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Abstract

Climate-driven OxygenMinimum Zone (OMZ) expansions in the geologic record provide an

opportunity to characterize the spatial and temporal scales of OMZ change. Here we investi-

gate OMZ expansion through the global-scale warming event of the most recent deglaciation

(18-11 ka), an event with clear relevance to understanding modern anthropogenic climate

change. Deglacial marine sediment records were compiled to quantify the vertical extent,

intensity, surface area and volume impingements of hypoxic waters upon continental mar-

gins. By integrating sediment records (183-2,309 meters below sea level; mbsl) containing

one or more geochemical, sedimentary or microfossil oxygenation proxies integrated with

analyses of eustatic sea level rise, we reconstruct the timing, depth and intensity of seafloor

hypoxia. Themaximum vertical OMZ extent during the deglaciation was variable by region:

Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Mexico Margin

(~330-830 mbsl), and the Humboldt Current and Equatorial Pacific (~110-3,100 mbsl). The

timing of OMZ expansion is regionally coherent but not globally synchronous. Subarctic Pacif-

ic and California Current continental margins exhibit tight correlation to the oscillations of

Northern Hemisphere deglacial events (Termination IA, Bølling-Allerød, Younger Dryas and

Termination IB). Southern regions (Mexico Margin and the Equatorial Pacific and Humboldt

Current) exhibit hypoxia expansion prior to Termination IA (~14.7 ka), and no regional oxy-

genation oscillations. Our analyses provide new evidence for the geographically and vertically

extensive expansion of OMZs, and the extreme compression of upper-ocean oxygenated

ecosystems during the geologically recent deglaciation.
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Introduction

Resolving records of global change through the most recent deglaciation event (18–11 ka) is

one of the primary challenges to developing cohesive and robust theories regarding rapid cli-

mate change [1]. The last deglaciation was a profound event in the global climate system,

wherein atmospheric [CO2] increased by 80–100 ppmv [2, 3], global average temperature rose

3–4°C [4], and sea levels rose ~110 m (Fig. 1) [5, 6]. This change was also accompanied by the

pervasive loss of dissolved oxygen in the upper ocean [7], with unknown impacts on large ma-

rine ecosystems. The coupling between climate, carbon emissions and subsurface dissolved ox-

ygen is a salient and critical element of anthropogenic climate change. The global inventory of

ocean oxygen is predicted to decline between 1 and 7% by the year 2100, through stratification,

ventilation reduction and decreased O2 solubility (e.g., [8]), and the hypoxic water volume in

the global ocean is predicted to increase by 50% [9]. Climate model results beyond the

100-year window reveal extensive oceanic deoxygenation, on thousand-year timescales, under

“business-as-usual” carbon emission scenarios, and show that oceanic deoxygenation is a fun-

damental and long-lasting property of anthropogenic carbon perturbation (e.g. [10]).

Hypoxia substantially degrades ecosystems through mass mortality events, the alteration of

food-web structures and the loss of habitat (e.g., [11]). Changes in [O2] in the ocean interior

have broad consequence for global biodiversity, marine economic resources and ocean man-

agement [12]. To grasp the scale of future hypoxia disturbance, the paleoceanographic (pre-

instrumental) record of natural variability provides a critical analytical and interpretive

Figure 1. Deglacial changes in Antarctic temperature (Vostok ice core record, purple line) [146, 147], Greenland temperature (GISP2 ice core
record, blue line) [106, 107], sea level (black line) [5, 6] and atmospheric pCO2 (red line) [3].Glacial Termination IA (14.7 ka) is an event of rapid
warming in the Northern Hemisphere, which initiates the warm interval of the Bølling-Allerød (B/A) from 14.7–12.9 ka. The Younger Dryas (YD), a reversal
towards cool conditions from 12.9–11.7 ka, follows the B/A. The YD ends with glacial Termination IB (11.7 ka), a subsequent rapid warming event. Deglacial
warming in the Southern Hemisphere begins at 18 ka.

doi:10.1371/journal.pone.0115246.g001
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window. Ocean sediments are climatic and environmental archives, which preserve geochemi-

cal, microfaunal and sedimentary evidence that record globally relevant Earth system events,

similar to other climate records such as the Greenland Ice Sheet Project [13]. Recent investiga-

tions reveal that paleoceanographic investigations hold valuable insight into modern environ-

mental conservation and management [14, 15].

Here we synthesize published continental margin sediment core records to investigate Oxy-

gen Minimum Zone (OMZ) changes through the last deglaciation. We build on previous syn-

theses of oxygenation proxy records (e.g., [7, 16, 17]), and provide a focus on regional-scale

sensitivity. By integrating sediment records, sea level change, and high-resolution bathymetry,

we provide geospatially analyzed paleoceanographic data that are interpretive baselines for

modern oceanography and global environmental change.

The role and importance of OMZs

OMZs are tightly coupled to upwelling systems and Eastern Boundary Currents, such as the

California Current, the Humboldt Current and the Benguela Current, as well as the Oman and

Pakistan Margin in the Indian Ocean (Fig. 2). In these regions, respiration within the pycno-

cline depletes dissolved oxygen and simultaneously enriches seawater in the carbon and nitro-

gen byproducts of respiration [18]. Marine denitrification occurs within OMZs (e.g., [19, 20])

therefore the physical extent and intensity of OMZs is inherently coupled to the oceanic nitro-

gen cycle. OMZs form at shelf and upper slope depths, and are considered to be unique biologi-

cal, geochemical and evolutionary environments, analogous to cold seep or deep-sea vent

environments [21]. As continental margin ecosystems transition from well oxygenated surface

waters to the hypoxic core of the OMZ ([O2] = 0.5–0.1 ml L-1), faunal diversity, trophic struc-

tures and physiological strategies change (e.g., [22, 23]). OMZ oxygenation gradients produce

successional biological zonation and are fundamental habitat barriers for benthic and pelagic

organisms [21].

For this work, we follow the hypoxia thresholds and categories defined in [24], which syn-

thesizes the existing hypoxia vernacular, to draw thresholds that are biologically meaningful

(Table 1).Mild hypoxia begins at [O2]<2.45 ml L-1 and is the threshold where sensitive species

exhibit avoidance reactions. Intermediate hypoxia, often referred to as “coastal hypoxia”, occurs

at [O2]<1.4 ml L-1 and is the threshold wherein ecosystems are dominated by organisms with

adaptive features. Severe hypoxia ([O2]<0.5 ml L-1) is a threshold at which mass mortality is in-

duced for most organisms, past which only highly specialized species can survive [24].

Salinity (34 psu) and hydrostatic pressure (P = 10 bar) are assumed constant. Temperature

columns indicate the temperature used for partial pressure and saturation calculations at the

associated concentrations. Data table adapted fromHofmann et al., [24]. The intermediate cat-

egory is described as “coastal” in Hofmann et al., [24]. We refrain from using this term here, to

prevent confusion between hypoxia categories and offshore habitat locations

Oxygenation proxies in paleoceanographic records

We employ a multi-proxy approach to oxygenation reconstructions here, and include core

data across sedimentary, faunal and geochemical proxies (Table 1). Fig. 3 depicts, in schemata

form, how regional multi-proxy oxygenation data are interpreted, and we discuss each

proxy below.

Sedimentary structures. Severe hypoxic conditions preclude benthic macrofauna, prevent-

ing bioturbation and thereby allowing for the preservation of laminated sediments (Table 2)

[25–27]. For example, annual sediment laminations (i.e. unmixed, fine-grained sediment dis-

playing distinct, continuous layering) are formed in modern California margin basinal features

Oxygen Minimum Zone Expansion
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Figure 2. Global OxygenMinimum Zones, including (a) Upper depth (in meters) of intermediate water hypoxia ([O2]<1.4 ml L-1) and (b) thickness
(in meters) of intermediate water hypoxia ([O2]<1.4 ml L-1). The geospatial distributions of severely hypoxic [O2] minimums (of [O2] = 0.5 ml L-1 and
[O2] = 0.2 ml L-1) are depicted on both panels as white lines. For the upper panel, regional blocks are defined by black lines to highlight where
paleoxygenation reconstructions were completed. Data fromWorld Ocean Atlas [192].

doi:10.1371/journal.pone.0115246.g002
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Table 1. Hypoxia categories and associated oxygen concentrations, partial pressures and saturations for each category.

