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Abstract

The spatio-temporal changes in trace gas emissions and burnt biomass by paleofires

in Chinese Loess Plateau over the last two glacial cycles have been reconstructed us-

ing vegetation (C3/C4) specific fire emission factors and black carbon records in three

loess-paleosol sections. Results show that the average mass emission rate (AMER)5

of total trace gases (TTG) and burnt biomass by fires (BBF) in glacial periods are 1∼2

times higher than in interglacial periods, and they display a clear southward decrease

during both glacial and interglacial periods. This pattern reflects the combined control

on paleofire emissions by climate-induced fire regimes and succession of vegetation

types. The substantial increases in TTG-AMER and BBF during the late Holocene10

relative to the middle-to-early Holocene at Lingtai and Weinan support existing conclu-

sion that increased anthropogenic fire activities have occurred in Middle and Southern

Plateau during late Holocene. To assess the influence of paleofires on soil carbon

stocks, the ratios of BBF to above-ground net primary productivity (ANPP), estimated

by magnetic susceptibility-based paleorainfall and paleotemperature reconstruction,15

were calculated. In the Northern Plateau, the BBF/ANPP ratios during glacial periods

are nearly 90%, about 2∼3 times higher than during interglacial periods, suggesting

paleofires may be the overwhelming force modulating the cycling of terrestrial organic

carbon in the region. However, in Middle and Southern Plateau, the large decrease in

BBF/ANPP ratios to around 20% and 10% respectively during glacial and interglacial20

periods suggests that paleofires have had a minor impact on carbon storage in these

areas during both glacial and interglacial periods.

1 Introduction

Biomass burning has been recognized as a significant source of a number of important

trace gas species and particulate matter to the atmosphere (Seiler and Crutzen, 1980;25

Lavoue et al., 2000; Andreae and Merlet, 2001). Emissions from biomass burning
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contribute substantially to the global budgets of trace gases and aerosols that affect

climate. Recently increased trace gases e.g. carbon dioxide and black carbon par-

ticles from both fossil fuel and biomass burning has prompted many researchers to

study the changes in carbon budgets associated with increased fire activities (van der

Werf et al., 2004, 2010; Mouillot and Field, 2005) and the climatic effects exerted by5

fires (e.g. Levine, 1991; Menon et al., 2002; Patra et al., 2005; Langmann et al.,

2009). In the context, the central issues that emerge are the extent to which terrestrial

ecosystems can serve as a sink for carbon and how this could help to mitigate potential

human-induced increases in atmospheric CO2 levels (Scurlock and Hall, 1998; Fang

et al., 2001; Keeling et al., 2001; Schimel et al., 2001). As we have known, the main10

natural disturbance agent in most terrestrial ecosystems is wildfire, which can serve as

a major driver of ecosystem carbon cycling and storage (Harden et al., 2000; Houghton

et al., 2000; Tilman et al., 2000; Wardle et al., 2003; Bond-Lamberty et al., 2007). To

better understand the role of terrestrial ecosystems in global carbon cycle, it is ex-

tremely important to know how wildfires influence carbon fluxes among vegetation, soil15

and atmosphere. To date, many studies regarding the effects of fires on carbon stor-

age of certain ecosystems have been carried out based on modern observation (Page

et al., 2002; van der Werf et al., 2010) and/or modeling study (Thornley and Cannell,

2004; Bond-Lamberty et al., 2007; Smithwick et al., 2009; van der Werf et al., 2009).

However, these approaches can only provide a limited number of, short-termed (e.g.20

decades) and discontinuous results. In comparison, paleorecords have an advantage

in evaluating the long-term effects of wildfires exerted on the carbon storage of certain

ecosystem under the changing climate.

On the other hand, in global carbon budgets, there still exists the so-called “miss-

ing carbon” sink, carbon that is evolved as CO2 but remains unaccounted for (Ojima25

et al., 1994; Schimel, 1995; Houghton et al., 1999, 2000; Tilman et al., 2000; Hurtt

et al., 2002). Generally, the widely accepted assumption is that fires have no net ef-

fect on a steady-state world, where losses because of combustion in some places

were compensated by gains because of biomass accumulation in others (Crutzen and
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Andreae, 1990). However, if total carbon release from fires is not constant over time,

then fire can generate carbon source or sink (e.g. Mouillot and Field, 2005). For exam-

ple, a trend of increasing combustion through time generates a net source of carbon,

while a trend of decreasing combustion causes a sink (Chen et al., 2000; Tilman et al.,

2000). Therefore, the changes in carbon fluxes due to the altered fire regimes during5

different climate periods may account for part of the “missing carbon” sink or source.

