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Abstract 

Well-dated, high-resolution records of planktonic foraminifera and oxygen isotopes from two 

sediment cores, A7 and E017, in the middle Okinawa Trough reveal strong and rapid 

millennial-scale climate changes since ~18 to 17 thousand years before present (kyr B.P.). 

Sedimentation rate shows a sudden drop at ~11.2 cal. kyr B.P. due to a rapid rise of sea-level after 

the Younger Dryas (YD) and consequently submergence of the large continental shelf on the East 

China Sea (ECS) and the retreat of the estuary providing sediment to the basin. During the last 

deglaciation, the relative abundance of warm and cold species of planktonic foraminifera 

fluctuates strongly, consistent with the timing of sea surface temperature (SST) variations 

determined from Mg/Ca measurements of planktonic foraminifera from one of the two cores. 

These fluctuations are coeval with climate variation recorded in the Greenland ice cores and North 

Atlantic sediments, namely Heinrich event 1 (H1), Bølling-Allerød (B/A) and YD events. At about 

9.4 kyr B.P., a sudden change in the relative abundance of shallow to deep planktonic species 

probably indicates a sudden strengthening of the Kuroshio Current in the Okinawa Trough, which 

was synchronous with a rapid sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow Sea (YS) and 

South China Sea (SCS). The abundance of planktonic foraminiferal species, together with Mg/Ca 

based SST, exhibits millennial-scale oscillations during the Holocene, with 7 cold events (at about 

1.7, 2.3-4.6, 6.2, 7.3, 8.2, 9.6, 10.6 cal. kyr BP) superimposed on a Holocene warming trend. This 

Holocene trend, together with centennial-scale SST variations superimposed on the last deglacial 

trend, suggests that both high and low latitude influences affected the climatology of the Okinawa 

Trough.  
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1.  Introduction 

  The last deglaciation and Holocene were characterized by a series of rapid, suborbital 

millennial-scale climate changes. The last deglaciation was punctuated by several high-frequency 

oscillations, for example the Bølling and Allerød warm phase (B/A), the Heinrich event 1 (H1) 

and Younger Dryas (YD) cold periods, or the Antarctic Cold Reversal (ACR) (Kiefer and Kienast, 

2005). The ages, durations and characteristics of these climate events, however, were not globally 

uniform. In the circum-North Atlantic realm, the large warming associated with the last 

deglaciation was usually interrupted by a return to cold conditions, the YD event, occurring 

between about 12.8-11.6 kyr B.P. (e.g., Grootes et al., 1993; Bond et al., 1993; Dansgaard et al., 

1993). Most temperature records from Antarctica and the Southern Ocean show an earlier 

interruption of their warming with the ACR starting around 14 kyr B.P. (Jouzel et al, 1995; 

Blunier et al, 1998; James et al, 2003). This asynchronous development of deglaciation sea surface 

temperature (SST) between the northern and southern hemisphere support the concept of the 

bipolar seesaw ( Crowley, 1992; Broecker, 1998; Alley and Clark, 1999; Stocker, 2000). Recent 

high-resolution isotopic records obtained from East Antarctic cores further confirm that the overall 

deglacial pattern is asynchronous between Greenland and Antarctica (Steig et al, 1998; Watanabe 

et al, 2003; Morgan et al, 2002), but further suggest that the picture of a bipolar temperature 

seesaw might be too simple to describe deglacial changes. The Holocene is also characterized by 

millennial-scale climate change, seen in proxy records such as ice-rafted debris events in the 

subpolar North Atlantic (Bond et al., 1997, 2001), cooling events in the subtropical North Atlantic 

off West Africa (deMenocal et al., 2000) and Arabian Sea (Sirocko et al., 1996), and reduced rain 

fall episodes in Oman (Neff et al., 2001) and Dongge Cave (Dykoski et al,, 2005; Wang et al., 

2005). Better understanding of the dynamic mechanics of these millennial-scale climate changes 

and the linkage between different components of the climate system requires obtaining 

high-resolution globally distributed oceanic records. 

  The East China Sea (ECS) is a typical marginal sea with one of the widest continental shelves 

in the world, and over which enormous amounts of freshwater are discharged from the Yangtze 

River. The Okinawa Trough, as the southeastern part of the ECS, is a typical curved basin behind 

the Ryukyu Arc of the northwestern Pacific (Figure 1). Its surface hydrography is strongly 

influenced by the East Asia monsoon (EAM), which shows a strong link with the high-latitude 

Northern Hemisphere climate on geologic time scales (e.g., Jian et al., 2000; Li et al., 2001; Sun et 

al., 2005). It is also connected to the tropics through the Kuroshio Current, which carries warm 

and hypersaline water flows northeastward along the edge of the continental shelf and then leaves 

the Okinawa Trough through the Tokara Strait (Figure 1). The path and volume transport of the 

Kuroshio Current are influenced by the EAM. The main axis of the Kuroshio Current shifts 

seasonally under the alternation influences between cold, dry winter monsoon winds and warmer 



moist summer monsoon winds (Li, 1993). The northward transport of the Kuroshio is also 

influenced by the EAM, with more transport in summer than in winter (Kagimoto and Yamagata, 

1997; Qu and Lukas, 2003; Qu et al., 2004). Kuroshio Current transport also varies on interannual 

time scales, with less transport during El Niño years and more during La Niña years, but in the 

modern ocean, seasonal variations are greater than those that occur on interannual times scales 

(Kim et al., 2004; Qu et al., 2004). 

