et al. [76]; 54—Shi et al. [91]; 55—Yuan et al. [92].

2.1. North Kunlun Terrane

The NKT features exposures of Precambrian basement and Paleozoic metamorphic
rocks (Figures 2a, 3 and 4) intruded by Paleozoic–Mesozoic granitoids and minor Neopro-
terozoic granites.

Precambrian basement is mainly represented by the Paleoproterozoic Jinshuikou
Group and the Mesoproterozoic Langyashan Formation. Jinshuikou Group can be subdi-
vided into Baishahe and Xiaomiao formations based on distinctive rock associations and
metamorphic grades. Baishahe Formation is characterized by paragneiss, amphibolites,
marbles, and schists. Metamorphic pressure–temperature (P–T) conditions estimated for
the paragneiss and amphibolite from the Baishahe Formation are P = 0.45−1.19 kbar and T
= 638−896 ◦C [93]. Xiaomiao Formation consists of schists, quartzites, and marbles inter-
layered with minor metabasalts. Protoliths of these rocks were a suite of mudstones, quartz
sandstones, and limestones deposited in a rift basin setting [94]. Metamorphic grades
reach lower amphibolite facies. Recently, some researchers have suggested that Baishahe
and Xiaomiao formations may be assigned to the Paleoproterozoic and Mesoproterozoic,
respectively, based on the youngest detrital zircon ages of 2.2 Ga in the Baishahe Formation
and 1.6 Ga in the Xiaomiao Formation [95,96]. Langyashan Formation is defined by a suite
of carbonates, including dolomites, limestones, and minor siltstones, and phyllites [97].
Neoproterozoic strata are missing in the NKT.
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Figure 4. Stratigraphic columns for different tectonostratigraphic units in the East Kunlun orogen.
No vertical scale. See text for more details. (Pt1b—Paleoproterozoic Baishahe Formation; Pt2x—
Mesoproterozoic Xiaomiao Formation; Pt2K—Mesoproterozoic Kuhai Group; Pt2l—Mesoproterozoic
Langyashan Formation; Pt3W—Neoproterozoic Wanbaogou Group; Pt3q—Neoproterozoic Qiujidong
Formation; Pt2-3N—Mesoproterozoic to Neoproterozoic Ningduo Group; Є1s—Lower Cambrian
Shasongwula Formation; OSN—Ordovician to Silurian Nachitai Group; Ss—Silurian Saishiteng
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Formation; S3D1m—Upper Silurian to Lower Devonian Maoniushan Formation; C1hl—Lower Car-
boniferous Halaguole Formation; C2ht—Upper Carboniferous Haoteluowa Formation; C2P1sh—
Upper Carboniferous to Lower Permian Shuweimenke Formation; P1-2m—Lower to Middle Permian
Maerzheng Formation; PH—Permian Hangyangling Group; P3g—Upper Permian Gequ Formation;
P3d—Upper Permian Dazaohuo Formation; T1-2gd—Lower to Middle Triassic Gande Formation;
T1h—Lower Triassic Hongshuichuan Formation; T2n—Middle Triassic Naocangjiangou Formation;
T2x—Middle Triassic Xilikete Formation; T3b—Upper Triassic Babaoshan Formation; T3e—Upper
Triassic Elashan Formation; T3q—Upper Triassic Qingshuihe Formation; J1y—Lower Jurassic Yangqu
Formation; J1-2Y—Lower to Middle Jurassic Yeerqiang Group).

Paleozoic metamorphic rocks are represented by the NaijTai Group composed of
low-grade metamorphic volcanic-sedimentary rocks [98]. The Upper Silurian to Lower
Devonian Maoniushan Formation (molasse strata) is restricted to the central fault of the
EKO and includes conglomerates, sandstones, and siltstones, as well as minor bimodal
basalt–rhyolite volcanics. These rocks are considered a molasse formed during a post-
orogenic stage related to the closure of the Proto-Tethys Ocean [99].

In addition, HP-UHP metamorphic belts incorporating eclogites and granulites are ex-
posed along the southern margin of the NKT. They have peak and retrograde metamorphic
ages of 430–410 Ma. Coesite pseudomorphs in garnet, quartz exsolution rods in omphacite,
and P-T calculations suggest that these eclogites experienced UHP metamorphic conditions
at 29–30 kbar and 610–675 ◦C, possibly representing the final closure of the Proto-Tethys
Ocean [19,26,100].

2.2. South Kunlun Terrane

The SKT consists of Precambrian basement, Neoproterozoic–Early Paleozoic
metasedimentary–volcanic rocks (e.g., the NaijTai Group, Saishiteng Formation), widespread
Late Paleozoic to Mesozoic sedimentary rocks, and minor Early Paleozoic and Late Permian–
Triassic granites (Figures 3 and 4). The Precambrian basement includes the Baishahe and
Xiaomiao formations and the Kuhai Group, the rock associations which are similar to those
of the NKT. The Mesoproterozoic Kuhai Group is chiefly distributed in the eastern section
of the SKT and characterized by schists, paragneisses, amphibolites, and marbles. This
group is also part of the metamorphic basement.

The Wanbaogou and NaijTai groups are distributed mainly in the Northern SKT and
composed of basaltic lavas, terrigenous and volcaniclastic rocks, and limestones. Some
workers reported that the Wanbaogou Group formed around 762 Ma and that it developed
in a continental rift or an incipient oceanic basin [101], representing the peak stage of
Rodinia breakup and a precursor of the Proto-Tethys Ocean in the East Kunlun Ranges.
Zircon U-Pb dating and geochemical study of the NaijTai Group shows that these rocks
formed in an Early Paleozoic back-arc basin environment [98], which may have been related
to the northward subduction of the Proto-Tethys Ocean.