Hypoxia Category ml O2 L
-1

µmol O2 kg
-1 mg O2 L

-1 pO2 % O2saturation

T = 25°C T = 17°C T = 12°C T = 25°C T = 17°C T = 12°C

Mild 2.45 107 3.5 106 93 84 51�50 45 40

Intermediate 1.4 61 2.0 60 53 48 29�30 25 23

Severe 0.5 22 0.71 22 19 17 11�10 9 8

doi:10.1371/journal.pone.0115246.t001

Figure 3. Schemata of a multi-proxy approach to interpreting hypoxia categories, including severe hypoxia ([O2]<0.5 ml L-1), intermediate hypoxia
([O2]>0.5–1.5 ml L-1) andmild hypoxia to oxic conditions ([O2]>1.5 ml L-1). These hypoxia categories are detailed in Table 1, and followHofmann et al.,
[24]. Hypoxia proxies include [Re], [Mn], [U], [Cd], [Mo], δ15N, foraminiferan communities, and sedimentary laminations. Units for each proxy reflect the cited
literature, which constrains the proxy to a specific oxygenation category.

doi:10.1371/journal.pone.0115246.g003
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Table 2. Seafloor hypoxia proxies for paleoceanographic reconstructions, partitioned by the thresholds and capacity each proxy has to record
fine-scale changes in seafloor hypoxia, as well as organic flux to the seafloor [24].

Proxy Mild Hypoxia ([O2]
= 2.45–1.4 ml L-1)

Intermediate Hypoxia
([O2] = 0.5–1.4 ml L-1)

Severe Hypoxia
([O2]<0.5 ml L-1)

Indicator of increased
organic flux to seafloor?

Notes

Laminations Not Present Laminations only occur with
extremely severe seafloor
hypoxia ([O2]<0.1 ml L-1),
where bioturbating benthic
fauna are not present [26,
27].

Yes. Lamination formation
requires high surface
export [16].

Foraminifera Above 2 ml L-1,
foraminiferan
composition is likely
not altered by
changes in bottom
water oxygenation
[199].

Foraminiferan communities in intermediate-severely
hypoxic sediments are dense and associated with
opportunistic taxa and specific morphologies
[200–202]. Marker species, affiliated with a narrow
oxygenation range, can be used to reconstruct
seafloor oxygenation on a very fine-scale [31, 203].

Organic flux to the
seafloor alters the
composition and density
of foraminiferan
communities [204, 205],
however interpretation of
these community traits is
not straightforward in a
low oxygen setting (e.g.,
[206]).

Foraminifera are well
adapted to the extreme
chemical heterogeneity of
oxygenation, methane
enrichment, organic flux
and sulfur-reducing
environments found on
continental margins [207].

δ
15N No significant denitrification, with no isotopic

fractionation.
Denitrification
occurs in severely hypoxic
conditions ([O2]<0.23 ml L-1)
[19]. The isotopic signal of
denitrification reflects
regional changes in
biologically available N pool
[35].

δ15N is an indirect record
of organic flux, as
photosynthesis
isotopically fractures the
nitrogen pool.

The δ15N of particulate
nitrogen varies with the
degree of surface nutrient
utilization, commonly
termed productivity [37,
38], and water column
denitrification [128]. For
continental margins,
sediment denitrification
contributes to the isotopic
signal [19, 20].
Denitrifying bacteria are
facultative anaerobes,
meaning they are able to
respire either oxygen or
nitrogen oxides.

Molybdenum
[Mo]

No accumulation increase [43]. Accumulation occurs when
[O2]<0.45 ml L-1 [43]. High
accumulation rates
(>2 μg g-1) are related to the
presence of anoxia [36].

Yes, non-lithogenic
particulate Mo, associated
with sinking particles,
contributes �15% of
authigenic Mo
accumulation [43].

Mo is a biologically-
essential, and is
conservative in behavior.
The pathway for
authigenic Mo
accumulation in sediment
is unresolved, however it
is clear that sulfide
concentrations must be
>2 μM for active Mo
formation [43] Concurrent
enrichment of Mo and Re
is an indicator of an
anoxic depositional
environment [41].

Cadmium,
[Cd]

No accumulation
increase

Some accumulation at
lower levels in “coastal
hypoxia” [208].

Significant Cd enrichment
(>2 ppm) is associated with
laminated depositional
records, a suboxic to anoxic
seafloor and the presence of
trace presence of H2S [42].

Composition of Cd in
sinking particles is similar
to plankton material;
therefore changes in
productivity may affect
levels of enrichment [41].

Cd is involved with
nutrient cycling and
scavenging. It is released
in sediment during the
diagenesis of organic
matter, forming insoluble
sulfides when trace
amounts of H2S are
present [209]. Cd
enrichment occurs in
surface sediments [41].

(Continued)
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at [O2]<0.1 ml L-1 [25, 28]. Laminations are formed under the absence of bioturbating inverte-

brates [29] and sufficiently high organic carbon export from the surface [16], and are one of

the clearest indicators of severe hypoxia in benthic environments.

A diagram for how multiproxy records are interpreted into paleoxygenation categories is

shown in Fig. 3.

Microfossils. Oxygen is a physiochemical parameter that acts as a limiting factor, thereby

determining the distribution of where organisms can live based on their physiological require-

ments. Within the optimal range of a limiting factor, a species will reach maximum competi-

tiveness and maximum abundance [30], resulting in tight faunal affiliations with specific

oxygenation ranges. Benthic foraminifera have species-specific oxygenation thresholds and

therefore marker taxa function as oxygenation proxies [31]. Metrics of foraminiferan commu-

nity structure, such as diversity and density, also record changes in seafloor oxygenation [22,

23, 32]. Due to their opportunistic responsiveness to environmental change, Foraminifera are

ideally suited for high-resolution oxygenation reconstructions [32–34].

Geochemistry. Isotopic and trace element geochemical proxies of oxygenation are complex,

as the cycling, preservation and attribution of these elements can be controlled by processes such

as of surface productivity and flux, water column processes, sediment-water interface flux and

diffusion, and sub-surface sedimentary processes. Denitrification in continental margin regions

occurs under hypoxic conditions in both the water column and sediment ([O2]<0.23 ml L-1)

[19, 20], and changes in the nitrogen isotopic signal are a product of regional changes in the bio-

logical available N pool [35]. Although intense denitrification is often indicative of severe hypox-

ia, more subtle changes in δ
15N can be attributed to a range of related localized factors, such as

source water and nutrient availability [19, 36–39]. Redox sensitive trace elements such as cadmi-

um (Cd), uranium (U), chromium (Cr) and rhenium (Re) occur in bulk sediment and carbonate

Table 2. (Continued)

Proxy Mild Hypoxia ([O2]
= 2.45–1.4 ml L-1)

Intermediate Hypoxia
([O2] = 0.5–1.4 ml L-1)

Severe Hypoxia
([O2]<0.5 ml L-1)

Indicator of increased
organic flux to seafloor?

Notes

Uranium, [U] No accumulation
increase

U is enriched in
“suboxic” and anoxic
sediments as a result
of reduction and
precipitation
(>5μg g-1) [210].

U enrichment occurs in
bioturbated sediments
(>0.1 ml L-1), indicating
enrichments at an unclear
“suboxic” threshold [42].

Unclear, as the
composition of U in
plankton is not known.

U is conservative in
behavior, and the
accumulation of U may be
kinetic in nature. U
accumulation may be
promoted by kinetic
effect, in areas of low
sedimentation rates [17,
211, 212]. U enrichment
occurs in subsurface
sediments [41].

Rhenium,
[Re]

No enrichment Re enrichment
occurs in bioturbated
sediments
([O2]>0.1 ml L-1),
indicating enrichment
at an unclear
“suboxic” threshold
[42].