Previous studies from the Okinawa Trough showed that discrete palaeoclimatic events such as 

YD and H1 were recorded in the Okinawa Trough, and inferred variable influence of the Kuroshio 

Current during the Holocene (Jian et al., 2000; Li et al., 2001; Ujiié, et al., 1991; Ujiié and Ujiié, 

1999; Ujiié, et al., 2003; Ijiri et al., 2005; Sun et al. 2005). However, the timing and duration of 

these millennial-scale climate changes are still unclear because there are few well-dated, 

multiple-proxy, high-resolution paleoceanographic records from this region. The best dated 

marine record of paired Mg/Ca and δ18
O from core A7 suggests that during the last deglaciation, 

surface hydrography of the Okinawa Tough was closely linked with North Atlantic climate, 

possibly through changes in the EAM (Sun et al., 2005). Tropical influence on the Okinawa 

Trough may have lead to differences between the amplitude and timing of changes in the Okinawa 

Trough and North Atlantic region. Here, we seek to confirm those conclusions with the addition of 

panktonic foraminiferal proxies from the same core and another core (E017), as well as provide 

new insights into the role of local sea level rise on the surface hydrography of the Okinawa 

Trough. 

 

2.  Material and methods 

  Gravity cores A7 (27º49.2´N, 126º58.7´E, water depth 1264 m) and E017 (26º34.45´N, 

126º1.38´E, water depth 1826 m) were collected from the middle Okinawa Trough (Figure 1). 

Core A7 (4.5 m in length) consists of gray silty clay with an apparent ash layer at 1.02-1.1 m and 

several small turbidites at 1.10-1.20 m and 1.46-1.50 m whose extent is well constrained by 

sedimentological analysis (Sun et al., 2003). Core E017 (2.98 m in length) is also composed of 

gray silty clay with an obvious sand layer (coarse turbidite containing abundant foraminifera) at 

2.46-2.48 m which shows clear boundaries to sediments above and below this layer (Xiang et al., 

2003). A turbidite containing abundant volcanic glass is also found at 0.8-0.9 m and several small 

turbidites occurred at 2.51-2.66 m in core E017 (Figure 2). These small turbidites in cores A7 and 

E017 are composed mainly of clay silt and are less abundant in planktonic and benthic 

foraminifera, and only few foraminifers appeared in turbidite sediments at 2.51-2.66 m in core 

E017. The ash layer and its nether turbidites at 1.02-1.20 m in core A7 may be coeval with 

turbidites layer abundant in volcanic glass at 0.8-0.9 m in core E017 because the ash layer likely 

corresponds to the widespread tephra erupted from southern Kyushu in Japan (hereafter referred to 

as K-Ah tephra) (Marchida and Arai, 1978), which has also been identified from the northern and 

middle Okinawa Trough (Xu et al., 1999; Li et al., 2001; Ijiri et al., 2005). The tephra was 



deposited at ~7.3 cal. kyr B.P. as indicated by both the AMS 
14

C dating of terrestrial macrofossils 

and varve counts of the sediments in Lake Suigetsu (Kitagawa et al., 1995; Fukusawa et al., 1995). 

Other turbidites in cores A7 and E017 show no correlation.  

Samples were taken at 2-cm interval for core A7 and 4-cm interval for core E017, and a total of 

300 samples were analyzed for planktonic foraminifera and stable isotope in cores A7 and E017, 

respectively. Samples were oven dried at 60℃, then each sample (about 5 g dry weight) was 

soaked in distilled water for ~24 hours to disaggregate, and wet-sieved through a 63-μm sieve, 

then dried in the oven again. Planktonic foraminifers were picked out from the coarse fraction (> 

150 μm) for faunal identification, stable isotope analysis and AMS
14

C dating.  

For planktonic foraminiferal analyses, counts were made on splits of more than 300 specimens 

larger than 150 μm. The average number of specimens counted for down-core samples is 796 for 

core A7 and 580 for core E017. To verify the reliability of splitting, 26 samples from core A7 

were reanalyzed for planktonic foraminifera counting, and the results show very good 

reproducibility (see appendix). On the basis of the census data, the relative abundance of each 

planktonic foraminiferal species was computed.  

Stable isotope analyses of core A7 were performed on planktonic foraminifers G. ruber and was 

reported previously (Sun et al., 2005). For Core E017, we picked shallow-dwelling planktonic 

foraminifers, Globigerinoides sacculifer (without sac), test size ranging from 300 to 355 μm, for 

oxygen isotope analyses. The δ18
O values were measured on a SIRA mass spectrometer at Godwin 

Institute for Quaternary Research, University of Cambridge, UK. The analytical precisions of the 

samples are within ±0.08‰. 