Carboniferous successions consist of two distinct units named the Haleguole (Lower
Carboniferous) and Haoteluowa (Upper Carboniferous) formations. The Haleguole Forma-
tion consists of fine-grained quartz sandstones, siltstones, and mudstones, grading upward
into thin-bedded limestones. The Haoteluowa Formation comprises thin- to thick-bedded
limestones and mudstones interlayered with sandstones. These successions were deposited
in a littoral shallow marine environment on a passive continental margin, which formed in
response to the opening of the Paleo-Tethys Ocean [102,103]. Widespread Upper Permian–
Triassic strata overlie the pre-Permian strata with an angular unconformity and consist
mainly of conglomerates, sandstones, siltstones, mudstones, and limestones.
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2.3. Bayan Har Terrane

The BT is characterized by minor occurrences of the Mesoproterozoic Ningduo
Group and Permian Huangyangling Formation and more widespread expanses of the
Triassic Bayan Har Group. These are unconformably overlain by the Jurassic Yeerqiang
Group (Figure 4). The Ningduo Group consists of paragneisses, schists and quartzites. The
Huangyangling Formation is sparsely distributed in the northern part of the BT and consists
of sandstones, slates, and minor interbedded volcanic rocks. The Bayan Har Group consists
of the Lower to Middle Triassic Gande Formation and the Upper Triassic Qingshuihe
Formation. The former is composed of medium-grained lithic arkoses and subarkoses
interbedded with slates. These sedimentary rocks were deposited in bathyal to abyssal
environments [104]. The Qingshuihe Formation incorporates sericitic slates, silty slates,
and calcareous siltstones interlayered with sandstones and minor conglomerates at higher
levels, representing sediments of a typical deep marine turbidite fan system.

2.4. Buqingshan Accretionary Complex

The Buqingshan AC is of a regional scale and separates the East Kunlun terrane to
the north from the Bayan Har terrane to the south (Figure 2a). Geographically, it extends
from Animaqen in the east, through Buqingshan, and into the Muztagh area in the west
(Figure 2). It is characterized by a widespread mélange matrix with numerous tectonic
blocks showing typical block-in-matrix structures [105,106] (Figures 5 and 6).
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Figure 6. Geological cross sections for the Buqingshan accretionary complex showing block-in-matrix
structure and structural style (age data are from Liu and Li [61,106]) (see Figure 5 for section location);
(a) asymmetrical tight fold indicating south-vergent kinematics; (b) basalt and overlying silicalite;
(c) Carboniferous limestone nappe thrust over deformed Permian turbidites.

The mélange matrix is typically composed of highly deformed turbiditic rocks, which
are also referred to as the Lower to Middle Permian Maerzheng Formation in the litera-
ture [14] (Figures 6 and 7). In addition, Zhang et al. [107] suggested that the depositional
age of the Maerzheng Formation ranges from Early Permian to Early Triassic based on the
radiolarian fossil assemblages. This formation is characterized by a succession of medium-
to coarse-grained sandstones, siltstones, and mudstones interlayered with minor conglom-
erates, which are deposited in a submarine fan setting. Their detrital zircon U-Pb spectra are
dominated by ages of 396–573 Ma and 727–947 Ma with minor age peaks at 1117–1993 Ma
and 2319–3063 Ma [14,108], suggesting a depositional source from pre-Devonian orogenic
basement rocks of EKO. It is suggested that the turbidites were deposited in an oceanic
trench environment and then incorporated into a subduction wedge. Recently, other work-
ers suggested that some part of the Maerzheng Formation was originally deposited on
a passive continental margin during Early–Middle Permian time and could have been
tectonically incorporated into the Buqingshan AC [14,107]. However, it is a challenge to
differentiate which part represents the trench in this mélange zone because of its similarity
of rock associations in the field.
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Mélange blocks mainly include fragments of Cambrian ophiolites, Carboniferous ophi-
olites and oceanic island basalts (OIBs), seamount limestones, with a minor contribution
of the Mesoproterozoic metamorphic basement (Kuhai Group). The Cambrian ophiolites
possibly indicate the existence of a much earlier Proto-Tethys Ocean that was tectonically
incorporated into the Buqingshan AC during Triassic orogenesis [4,106]. Carboniferous
ophiolites and oceanic island assemblages (basalts and limestones) record the spreading of
the Paleo-Tethys Ocean in the EKO [2,106,109,110]. Kuhai Group metamorphic rocks could
represent a continental slice that rifted from the SKT during the opening of the Paleo-Tethys
Ocean. The detailed geochemistry and tectonic affinities of these blocks are discussed in
Section 3 below.

3. Ocean Plate Stratigraphy in the Buqingshan AC

Ocean plate stratigraphy (OPS) is defined as the original composite stratigraphy
of the ocean floor before it was incorporated into an accretionary complex (AC) at a
convergent margin. It records the succession from the initiation of the oceanic plate at a
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mid-oceanic ridge to subduction at an oceanic trench [111–113]. A typical OPS section may
consist of mantle peridotite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB),
seamount limestone, pelagic chert, hemipelagic siliceous shale, mudstone, and even rifted
continental slices [114–116]. The identification of OPS in an AC allows one to reveal the
evolution of paleo-oceans from their opening recorded in the OPS to their closure recorded
in accretionary and collisional complexes [115].