In this sense, the carbon budgets under different fire regimes should be quantified and

compared in order to better understand the influence of wildfires on the carbon storage

of terrestrial ecosystems and provide scientific basis for the accurate assessment of

global carbon budget in the future.10

Since deliberate wildfire suppression and extensive human burning activities have

occurred over the past two centuries (e.g. Wardle et al., 2003), observations on modern

wildfires are inadequate for understanding the function of natural fires in carbon cycles

and calculating wildfire-related carbon budgets during different fire regimes. Instead,

paleofire studies may provide an opportunity for studying how long-term fire history can15

affect the carbon flows and sequestration of ecosystem on various time scales.

Our previous study (Wang et al., 2005) shows that the pattern of paleofire occur-

rences in Chinese Loess Plateau has undergone a substantial change during the

glacial-interglacial periods. Here, we present a quantitative estimate of regional car-

bon release (including CO2, CO and CH4 emission rate) by paleofires over the last20

two glacial cycles based on the black carbon records in three loess sections along

a south-north transect, with objective to gain an insight into the changes in carbon

storage associated with the altered fire regimes. Moreover, the ecological effects of

different fire regimes during the glacial-interglacial periods on carbon storage in terres-

trial ecosystems would also be discussed by comparing the ratio of burned biomass by25

fires (BBF) to above-ground net primary productivity (ANPP) during the glacial period

with that during the interglacial period.
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2 Material and methods

2.1 Rationale and assumptions

Black carbon (BC) is produced by the incomplete combustion of fossil fuels and

biomass, used to describe a relatively inert and ubiquitous form of carbon, comprising

a range of materials from char and charcoal to elemental or graphite carbon (Goldberg,5

1985; Schmidt and Noack, 2000). Due to its inertness, the BC in soils, lacustrine and

marine sediments and ice can persist over a long period of time. So BC signatures in

geological deposits have been employed as evidence of natural fires happened in their

surroundings (e.g. Jia et al., 2000; Wang et al., 2005).

Black carbon particles produced by biomass burning can be initially divided into two10

groups: one is atmospheric BC emitted with smoke and being transported far in air; the

other is BC in fire residues. It has been shown that generally more than 80% of the BC

produced by vegetation fires resides in the residues and less than 20% is emitted with

the smoke (Kuhlbusch and Crutzen, 1995). Besides, the result from some experimental

fire indicates that most charcoal particles accumulated inside the fire, and accumula-15

tion declined sharply outside the fire, with only 1% of measured particles transported

beyond 20 m from the burn edge (Lynch et al., 2004). Nevertheless, the BC remaining

on site after fire in the fine residue, especially in open grassland, tends to be highly

accessible to aeolian transport and may significantly contribute to the background con-

centrations of BC in the atmosphere. However, the aeolian BC has proven to have20

relatively short atmospheric lifetime, e.g. 40 h to 1 month (Ogren and Charlson, 1983).

Therefore, we assume that most the BC particles produced by paleo-biomass burn-

ing are ultimately incorporated into contemporary loess and paleosol deposits. In this

case, the sedimentary BC record should be well correlated with the carbon released

by fires.25
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2.2 Source of data

2.2.1 The criteria for data adoption

The prerequisite for quantitative reconstruction of carbon emission from paleo-biomass

burning lies in that there should be proper unit e.g. g cm
−2

yr
−1

or g cm
−2

kyr
−1

, for the

proxy indicators of past fires from sedimentary records. Therefore, except for the pa-5

leofire records using optical charcoal quantification methods, such as pollen-slide and

sieved charcoal, which usually provide data expressed in CHAR e.g. mm
2

cm
−2

yr
−1

,

mm
2

g
−1

cm
−2

yr
−1

or fragments cm
−2

yr
−1

, other records which adopted chemical

methods (e.g. Winkler, 1985; Wolbach and Anders, 1989; Rose, 1990; Lim and

Cachier, 1996; Bird and Gröcke, 1997) to quantify charcoal or black carbon in sedi-10

ments can meet such demand. Fortunately, our previous study (Wang et al., 2005) has

provided black carbon records with the unit of g cm
−2

kyr
−1

in Chinese Loess Plateau.

This would offer an opportunity to perform quantitative reconstruction of carbon emis-

sion from paleo-biomass burning using the BC records.