  Accelerator mass spectrometry (AMS) 
14

C dates were used to construct the chronologies of the 

two cores. All AMS 
14

C dates were conducted on monospecific planktonic foraminifers 

Neogloboquadrina dutertrei. About 20 mg of shells of this species were picked out from the >150 

μm fraction for the measurements. AMS dates of core A7 were reported previously (Sun et al., 

2005). Seven horizons were dated in core E017, 3 were measured at the National Ocean Sciences 

Accelerator Mass Spectrometry (AMS) Facility, the Woods Hole Oceanographic Institution, USA, 

and 4 samples were dated at the Ministry of Education
 
Key Laboratory of Heavy Ion Physics, 

Peking University, China (Table 1). 

 

3.  Results 

3.1 Chronology 

  Fifteen AMS
14

C dates were used to generate a high-resolution time scale for core A7 (Sun et al., 

2005). In this paper, we adopt an age model using a 700-year surface-ocean reservoir age because 

it shows good correspondence with the age of K-Ah ash layer (Sun et al., 2005). Hence, all AMS 

14
C ages in cores E017 were also converted to calendar years using the Caleb 5.0 program 

(available at http://radiocarbon.pa.qub.ac.uk/calib/) and a 700-year surface ocean reservoir 

http://radiocarbon.pa.qub.ac.uk/calib/


correction (Stuiver et al., 1998; Hughes et al., 2004) (Table 1). According to these dates, cores A7 

and E017 both provide high-resolution sedimentary records since the last ~17-18 cal. kyr B.P. So 

far, core A7 provides the highest sample resolution among cores studied in the Okinawa Trough 

with detailed AMS
14

C dates (sample resolution averagely 48 years in the last deglaciation and 115 

years for the Holocene). 

Compared to core A7, the age control points for core E017 are relatively sparse. There is also an 

apparently old AMS
14

C age at 246-248 cm, a coarse turbidite containing abundant foraminifera, 

suggesting that most of the foraminifera in this layer may be of exotic origin. In order to get a 

detailed time scale for core E017, five additional age control points were obtained by lithological 

correlation and biostratigraphic correlation with core A7 (Figure 2). The ages of turbidites/ash 

layer at 1.02-1.20 m in core A7 was well constrained by two AMS
14

C dates just above and below 

this layer, which were used to anchor age control points for the turbidite layer abundant in 

volcanic glass at 0.8-0.9 m in core E017. We arrived at two additional age control points for core 

E017 by this lithological correlation: about 7223 cal. yr B.P. at 0.8 m and 8580 cal. yr B.P. at 0.9 

m (Figure 2). The distributions of planktonic foraminiferal species show in Fig. 2 are sufficiently 

similar to permit biostratigraphic correlation in cores A7 and E017. Three age control points were 

obtained through the comparisons of Pulleniatina obliquiloculata, Gblobigerina bulloides and 

Neoglobquadrina pachyderma (dex.), which give ages of about 4700 cal. yr B.P. at 0.55 m, 10305 

cal. yr B.P. at 1.07 m and 11666 cal. yr B.P. at 1.39 m for core E017 (Figure 2). Thus, the age 

model of core E017 was constructed using the 5 relative age control points and AMS
14

C dates.  

 

3.2 Sedimentation rate 

  A piston core DGKS9603 (28°08.869´N, 127°16.238´E, water depth 1100 m) collected from the 

middle Okinawa Trough was previous studied (Li et al., 2001). According to age model of cores 

A7, E017 and DGKS9603, the sedimentation rate decreased at ~11.2 cal. kyr B.P. in the middle 

Okinawa Trough since the last ~18-17 cal. kyr B.P. (Figure 3). The sedimentation rate of core A7 

decreased at a depth of 1.75 m, from 42.3 cm/kyr during the last deglaciation to 15.6 cm/kyr in the 

Holocene. The sedimentation rate of core E017 decreased at depth of 1.07 m, from 26.8 cm/kyr 

during the last deglaciation to 11.9 cm/kyr in the Holocene. The sedimentation rate of core 

DGKS9603 decreased at depth of 0.64 m, from 13.3 cm/kyr during the last deglaciation to 6.3 

cm/kyr during the Holocene. In fact, this change in sedimentation rate was mainly caused by the 

sedimentation of non-biogenic materials, which are mainly composed of terrigenous materials. In 

core A7, the percentage of terrigenous matter (not shown) fluctuate at a range of 53.0-69.3%, 

except for the ash layer and turbidites whose content is higher than 70%. The content of 

terrigenous materials is high in the last deglaciation (64.3-69.3%) and low in the Holocene 

(53.0-67.2%).  