Based on a field survey and previous data, OPS rock units in the Buqingshan AC
are predominantly distributed in the Animaqen, Buqingshan, Maerzheng, and Muztagh
areas from east to west (Figure 2a). They generally occur as isolated blocks sandwiched
between deformed siltstones and sandstones (Figure 7a,c). In this study, we collated a total
of 68 reliable published geochemical data points for the Buqingshan AC. These results show
the geochemical diversity of the OPS sequences, such as depleted and refractory mantle
peridotite, MORB- and OIB-type mafic rocks.

3.1. Mantle Peridotites

Ultramafic rocks from the Derni, East Haerguole, and Changliugou ophiolites are
mostly altered to serpentinites or serpentinized lherzolites and harzburgites. Geochemically,
they exhibit two distinct groups of mantle compositions. Peridotites in the East Haerguole
area are mainly serpentinized harzburgites characterized by depletion in Al2O3, CaO,
and TiO2 and enrichment in MgO, indicating high degrees of mantle melting. In the
chondrite-normalized rare earth element (REE) diagrams, these samples exhibit a V-shaped
distribution pattern (Figure 8a), and the heavy REEs (HREEs) are closer to forearc mantle
peridotites than to abyssal peridotites [117]. These characteristics indicate they represent
relict mantle subjected to approximately 20–25% partial melting of the primitive mantle. In
the primitive mantle-normalized trace element diagram (Figure 8b), these samples show
enrichment in fluid-soluble elements (large ion lithophile elements (LILEs), Rb, Ba, U, and
Th) and depletion in high field strength elements (HFSEs). Such features may suggest a
refractory forearc mantle environment.
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and Haerguole ophiolite; (c) chondrite-normalized REE patterns for gabbros and diabases from
Haerguole ophiolite; (d) primitive mantle-normalized trace element spider diagrams for gabbros
and diabases from Haerguole ophiolite; (e) chondrite-normalized REE patterns for basalts from
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from Boynton et al. [118] and Sun and McDonough [119]. Detailed geochemical data are presented in
Supplementary Table S1. Representative data are from East Haerguole, Gerizhuotuo, Derni, and Maji
areas [109,110,120–124].

In contrast, the mantle peridotites in the Derni and Changliugou areas are predomi-
nately serpentinized lherzolites characterized by relative enrichments in Al2O3, CaO, TiO2,
and depletions in MgO [124,125], pointing to lower degrees of mantle melting. The Cr#
values (100∗Cr/(Cr + Al)) of spinel from the Derni ophiolite range from 30 to 57, which
is identical to those of the abyssal mantle (<60). In the chondrite-normalized REE dia-
gram, these samples show a weakly light REE (LREE)-rich distribution pattern (Figure 8a),
and the HREEs are akin to abyssal mantle peridotites [117]. This further suggests that
they represent a relict mantle that has undergone approximately 2–6% partial melting
of the primitive mantle. These mantle peridotites are interpreted to have formed in a
fast-spreading mid-ocean ridge environment during the Late Carboniferous time [124].

3.2. MORB-Type Oceanic Crust

Carboniferous–Permian MORB-type mafic rocks are mainly located in the Animaqen
and Buqingshan regions. They are typically made up of pillow basalt, massive basalt, and
fine-grained gabbro. They are characterized by low SiO2, variable MgO, and high TiO2 and
are classified as tholeiitic series rocks. In particular, the TiO2 contents are higher than those
of island arc lavas (<1.0 wt.%) and lower than those of OIBs, whereas they are comparable
to those of normal MORB (N-MORB) (=1.5 wt.%) [126]. In the chondrite-normalized REE
patterns (Figure 8c,e), these samples exhibit overall depletion in LREEs relative to HREEs
with REE patterns similar to that of the N-MORB reference line. In addition, they exhibit
depletion in most LILEs and flat distribution of HFSEs without any Nb and Ta anomalies
in the primitive mantle-normalized trace element spider diagrams, which also suggests N-
MORB affinities (Figure 8d,f). On a tectonic setting discrimination diagram (Figure 9a), they
predominantly plot within the mid-ocean ridge environment and show a depleted mantle
source (Figure 9b). High εNd(t) values of +8.4 to +9.6 further support this conclusion [123].
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Gabbros from the Buqingshan area yield an LA-ICP-MS zircon age of 333 ± 3 Ma [120],
which is close to the Ar-Ar age of 345 ± 8 Ma [122,123], directly constraining formation
ages to the Middle Carboniferous.
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3.3. OIB-Type Basalts and Seamounts

Seamount assemblages are mainly located in the Gerizhuotuo, Haerguole, and Ma-
jixueshan regions from west to east. They are typically made up of a basaltic basement
overlain by cherts, limestones, and slope facies sedimentary rocks (Figure 7a,d). The basaltic
basement consists of a pillow and massive basalts (Figure 7a). The carbonates comprise
locally fossiliferous massive/micritic limestone (Figure 7c). The slope facies consist of
basaltic and limestone breccias. They have similar characteristics to the well-described
oceanic island/seamount associations worldwide [112].

Geochemically, the basalts are mainly characterized by low SiO2, intermediate MgO,
and high TiO2 and are representative of the tholeiitic series. The TiO2 contents are similar
to those of OIBs (=2.0 wt.%) [126]. On chondrite-normalized REE patterns (Figure 8g) these
samples exhibit enrichment in LREEs relative to HREEs with REE patterns similar to the
OIB reference line. They also show enrichment in LILEs, Ti, Nb, and Ta in primitive mantle-
normalized trace element spider diagrams, further suggesting OIB affinities (Figure 8h).
On a discrimination diagram for tectonic settings (Figure 9a), all samples plot in the
within-plate-basalt (WPB) field and show a similar affinity to OIB. Petrogenesis implies
that they are the products of low-degree partial melting of lherzolite in the asthenospheric
mantle [110,121,127]. Some researchers consider these basalts to have formed during the
Carboniferous–Permian based on stratal relationships and whole-rock Rb-Sr age data
(340 ± 11 Ma) [3,121].