Re is highly enriched in
“suboxic” and anoxic
sediments [42, 210].

Unclear, as the
composition of Re in
plankton is not known.

Re is conservative in
behavior, diffuses across
the sediment-water
interface, and the direct
mechanism for
accumulation is unknown.
Free H2S is not critical for
the accumulation of Re
[210]. Concurrent
enrichment of Mo and Re
is an indicator of an
anoxic depositional
environment [41].

doi:10.1371/journal.pone.0115246.t002
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fossils, and can be used to characterize the redox state of the seafloor as well as functioning as

proxies of paleoenvironmental redox changes [40–43]. Paleoproductivity proxies are useful sup-

portive proxies in OMZ reconstructions, due to the mechanistic coupling between surface export

and subsurface respiration [44]. Additionally, the δ13C record of planktonic carbonate reflects

the surface ocean isotopic pool, and can be used to reconstruct surface water productivity and

carbon export [45–47].

Methods

Sedimentary archives

We include cores in this review that met criteria for further geospatial analysis (Table 3). These

criteria dictated sediment records that:

• exist in a geographic region that includes a modern OMZ,

• range in age from approximately 20–0 ka,

• have well-constrained chronologies (radiocarbon and/or isotope stratigraphy),

• include one or more primary proxies for hypoxia, as described above.

Associated data provided here include modern water depth of core extraction (m), latitude

and longitude, sedimentation (cm kyr-1) or mass accumulation rate (g cm-2 kyr-1), the presence

of 14C dating or δ18O stratigraphy, and the presence of published hypoxia proxy records (in-

cluding laminations, microfossils, or geochemistry).

We rely on published chronologies for the deglacial and post-glacial core material, and do not

reinterpret any chronologies. Regional archives are assembled on a unifying age axis, which is de-

termined only by previously published chronologies. Sedimentation rates for sites<1000 mbsl

span a minimum of 9 cm kyr-1 to a maximum of 500 cm kyr-1, with the majority sedimentation

rate ranging from 20–100 cm kyr-1. Sedimentation rates for sites>1000 mbsl span a minimum

of 4 cm kyr-1 to a maximum of 16 cm kyr-1. Mass Accumulation Rates (MARs) are published for

deep sites (>2200 mbsl) and they range from 2–9 g cm-3 kyr-1.

Paleoxygenation was assessed based on proxy evidence available for each for core. If proxy

evidence indicated hypoxia, we partitioned that signal into intermediate or severe hypoxia

groups, based on the biologically-relevant classification scheme identified byHofmann et al.,

[24]. To ensure hypoxia designations are as conservative as possible, we refrained from any

hypoxic designation without evidence. In practice, this meant we only designated hypoxia

where the proxy evidence was explicit. In the absence of that evidence, we did not designate

any hypoxia (i.e., in the absence of laminations, we did not designate a potential range from

oxic-intermediately hypoxic). Importantly, we found no instance where multiple proxies with-

in one archive produced conflicting hypoxia reconstructions.

Sedimentary archives were then assigned paleodepths based on the modern water depth for

the core site, the age model of that core, and deglacial eustatic sea level change. Paleodepths were

calculated using estimated global eustatic sea level fluctuations constructed frommultiple degla-

cial sea level records (Fig. 1) [5, 6]. We acknowledge eustatic sea level is a simplification of local

sea level trends through the deglaciation, which are also impacted by glacio-hydro-isostatic

effects [48, 49].

Bathymetric and Geospatial Analyses

Data visualizations applied to bathymetry, or submarine topography, provide unique perspec-

tives into the distribution of seafloor ecosystems. Here we apply bathymetric masks associated

Oxygen Minimum Zone Expansion
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with reconstructed paleoxygenation, wherein mask depths were chosen based on the extent of

regional hypoxia across two or more cores at key temporal deglacial intervals. If only a single

hypoxia record was available for a deglacial event, a hypoxic mask ±50 m from the core depth

was applied. Oxic and hypoxic benthic surface area (km2) and water volume (km3) were quan-

tified for temporal intervals through the deglaciation. To produce geospatial maps of paleoxy-

genation, we synthesized regional scale patterns in oxygenation, took into account eustatic sea

level change, and analyzed the deglacial changes in both hypoxic seafloor surface area and hyp-

oxic water volume from the SRTM30_PLUS global bathymetry dataset [50] using ArcGIS geos-

patial software [51]. Analyses were limited to the continental margin within a 400 nautical mile

buffer offshore of the continental coastline. One exception to this is the inclusion of the seafloor

within 400 nautical miles around the Galapagos Islands, in order to capture the associated clus-

ter of deep core sites nearby. Within each region, the analysis was limited to the seafloor and

water column above a specified isobath, selected below the deepest regional core depth.

We include four regions for which geospatial analyses were conducted: the Subarctic Pacific

(SP; 0–3,200 mbsl; southern latitude limit at 38° 300 N in the Western Pacific and 49° 300 N in

the Eastern Pacific), the California Current (CC; 0–2,400 mbsl; 31° 400-49° 300 N), Mexico

Margin (MM; 0–1,200 mbsl; 20°-30° N) and the Humboldt Current and Equatorial Pacific

(HC; 0–3,300 mbsl; 10° 300 N-32° S) (Fig. 4). The Benguela Current (BC) and the Oman and

Pakistan Margin (OPM) are discussed, however sediment records from these regions did not

meet the criteria established to warrant geospatial analysis. We limit our statements of specific

volume and surface area changes to Tables 4 and 5. These analyses represent the state of paleo-

ceanographic records of deglacial OMZ expansion, including caveats associated with proxy rec-

ords and limitations of the spatial resolution of core sites; our work may also be used to

highlight existing knowledge gaps.

Continental margin surface area is corrected for eustatic sea level rise [5, 6] and calculated

using the SRTM30_PLUS global bathymetry dataset [50]. Total vertical extent of hypoxia is

stated, including intermediate and severe. Hypoxic and oxic margin surface area (km2) and

percent (%) are calculated for the seafloor above a region-specific isobaths: SP (0–3,300 mbsl),

CC (0–2,400 mbsl), MM (1–1,200 mbsl), and HC (0–3,300 mbsl). Upper ocean oxic surface

area (km2), from the surface ocean to the upper subsurface hypoxic boundary, is included.

Continental margin volume is corrected for eustatic sea level rise [5, 6] and calculated using

the SRTM30_PLUS global bathymetry dataset [50]. Hypoxic and oxic margin volume (km3)

and percent (%) are calculated for the water column above a region-specific isobath: SP

(0–3,300 mbsl), CC (0–2,400 mbsl), BM (1–1,200 mbsl), and HC (1–3,300 mbsl). Upper ocean

oxic volume (km3), from the surface ocean to the upper subsurface hypoxic boundary,

is included.

Results

Subarctic Pacific

The SP is dominated at the surface by the eastward flowing North Pacific Current, which

branches into the Alaskan Gyre and the southward-flowing CC (e.g., [52]). North Pacific Inter-

mediate Water (NPIW) forms in the Sea of Okhotsk and mixes laterally into the Pacific sub-

tropical gyre [53]. Deep water in the North Pacific is poorly ventilated, nutrient-rich and

oxygen-depleted [18], and plays a critical role in maintaining extensive intermediate water

OMZs [54, 55]. The SP has a modern, seasonal OMZ in the Gulf of Alaska (Fig. 2), attenuated

in the summer, with the core of the OMZ from 670–1060 m in the water column [56]. Hypoxic

waters spread westward, south of the Aleutian ridge and the Russian Kamchatka Peninsula,

during winter months and form a seasonal OMZ that spans the Subarctic Pacific [56].

