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High-resolution, easily accessible paleoclimate data are essential for environmental, evolutionary, and

ecological studies. The availability of bioclimatic layers derived from climatic simulations representing

conditions of the Late Pleistocene and Holocene has revolutionized the study of species responses to Late

Quaternary climate change. Yet, integrative studies of the impacts of climate change in the Early

Pleistocene and Pliocene – periods in which recent speciation events are known to concentrate – have been

hindered by the limited availability of downloadable, user-friendly climatic descriptors. Here we present

PaleoClim, a free database of downscaled paleoclimate outputs at 2.5-minute resolution (~5 km at equator)

that includes surface temperature and precipitation estimates from snapshot-style climate model

simulations using HadCM3, a version of the UK Met Office Hadley Centre General Circulation Model. As of

now, the database contains climatic data for three key time periods spanning from 3.3 to 0.787 million

years ago: the Marine Isotope Stage 19 (MIS19) in the Pleistocene (~787 ka), the mid-Pliocene Warm Period

(~3.264–3.025Ma), and MIS M2 in the Late Pliocene (~3.3Ma).
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Background & Summary
Shifts in climate and habitats have key evolutionary and ecological consequences, and are closely
associated with contemporary biodiversity patterns1,2. Over the past decade, hundreds of studies have
combined data on species occurrences with climate descriptions from interpolated weather-stations to
model the distribution of animals and plants worldwide3. When projected into paleo- and future-climatic
scenarios, these models are widely used to investigate the historic and future distributions of
biodiversity4–7. However, the limited availability of easily accessible climate data for time periods other
than the mid-Holocene (6 Ka), the Last Glacial Maximum (LGM, 21 Ka) and the Last Interglacial
(130 Ka) has posed a significant impediment to scientists interested in biological responses to past climate
change8,9.

Traditionally, those target periods have been the focus of biological investigations largely because they
correspond to times of temperature extremes in the northern latitudes1,10. While patterns of climate
change between those periods are shown to play a role in biodiversity patterns, there exists considerable
spatial variation in their ability to explain the distribution of biological diversity in species-rich and
threatened tropical areas4,11–16. Despite the utility of the paleoclimatologies spanning the last 130 Ka, a
major impediment to ecological and evolutionary studies is the lack of easily accessible, high spatial
resolution paleoclimatic data in a format directly compatible with most GIS software, particularly those
describing earlier time periods.

To fill this gap, and given that the most common divergence times between extant sister species
have been placed at 1–4Ma, with relatively few divergence times spanning the last 130 kyrs17,18, we have
developed PaleoClim. Our aim is to provide the scientific community with data more reflective of the
time periods under which speciation occurs, allowing for a more complete understanding of the drivers
of biodiversity processes and patterns. PaleoClim is a free database of downscaled paleomodels at
2.5 arc-minute resolution (~5 km at equator), representing temperature and precipitation estimates output
from individual snapshot coupled atmosphere-ocean general circulation models from the Hadley Centre
Coupled Model Version 3 (HadCM3). Building from these estimates, we have derived paleo bioclimatic
layers that represent annual averages (e.g. mean annual temperature, annual precipitation), seasonality
(e.g. annual range in temperature and precipitation), and extreme or limiting environmental factors
(e.g. temperature of the coldest and warmest month, and precipitation of the wet and dry quarters), akin to
WorldClim19. To date, the database contains high-resolution terrestrial data for three key periods: Marine
Isotope Stage 19 (MIS19) in the Pleistocene (ca. 787 Ka), the mid-Pliocene Warm Period (mPWP,
ca. 3.264-3.025Ma) and Marine Isotope Stage M2 (M2), a glacial interval in the Late Pliocene (ca. 3.3Ma,
Fig. 1).