Regionally, some researchers have reported other types of seamounts in the Animaqen
and Bayan Har areas [109,128]. They consist of MORB basalt basement overlain by thick
limestone (Figure 7d). These paleo-seamounts are considered to have formed in an area
proximal to an uplifted mid-ocean ridge [14], which lay above the carbonate compensation
depth (CCD). In the Southern Haerguole area, a paleo-seamount includes a suite of MORB,
OIB, argillite, and massive/brecciated limestone from base to top (Figure 7d). This sequence
formed in response at first to N-MORB-type magma extrusion near a mid-ocean ridge and
then to superimposition of OIB-type magma followed by deposition of limestone [14,120,121].

4. Magmatic and Sedimentary Records of Subduction of the Buqingshan Ocean

The northward subduction of the Buqingshan Ocean led to the development of an
extensive W–E-trending continental magmatic arc (Burhan Budai arc), forearc basin (Hong-
shuichuan Basin), accretionary complex (Buqingshan AC) (Figures 2a and 5), and an
immature back-arc basin during Late Permian to Middle Triassic times. We collected some
geochemical analyses from the EKO in order to characterize the nature of continental arc
magmatism and sedimentation within the forearc basin.
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4.1. Continental Arc Magmatism

The 275–240 Ma Burhan Budai arc is mostly located in the NKT, with subordinate expo-
sures in the SKT (Figure 2). Rocks associated with this arc crop out in the E–W direction with
a linear distribution pattern (Figure 3), similar to the Gangdese magmatic arc in Tibet [129]
and the Andean magmatic arc of South America [130,131]. They intruded into Precambrian
metamorphic rocks and pre-Devonian granitoids (Figure 10a). The magmatism shows a
large compositional range comprising granodiorites, granites, monzogranites, dark-colored
microgranular enclaves (Figure 10b), and intermediate–felsic volcanics. Geochemically,
these rocks are characterized by relatively high SiO2, Na2O, low MgO, and TiO2 and are
classified as high-K calc-alkaline metaluminous I-type granitoids. On the trace element
spidergram (Figure 11), they are characterized by enrichment in LILEs (Cs, Rb, Ba, etc.),
and depletion in HFSEs (e.g., Nb, Ta, Ti, etc.), similar to subduction-related arc rocks. On
several discrimination diagrams for tectonic settings (Figure 12), these rocks mostly plot
within the volcanic arc granite (VAG) field.
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Figure 10. (a) Monzogranites intruding the Proterozoic basements (biotite quartz schist), (b) Early
Triassic host granites and dark microgranular enclaves showing evidence for magma mixing, (c) Late
Permian dyke swarm intruded into nearly coeval magmatic arc (granodiorite) rocks, and (d) Late
Triassic post-collisional rhyolite exhibiting columnar jointing.
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Voluminous contemporaneous intermediate and mafic dike swarms also developed
within the aforementioned granitoids (Figure 10c). Compositionally, the dikes are mainly
porphyritic diabases, lamprophyres, and diorite porphyries. Detailed mineralogical and
geochemical studies showed that mafic dikes were derived from an enriched mantle (EM2-
type mantle), and intermediate dikes were the result of mixing between mafic and felsic
magmas above the subduction zone [136]. Regarding the mechanism of their formation, it
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is suggested that mafic magmas may have first been generated by the partial melting of
the enriched subcontinental lithospheric mantle (SCLM) due to the addition of subduction
zone-derived fluids above the northward-subducting plate [136]. These mafic magmas
underplated the overlying lower crust and led to partial melting to form felsic magmas. The
two distinct types of magma mingled extensively to produce the “mixed magmas” with
consistent negative εNd(t) and εHf(t) isotopic values (Figures 10b and 13) [46,49,64,137,138].
The mafic microgranular enclaves (MMEs) and their host magma were then emplaced at a
depth of ~12 km, where they crystallized at temperatures of ca. ~700–770 ◦C [28].
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Recently, Zhao et al. [80] reported 266 Ma tholeiitic gabbros from the central part of the
Burhan Budai arc (i.e., the Kengdenongshe area). Based on their REE signature, the gabbros
are thought to have formed in a back-arc basin. However, no true oceanic relicts of the
Late Permian–Early Triassic back-arc basin are known from the EKO. Thus, we suggest that
these dike swarms probably represent a localized extensional setting within a continental
magmatic arc or an immature back-arc basin geodynamically related to the rollback of the
subducting slab.

4.2. Forearc Basin
4.2.1. Sedimentary Successions

The Hongshuichuan forearc basin includes the Upper Permian Dazaohuo/Gequ,
Lower Triassic Hongshuichuan, and Middle Triassic Naocangjiangou formations from base
to top (Figures 3 and 14).