Oxygen Minimum Zone Expansion
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Figure 4. Deglacial sediment core locations for four Eastern Pacific regions, including (a) the Subarctic Pacific, (b) the Mexico Margin, (c) the
California Current, and (d) the Equatorial Pacific and Humboldt Current.

doi:10.1371/journal.pone.0115246.g004
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The SP is a region with inherent complexities, due to the influence of the Cordilleran Ice

Sheet [57], the variability of sea ice formation [58], and circulation sensitivity to the episodic

closures of the Bering Straight [59]. Previous investigations have characterized the Last Glacial

Maximum (LGM) (Fig. 1) as a time of low surface ocean productivity, high ice-rafted debris

sediment flux, and cold surface temperatures [60–65]. Archives track the deglacial oscillations

of the warm Bølling-Allerød (B/A) and cool Younger Dryas (YD), consistent with the expected

atmospheric teleconnections between the North Pacific and the North Atlantic [66]. The B/A

and Holocene are warmer and more productive across the region, from the Gulf of Alaska [67]

to the Western margin of Japan [68]. In step with the changes in surface productivity, seafloor

hypoxia developed during the warm, productive intervals of the deglaciation across intermedi-

ate (600 mbsl, site RAMA 44PC) and deep (2,900 mbsl, site EW0408–85JC) water depths [58,

67–72]. The productivity and oxygenation oscillations of margin and shelf environments to

Termination IA, the B/A and the YD reveal the substantial changes this contiguous high lati-

tude environment recently underwent.

Paleoxygenation reconstructions for the Subarctic Pacific. Four sediment cores meet the

criteria for deglacial reconstructions: EW0408–85JC, EW0408–11JC, RAMA 44PC, and

CH84–14 (Fig. 4; Table 3). Cores EW0408–85JC and EW0408–11JC were both collected from

the Gulf of Alaska, RAMA 44PC was collected east of Kamchatka Peninsula, and CH84–14

was collected east of Hokkaidō Island, Japan. Shifts in seafloor oxygenation throughout the SP

exhibit a cohesive, though limited, hydrographic picture (Figs. 5 and 6). We limit our SP recon-

struction to mid-way through the deglaciation (14–4 ka), wherein the regional margin is exten-

sively hypoxic, followed by a contraction to shallow, upper intermediate water hypoxia in the

Holocene. The Bering Sea and Sea of Okhotsk are not included in the analysis, due to their

unique, regional-scale oceanography.

Table 4. Surface area calculations of deglacial oxygenation changes for four Eastern Pacific continental margins: Subarctic Pacific (SP),
California Current (CC), Mexico Margin (MM), and the Humboldt Current and Equatorial Pacific (HC).

Region Ka
(Calendar
Age)

Regional
margin
surface area
(km2),
corrected for
sea level rise

Total
vertical
extent of
hypoxia
(in
meters)

Oxic upper
ocean, from
surface to
upper
subsurface
hypoxic
boundary (km2)

Total
Oxic
(km2)

Oxic
(%)

Severe
Hypoxia
(km2)

Severe
Hypoxia
(%)

Intermediate
Hypoxia
(km2)

Intermediate
Hypoxia (%)

SP 14 1,177,000 2,298 426,000 603,000 51 574,000 49 0 0

10 1,259,000 0 N/A 1,259,000 100 0 0 0 0

4 1,325,000 100 335,000 1,167,000 88 158,000 12 0 0

CC 18 274,000 0 N/A 274,000 100 0 0 0 0

14 285,000 1,232 60,000 153,000 54 50,000 17 83,000 29

12 292,000 0 N/A 292,000 100 0 0 0 0

10 297,000 1,232 80,000 165,000 56 10,000 3 122,000 41

4 309,000 528 99,000 254,000 82 10,000 3 45,000 15

MM 18 158,000 100 109,000 148,000 94 10,000 6 0 0

14 181,000 603 79,000 120,000 66 61,000 34 0 0

10 216,000 518 111,000 154,000 71 61,000 28 0 0

4 264,000 398 151,000 221,000 84 43,000 16 0 0

HC 18 2,648,000 100 716,000 1,370,000 52 0 0 1,278,000 48

13 2,572,000 3,022 98,000 621,000 24 54,000 2 1,897,000 74

10 2,507,000 2,749 185,000 421,000 17 18,000 1 2,068,000 82

4 2,428,000 100 428,000 2,388,000 98 0 0 40,000 2

doi:10.1371/journal.pone.0115246.t004
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Records from ODP Site 882 (Detroit Seamount, water depth 3244 mbsl) indicate that the

deep glacial North Pacific was “suboxic” (based upon [U]) [73]. Although lacking a high

enough sedimentation rate necessary to be included in this analysis, ODP Site 882 indicates

that the deep SP (>3000 m) gained oxygen through the deglaciation. At Termination IA, the

three deepest sites record the development of severe hypoxia, associated with laminations [67]

and high authigenic [U] and [Mo] [74] in EW0408–85JC, and high sedimentary δ15N values in

CH84–14 and RAMA 44PC [68]. These proxy records indicate that at 14 ka severe hypoxia

ranged from 596–2,894 mbsl (Fig. 5). Regional hypoxia was followed by subsequent oxygen-

ation in intermediate and deep waters through the YD, Termination 1B and the early Holo-

cene. In the mid-Holocene, the shallowest site recorded the development of severe hypoxia in

upper intermediate waters ([Mo]) [74].

Paleoceanographic reconstructions from the SP indicate extensive and severe hypoxia devel-

oped during the warming of the deglaciation, and suggest severe hypoxia as shallow as ~600

mbsl and across ~2,298 m of contiguously hypoxic water column (Fig. 6). The absence of hyp-

oxia during the YD cooling of the Northern Hemisphere indicates that the subsurface SP is sen-

sitive to rapid climatic oscillations. Coherent oxygenation oscillations, from the Gulf of Alaska

to Eastern Japan, indicate that geographically widespread changes occur in response to global

climate change.

California Current

The CC is the eastern limb of the North Pacific Subtropical Gyre (e.g., [75–77]), and is driven

onshore in the Northern Hemisphere spring [54]. The CC is characterized by seasonal

Table 5. Volumetric calculations of deglacial oxygenation changes for four Eastern Pacific continental margins: Subarctic Pacific (SP),
California Current (CC), Mexico Margin (MM), and the Humboldt Current and Equatorial Pacific (HC).

Region Ka
(Calendar
Age)

Depth of
seafloor
analyzed
(m),
corrected
for sea
level rise

Regional
margin
volume
(km3),
corrected
for sea
level rise

Oxic upper
ocean, from
surface to
upper
subsurface
hypoxic
boundary
(km3)

Total
Oxic
(km3)

Percent
of
margin
oxic (%)

Severe
hypoxia
(km3)

Percent
of margin
severely
hypoxic
(%)

Intermediate
hypoxia
(km3)

Percent of
margin
intermediately
hypoxic (%)

SP 14 3,214 1,524,000 456,000 479,000 32% 1,045,000 68% 0 0%

10 3,255 1,500,000 N/A 1,500,000 100% 0 0% 0 0%

4 3,299 1,480,000 144,000 1,397,000 94% 83,000 6% 0 0%

CC 18 2,280 316,000 N/A 316,000 100% 0 0.00% 0 0%

14 2,314 302,000 75,000 119,000 39% 86,000 28% 98,000 32%

12 2,336 295,000 N/A 295,000 100% 0 0% 0 0%

10 2,355 288,000 83,000 118,000 41% 18,000 6% 152,000 53%

4 2,399 277,000 91,000 189,000 68% 17,000 6% 70,000 25%

MM 18 1,080 65,000 60,000 62,000 96% 2,000 4% 0 0%

14 1,114 66,000 35,000 38,000 58% 28,000 42% 0 0%

10 1,155 69,000 41,000 43,000 62% 26,000 38% 0 0%

4 1,199 74,000 49,000 54,000 73% 19,000 26% 0 0%

HC 18 3,180 6,155,000 4,731,000 4,794,000 78% 0 0% 1,360,000 22%

13 3,222 5,885,000 265,000 306,000 5% 531,000 9% 5,047,000 86%

10 3,255 5,651,000 731,000 740,000 13% 225,000 4% 4,686,000 83%

4 3,299 5,245,000 2,330,000 5,151,000 96% 0 0% 193,000 4%

doi:10.1371/journal.pone.0115246.t005

Oxygen Minimum Zone Expansion

PLOS ONE | DOI:10.1371/journal.pone.0115246 January 28, 2015 14 / 39



upwelling cycles, a highly productive continental margin, and an acute and extensive subsur-

face OMZ [54, 55, 78]. Additionally, a strong nearshore, poleward Counter Current, know as

the Davidson Counter Current, has a surface and subsurface expression [79] and brings warm-

er, saltier, less oxygenated, and equatorially-influenced water up the continental margin. The

CC OMZ exhibits an onshore-offshore gradient, wherein the lowest oxygen concentration val-

ues are found within 200 km from the coastline [54]. The upper boundary of the CC OMZ (as

defined by [O2 = 1.4 ml L-1) is relatively deep (~600 mbsl), and the OMZ is thick (~1200–1500

m) (Fig. 1). Oxygen delivery to the CC subsurface is balanced by contributions from well-

oxygenated, northern-sourced NPIW and poorly oxygenated, southern-sourced intermediate

waters [53].