 

3.3 Variations in the relative abundance of planktonic foraminiferal species 



  Both cores A7 and E017 contain reliable planktonic foraminiferal records except for turbidites 

at 2.46-2.48 and 2.51-2.66 m in core E017 which are likely to be less reliable in the foraminiferal 

record and are omitted from the core. The average abundance of planktonic foraminifera is 1361 

specimens/g in core A7, and 765 specimens/g in core E017. Planktonic foraminifer are less 

abundant in core E017 than in core A7 due to the deeper water depth of core E017, which is near 

the modern carbonate lysocline (~1600-1700 m) in the Okinawa Trough (Chen et al., 1999; Xiang 

et al., 2001). According to planktonic foraminiferal fragmentation ratios in cores A7 and E017, 

strong carbonate dissolution only appeared after ∼3 cal. kyr B.P. in the Okinawa Trough during the 

last 18000 years, suggesting that the modern shallow carbonate lysocline may be formed at that 

time (Li et al., 2005). The abundance of planktonic foraminifera greatly reduced since 3 cal. kyr 

B.P. in core E017 (averagely 212 specimens/g), which caused a slightly enrichment in dissolution 

resistant species P. obliquiloculata by selective preservation of foram tests. The foraminiferal 

assemblages in core E017 before 3 cal. kyr B.P., however, show no apparent influence of selective 

preservation. 

  The planktonic foraminifer assemblages in cores A7 and E017 are typical of the subtropical 

faunal province (Bé, 1977), and are dominated by N. dutertrei, G. ruber, P. obliquiloculata, 

Globigerinita glutinata, G. bulloides and G. sacculifer. Subarctic dominant species N. 

pachyderma (dex.), however, is abundant below 15 cal. kyr B.P., consistent with an influence of 

subarctic water in the middle Okinawa Trough at that time (Sun et al., 2005). 

As noted above, relative abundances of planktonic foraminifera in the cores A7 and E017 show 

similar variations, as expected by their close proximity (Figure 4 and 5). Cold and cool water 

species (N. pachyderma (dex.), Globigerina quinqueloba, Globorotalia inflata and N. dutertrei) 

are dominant in the sediments that were deposited during the last deglaciation, showing a 

decreasing trend upward. These species show large fluctuations during the last deglaciation 

probably corresponding to the H1, YD and B/A periods (Figure 4). In contrast, the Holocene is 

dominated by warm water species of G.ruber, G.sacculifer, G. glutinata and P. obliquiloculata, 

which exhibit a slight increasing trend (Figure 5). Both warm and cold/cool water species show 

fluctuations at about 1.7, 2.3-4.6, 6.2, 7.3 and 8.2 cal. kyr BP in core A7. The period at 2.3-4.6 cal. 

kyr BP., the so-called Pulleniatina minimum event (PME), was characterized by a dramatic drop 

of P. obliquiloculata and a slight increase of G. bulloides and N. dutertrei in both cores. Another 

minimum of P. obliquiloculata is also found from ~15.3-16.8 cal. kyr B.P. (Figure 5), which 

corresponds well to the H1 event in the North Atlantic.  

Previous studies suggest that planktonic foraminiferal species abundance has a close relation 

with the upper water thermal structure (Ravelo et al., 1990). When the depth of thermocline (DOT) 

shoals, the deep-dwelling species (Globorotalia, N. dutertrei and N. pachyderma) increase, while 

the shallow-dwelling species (G.ruber, G. sacculifer, G. glutinata) decrease in abundance. The 

deep and shallow-dwelling species and its ratio in core A7 reflect a major shift at ∼9.4 cal. kyr B.P. 

(Figure 6). A similar shift can be also noticed in the distribution of several warm and cold species 



in core A7 (Figure 4 and 5). The replacement of cold deep species by warm shallow species may 

suggest a sudden deepening of the DOT in the Okinawa Trough at that time. A shift can also be 

noticed at site E017 during ∼8.2-9.4 cal. kyr B.P. (Figure 4, 5 and 6). The age difference of this 

shift between Cores A7 and E017 may be probably caused by the ash/turbidite deposit which 

leaded to a sediment gap in core E017. 

 

3.4 Oxygen isotope records 

    The δ18
O record of G. sacculifer in core E017 is a little heavier than the δ18

O of G. ruber in 

core A7, consistent with a deeper water dwelling habit of G. sacculifer than that of G. ruber (Bé, 

1977). Oxygen isotope records in both cores also show similar trends since the last deglaciation. 

The δ18
O values are high during the period of ~18-17 to 15.2 cal. kyr B.P., and become 

substantially lower by about 1.7‰ to the early Holocene (Figure 7). A heavy δ18
O period occurred 

at 15.3-16.8 cal. kyr B.P. corresponding to H1 of North Atlantic. A return to heavy δ18
O during 

11.7-13.1 cal. kyr B.P occurred in both cores corresponding to the YD cold period. Two rapid 

decreases of δ18
O occurred at the beginning of B/A and at the end of YD, which correspond to the 

melt-water pulse (MWP)-1A and MWP-1B leading to exceedingly rapid rising in global sea-level 

(Fairbanks, 1989). Several large fluctuations during the Holocene are evident in core A7 at 6.2, 

7.3 and 8.2 cal. kyr B.P., respectively, which is consistent with Mg/Ca based SST record. Note 

that δ18
O record of G. ruber show no apparent variation during the Holocene PME, although 

Mg/Ca SST (Sun et al., 2005) and warm/cold species ratio show an obvious decreasing in core A7 

(Figure 7). 