Geological field mapping shows that the Dazaohuo Formation occurs in the Western
NKT and consists of intermediate–felsic volcanic rocks with continental arc affinities [91].
The Gequ Formation unconformably overlies the Middle Lower Permian Maerzheng For-
mation and is characterized by conglomerates, sandstones, and siltstones in the lower part
and limestones in the upper part [39]. It was probably deposited in an initial filling stage of
the forearc basin or during the transition from a passive to an active continental margin.
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The Hongshuichuan Formation can be subdivided into four units from base to top
based on distinct rock associations and sedimentary structures. The first unit is character-
ized by red and gray–green polymictic conglomerates, sandstones, and minor tuffaceous
siltstones generally with cross-bedded structures (Figure 15a,b), indicating a fan-delta
environment [139]. The conglomerates are matrix- to clast-supported and composed of
predominantly granite, metamorphic, and sandstone clasts with minor rhyolite, limestone,
and silicic rock clasts (Figures 15b and 16). They have an average total quartz–feldspar–
lithic fragment ratio of Q59:F32:L10 (Figure 16) [62]. The second unit is composed of gray
sandstones intercalated with minor gray–black thin limestones and felsic volcanics possibly
deposited in an agitated shallow marine environment (Figure 15e). The average total
quartz–feldspar–lithic fragment ratio of the sandstones is Q40:F31:L28 [62], showing a grad-
ual increase in feldspar and lithic fragments relative to the first unit. Beds in the third unit
exhibit characteristic Bouma sequences and include a succession of thin black mudstones,
siltstones, and tuffaceous sandstones interbedded with minor fine-grained conglomerates
(Figure 15c). Together with typical sedimentary structures (e.g., Bouma sequences, graded
bedding, convolute bedding, and load casts) (Figure 15d), these features suggest that the
third unit was deposited by turbidity currents in a submarine fan environment. The average
total quartz–feldspar–lithic fragment ratio is Q39:F36:L25 (Figure 16) [62]. These sand-
stones are moderately sorted with angular–subangular grains, which indicates immaturity
characteristic of proximal and rapid deposition [139,140]. The fourth unit consists of gray
thin fine-grained siliciclastic rocks locally interbedded with thin limestones and minor
conglomerates, interpreted to have been deposited in a shallow marine environment.

The Naocangjiangou Formation conformably overlies the Hongshuichuan Formation
and is characterized by gray mudstone, calcareous siltstone, and limestone associations
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(Figure 15f,g). In detail, the lower part of the Naocangjiangou Formation is composed of
mudstone and calcareous siltstone interbedded with thin limestone and continental arc
volcanics with zircon ages of 244 Ma [141]. In contrast, the upper part is dominated by
limestone with minor siltstone generally developing horizontal bedding structures. These
strata were mainly deposited in shallow marine environments (Figure 15g), representing
the final filling of the forearc basin [139]. The average total quartz–feldspar–lithic fragment
ratios from the lower and upper parts are Q53: F21: L26 and Q48: F25: L27, respectively [62],
showing higher feldspar and lithic fragment contents and low mineral and compositional
maturity, which points toward a proximal source.
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Figure 15. Field photographs showing the sedimentary characteristics of Late Permian–Middle
Triassic Hongshuichuan forearc basin: (a) the fan-delta deposition of the lower part of the Hong-
shuichuan Formation; (b) pebbly feldspathic sandstone from the Hongshuichuan Formation showing
pebbles of granite, quartzite, schist in a matrix of medium-grained sandstone; (c) rhythmically bed-
ded sandstone, siltstone, and minor mudstone turbidite units with a variable thickness of 10–60 cm;
(d) soft-sediment deformation showing convolute bedding in turbidite; (e) light colored rhyolite
occurs as intercalations in Hongshuichuan Formation (taken in Zhanhongshan area). Naocangjiangou
Formation: (f) rhythmic alternations of mudstone and marlstone with a variable thickness of 5–40 cm;
(g) thin limestones interlayered with minor mudstones.
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et al. [49,50]; Age data of Babaoshan and Naocangjiangou formations from Wu et al. [20]; Age data of
Maerzheng Formation from Pei et al. [14]).

4.2.2. Detrital Zircon Age Constraints on Sediment Provenance

Detrital zircon age spectra are commonly used to constrain both sediment provenance
and the tectonic setting where the basin developed. In general, a basin developed in a
convergent setting has a high proportion of detrital zircons with ages close to the age of the
sediment. A basin developed in an extensional setting is dominated by detrital zircon ages
that are typically much older than the depositional age of a unit with some proportion of
grains having ages within 150 Ma of the depositional age [142].

Numerous detrital zircon U-Pb ages chiefly from the Permian to Triassic strata were
compiled in order to reveal any systematic variations in provenance and shifts in basin
type following the classification of Cawoood et al. [142] (Figure 16). In order to characterize
how sediment provenance and basin types change before/during a period of oceanic
subduction, we also present a detrital zircon spectrum from a passive continental margin
for comparison (i.e., Lower to Middle Permian Maerzheng Formation).

Sandstones from the Maerzheng Formation are dominated by Early Paleozoic age
populations (peak age, ca. 421 Ma) and some Precambrian age populations (peak ages, ca.
862 Ma 1568 Ma, and 2732 Ma). This age distribution suggests a source exclusively from
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the pre-Devonian basement rocks in the EKO, including Early Paleozoic igneous rocks and
Precambrian metamorphic basement rocks. This age spectrum shows similarity to that of
detrital zircons from the extensional basins [142]. Pei et al. [143] argued that they were
deposited on the passive continental margin basin related to the spreading of the northern
branch of the Paleo-Tethys Ocean.

In contrast, the Upper Permian to Middle Triassic sandstones yield substantially lesser
proportions of pre-Devonian ages and show a sharp increase in the Late Permian–Middle
Triassic ages (ca. 277–244 Ma) representative of the well-known Burhan Budai continental
magmatic arc in EKO [12,139,140]. In particular, the Middle Triassic Naocangjiangou For-
mation is characterized by more abundant Late Permian–Middle Triassic ages and minor
pre-Devonian ages relative to those of the underlying strata (Hongshuichaun and Gequ
formations), possibly implying more intense continental arc magmatism and progressive
unroofing of the continental arc during the Middle Triassic, which in turn provided large
volumes of detritus to the basin. Paleocurrent directions are predominantly SE and subor-
dinately NW directed [144,145] indicating the derivation of detritus from the continental
magmatic arc to the north and the Buqingshan AC to the south (Figure 14).