Methods
Paleoclimate Simulations
The paleoclimate simulations used here come from the HadCM3 version of the UK Met Office Unified
Model General Circulation Model (GCM). This is a well-established coupled ocean atmosphere climate
model, having contributed to the last three Intergovernmental Panel on Climate Change (IPCC)
Assessment Reports (AR3, AR4 and AR5), and used to simulate climate for nearly 20 years20,21. HadCM3
has a horizontal resolution of 2.5° in latitude and 3.75° in longitude, and a higher resolution ocean of
1.25° ´ 1.25° regular long-lat grid, with 19 vertical levels in atmosphere and 20 in the ocean. The
atmospheric component has a time-step of 30 min, and is coupled to the ocean every day. Typically, the
climatology is output every month, and the mean annual and monthly climate are calculated from these
data. As the name GCM suggests, this class of climate model is able to reproduce the major circulations in
the both the atmosphere and ocean, as well as major drivers of inter-annual variability22. The resolution
also allows for synoptic weather patterns to be simulated, along with key climate oscillations, but may not
simulate well local extremes or regions with high gradients (e.g. extreme convective events23). HadCM3 is
in the middle of the range of overall climate sensitivities exhibited by the IPCC-class climate models24,25.

The paleoclimate simulations presented here (Table 1) are intended as an example of what is possible
with the techniques employed, and represent significantly different time periods from what is currently
broadly available to biologists. Ice cores provide the best possible constraints on past greenhouse gases
beyond the instrumental record. This means that paleoclimate simulations of the last 800,000 years have a
distinct advantage over those from previous time periods. Marine isotope stage 19 (MIS19) occurs at
roughly 787 Ka and is the oldest Pleistocene interglacial covered by the latest EPICA Antarctic ice core26.
This allows us to use well-constrained greenhouse gas concentrations of CO2

26, CH4
27 and N2O

28, as well
as accurate orbital parameters29. Prior to 400,000 years ago and MIS11, there are significant differences in
the magnitude of glacial-interglacial cycles, both in the greenhouse gas concentrations and temperature
responses. However, MIS19 has the most Holocene-like greenhouse gases and ice core temperature
proxies of the interglacials that occur between 800,000 and 400,000 years ago. Further paleogeographic
boundary condition change must have occurred over these timescales, but as there is no reconstruction
currently available, the remaining boundary conditions have been kept as in the pre-industrial simulation.

The mid-Pliocene Warm Period (mPWP) simulation follows the PlioMIP protocols25, is a
continuation of the original HadCM3 PlioMIP simulation30, and has been previously published by
Hill31. The simulation has elevated atmospheric carbon dioxide concentrations set to 405 parts per
million by volume (ppmv), reduced ice sheets32, a Piacenzian vegetation reconstruction33 and altered
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Figure 1. Paleoclim datasets. (a) Current climate (from CHELSA). (b) Pleistocene MIS19 (ca. 787 Ka). (c) mid-

Pliocene Warming Period (3.265-3.025Ma). Sea-levels were on average 25 m higher than modern times (depicted

in gray). The grayed areas are not part of the final corresponding datasets. (d) Pliocene M2 period (3.3 Ma). Sea-

level is 40 m lower than current levels and, in many areas, coastlines were expanded. (e) Sea-surface temperature

changes (left axis) and speciation rates (right axis) during the last 5 Ma (gray line and red line, respectively. Data

from17,54). Black arrows highlight time periods of this study. The gray box depicts the time periods of high-

resolution climate data currently widely available to biologists.
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topography, particularly over the Rockies, Andes and East African Rift system34. As the underlying
datasets are not the reconstruction of a specific point in time, but of the environmental conditions typical
of a mid-Pliocene warm peak35, a modern orbit is given to the PlioMIP simulations.

The marine isotope stage M2 glacial period is the strongest Pliocene oxygen isotope excursion prior to
the beginning of the Plio-Pleistocene transition, which marks the start of the Pleistocene glacial-
interglacial cycles36. The magnitude of the oxygen isotope excursion suggests that large ice masses may
have covered the Northern Hemisphere for a short time, although the exact locations of these ice sheets
remains uncertain37,38. The ice sheets used in the simulations are based on the ice sheets of 116 Ka, which
are the 40 m sea level rise volume equivalents from the last glacial cycle37. A reduction in atmospheric
CO2 concentration to 220 ppmv39 was implemented in the climate model alongside orbital forcing
appropriate for 3.3 Ma, although this is close to the modern orbital configuration24.