4.  Discussion 

4.1 Sedimentation rate changes since the last deglaciation 

    Sedimentation rate in the middle Okinawa Trough were higher during the last deglaciation 

than that during the Holocene (Figure 3). Similar trends are seen in two cores from the northern 

Okinawa Trough (Xu et al., 1999). For the middle Okinawa Trough, particulate matter from the 

Yangtze River is a major sediment source, and the down-slope transport of suspended particulate 

matter is a major mechanism of sediment transport (Chung and Hung, 2000). The sedimentation 

rate decreased at ~11.2 cal. kyr B.P. in the middle Okinawa Trough suggesting a sudden decrease 

in the amount of terrigenous matter entering into the trough, which was a closely linked to the 

rapid sea-level rise of the global ocean. During the last deglaciation, two prominent rapid sea-level 

rise events termed MWP-1A and MWP-1B were recorded in Barbados coral reefs (Fairbanks, 

1989) and also in the EC/YS and SCS (Liu et al., 2004).  

MWP-1A appears to have occurred at the end of Bølling Warm Transition at 14.3-14.1 cal. 

kyr B.P. when sea-level rose from -95 to -80 m (Liu et al., 2004). Accompanying this event is the 

intensification of summer East Asia Monsoon (EAM) which greatly increased the precipitation in 

the East Asia region (Wang et al., 1999). This was also recorded by the rapid reduction of δ18
O 



values in cores A7 and E017 (Figure 7). However, sedimentation rate in the middle Okinawa 

Trough show no apparent fluctuation corresponding to the MWP-1A, indicating that the enhanced 

sediment loading that was transported into the sea by Yangtze River due to intensified EAM 

rainfall may have counteracted by the retreat of river mouth during marine transgression.  

MWP-1B occurred at the end of YD at 11.5-11.2 cal. kyr B.P. when sea-level rose from -58 

to -43 m (Liu et al., 2004). Although the average rate of sea-level rise during MWP-1B was lower 

than that in MWP-1A, the area of submerged shelf on the ECS, however, was large after MWP-1B 

due to a low angle of slope of the inner and middle shelf of ECS. The estuary of the Yangtze River 

also retreated to a position very close to that of the modern river mouth after MWP-1B. Thus, 

suspended particles from the Yangtze River were mostly deposited on the inner shelf of the ECS, 

which caused a sudden decrease of terrigenous matter supplying to the Okinawa Trough by 

down-slope transport in spite of a dramatically enhanced Asia monsoon precipitation occurred at 

the end of YD (Morrill et al., 2003). This explains why sedimentation rate in the middle Okinawa 

Trough shows an abrupt decrease at ~11.2 cal. kyr B.P. (Figure 3).  

    Figure 3 also shows the regional distribution of sedimentation rate changes in the middle 

Okinawa Trough. Sedimentation rate in core A7 were higher than those in cores E017 and 

DGKS9603, both for the last deglaciation and the Holocene. This may indicate that one of the 

main paths for suspended particles from the Yangtze River to enter into the trough is near the core 

site of A7. However, the sedimentation rate in the northern Okinawa Trough (e.g. Cores 

DH82-4-14 and MD982195), was generally higher than that in the middle Okinawa Trough 

whether during the last deglaciation or the Holocene (Xu et al., 1999; Ijiri et al., 2005), suggesting 

that a large part of suspended matter from Yangtze and Yellow River were deposited in the 

northern Okinawa Trough.  

 

4.2 Millennial-scale climate changes during the last deglaciation 

    Because some cool/cold water species (such as G. bulloides) are also affected by productivity, 

three major cold/cool water species N. pachyderma (dex.)+G. inflata+G. quinqueloba (not affected 

by productivity) were used to indicate the SST variations. The proxy show similar trends with 

Mg/Ca based SST and δ18
O during the last deglaciation (Figure 7). The abundances of planktonic 

foraminiferal species, Mg/Ca based SST, and isotope records from cores A7 and E017 exhibit 

millennial-scale fluctuations similar to climate in the high latitude North Atlantic region during the 

last deglaciation (Figure 7), confirming that SST fluctuations in the Okinawa Trough occurred 

nearly synchronously with H1, B/A and YD events in the high latitude North Atlantic. 

    The H1 event is characterized by a low abundance of P. obliquiloculata, which almost 

disappeared in the Okinawa Trough during this period (Figure 5). A similar event is seen in the 

northern area of the ECS (Xu et al., 1999; Ijiri et al., 2005). The duration of this cold event 

recorded by multiple proxies (e.g. P. obliquiloculata, Mg/Ca based SST and δ18
O of G. ruber) is 

well constrained to 15.3-16.8 cal. kyr B.P. in this subtropical marginal sea (Figure 7). This cold 



event has a wide imprint in the East Asia region in records from loess, stalagmite and marine 

sediment (e.g., Porter and An, 1995; An, 2000; Wang et al; 2001; Yuan et al., 2004; Wang et al., 

1999; Li et al., 2001; Ijiri et al., 2005), reflecting an increase in the intensity of the winter EAM. 