Accordingly, with detritus mainly sourced from the coeval magmatic arc, together with
the paleocurrent directions and a location between the Buqingshan AC and Burhan Budai
arc (Figures 14 and 17), this suggests a forearc basin setting for Upper Permian–Middle
Triassic strata.
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during Late Permian to Middle Triassic time.

5. Magmatic and Sedimentary Records of Collisional Orogenesis

During the latest Middle Triassic, the closure of the Paleo-Tethys Ocean led to colli-
sional orogenesis in the EKO and was accompanied by large volumes of collisional-type
magmatic rocks and metallic mineral deposits.

5.1. Collision-Related Magmatism

The ca.240–200 Ma collisional-type magmatic rocks are haphazardly scattered across
the whole EKO and BT unlike the linear distribution of continental arc granites (Burhan
Budai arc) (Figure 3). They mainly intrude Lower to Middle Triassic sedimentary strata
and include granites, diorites, gabbros, and minor syenogranites in lithology. In addition,
large volumes of Late Triassic rhyolites occur in the Xiangride-Boluositai area (Figure 10d).

Geochemistry indicates the presence of adakitic, A-type, and normal granitic
rocks [47,48,147,148]. Adakitic granites are characterized by enrichments in LREE, particu-
larly high Sr, low Y, and Yb contents, high Sr/Y (>40) and La/Yb ratios, and depletions
in Nb, Ta, and Ti [133,149] (Figure 11c,d). No Eu anomalies are notable in the chondrite-
normalized REE patterns. On the Sr/Y vs. Y diagram, they predominantly plot in the field
of adakitic rocks (Figure 12a), which are considered to be produced by partial melting of
the thickened lower crust in syn-collisional and post-collisional tectonic environments [150]
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(Figure 12c,d). Some researchers have reported ca. 227 Ma undeformed adakitic rocks
in the Kekealong-Gerizhuotuo area [149] (Chen et al., 2013a), which constrains the time
of regional crustal thickening. A-type granites have high SiO2 and alkalis contents and
high 10,000∗Ga/Al ratios, together with depletions in Sr, P, Eu, and Ti on the trace element
spidergram, suggesting an affinity with A-type granites (Figure 12b). They predominantly
plot in the post-collisional fields on the Y + Nb vs. Rb and Yb vs. Ta diagrams (Figure 12c,d).

This stage of magmatism can be further divided into two subgroups, namely, initial
collisional/syn-collisional magmatism at ca. 240–230 Ma and post-collisional magmatism
after ca. 230 Ma, based on distinct geochemical differences and a compilation of zircon
ages (Figure 13). The histogram reveals that syn-collisional magmatism was less extensive
than post-collisional magmatism. This is interpreted to indicate that the compressional
conditions in the syn-collisional orogeny stage were not conducive to the production of
voluminous magmas [47,48,151]. In contrast, post-collisional magmatism flared up at ca.
230 Ma and generated large volumes of adakitic and A-type granites as well as some
metallic mineral deposits [152,153]. This is interpreted to be geodynamically related to
mantle upwelling due to the detachment of thickened lithosphere [47,48].

5.2. Orogenic Sedimentation
5.2.1. EKO Sedimentary Records

Available geologic data show the sedimentary environment in the East Kunlun Range
experienced a transition from marine facies in the Middle Triassic Naocangjiangou Forma-
tion to continental facies in the upper Middle Triassic Xilikete and Upper Triassic Babaoshan
formations. The Xilikete Formation unconformably overlies the marine Naocangjiangou
Formation [39,139], starting with a suite of red–gray conglomerates and sublitharenites with
minor siltstones, and continuing into a succession of quartz sandstones, siltstones locally
interbedded with pebbly sandstones and rhyolites at higher levels, which are interpreted
to have formed in an alluvial fan environment.

The Babaoshan Formation, unconformably overlying the Middle Triassic Naocangjian-
gou Formation and the Precambrian basement comprises three suites of distinct depo-
sitional associations from base to top (Figure 16). The lower part is 284 to 533 m thick
and characterized by thick pebbly subarkoses interbedded with minor conglomerates and
siltstones. The middle part is up to 586 m thick and consists of thin, muddy siltstones
and quartzose siltstones interlayered with minor fine-grained subarkoses. The upper part
is >155 m thick and defined by fining-upward cyclical sequences of conglomerates, peb-
bly sandstones, fine-grained sandstones, and siltstones. Conglomerates are well-sorted
with well-rounded clasts and basal erosion surfaces are locally developed. Sandstones are
characterized by graded and trough cross-bedding. Siltstones show planar cross-bedding
and horizontal bedding. These sedimentary features suggest deposition in a braided
river system.

The detrital zircon U-Pb age spectra from the sandstones mentioned above suggest
Late Triassic, Late Permian–Middle Triassic, and pre-Devonian EKO provenance (Figure 16).
Notably, detritus with ages of ca. 400–1000 Ma reappears in the Xilikete and Babaoshan
formations suggesting a recycled pre-Devonian basement. This may relate to the extensive
uplift and erosion of the pre-Devonian strata during Late Triassic collisional orogenesis.
Moreover, the abrupt appearance of ca. 218 Ma peak ages in Upper Triassic strata suggests
that Late Triassic collision-related magmatic rocks began to contribute some sedimentary
debris. Accordingly, it is suggested that the Babaoshan Formation was deposited in a
piggyback or foreland basin in response to the collision of the East Kunlun terrane to the
north with the Qiangtang/Bayan Har terranes to the south [139].