Downscaling
We employed the Change-Factor method19,40,41 to downscale the paleoclimatic climatologies. This
approach creates high-resolution layers by quantifying the differences between the paleo and current
(control) climatologies for each raw variable, at the native model-specific spatial resolution. This
functions as a calibration step to measure the raw climate anomalies at the coarser spatial scale climate
model. Once this step is completed, the difference layers (commonly called delta layers, change-factor
differences, or climate change anomalies) are downscaled to high-resolutions (typically 1–20 km) and
summed to a matching high-resolution current climate variable. This method is relatively quick,
requiring less than a day of computational time per raster layer, and can be efficiently applied to global
datasets. A major benefit of the Change-Factor method relative to other methods of downscaling is its
ability to incorporate small-scale topographic nuances in regional climatologies that are often not
captured in climate models, but present in the high-resolution current datasets. Examples include climatic
differences in mountainous regions such as differences between valleys, mid-elevation ranges, and
their peaks.

Here, we created global delta layers by subtracting the raw temperature and precipitation values of
each snapshot paleoclimatic simulation from corresponding HadCM3 control simulations that represent
the pre-industrial era. The delta layer represents the pixel-by-pixel changes from pre-industrial
conditions, within the constraints of each snapshot climate simulation. The delta layers were downscaled
60-fold from 2.5 arc-degrees to 2.5 arc-minutes (ca. 5 km) using a tensioned spline in ArcGIS 10.5
(sampling = 12 nearest observations to a focal point, weight of 0.1, ESRI 2018). A spline is a
deterministic interpolation method that has been shown to deliver similar results when compared to
kriging41–46, and it has been commonly considered as appropriate for interpolation environmental
variables44. We used a tensioned spline (instead of a regularized spline) to avoid extraneous inflection
points, and more generally to preserve shape properties, such as monotonicity and convexity, of a set of
data points - and to do so without sacrificing smoothness47. Spline approaches are based on requirement
that the interpolation function passes through the data points, but also yield the smoothest transition as
possible.

The high-resolution delta layers were then summed to a corresponding current monthly temperature
or precipitation climate layers from the Climatologies at High-Resolution for the Earth’s Land Surface
Areas (CHELSA) database48 at the same resolution. Though rare in our analyses, negative precipitation
values were converted to zero. To reduce pixel-depth and file sizes of final products, all monthly
temperature raster layers were multiplied by 10 and converted to integers. Prior to the creation of
bioclimate layers, final monthly layers were adjusted to the mean sea-level of paleoclimatic period, based
on adjustments to a contemporary bathymetry dataset49.

We also explored the use of ratios of anomalies (ROAs), instead of raw differences, to downscale
precipitation. A major caveat to the Change-Factor method regards transferring the generalized spatial
patterns in the climate model simulations to the regional mosaic of habitats in the high-resolution
climates, as the model predicted climate patterns are uniformly applied to the latter. Other studies using
the Change-Factor approach have advocated the use of ROAs to the corresponding baseline conditions
for downscaling precipitation (vs. raw differences used here, and for temperatures universally elsewhere).
Those studies argue that the use of the raw difference method40 may result in inaccurate inferences in

Time
Period

General boundary conditions Orbital
parameters

CO2

(ppmv)
CH4

(ppbv)
N2O
(ppbv)

Sea level (above pre-
industrial)

Citation

MIS19 Pre-industrial 787 Ka 260.3 739 303.3 0 m This study

mPWP PlioMIP (Haywood et al., 2013) Modern 405 760 270 +25 m Hill, 201531

M2 116 Ka (Singarayer & Valdes, 2010) 3.3 Ma 220 760 270 �40m Dolan et al., 201537

Table 1. Key parameters for the HadCM3 simulations currently in the Paleoclim database and

presented here.
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regions of strong rainfall gradients, and state that ROAs are more robust to maintaining original patterns
in downscaling when managing larger values40,41.

Topographic Differences
At a coarse level, all paleoclimatic layers account for topographic shifts incurred between now and the
past. For instance, the global topography used in the Pliocene simulations, derived from the Pliocene
Research, Interpretation and Synoptic Mapping (PRISM3) dataset, are largely, but not entirely, similar to
the modern topography32. Notable exceptions include: 1) the mountains of the western Cordillera of
western North America and the Andean mountains in South America, which were then, in a few regions,
lower than modern altitudes50,51, 2) the elevation of some of the regions now covered by the Greenland
and Antarctica Ice Sheets, which then experienced a net decrease caused by a reduction in the size of the
ice sheets themselves, 3) the east African rift zone, which then reached higher elevations than at present,
as indicated in the literature50,51. All topographic changes were incorporated into HadCM3, and the
simulated climates are reflective of those differences. However, because we downscaled the final datasets
with modern climatologies, results in these particular areas should be carefully evaluated.