Early investigations into CC continental margin sediments described the presence of lamina-

tions during the late Pleistocene to Holocene transition [80–82]. ODP Site 893A (576.5 mbsl)

stands out amongst the region’s extensive suite of cores [27, 83–88] as a globally recognized site

with high-resolution synchroneity to Northern and Southern Hemisphere climate events [40,

Figure 5. Subarctic Pacific (SP) deglacial core data synthesized into hypoxia categories. Changing deglacial core depths reflect global eustatic sea
level change. The encircled number adjacent to each core label corresponds to the number of available oxygenation proxies, which are enumerate in
Table 3. Vertical grey bars correlate to temporal intervals in OMZ geospatial reconstructions for this region.

doi:10.1371/journal.pone.0115246.g005
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88, 89]. The expansion and contraction of the regional CC OMZ occurred with remarkable fi-

delity to the glacial terminations, warming intervals, and cooling oscillations of the Northern

Hemisphere, with clear regional-scale deoxygenation associated with Termination IA, the B/A,

Termination IB and the start of the Holocene (e.g., [27, 29, 40, 42, 90, 91]). Sediment cores

Figure 6. Subarctic Pacific bathymetric seafloor masks and surface area (km2) histograms of deglacial hypoxia impingement for (a) 14 ka, (b) 10
ka, and (c) 4 ka. The Bering Sea and Sea of Okhotsk are not included in the analysis, due to their unique, regional-scale oceanography. Seafloor is selected
between 0–3,200 mbsl, with a southern latitude limit at 38° 300 N in theWestern Pacific and 49° 300 N in the Eastern Pacific with a northern limit along the
Aleutian Arc. Analyses were limited to the continental margin within a 400 nautical mile buffer offshore of the continental coastline and the Aleutian Arc. The
changing gray shoreline through the panels depicts the paleo-shoreline. At 14 ka, severe hypoxia ranged from 596–2,894 mbsl. At 10 ka, the water column
was oxygenated, and at 4 ka severe hypoxia was found between 132–232 mbsl.

doi:10.1371/journal.pone.0115246.g006
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from Vancouver Island record OMZ expansion from 13.5 to 12.6 ka, slightly delayed from

more southern CC sites [92].

Paleoxygenation Reconstructions for the California Current. Eleven deglacial sediment

cores were included in our geospatial analysis, from Santa Barbara Basin (ODP Site 893A,

MD02–2504, MD02–2504, MV0811–15JC), Pt. Conception (ODP Site 1017E), Central Califor-

nia (F-8–90-G21, F2–92-P3, F2–92-P40, F2–92-P34), the Oregon-California border (ODP Site

1019E), and Vancouver Island (JT96–09) (Fig. 4, Table 3). These data indicate the extensive

and shallow influence of OMZ waters on the CC continental margin during the deglaciation,

and the regional-scale sensitivity of abrupt hydrographic change to Northern Hemisphere

rapid warming and cooling events.

Intermediate waters (>1,000 mbsl) in the CC were oxygenated during the LGM, up until

Termination IA at 14.7 ka [27, 29, 40, 88, 93, 94]. The three deepest sites exhibit evidence of

hypoxia in the LGM, including ODP Site 1017E and ODP Site 1019E, and F-8–90-G21 (Fig. 7).

The ODP cores have elevated [Mo] values in the LGM [42], and hypoxia-associated foraminif-

eran marker species are preserved in the deepest core [95–97].

Figure 7. California Current (CC) deglacial core data synthesized into hypoxia categories. Changing deglacial core depths reflect global eustatic sea
level change. The encircled number adjacent to each core label corresponds to the number of available oxygenation proxies, which are enumerate in
Table 3. Vertical grey bars correlate to temporal intervals in OMZ geospatial reconstructions for this region.

doi:10.1371/journal.pone.0115246.g007
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Geochemical ([Mo], %Corg, and δ
15N) data for all ODP Sites in the CC region, including

Santa Barbara [42, 98–100], Pt. Conception [94], and the California/Oregon border [42, 101]

collectively reconstruct the presence of denitrifying and severely hypoxic waters along the Cali-

fornia margin at Termination 1A and through the Bølling-Allerød (Fig. 7). The Santa Barbara

Basin sites record the OMZ intensification as laminations, severely hypoxic foraminiferan

communities, and elevated redox metal concentrations [29, 40, 89, 93, 102, 103]. Archives

from central California margin exhibit preserved laminations and elevated concentrations of

[Mo] and [Cd] [40, 95, 96, 104, 105]. Core F2–92-P34 is anomalous to the broad CC pattern,

with no enrichment of [Mo] at Termination IA and only a slight increase in %Corg [105]. At 14

ka, the records in this region indicate the seafloor was severely hypoxic from 395–869 mbsl and

was bracketed above (332–395 mbsl) and below (869–1,564 mbsl) by intermediate hypoxia

(Fig. 8).

Intermediate waters returned to oxygenated conditions midway through the deglaciation

(12.9–11.7 ka), synchronous with the ephemeral YD cooling observed in other Northern

Hemisphere climate records (Fig. 8) [106, 107]. This margin-wide oxygenation is evidenced by

the unanimous absence of laminations across all depths, foraminiferal assemblages that reflect

increased oxygen concentrations, and low concentrations of redox metals in all regional cores.

Termination IB (11.7 ka) initiated a return to regional hypoxia, detected in eight of the cores.

Sites within the Santa Barbara Basin preserved laminations at Termination IB [29] and were

dominated by hypoxic, OMZ-associated foraminiferal communities [93, 102, 103]. Termina-

tion IB was a secondary expansion of the CC OMZ, and is associated with a narrow band of se-

verely hypoxic water at 436–525 mbsl, bracketed by intermediate hypoxia from 417–525 mbsl

and 625–954 mbsl (Fig. 8).

Paleoceanographic reconstructions from the CC reveal the extraordinary shallowness (severe

hypoxia<300 mbsl) and extensity (1,233 m of contiguously hypoxic water column) of the re-

gional OMZ during the recent deglaciation. Oxygenated upper ocean ecosystems are dramati-

cally compressed at both Termination events to<300 m from the ocean surface. The YD

cooling mid-way through the deglaciation is a remarkably ephemeral event of regional oxygen-

ation. The analysis presented here reveals how geographically pervasive and temporally respon-

sive subsurface oxygen concentrations in the CC system are to global climate change.

Mexico Margin

The MMOMZ is remarkable in thickness and intensity (Fig. 2), and is a product of high sur-

face production, a sharp pycnocline that inhibits local ventilation of subsurface waters, and the

“sluggish and convoluted deep circulation” of regional subpycnocline waters [108]. The eastern

Pacific sea surface temperature warm pool is centered off of southern Mexico and Guatemala, a

product of the large seasonal net heat flux and weak wind mixing of the region [108, 109]. The

CC and NPIW travel equatorward along Baja California and at 25° N turn westward with gyral

circulation [110–112], maintaining an oceanographic transition zone between 20°-30° N. In

the north, the OMZ sits between 500–1,000 mbsl [56] and in the south shoals upwards

(100–700 mbsl), due to the influence of southern sourced intermediate water (including AAIW

and “Equatorial Waters”) [113]. The oxygen concentration of these waters is low (~0.2 ml L-1),

and the upper hypoxic boundary is extremely shallow. The term “Equatorial Waters” refers to

a composite of Subtropical Underwater found below the equator [114, 115], north and south

subtropical surface water [108], 13°C waters [116, 117] and subtropical mode water [118].