5.2.2. Bayan Har Terrane Sedimentary Records

The Bayan Har Group, mainly located in the BT, consists of the Lower to Middle
Triassic Gande Formation and Upper Triassic Qingshuihe Formation. They are character-
ized by thick medium-grained lithic arkoses and subarkoses interbedded with slates and
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were deposited in bathyal, abyssal, and neritic environments. According to paleocurrent
indicators and detrital zircon age data [12,104], paleocurrents in the northern part of the
Bayan Har basin flowed in a predominantly SE direction. The detrital zircon age spectrum
features dominant Precambrian and Paleozoic age peaks, showing detritus was mainly
sourced from East Kunlun and West Qinling orogens to the north. Zhang [104] argued that
the lower part of the Bayan Har Group formed in a residual ocean basin. The middle to the
upper part of this group was deposited in a peripheral foreland basin that developed in
response to the collision of the Qiangtang terrane with the East Kunlun terrane.

6. Tectonic Evolution of the Late Paleozoic–Mesozoic Buqingshan Ocean

Data presented and summarized in this investigation indicate that the Buqingshan
Ocean spread in the Carboniferous followed by subduction of associated oceanic lithosphere
culminating in the collision of Qiangtang/Bayan Har with the East Kunlun terranes and
associated orogenesis (Figure 18).
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oceans are not temporally related, and consumption of the Proto-Tethys Ocean ultimately 
led to the formation of the pre-Devonian orogenic basement of the EKO [27,29,120]. Sub-
sequently, the Paleo-Tethys Ocean gradually opened on the pre-Devonian orogenic base-
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Figure 18. Cartoons showing the tectonic evolution of the Buqingshan Ocean during Late Paleozoic–
Early Triassic time. (a) The spreading processes of Buqingshan Ocean, generating the OIBs and stable
passive continental margin deposits in EKT; (b) subducting processes of Buqingshan Ocean, leading
to the development of continental magmatic arc and forearc basin; (c) initial collision of the Qiangtang
terrane with EKT showing the gradual tectonic emplacement of Buqingshan AC and production of
minor collisional-type magmatism; (d) post-collisional stage showing the generation of A-type, high
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Sr/Y granites and delamination processes of thickening lithosphere; NQT—North Qiangtang Terrane;
BT—Bayan Har Terrane; EKT—East Kunlun Terrane; SCLM—Subcontinental lithospheric mantle;
OLM—Oceanic lithospheric mantle. Red color with white cross shows continental arc magmatic rock,
and blue color with white cross shows collisional-type magmatic rock.

6.1. Spreading of Buqingshan Ocean

Previous studies suggested that the development of the ocean in Kunlun can be subdi-
vided into two stages: a Proto-Tethys from Late Neoproterozoic to Early Paleozoic time and
a Paleo-Tethys from Late Paleozoic to Early Mesozoic time [12–14,20,23]. The two oceans
are not temporally related, and consumption of the Proto-Tethys Ocean ultimately led to
the formation of the pre-Devonian orogenic basement of the EKO [27,29,120]. Subsequently,
the Paleo-Tethys Ocean gradually opened on the pre-Devonian orogenic basement of the
EKO as early as the Devonian, although the opening timing and its transitional details from
Proto-Tethys to Paleo-Tethys remain the subject of ongoing debate [4,12–14,20,23,120].

The existence of Early Carboniferous mantle peridotites, MORBs, and OIBs within
Buqingshan AC indicates that an ocean was already open (Figures 5, 7 and 18a), thus the
initial opening of the Buqingshan Ocean (BO) definitely predate the Early Carboniferous
time. Moreover, Carboniferous siliciclastic–carbonate associations (Halaguole and Haotelu-
owa formations) and Lower to Middle Permian turbidites (Maerzheng Formation) in EKO
were all deposited in a stable passive continental margin setting (Figure 4) [20,139,143].
In addition, there are few volcanic layers in the Carboniferous sequences in Eastern EKO.
This further argues for a stable continental margin setting rather than a subduction-related
setting in the Carboniferous.

From a global perspective, East Asia evolved to the Paleo-Tethys stage during the Late
Paleozoic to Early Mesozoic [32,154–157]. During this time interval, several oceans opened
across this region now represented by the Buqingshan, Jinsha, and Central Qiangtang
oceans in the Tibet–Qinghai Plateau (Figure 19a) [32,51,158–160]. Further west, other
approximately coeval oceans also developed in Tajikistan, NE Iran (Darrehanjir mélange),
Turkey (Kure mélange), and the Caucasus [161,162]. These oceans were all branches of the
Paleo-Tethys Ocean realm and constituted a complex ocean–continent configuration across
parts of what is now Asia [32].
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6.2. Subduction of Buqingshan Ocean

During Late Permian to Middle Triassic time, the BO lithosphere was subducted be-
neath the EKT, leading to the development of Buqingshan AC, Burhan Budai continental arc
magmatism, and forearc basin in EKO (Figure 18b). Two cross sections of Figure 6 across the
Buqingshan AC showing top-to-the-south imbricated thrust faults and south-vergent tight-
isoclinal asymmetrical folds suggest a north-dipping oceanic subduction zone associated
with northward subduction of the Buqingshan Ocean. With the oceanic basin subducting
northwards, the ocean island basalt together with the limestone were scraped and then
accreted into the Buqingshan accretionary complex. Continued accretionary processes and
tectonic deformation were accompanied by extensive greenschist facies metamorphism,
which is marked by mineral associations of chlorites, epidotes, and sericites.