Unlike for the mid-Pliocene simulation, the M2 glacial climate simulation only has changes to
topography resulting from changes in the ice sheets. Over Antarctica, Greenland and North America,
changes over the ice sheet regions generally led to uplift in surface topography of between 50 and
500 meters compared with present day, but glacioisostatic rebound leads to reductions in the topography
of neighbouring regions37. Regions outside those impacted by ice sheets were kept at modern topography.
The MIS19 simulation use identical topography to the pre-industrial simulation.

Bioclimatic parameters
From the high-resolution monthly temperature and precipitation values, we calculated a set of derived
parameters broadly used in ecological applications. These bioclimatic variables are derived from the
monthly mean temperature (or minimum and maximum temperature, depending on their availability)
and precipitation values. They are specifically developed for species distribution modelling and related
ecological applications (see Table 2 for a list and common nomenclature). For some paleo simulations
(e.g. mPWP), the monthly maximum and minimum temperatures were not available. In these instances,
the bioclimatic layers that represent annual averages (mean annual temperature, annual precipitation),
seasonality (annual range in temperature and precipitation), and extreme or limiting environmental
factors (temperature of the coldest and warmest quarters, and precipitation of the wet and dry quarters)
could not be created (Bio_2, Bio_3, Bio_5, Bio_6, and Bio_7). In this transformation, a quarter is defined

Variable name Variable details

Bio_1 Annual Mean Temperature [°C*10]

Bio_2 Mean Diurnal Range [°C]ǂ

Bio_3 Isothermalityǂ

Bio_4 Temperature Seasonality [standard deviation*100]

Bio_5 Max Temperature of Warmest Month [°C*10]ǂ

Bio_6 Min Temperature of Coldest Month [°C*10]ǂ

Bio_7 Temperature Annual Range [°C*10]ǂ

Bio_8 Mean Temperature of Wettest Quarter [°C*10]

Bio_9 Mean Temperature of Driest Quarter [°C*10]

Bio_10 Mean Temperature of Warmest Quarter [°C*10]

Bio_11 Mean Temperature of Coldest Quarter [°C*10]

Bio_12 Annual Precipitation [mm/year]

Bio_13 Precipitation of Wettest Month [mm/month]

Bio_14 Precipitation of Driest Month [mm/month]

Bio_15 Precipitation Seasonality [coefficient of variation]

Bio_16 Precipitation of Wettest Quarter [mm/quarter]

Bio_17 Precipitation of Driest Quarter [mm/quarter]

Bio_18 Precipitation of Warmest Quarter [mm/quarter]

Bio_19 Precipitation of Coldest Quarter [mm/quarter]

Table 2. Variables, units, and naming conventions.ǂFor some paleo simulations the monthly

maximum and minimum temperatures were not available. In these instances Bio_2, Bio_3, Bio_5, Bio_6,

Bio_7 could not be created.
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as the period of three months (1/4 of the year). Output bioclimate layers were saved as individual
GeoTiffs (*tif) and projected in the WGS 1984 projection.

Data Records
The Paleoclim data depict records for monthly mean temperature in °C and precipitation values in mm/
month, and derived bioclimatic variables for a 30-year simulation period in the form of GeoTIFF files.
The high resolution paleoclimatic bioclimatic variables and the original raw HadCM3 GCM monthly
paleoclimate variables are freely available at Figshare (Data Citation 1). The latest versions of
paleoclimate bioclimatic data are also freely available at http://www.paleoclim.org. See Table 2 for naming
conventions and specific details for each provided variable.

Code availability
The procedure for generating bioclimatic variables followed WorldClim19 and used the ‘biovars’ function
of the R package dismo52 (see Supplementary File 1 for the code used in this study).

Technical Validation
Downscaling
We carefully explored the use of raw differences vs. ratios of anomalies to calibrate downscaled
precipitation data under the Change Factor method. Understanding how the ‘raw difference’ and ROA
calibration methods can dramatically change output paleoclimatic patterns is straightforward. Imagine an
observed rainfall at a specific location to be 2.0 m/mo and 1.0 m/mo in the paleo- and current
simulations, respectively. In this situation, the raw difference of precipitation is +1 m, while ROA
is 2. Now let us assume that the precipitation values in the high-resolution modern dataset used to
downscale the delta layers ranges, within that same area, from 0.25 m to 4.0 m. The raw difference
method would yield paleoclimatic rainfall estimates, in the corresponding high-resolution dataset, that
range from 1.25–5.0 m. In contrast, the ROA method would yield values ranging from 0.5–8.0 m, a much
wider interval. It is important to also point out that this example oversimplifies the Change-Factor
process, because delta layers are downscaled prior to summation or multiplication, which results in
intermediate values between input delta layer points and the final high-resolution values, accordingly.