Sediment records in this region indicate major reductions in bottom water oxygenation

through the last deglaciation, however the deglacial intensification of the OMZ does not appear

to be synchronous across multiple locations [16]. Primary production and carbon export is
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Figure 8. California Current bathymetric seafloor masks and surface area (km2) histograms of
deglacial hypoxia impingement for (a) 18 ka, (b) 14 ka, (c) 12 ka, (d) 10 ka, and (e) 4 ka. Seafloor is
selected between 0–2,400 mbsl and latitudinally constrained between 31° 400-49° 300 N. Analyses were
limited to the continental margin within a 400 nautical mile buffer offshore of the continental coastline. The
changing gray shoreline through the panels depicts the paleo-shoreline. The seafloor was oxic at 18 ka. At
14 ka the seafloor was severely hypoxic (395–869 mbsl), and bracketed by intermediate hypoxia above
(332–395 mbsl) and below (869–1,564 mbsl). The seafloor returned to an oxic state at 12 ka. At 10 ka severe
hypoxia (436–525 mbsl) was bracketed by intermediate hypoxia (373–436 mbsl, 525–1,605 mbsl). At 4 ka
severe hypoxia (525–625 mbsl) was bracketed by intermediate hypoxia (417–525 mbsl,625–954 mbsl).

doi:10.1371/journal.pone.0115246.g008
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thought to have been low during the LGM [119], potentially due to reduced upwelling [17,

120]. Changes in the depth of the equatorial thermocline and nutricline have been hypothe-

sized to drive deglacial oscillations in oxygenation [121]. Unlike SP and CC records, oxygen-

ation oscillations are not a comprehensive feature of the margin record, and only appear in

records from the Sea of Cortez, which is isolated from the open margin and considered a more

continental record of surface and atmospheric conditions [16, 26]. The equatorial Pacific is a

major global denitrification zone. δ15N records fromMM sites exhibit glacial-interglacial vari-

ability [122] and synchroneity to sites along the Peru-Chile margin [123–125].

Paleoxygenation Reconstructions for the Mexico Margin. Seven paleoceanographic rec-

ords were selected for deglacial reconstructions, including two cores within the Sea of Cortez

(GGC-55/JPC-56 and DSDP Site 480), three cores along the southwestern margin of Baja Cali-

fornia Sur (MV99-PC14, MV99-PC08, MD02–2508 and GC31/PC08) and two cores along the

Mexican Margin (NH8P, NH15P) (Fig. 4; Table 4). The MM exhibits reduced regional coher-

ency, with asynchronous hypoxia and oxygenation oscillations (Fig. 9). However, this region

Figure 9. Mexico Margin (MM) deglacial core data synthesized into hypoxia categories. Changing deglacial core depths reflect global eustatic sea level
change. The encircled number adjacent to each core label corresponds to the number of available oxygenation proxies, which are enumerate in Table 3.
Vertical grey bars correlate to temporal intervals in OMZ geospatial reconstructions for this region.

doi:10.1371/journal.pone.0115246.g009
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exhibits a clear trend of higher oxygenation in the LGM, transitioning to severe hypoxia in in-

termediate waters at the start of the Holocene.

The two deepest, southernmost sites from the Mexican margin suggest the seafloor was hyp-

oxic during the LGM, as indicated by the presence of laminations (Site NH8P) [126, 127] and

high [Mo] concentrations (Site NH22P) [119]. At 18 ka, hypoxia was detected at only one site

in intermediate waters (898 mbsl). Hypoxic waters spatially expanded along the Mexican mar-

gin and in the Sea of Cortez at 14 ka, and ranged from 334–932 mbsl. Site NH8P records the

expansion of severe hypoxia along the margin, with laminations preserved between 15–7.5 ka

[126, 127]. Site GGC-55/JPC-56 preserved laminations from 14.8–12.5 ka, concomitant with

high δ
15N values (>14‰), and high opal accumulations rates [128]. Lamination preservation

occurred from 13–11.2 ka in DSDP Site 480, subsequently followed by bioturbation from

11.2–10.5 ka [26].

Five sites, including MV99-PC14, MD02–2508, DSDP 480, GC31/PC08, and GGC-55/JPC-

56 (all from Sea of Cortez andWestern Baja), recorded a synchronous northward expansion of

hypoxic intermediate waters at ~11–10 ka (Fig. 10), with severe hypoxia extending from

375–973 mbsl. The regional shift was recorded in laminations at DSDP Site 480 [128]. At the

southern tip of Baja (GC31/PC08 and MD02–2508), lamination preservation and steep increases

in redox metals occurred [16, 17, 105, 121, 129]. Core MV99-PC14, extracted from Soledad

Basin (which is oxygenated by sill depth waters at 290 mbsl) [16], became strongly laminated at

10 ka, indicating that extremely shallow upper intermediate waters deoxygenated at the start of

the Holocene. The Holocene remained severely hypoxic at 4 ka from 419–817 mbsl.

Paleoceanographic reconstructions for MM provide evidence for the regional intensification

of subsurface hypoxia through the recent deglaciation. The MM exhibited reduced sensitivity

(Fig. 10) to the first Northern Hemisphere glacial termination event (14.7 ka), as compared to

the NP (Fig. 6) and CC sites (Fig. 8). A regional-scale expansion of hypoxia was recorded at

~10–11 ka, wherein ~600 m of the water column became severely hypoxic (Figs. 9 and 10).

Eastern Equatorial Pacific and Humboldt Current

The HC, also known as the Peru Current, is the eastern limb of the South Pacific subtropical

gyre, characterized by upwelling and extreme biological productivity [130]. A thick (~500 m),

intense ([O2]<0.2 ml L-1) and shallow (upper boundary ~50 mbsl) OMZ characterizes the HC

(Fig. 2)[131]. Cold HC surface waters move north along the South American continental mar-

gin, and then become a part of the equatorial cold tongue. The southward-flowing Peru-Chile

Undercurrent is found 75–500 mbsl, in association with the OMZ [132]. This equatorially-

derived water is transported as far as 48° S [133], and is derived from Equatorial 13°C Waters

[116, 117], Subtropical Underwater [115], and Eastern South Pacific Intermediate Water [134].

The spatial distribution of OMZ thickness is correlated with upwelling conditions [135]. An in-

tense upwelling system is located off of Peru [136, 137], which brings nutrient-rich AAIW to

the surface and stimulates high production in the equatorial cold tongue [138–140]. A more

seasonal upwelling cell exists southward off of Chile [141]. A functional break in deep water

properties exists at 15–25° S, where tropical and subtropical deep waters are dynamically sepa-

rated, as deep waters are directly connected in the Western Pacific [142]. Abyssal waters

(>4,000 m) are a mixture of water from the Weddell Sea and the North Atlantic, and are rela-

tively high in oxygen concentrations [143].

The deglaciation is thought to have co-occurred with extensive ventilation of the deep-sea,

renewing oxygen concentrations in the deep ocean interior (e.g., [2, 63, 73, 144]). Recent syn-

theses document global increases in deep ocean [O2] through the deglaciation, reflecting the

transfer of respired carbon from the deep ocean to the atmospheric and surface ocean carbon
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pool [7]. Numerous high quality records of deep-sea oxygenation are present in the Eastern

Equatorial Pacific, and are included in the HC analysis. Intermediate water records from the

HC are limited; however, it is clear that intermediate water (~300–1,400 mbsl) deoxygenated at

these depths prior to the Northern Hemisphere glacial Terminations [124, 145].