Meanwhile, the Hongshuichuan forearc basin formed between the Burhan Budai
magmatic arc and Buqingshan AC (Figures 14, 17 and 18b). Detrital zircon age spectra
clearly reveal that sediments of this basin were mainly sourced from the coeval continental
magmatic arc to the north (Figures 14 and 16). This conclusion is further supported by
the paleocurrent data of Yan et al. [144], which indicate sediment transportation predomi-
nantly to the SW. Liu [62] also reported that most sandstones from the lowermost part of
the Hongshuichuan Formation plot within the “continental craton” provenance field of
Dickinson [166], whereas the samples from the middle–upper part mainly plot within the
“dissected arc” region, reflecting an upward increase in feldspar and lithic fragments and
the contribution of detritus from the Burhan Budai magmatic arc.

In addition, south of the Paleo-Tethys Ocean, it likely diachronously subducted south-
ward beneath the North Qiangtang terrane along the Jinshajiang tectonic zone. This is
constrained by the occurrences of the Triassic Jinshajiang complex and island-arc granites
along the northern margin of the North Qiangtang terrane [167–169]. We will not provide
the details of the Jinshajiang tectonic zone as we mainly focus on the tectonics of EKO in
this paper.
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6.3. Syncollisional Stages of the BT with the Kunlun–Qaidam Terranes

Following the subduction and closure of the Buqingshan Ocean oblique collision of
the Qiangtang terrane with the Kunlun–Qaidam terranes (KQT) occurred towards the
end of the Middle Triassic (Figure 18c). This eventually led to the production of minor
metaluminous–peraluminous granitoids, the emplacement of the Buqingshan AC, and
the development of the Bayan Har peripheral foreland basin [61,170,171]. The closure of
the Buqingshan Ocean is also marked by a regional angular unconformity between the
Babaoshan Formation and the underlying marine successions [102,103]. This unconformity
indicates that the northward subduction of the Paleo-Tethys Ocean lasted until the late
Middle Triassic and that the collisional orogeny followed into the early Late Triassic.
This collisional orogenesis produced the Kunlun and Qinling orogens in Central China
(Figure 19b).

Regionally, the other branches (Jinsha, Central Qiangtang oceans, etc.), located on the
SE Tibetan Plateau also closed, and eastern Cimmerian blocks collided to the north with the
North Qiangtang/Bayan Har and South China blocks in the Late Triassic (Figure 19b) [157]. In
a word, the closures of various branches of the Paleo-Tethys Ocean eventually led to the final
formation of the East Asian continent during the Late Triassic (Figure 19b) [13,32,156,172].

6.4. Post-Collisional Stage

In the Late Triassic, the EKO evolved into a post-collisional collapse stage and pro-
duced major magmatic pulses (Figure 18d). The rate at which magma was added during
the Late Triassic is estimated to have reached 100 km3/m.y. [173,174], comparable to Late
Mesozoic magmatic flare-up events from the central Sierra Nevada arc, California [175].
Tectono-magmatic events mainly include the generation of large volumes of adakitic gran-
ites and A-type granites, polymetallic mineral deposits, and MME-bearing granites, which
are interpreted to be geodynamically related to asthenospheric mantle upwelling induced
by delamination of thickened continental lithosphere and partial melting of the lower
crust [47,130,176].

During the Early Jurassic, the EKO underwent rapid uplift and cooling as shown
by zircon/apatite fission track data [177–183]. These events may have been induced by
the unrooting of the over-thickened crust. The collapse of the over-thickened crust was
accompanied by the generation of fault-bounded basins recorded by the Upper Triassic
Babaoshan Formation (molasse deposits) and Lower Jurassic Yangqu Formation (coal-
bearing strata).

7. Conclusions

A detailed synthesis of the petrological, sedimentary, geochemical, and isotopic fea-
tures of the Late Paleozoic–Early Mesozoic geologic records from the EKO and adjacent
regions leads to the following conclusions:

(1) The Buqingshan AC contains blocks of Carboniferous OIBs and MORBs, gabbros, de-
pleted and refractory peridotites, and paleo-seamounts in a strongly deformed matrix
of deep marine turbidites. The Buqingshan AC records the northward subduction of
the Buqingshan Ocean from Late Paleozoic to the Middle Triassic time.

(2) Northward subduction of the Buqingshan Ocean beneath the Kunlun–Qaidam terrane
led to the development of a vast continental magmatic arc (Burhan Budai arc) and the
emplacement of seamounts into the Buqingshan AC around 270–240 Ma. During this
interval, the Hongshuichuan forearc basin formed between the Burhan Budai arc and
Buqingshan AC. Detrital zircon ages and paleocurrent data suggest most sedimentary
detritus was supplied from the nearby Burhan Budai arc to the north with a minor
contribution from an accretionary wedge to the south.

(3) Closure of the Buqingshan Ocean due to the collision of the Qiangtang terrane with
East Kunlun terranes occurred during the late Middle Triassic to early Late Triassic (ca.
240–230 Ma) times. This led to the development of a regional angular unconformity
between Upper Triassic terrigenous strata and underlying marine sediments.
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(4) During the Late Triassic to Earliest Jurassic (ca. 230–200 Ma), the EKO evolved to a
post-collisional stage that experienced magmatic flare-ups and metallic mineraliza-
tion, which are interpreted to likely occur in geodynamic response to detachment of
thickened lithosphere and subsequent upwelling of asthenosphere mantle.
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//www.mdpi.com/article/10.3390/min12121590/s1, Table S1: The geochemical data for the mafic-
ultramafic rocks in southern margin of EKO; Table S2: The geochemical data for continental arc- and
collision-related magmatic rocks in EKO. References [18,27,50,61,63–65,71,81,84,89,91,109–122,124,
139,147,149,152,183–192] are cited in the Supplementary Materials.
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