However, an empiristic relationship between the carbon emission and the black car-15

bon records must be established before we carry out this reconstruction. So far, much

work involving both laboratory and field burning experiments has been done to assess

the gaseous and particulate emission from biomass burning of different kinds of vege-

tation (e.g. Hao et al., 1990; Menaut et al., 1991; Turn et al., 1993; Cachier et al., 1995;

Kuhlbusch and Crutzen, 1995; Andreae and Merlet, 2001). The provided emission ra-20

tios or emission factors enable us estimate quantitatively the carbonaceous gases and

particles emission from the paleofires as documented in black carbon records.

2.2.2 Black carbon records and biomass burning in Chinese Loess Plateau

Loess deposits coherently mantle an area of about 44×10
4

km
2

in the Loess Plateau

of North-Central China (Liu, 1985). Today’s Loess Plateau straddles the semi-humid,25

semi-arid and arid climatic zones, mainly covering natural vegetation zones of the
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warm-temperate forest, warm-temperate forest-steppe and warm-temperate steppe

(Sun et al., 1997). However, the carbon isotope analyses of soil organic matter and

pollen studies show that the Loess Plateau was covered by grassland vegetation both

during glacial and interglacial periods (Sun et al., 1997; Gu et al., 2003; Jiang and Ding,

2005), so our BC records may be regarded as an indication of changes in grassland5

burning on the Plateau.

The temporal and spatial patterns of paleofires in Chinese Loess Plateau over the

last two glacial cycles have been studied on the basis of black carbon mass sedimen-

tation rates (BCMSR) documented in three loess-paleosol sections, respectively, at

Lijiayuan, Lingtai and Weinan along a north-south transect (Fig. 1) (Wang et al., 2005).10

Briefly, the glacial cold-dry climate conditions were apt to induce natural fires over the

Loess Plateau, and natural fire occurrence was much more intensive and frequent in

the Northern Loess Plateau than in the southern part.

This study will focus on quantitative reconstruction of trace gases emission from

the paleofires using the BCMSR records presented in our previous study and discuss15

spatial and temporal pattern of variation in trace gases emission from paleofires in

Chinese Loess Plateau over the last two glacial cycles and the linkages to carbon

cycle.

2.2.3 Correlation of BC production with gaseous emissions and biomass

burnt by fires20

Biomass burning is a source of aerosols composed of organic hygroscopic particles,

graphitic carbon, and variable amounts of trace gases such as CO2, carbon monoxide

(CO), and methane (CH4) (Andreae, 1991; Kaufman et al., 1992; Ferek et al., 1998;

Yamasoe et al., 2000). Both the radiation and greenhouse effects exerted by the re-

leased carbonaceous particles and gases have prompted a number of research groups25

to characterize fire emissions. Till now, a large body of information on emissions from

the various types of biomass burning has been accumulated over the past decade. In

relevant studies, emission ratios or emission factors have been introduced to describe
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the emission characteristics of biomass burning. These parameters relate the emis-

sion of a particular species of interest to that of a reference species, such as CO2 or

CO (emission ratio) or to the amount of fuel burnt (emission factor). Currently, Andreae

and Merlet (2001) have critically evaluated the presently available data and integrated

them into a consistent format for convenient usage of these data to global estimates of5

carbon emissions from biomass burning.

Despite the emission factors of the various smoke constituents are quite variable due

to the different type of fuel, the fuel moisture and density, and the wind direction during

a burn, only the average vales of emission factors from Andreae and Merlet (2001)

are considered in this study. Since the paleofires in Chinese Loess Plateau have been10

recognized to be grassland burning (Wang et al., 2005), the emission factors for some

pyrogenic species emitted from savanna and grassland burning were adopted for the

quantitative reconstruction (see Table 1). At the same time, the emission factor of black

carbon in the fire residues (BCresidue) were calculated based on the BC/CE (carbon

exposed to fire) ratios of savanna fires provided by Kuhlbusch and Crutzen (1995) and15

an average carbon content of 40% of dry matter for the grass species. For convenient

purpose of computation, the ratios of three traces gases (CO2, CO, CH4) to BC in fire

residues were also presented in Table 1.