Figure 10. Mexico Margin bathymetric seafloor masks and surface area (km2) histograms of deglacial hypoxia impingement for (a) 18 ka, (b) 14 ka,
(c) 10 ka, and (d) 4 ka. Seafloor is selected between 0–1,200 mbsl and latitudinally constrained between 20°-30° N. Analyses were limited to the continental
margin within a 400 nautical mile buffer offshore of the continental coastline. The changing gray shoreline through the panels depicts the paleo-shoreline. At
18 ka, severe hypoxia was limited from 937–1,037 mbsl. Severe hypoxia ranged from 334–932 mbsl at 14 ka. At 10 ka, severe hypoxia was found from
375–973 mbsl, and at 4 ka severe hypoxia was contracted slightly to 419–817 mbsl.

doi:10.1371/journal.pone.0115246.g010
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Paleoxygenation reconstructions for the Equatorial Pacific and Humboldt Current.

Thirteen paleoceanographic cores met the criteria for deglacial geospatial reconstructions, in-

cluding cores from the Panamanian margin (ODP Site 1242), the Galapagos (TR1–163–19P,

RC13–140, Y69–71P, ME0005A-24JC, RC11–238), Ecuador (P7, ME0005A-27JC), Peru

(V19–30, TR163–31P, W7706–41K, W7706–40K, W7706–37K), and the Chilean margin

(GeoB7139–2) (Fig. 4; Table 4). Sites exhibit regional synchroneity from deep to upper inter-

mediate water depths, lack coherent timing with Northern Hemisphere climate records

(Fig. 11), and exhibit a deglacial temporal signature similar to the Southern Hemisphere (e.g.,

[146, 147]). Broad deglacial patterns include increasing deep ocean oxygenation, severe and

shallow hypoxia shoaling at ~17 ka in upper intermediate water, and a ~6 kya temporal overlap

between deep and intermediate hypoxia (Fig. 12).

For the eight equatorial deep waters sites, from 2,203–3,091 mbsl, the LGM is associated

with high concentrations of [U] [144, 148, 149]. These records reconstruct the presence of in-

termediate hypoxia at 18 ka from 2,082–3,088 mbsl. The deepest, most southerly record

(GeoB7139–2) stands out as anomalous to the deep equatorial cores, wherein δ
15N values

Figure 11. Equatorial Pacific and Humboldt Current (HC) deglacial core data synthesized into hypoxia categories. Changing deglacial core depths
reflect global eustatic sea level change. The encircled number adjacent to each core label corresponds to the number of available oxygenation proxies, which
are enumerate in Table 3. Vertical grey bars correlate to temporal intervals in OMZ geospatial reconstructions for this region.

doi:10.1371/journal.pone.0115246.g011
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Figure 12. Equatorial Pacific and Humboldt Current bathymetric seafloor masks and surface area
(km2) histograms of deglacial hypoxia impingement for (a) 18 ka, (b) 13 ka, (c) 10 ka, and (d) 4 ka.
Seafloor is selected between 0–3,300 mbsl and latitudinally constrained between 10° 300 N-32° S. Analyses
were limited to the continental margin within a 400 nautical mile buffer offshore of the continental coastline and
the Galapagos Islands. The changing gray shoreline through the panels depicts the paleo-shoreline. At 18 ka,
severe hypoxia was limited from 937–1,037 mbsl. At 18 ka, intermediate hypoxia was found in deep water
(2,082–3,088 mbsl). At 13 ka, severe hypoxia was found between 108–331mbsl, and intermediate hypoxia
was deeper (332–3,130 mbsl). At 10 ka, severe hypoxia was again found in shallow waters (315–415 mbsl)
and intermediate hypoxia was deeper (415–3,164 mbsl). At 4 ka, intermediate hypoxia retracted to between
1,313–1,413 mbsl.

doi:10.1371/journal.pone.0115246.g012
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rapidly increased (~5–6‰) at ~17 ka, suggesting a shift towards denitrification and an associ-

ated decrease in oxygen concentration [123, 150]. Deep-sea hypoxia continues to be a regional

feature through the deglaciation and into the mid-Holocene, although the timing of post-glacial

deep ocean oxygenation is debated. Concentrations of [U] remain high into the mid-Holocene

in the equatorial cores [144], beyond 14.7 ka, which differs from the timing of oxygenation in

the North Pacific [73]. This temporal difference may be an artifact of increases in productivity

and organic matter flux, or it may be a true signal of the temporal differences in oxygenation

across the Pacific. For our purposes here, we follow existing interpretations of high [U] in the

post-glacial Equatorial Pacific as a signal of intermediate hypoxia (Fig. 11).

Deoxygenation in intermediate waters occurred at ~17 ka, as exhibited by laminations, a

~5‰ δ
15N increase along the Chilean Margin (W7706–41K, W7706–40K, W7706–37K) [145,

151], and high δ
15N values adjacent to the Panamanian Margin (ODP Site 1242; Fig. 11) [124].

Sedimentation is discontinuous through the deglaciation in W7706–37K and may be due to

sediment disturbance rather than a signal of oxygenation reversal [145]. Together, these cores

indicate severe hypoxia at 13 ka ranged from 108–331 mbsl and intermediate hypoxia ranged

from 332–3,130 mbsl. At 10 ka, severe hypoxia is recorded in upper intermediate waters (365

±50 mbsl), and is bordered below by intermediate hypoxia from 415–3,164 mbsl. At 4 ka, sedi-

ment at the deep equatorial sites shows dramatic reductions in [U] concentrations. Concur-

rently, the shallow central Chilean sites were oxygenated, and the remaining location with a

clear hypoxia signal is limited to Panamanian ODP Site 1242. As such, hypoxia at 4 ka is sub-

stantially attenuated to 1,363 mbsl.

The HC provides a unique record of synoptic changes occurring in both deep and interme-

diate water through the events of the deglaciation. The HC exhibits a coherent regional signal

of oxygenation, while lacking synchroneity to the Northern Hemisphere. Striking features of

the record include the regional deoxygenation of upper intermediate waters at 17 ka, the ex-

treme vertical expansion of hypoxic water at 13 ka, and the ~6 kyr overlap of deep and interme-

diate hypoxia creating ~3,000 m of contiguous hypoxic water column.

Benguela Current

The BC system, also referred to as the Angola-Benguela Current, is the equatorward flowing

Eastern Boundary Current of the South Atlantic subtropical Gyre (Fig. 2), associated with high

productivity, organic-rich sediments, and seasonal upwelling [152]. Upwelling events, and the

export of surface productivity, are linked directly to modern subsurface OMZ structure [153,

154]. The HC OMZ is significantly shallower and less geographically extensive than other sys-

tems reviewed here (Fig. 2). The core of the BC OMZ is between 300–400 mbsl, and hypoxic

waters extend to as shallow as 50 m [155].

Sediment records from the BC reveal mixed deglacial productivity signals, wherein a few

single sites indicate decreased productivity during the LGM [156], while more recent and con-

tradictory work indicates a decrease in surface productivity in the Holocene as compared to the

LGM [157–160]. Contributing to this mixed signal, it appears that the productivity center may

have moved offshore since the LGM [160]. From the evidence available, it does not appear that

the OMZ associated with the BC follows a glacial/interglacial cycle like that which dominates

the Pacific, but is both more heterogeneous and directly linked to regional cycles of productivi-

ty and upwelling [160].

Oman and Pakistan Margin

The OPM, within the Indian Ocean, has the most globally extensive OMZ in terms of water

column vertical extent (>1000 m) [161] (Fig. 2). Subsurface dissolved oxygen content of the
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region is controlled by nutrient additions, changes in intermediate and deep water ventilation,

and convective mixing of deep waters [162]. Oxygen depleted waters sourced from small inlet

seas contribute to the maintenance of severe hypoxia in the region [163]. Monsoonal seasonali-

ty of the Arabian Sea drives OMZ oscillations, wherein strong onshore winds force the upwell-

ing of nutrient-rich waters [164, 165]. OPM sediments are more organic rich than other low-

latitude OMZ regions, attributed to high primary productivity and reduced remineralization at

depth [166].

The OPM is a sensitive recorder of climate variability and an archive of the connectivity be-

tween low latitude monsoonal dynamics and high latitude temperature variability [167, 168].