The timing is consistent with H1 (15.4-16.9 cal. kyr B.P.) recorded from high latitude North 

Atlantic region (Bond et al., 1993) and confirms a linkage with high-latitude Northern Hemisphere 

climate. 

    The last deglacial warming trend characterized by a rapid reduction of δ18
O values and a 

sudden increase of SST in the middle Okinawa Trough (Figure 7, Sun et al., 2005). During this 

deglacial transition, abundances of the cold N. pachyderma (dex.), G. inflata and G. quinqueloba 

dropped suddenly, while warm species such as P. obliquiloculata, G. sacculifer and G. glutinata 

increased (Figure 4 and 5). Thus, the warm/cold species ratio also shows an increase during this 

transition. This deglacial warming is coeval with δ18
O variations in the GISP2 ice core and 

stalagmite δ18
O variations from Hulu and Dongge caves in eastern and southern China (Stuiver 

and Grootes, 2000; Wang et al., 2001; Yuan et al., 2004). The timing of this warm period is 

constrained to 13.1-14.8 cal. kyr B.P. by the age model of core A7, which is consistent with B/A 

records from North Atlantic region (12.8-14.75 cal. kyr B.P.) within age uncertainty. As noted 

previously (Sun et al., 2005), a notable difference from the Greenland temperature record, which 

shows a peak warming at the early B/A (~14.5 cal. kyr B.P.) and then generally decreased, is that 

the Okinawa SST shows a steady warming that peaks late in the B/A. This difference is confirmed 

by the Okinawa Trough faunal changes, which show a steady increase in the warm/cold species 

ratio, peaking in the late B/A (~13.4 cal. kyr B.P.) (Figure 7). This late warming during the B/A is 

also documented from stalagmite records in southern and East China (Wang et al., 2001; Yuan et 

al., 2004) and marine sediment records from the northern ECS, the SCS, Santa Barbara Basin, and 

Cariaco Basin (Ijiri et al., 2005; Kiefer and Kienast, 2005; Lea et al., 2003), and suggests a 

tropical influence in the Okinawa Trough (Sun et al., 2005). 

    An obvious cold reversal during the period at 11.7-13.1 cal. kyr BP can be recognized from 

the abundance variations of planktonic foraminiferal species, SST and δ18
O record. Abundances of 

cold water species N. pachyderma (dex.), G. inflata, G .quinqueloba show an obvious increase 

during this period, while warm water species such as P. obliquiloculata, G. ruber and G. glutinata 

decreased (Figure 4 and 5). Mg/Ca based SST show a decrease of 1-2℃, and the δ18
O also show a 

slight increase during this time interval (figure 7). Deep-dwelling species also show a strong 

increase during this time span (figure 6), indicating a shallow of DOT, which may be caused by 

intensified winter EAM and weakened Kuroshio Current. This cold reversal is synchronous with 

the YD event (11.6-12.8 cal. kyr B.P.) recorded in the circum North Atlantic region (Grootes et al, 

1993) within age uncertainty, which has a wide imprint in the Northern Hemisphere. The δ18
O and 

Mg/Ca based SST records in core A7 show large centennial fluctuations with an amplitude of ~0.7

‰ for δ18
O and ~2℃ for SST in this time span, possibly indicates a superimposed tropical 



influence. Such short-term climate fluctuations was also noticed by Zhou et al. (2001), who found 

a cold, dry YD climate was punctuated by a brief period of increased summer monsoon 

precipitation in the North China, and who interpret it as indicative of a global tele-connection 

involving moist air transportation patterns from the tropics to higher latitudes, varying with the El 

Niño/ Southern Oscillation (ENSO) and other tropical factors. 

    In summary, the last deglaciation pattern in the middle Okinawa Trough is characterized by 

millennial-scale climate changes: an intensified winter EAM during H1 at 15.3-16.8 cal. kyr B.P., 

a steady warming B/A at 13.1-14.8 cal. kyr B.P. and a cold YD at 11.7-13.1 cal. kyr B.P. This 

pattern is very similar to that in the high-latitude North Atlantic region, suggesting a strong 

climate tele-connection between the Okinawa Trough and high-latitude North Atlantic. The 

mechanism controlling the tele-connection between them is probably related to the meandering of 

the westerlies in the northern hemisphere (Wang and Oba, 1998; Ijiri et al., 2005) and variations of 

the winter EAM (Sun et al., 2005). However, superimposed centennial-scale surface hydrology 

variations that occurred during the B/A and YD, together with the steady B/A warming, may 

indicate a tropical influence that was previously attributed to variable influence of the warm 

Kuroshio Current (Sun et al., 2005). Some previous studies suggest that the Kuroshio Current was 

not present in the Okinawa Trough but shifted to a position east of the Ryukyu Islands (Ujiié and 

Ujiié, 1999) and re-entered the Okinawa Trough at ~7.3 cal. kyr B.P. (Jian et al., 2000). Our 

results showing relatively high values of warm water species G. sacculifer and P. obliquiloculata, 

indicative of the Kuroshio Current, after 15.3 cal. kyr B.P., suggest an influence of Kuroshio 

Current in the Okinawa Trough at least since this time, consistent with conclusions from studies of 

sediment from the northern part of ECS (Xu et al., 1999; Ijiri et al., 2005). 