2.3 Estimate of trace gases emission and biomass burnt by paleofires from

sedimentary BC records20

The mass emission rates of trace gases released by paleo-biomass burning and the

biomass burnt by paleofires (BBF) in Chinese Loess Plateau are respectively calcu-

lated using the following equation

TGMER(gC−TG m−2 yr−1)=BCMSR(g cm−2 kyr−1)×
(

f ·gC−TG/gC−BCresidue,C3

+(1− f ) ·gC−TG/gC−BCresidue,C4

)

× (kyr 1000 yr−1)× (10 000 cm2 m−2) (1)25
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BBF(g dm m−2 yr−1)=BCMSR(g cm−2 kyr−1)× (f/EFBCresidue,C3+ (1− f )/EFBCresidue,C4)

× (kyr 1000 yr−1)× (10 000 cm2 m−2)× (1000 g kg−1) (2)

Where TGMER represents trace gases mass emission rates, BCMSR is black carbon

mass sedimentation rates, and TG/BCresidue,C3 or TG/BCresidue,C4 denotes the ratios

of trace gases, such as CO2, CO or CH4 to BC in fire residue from C3 or C4 vegetation5

combustion, EFBCresidue,C3 or EFBCresidue,C4 is the emission factor of BC in fire residue

from C3 or C4 vegetation combustion. The letter f is the relative abundance of C3

plants in the burned vegetation, whereas (1− f ) means the relative abundance of C4

plants in the vegetation. These two parameters can be estimated by the following

equation10

δ13Csoil=δ
13CC3f +δ13CC4(1−f ) (3)

Where δ13
Csoil is the δ13

C value of soil organic matter in loess or paleosol sample,

δ13
CC3 and δ13

CC4 are the average δ13
C value of C3 and C4 plants in the area,

−27.3‰ and −12.6‰, respectively (see Liu et al., 2003).

The δ13
C values of soil organic matter (SOM) since last glacial maximum (LGM)15

in Lingtai and Weinan section are cited from Gu et al. (2003), whereas δ13
C values

of soil organic matter since LGM in Lijiayuan section are measured by Flash 1112

NC elemental analyzer coupled with MAT253 isotope ratio mass spectrometer (EA-

IRMS) in this study. Due to the shortness of carbon isotope data downcore, we have

obtained the δ13
C values of SOM early than LGM using the strong correlation of the20

SOM δ13
C with growing season precipitation (GSP) in Chinese Loess Plateau since

LGM (Fig. 2). This correlation is also demonstrated by observation on the correlation

between C4 biomass (or soil organic matter δ13
C) in modern ecosystem and annual

precipitation (An et al., 2005). The GSP used here were calculated by the modern

seasonal distribution of precipitation in the study area (corresponding to 85%, 83%,25

75% of MAP respectively in Lijiayuan, Lingtai and Weinan) and the reconstructed mean

annual precipitation (MAP) in geological past as shown in the following section.
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2.4 Estimate of above-ground net primary productivity from environmental

factors

Above-ground net primary productivity (ANPP) has been shown to be mainly controlled

by rainfall e.g. mean annual precipitation (MAP) and temperature e.g. mean annual

temperature (MAT) in the grasslands of Northern China and somewhere else in the5

world (Austin and Sala, 2002; Ni, 2004). Therefore, we applied Thornthwaite Memorial

Model (Lieth and Box, 1972), which is based on mean annual precipitation and tem-

perature, to estimate net primary productivity in Lijiayuan, Lingtai and Weinan areas.

Moreover, Thornthwaite Memorial Model has been proven very useful and practical for

net primary productivity (NPP) estimate in Chinese Loess Plateau (Wang and Zhang,10

2005; Wang et al., 2006). The mean annual precipitation (MAP) and temperature (MAT)

in Lijiayuan, Lingtai and Weinan were quantitatively reconstructed from the magnetic

susceptibility (MS) data in these areas over last two glacial cycles (data cited from Ding

et al., 1996, 2001) using the following equations from Porter et al. (2001)

MS(10−8 m3 kg−1)=8.8078e0.0042 MAP(mm), R2
=0.60 (n=66) (4)15

MS(10−8 m3 kg−1)=11.18e0.1908 MAT(
◦

C), R2
=0.58 (n=56) (5)

In order to obtain above-ground net primary productivity (ANPP), an R/S (root/shoot)

ratio of 3.7 for grassland (Jackson et al., 1996) is used to apportion the above-ground

biomass and below-ground biomass. Thus, the changes in paleo-biomass (e.g. ANPP)

in Chinese Loess Plateau over the last two glacial cycles could be reconstructed.20