Paleoceanographic investigations show that the strength of the OPMmonsoon has high-

resolution, sub-millennial cycles that exhibit synchrony to Greenland climate variability [168].

Regional surface water productivity has co-varied with OMZ intensity, such that OMZ intensi-

ty is especially weak during cold stadial events when summer monsoon effects are reduced

[167, 169–172], while OMZ intensity is enhanced during warm interstadials (e.g., the B/A)

[171]. Deglacial cores demonstrate rapid (102 year timescales) shifts from intermediate to se-

vere hypoxia due to climate forcing [173]. Weakening of the OMZ occurred during Heinrich

1 (~18–14 ka) and the YD [174, 175]. Monsoon intensity peaked with a corresponding increase

in surface productivity [172, 176] and ocean hypoxia from 9.5 to 5.5 ka [177, 178]. Geospatial

reconstructions of deglacial hypoxia were not conducted for the OPM, as the limited high-

resolution deglacial records were not sufficient to warrant further analyses.

Discussion

Mechanisms and implications of OMZ variation

Large-scale physical and biogeochemical processes in the ocean drive OMZ formation, and

have high-latitude and low-latitude derived features. As such, the deglacial changes in dissolved

oxygen may be explained by proximal and distal mechanisms. High latitude sources for degla-

cial OMZ variability have been hypothesized to include changes in intermediate water

production/ventilation [17, 27, 40, 68, 71, 84, 93, 150, 179] and changes in deep ocean circula-

tion [70, 123, 170]. Deglacial micronutrient [Fe] enrichment has been hypothesized to intensify

hypoxia, particularly in the Subarctic Pacific [58, 67, 151]. Additionally, oxygen consumption

at the site of NPIW subduction has been hypothesized as a high latitude mechanism [68]. Low

latitude mechanisms for deglacial OMZ variability include the relative importance of equatorial

counter currents [87, 122], the intensity and location of upwelling systems [127, 180] changes

in the oceanic preformed nutrient inventory [73, 124, 126, 128, 181], surface ocean productivi-

ty [119, 121], atmospheric structural changes [17, 85, 182], and the strength of monsoonal sys-

tems [167, 168].

In some cases, independence between mechanisms that force hypoxia has been demonstrat-

ed, for example where local productivity and the high-latitude ventilation of intermediate wa-

ters are shown to decouple during the deglaciation [90, 183]. However, many of the physical

and biological processes that drive the development of subsurface hypoxia are ultimately

linked. Indeed, circulation models from the latter half of the 20th century have revealed that

changes in the rates of surface productivity can ultimately be driven by physical perturbations

in circulation, through interactions between thermocline depth, nutrient flux, and particulate

export into hypoxic waters [184].

Major changes in the distribution of [O2] in Eastern Boundary Currents occurred during

the recent deglaciation. The substantial oxygen changes arose concomitantly with increasing

atmospheric carbon concentration, surface warming and rising sea levels [2–6]. The analyses

presented here reveal that rapid oscillations in oxygen distribution are an inherent feature of
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large ocean regions, as subsurface [O2] exhibits extreme sensitivity to hemisphere-specific

warming and cooling. Mid-way through the deglaciation, hypoxic waters shoaled vertically,

shifting the upper OMZ boundary towards the ocean surface, with shoaled depths ranging

from 596 mbsl in the SP (Fig. 6), 332 mbsl in the CC (Fig. 8), 334 in the MM (Fig. 10), to 108

mbsl in the HC (Fig. 12). Subsurface hypoxia expanded and intensified, creating OMZ environ-

ments which ranged in thickness from 2,298 m in the SP, 1,233 m in the CC, 598 m in the MM,

to 3,022 m in the HC (Table 4). These data provide evidence of the capacity for OMZs to exhib-

it extreme shallowness and water column extensity to states that have no analogue in the

modern ocean.

The deglaciation offers an extremely informative case study of the sensitivity and coupling

between OMZs and global climate oscillations. Our analyses show that during global-scale

warming events, vast expanses of the upper global ocean deoxygenate, resulting in the vertical

compression of oxygenated ocean ecosystems. These analyses of past changes in dissolved oxy-

gen are fundamentally relevant to the loss of [O2] observed in the modern ocean [185–187],

and provide bounds and reasonable expectations for expanding OMZs in the future.

Changes in the distribution of oxygen translate directly to the structure of marine ecosys-

tems (e.g., [11, 12]) and OMZ expansions have implications for modern oceanography, biodi-

versity conservation, ocean management and sustainable fisheries. Modern oceanographers

can anticipate that Eastern Boundary Current OMZs have the capacity to expand to hydro-

graphic structures that have never been instrumentally observed. These analyses underscore

the continued need for high-quality instrumental hypoxic time series data and predictive mod-

els of modern oceanographic change. The challenge to resource managers and conservationists

is how to plan for the great deal of uncertainty introduced when ecosystems undergo changes

that only have precedent in the geologic record.

Modern subsurface oxygen variability

In the modern ocean, the vertical expansion and intensification of OMZ regions has been de-

tected in the California Current [185, 188], equatorial waters [186], the Subarctic [189, 190]

and Subtropical Pacific [191], the North Atlantic [192], the Indian Ocean [193] and the South-

ern Ocean [194]. The loss of subsurface dissolved oxygen is an acute perturbation to coastal

ecosystems and both benthic and pelagic communities [187]. These data indicate that deox-

ygenation in the 20th and 21st Centuries is a feature of every global ocean basin. However,

unique physical and biological processes within oceanographic provinces provide a more nu-

anced and complicated view of climate-forced ocean deoxygenation.

OMZs exhibit high-frequency variability on diurnal and semi-diurnal timescales [195], on

the intra-annual timescales of upwelling and relaxation cycles [196], and in tight association in

the California Current with La Niña events [197]. These OMZ oscillations illustrate the poten-

tial for undescribed scales of variability in the coastal ocean. Additionally, as longer instrumen-

tal time series are developed, novel questions regarding intrinsic high-frequency

oceanographic variability arise. For example, conflicting interpretations of California Current

oxygen trends exist, such that the data can be analyzed to reveal a long-term deoxygenation

trend [185] or a 20–25 year undescribed oscillation [188]. This interpretive conflict highlights

the importance of understanding high frequency variability of oxygen concentrations, which

may be overprinted by anthropogenic climate forcing. Complicating the picture even more so,

recent analyses of historical sediments from the Eastern Equatorial Pacific indicate that the re-

gional OMZ has contracted, and that this contraction is correlated with the slackening of trade

winds in the tropical Pacific [198]. These regional trends in dissolved oxygen illustrate the po-

tential for OMZ oceanographic provinces to respond differently to anthropogenic climate
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forcing, however 20th century oxygenation in the Equatorial Pacific is thought to be anomalous

in the context of a broader global picture. On centennial time scales, processes associated with

a warm surface ocean, including gas solubility reduction and physical stratification, are pre-

dicted to substantially reduce dissolved oxygen concentrations in the ocean interior [8, 184].

Conclusions

We integrate existing deglacial geochemical, sedimentary, and microfossil oxygenation proxies

to reconstruct the timing, depth and intensity of seafloor hypoxia in Eastern Boundary Cur-

rents, principally in the Eastern Pacific. These analyses illustrate the high degree of coupling

between the global climate system and OMZ environments and provide the most comprehen-

sive window, to date, into the spatial capacity of OMZ ecosystems to expand and contract due

to climate change. The recent deglaciation was accompanied by the dramatic shoaling of the

upper hypoxic boundary toward the ocean surface, the compression of upper ocean oxygenated

habitat, and the expansion of the subsurface hypoxic water column. Subarctic Pacific and Cali-

fornia Current continental margins exhibit tight correlation to the oscillations of Northern

Hemisphere deglacial events, whereas the Mexico Margin and the Equatorial Pacific and Hum-

boldt Current exhibit hypoxia expansion prior to Termination IA (14.7 ka), and no regional

oxygenation oscillations. Oxygenation changes occurred in synchrony across ocean basins, re-

vealing the extensive sensitivity of upper ocean systems to changes in global climate.
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