 

4.3 Early Holocene strengthening of the Kuroshio Current 

   The major shift in the distribution of deep/shallow-dwelling species at ∼9.4 cal. kyr B.P 

(Figure 6) is also indicated by warm/cold speices ratio changes (Figure 7), suggesting a sudden 

deepening of DOT, which may be caused by a sudden strengthening of the Kuroshio Current in 

the Okinawa Trough. This sudden change in planktonic foraminifera in the Okinawa Trough is 

synchronous with a rapid sea-level rise (MWP-1C) at 9.5-9.2 kyr B.P. in the ECS, Yellow sea (YS) 

and South China Sea (SCS), rose from -36 to -16 m below modern sea-level (Liu et al., 2004). The 

sudden change in planktonic foraminifera and the rapid sea-level rise at ~9.4 cal. kyr B.P. suggest 

rapid paleoenvironmental change in the ECS. Additional evidence comes from the benthic 

foraminiferal record in core E017 (Figure 6). High abundances of infauna benthic foraminifera 

Uvigerina and Bulimina are usually good indicators of high organic matter flux, the sudden 

decrease of this proxy at ∼8.2-9.4 cal. Kyr B. P. in core E017 may indicate a decrease of surface 

water paleoproductivity and organic matter flux which are also inferred by a sudden fall of benthic 

foraminifera accumulation rate (Li et al., 2005). This sudden decrease of paleoproductivity and 

organic matter flux may correspond to the rapid retreat of the estuary caused by rapid sea-level 



rise of MWP-1C, which greatly reduced the terrigenous nutrients supply to the middle Okinawa 

Trough, and also due to the oligotrophic and low primary productivity characters of the Kuroshio 

water (Gong et al., 2000). 

 

4.4 Holocene variability of marine environment 

    The Holocene Okinawa Trough is also characterized by a series of millennial-scale 

environment changes, among which the PME is the most remarkable event (Li et al., 1997; Jian et 

al., 2000, Ujiié et al., 2003), marked by a slight drop of temperature in both cores A7 and E017. 

Other cold events at about 1.7, 6.2, 7.3 and 8.2 cal. kyr B.P. can be also inferred from the relative 

abundances of cold and warm species variations in the high-resolution core A7 (Figure 4, 5 and 7), 

as well as Mg/Ca based SST, which further indicates two cold events at around 9.6 and 10.6 cal. 

kyr BP (sun et al., 2005). This Holocene variability has also been suggested by SST and δ18
O 

differences between core 255 from the southern Okinawa Trough and core B-3GC in the northern 

ECS (Jian et al., 2000). Our results further confirm that the Holocene environment in the Okinawa 

Trough experienced millennial-scale changes, which may reflect the fluctuations of Kuroshio 

Current, with a weakened Kuroshio Current during these cold events (Jian et al., 2000; Sun et al., 

2005). Like many SST records from the SCS (Kiefer and Kienast, 2005 and references therein), a 

general Holocene warming trend can also be inferred from the relative abundance of warm and 

cold species in both cores A7 and E017, consistent with the Mg/Ca based SST of core A7 (Sun et 

al., 2005). This warming trend may be related to a tropical response to insolation forcing (Liu et 

al., 2003), communicated to the Okinawa Trough via the Kuroshio Current.  

 

5.  Conclusions 

    Paleoevrionmental changes in the middle Okinawa Trough since the last deglaciation were 

deduced from two well AMS
14

C dated sediment records. Based on planktonic foraminiferal 

analyses and oxygen isotope analyses, we drew the following conclusions on millennial-scale 

climate and ocean variability for the last ~17-18 cal. kyr B.P. 

1. The sedimentation rate in the middle Okinawa trough was higher during the last deglaciation 

than in the Holocene. A sudden decrease of sedimentation rate occurred at ~11.2 kyr B.P., 

which may have been caused by rapid rise of sea-level after the YD (MWP-1B) and 

consequently a retreat of estuary and a large submerged continental shelf on the East China 

Sea (ECS). The sedimentation rate in the northern Okinawa Tough has been generally more 

rapid than that in the middle Okinawa Trough over the past 17-18 cal. kyr B.P., suggesting 

that a large part of the suspended sediment from the Yangtze and Yellow Rivers was 

deposited in the northern Okinawa Trough. 

2. The general trend of the last deglaciation in the middle Okinawa Trough is very similar to 

high-latitude North Atlantic. Results from abundance of planktonic foraminiferal species, 

Mg/Ca based SST, and isotope records all suggest a cold period contemporaneous with H1 at 



15.3-16.8 cal. kyr B.P., a steady warming during the B/A at 13.1-14.8 cal. kyr B.P. and a cold 

YD at 11.7-13.1 cal. kyr B.P. Evidence presented here confirms a strong climate 

teleconnection between the Okinawa Trough and high-latitude North Atlantic during the 

deglaciation, consistent with an East Asian Monsoon link (Sun et al., 2005) and/or a linkage 

through meandering of the high latitude westerlies (Wang and Oba, 1998; Ijiri et al., 2005). 