When using raw differences in precipitation, we found no evidence of illogical transitions in our
datasets in areas of high rainfall (Fig 2). In contrast, the use of ROA (vs. raw differences) resulted in
inferior results (Fig. 2). For illustration purposes, we show the downscaled high-resolution layers of the
mid-Pliocene Warm Period, in an area of a high range of rainfall, the region of the Himalayan Mountains
(Fig 2). For the month of June, for instance, the use of the raw differences calibration method resulted in a
total precipitation estimate ranging between 0 and 2.8 m/mo. The use of the ROA, in turn, yielded a
much larger range, between 0 and 5.7 m/mo. For this same region, the raw values from the original
paleoclimate simulation ranged from 0.85 to 0.69 m/mo, from 0.65 to 0.59 m/mo for the pre-industrial
control simulations, and from 0 to 2.5 m for the current high-resolution layers. The resulting differences
in the ROA-derived high-resolution paleolayer is hence over a 2-fold difference in maximum
precipitation values.

Similarly, when the hi-resolution data are aggregated to 2.5 degrees (by calculating the mean value per
area), and correlated to the raw Pliocene values from HadCM3, we observe a Pearson correlation
coefficient of 0.810 in the raw change method and 0.667 in ratio of anomalies - for the same
corresponding region and time. At a global level, we measured a Pearson correlation coefficient of 0.823
in the raw change method, and 0.612 in the ratio of anomalies. These results are also matched by the
visualization of both high-resolution layers compared to the raw climate model values (Fig 2, comparing
A & G vs. A. & F). Though this is just one example, these observations were consistent among all months
evaluated and between different climate model simulations.

A second concern regards the extent by which areas of low current rainfall change as a result of ROA
downscaling, particularly those with zero modern rainfall. When the modern value is zero, the
downscaling values cannot change, as any number multiplied against zero will be zero. Therefore, when
using the ROA method, areas of the eastern Sahara Desert, for instance, will never possess rainfall
amounts above zero for many months, despite the fact we know this is historically inaccurate53, and
potentially reflected in the climate model simulations. Furthermore, if the rainfall value is small in the
current high-resolution dataset, values change only slightly when using ROA, even if the ROA value is
high. Given the profound ecological impacts of precipitation in water-limited ecosystems, the two
different calibration methods dramatically impact downscaled precipitation in these habitats. We
recommend avoiding ROA in this case.

Overall, the use of ROAs (vs. raw differences) resulted in inferior paleoclimatic outputs due to
multiplication of ratios in the delta layers against a high-resolution current climatology (vs. summing in
the raw difference method). Hence, we suggest that users apply the raw difference method to
precipitation data or utilize the raw difference-based paleoclimate outputs in their environmental,
ecological, and evolutionary analyses. This approach is more sensitive to changes in low precipitation
environments, more reflective of the raw paleoclimate values from HadCM3, and not as confounded by
modern precipitation levels (i.e. areas with zero monthly precipitation). In the future releases, we plan to
evaluate a hybrid approach that averages the outputs from both calibration methods.
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Usage Notes
When citing data from Paleoclim.org, please cite both this manuscript and the original manuscript(s) that
generated to each climatology (see Table 1). This supports the continued generation of these derivative
works, the primary research of the groups generating them, and promotes collaboration among
PaleoClim and other researchers. PaleoClim reduces the amount of time that would be spent developing
common solutions and provides data in a consistent nomenclature and common format, making data
easier to use. We plan to regularly expand the PaleoClim database: providing additional paleoclimate
time-periods, and new or improved GCMs of existing datasets with paleoclimate variability (vs. a mean
simulation value). For questions, collaborative inquires, or suggestions regarding PaleoClim, go to our
Google Group (https://groups.google.com/forum/#!forum/paleoclim) or email paleoclim@gmail.com.
Data are feely available under the Creative Commons License: CC BY.
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