3. Centennial-scale Mg/Ca based SST variations superimposed on the last deglacial oscillations, 

may suggest a tropical influence on the Okinawa Trough during this period. Our results 

indicate that the Kuroshio Current, though weakened, flowed into the ECS from the east side 

of Taiwan since at least 15.3 cal. kyr B.P. 

4. Planktonic foraminiferal assemblage show a marked change at about 9.4 kyr B.P. 

Shallow-dwelling species increase in abundance while deep-dwelling species decrease, 

suggesting deepening of the DOT in the middle Okinawa Trough. This may indicate a sudden 

strengthening of the Kuroshio Current in the Okinawa Trough, synchronous with a rapid 

sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow sea (YS) and South China Sea (SCS). 

5. A series of millennial-scale environment changes, that occurred at about 1.7, 2.3-4.6, 6.2, 7.3, 

8.2, 9.6, 10.6 cal. kyr BP, were recorded in core A7. These cold events, superimposed on the 

Holocene warming trend, may have been associated with the weakened Kuroshio Current in 

the Okinawa Trough. The Holocene warming trend in the Okinawa Trough may involve a 

tropical response to insolation forcing. 
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Table 1. AMS
14

C age data for core E017
1

Sample 

no. 

Depth 

(cm) 

Dating 

material 

AMS14C age, 

years B.P. 

Calendar 

years B.P. 
2σ Error Bars, 

years 

Dated Lab. 

E017-1 14-24 N. dutertrei 3170±60 2680 2430, 2757 b 

E017-2 98-100 N. dutertrei 8760±120 9040 8723, 9398 b 

E017-3 152-158 N. dutertrei 10750±85 11560 11253, 11906 a 

E017-4 172-176 N. dutertrei 11600±180 12870 12562, 13206 b 

E017-5 228-232 N. dutertrei 13560±140 15170 14706, 15682 b 

E017-6 246-248 N. dutertrei 15250±70 17580 17066, 17926 a 

E017-7 280-286 N. dutertrei 14950±75 17030 16578, 17453 a 

1All ages were estimated from calibration curve MARINE04 (Hughen et al., 2004) with a 700-year reservoir age. 

aNational Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, the Woods Hole Oceanographic 

Institution, USA. 

bMinistry of Education Key Laboratory of Heavy Ion Physics, Peking University, China.  

 

 

 

Figure caption 

 

Figure 1. Locations of cores A7 and E017 and other coring sites in the middle and southern 

Okinawa Trough. Shade arrows indicate the Kuroshio Current and its branches, and solid lines are 

the isobaths. 

 

Figure 2. Age model construction of core E017 with 5 additional comparative age control points 

(hollow triangle) obtained by lithological and biostratigraphic correlation with core A7, which has 

been detailed AMS
14

C dated. 3 are obtained by percentage abundance correlations of P. 

obliquiloculata, G. bulloides and N. pachyderma (dex.), and 2 are obtained by a turbidite/ash layer 

correlation between core E017 and core A7. Lithology and the positions of AMS
14

C dating (solid 



triangle) of cores A7 and E017 are also shown. 

 

Figure 3. Rates of sedimentation in three sediment cores taken from the Okinawa Trough. Solid 

circles signify AMS
14

C ages with error bars. Triangles are estimated ages based on lithologic and 

biostratigraphic correlation. The data sets indicate that the rates of sedimentation decreased after 

about 11.2 cal. kyr B.P.  

 

 

Figure 4. Variations of percentage abundance of cold water foraminiferal species and warm/cold 

species ratio in core A7 (A) and core E017 (B) during the last 17-18 cal. Kyr B.P. Solid line 

represents a sudden decreasing of cold water species at ~9.4 cal. kyr B.P. Shade areas indicate the 

Plleniatina minimum event (PME). 

 

Figure 5. Variations of Percentage abundance of warm water foraminiferal species in core A7 (A) 

and core E017 (B) during the last 17-18 cal. Kyr B.P. Shade areas indicate the Plleniatina 

minimum event (PME). 

 

Figure 6. Abundance profiles of deep and shallow-dwelling species and deep/shallow species ratio 

in cores A7 and E017. Also shown is the percentage abundance of Uvigerina+Bulimina group 

from benthic foraminifera in core E017. Solid line indicates a sudden change of these proxies at 

~9.4 cal. kyr B.P. 

 

Figure 7. Time plot of δ18
O, warm water species and warm/cold species ratio in cores A7 and 

E017 and Mg/Ca-based SST (Sun et al., 2005) in core A7. Shade areas indicate millennial-scale 

climate change events since the last deglaciation. Dashed lines represent small cold peaks during 

the Holocene. PME, Plleniatina minimum event; YD, Younger Dryas event; B/A, Bølling and 

Allerød warm phase; H1, Heinrich event 1. 

 

Appendix table.  Repeatedly analyzed Planktonic foraminifera data on 26 horizons of core A7 