3 Results and interpretation

3.1 The changes in trace gases emission from paleo-biomass burning over the

last two glacial cycles

In Fig. 3 we present the mass emission rates (MER) of trace gases released by paleo-

biomass burning in Lijiayuan, Lingtai and Weinan over the last two glacial cycles.25
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Data are expressed as the average MER value calculated for each marine isotopic

stage, with the chronological constraints provided by Imbrie et al. (1984). During

the glacial periods (including last glacial period: 12∼71 kyr and penultimate glacial pe-

riod: 125∼190 kyr), the averaged MER for CO2, CO and CH4 is respectively about

39.9 ∼ 43.5, 4.2 ∼ 4.6 and 0.33 ∼ 0.37 g C m
−2

yr
−1

(totally 44.4 ∼ 48.5 g C m
−2

yr
−1

)5

at Lijiayuan, and about 19.5 ∼ 23.6, 1.7 ∼ 2.1 and 0.12 ∼ 0.15 g C m
−2

yr
−1

(totally

21.3∼ 25.8 g C m
−2

yr
−1

) at Lingtai and Weinan, showing a clear southward decrease

(Fig. 3). The averaged MER in the interglacial periods (including last interglacial pe-

riod: 71∼125 kyr and penultimate interglacial period: 190∼216 kyr) is generally about

2∼3 times lower than in the glacial periods; this value is respectively about 15.0∼16.5,10

1.5∼1.7 and 0.12∼0.13 g C m
−2

yr
−1

(totally 16.6∼18.3 g C m
−2

yr
−1

) at Lijiayuan and

about 8.2∼ 14.5, 0.6∼ 1.1, 0.04∼ 0.08 g C m
−2

yr
−1

(totally 8.8∼ 15.7 g C m
−2

yr
−1

) at

Lingtai and Weinan. In addition to the glacial-interglacial variability, the MER values

also vary notably within the two glacial periods. For instance, the MER in the stadial

periods of L1-1, L1-5, L2-1, L2-3 and L2-5 (at 12∼25, 60∼71, 125∼140, 155∼165 and15

175∼190 kyr, respectively) is much higher than in the interstadial periods of L1-2, L1-

4, L2-2 and L2-4 (at 25∼35, 45∼60, 140∼155 and 165∼175 kyr, respectively) (Fig. 3,

see Fig. 7 for stratigraphic indication). For the Holocene period (0∼12 kyr), the aver-

aged MER for CO2, CO and CH4 is about 47.0, 4.1 and 0.31 g C m
−2

yr
−1

at Lijiayuan

and about 7.6∼ 33.3, 0.61∼ 2.6 and 0.04∼ 0.18 g C m
−2

yr
−1

at Lingtai and Weinan.20

It should be emphasized that at Lingtai and Weinan the average MERs of total trace

gases (TTG) in late Holocene is respectively 41.6 and 10.2 g C m
−2

yr
−1

, apparently

higher than those in early Holocene (e.g. 30.5 and 6.4 g C m
−2

yr
−1

, see Fig. 3).

To examine regional TGMER dynamics during the glacial-interglacial periods, the

trace gas mass emission rate over Chinese Loess Plateau (CLP) is approximately es-25

timated provided the 44×10
4

km
2

of CLP could be north-southwards divided into three

equal-sized zones, each of which has an average TGMER as the same as that in Li-

jiayuan, Lingtai and Weinan, respectively. The estimated TGMERs at different time

intervals over CLP are shown in Fig. 4. It shows that the CO2, CO and CH4 MERs
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during the glacial periods (e.g. MIS 2∼ 4 and 6) range respectively from 6.5 to 19.7,

0.65 to 1.84 and 0.050 to 0.140 Tg C yr
−1

, with an average value of 12.6, 1.20 and

0.09 Tg C yr
−1

. Comparatively, the CO2, CO and CH4 MERs during interglacial periods

(e.g. MIS 5a–5e, 7a and 7b) are much lower, ranging respectively from 4.3–7.5, 0.37–

0.67 and 0.028–0.050 Tg C yr
−1

, with an average value of 6.1, 0.51, 0.038 Tg C yr
−1

.5

However, a striking feature is that the CO2, CO and CH4 MERs in Holocene (e.g. 12.6,

1.05 and 0.076 Tg C yr
−1

, respectively) are not as low as those during interglacial peri-

ods, but showing nearly the same level as those in glacial periods (Fig. 4).

3.2 The changes in biomass matter burnt by paleofires over the last two glacial

cycles10

Based on the emission factor of BC in fire residue, we work out the weights of dry

biomass matter burnt by the paleofires per unit area per year in Lijiayuan, Lingtai and

Weinan (Fig. 5). During the glacial periods (including last glacial period: 12∼71 kyr

and penultimate glacial period: 125∼190 kyr), the biomass burnt by paleofires is re-

spectively 52.3 ∼ 164.5 (mean value: ∼ 97), 22.8 ∼ 78.8 (mean value: ∼44) and15

13.8∼93.0 (mean value: 48) g dm m
−2

yr
−1

in Lijiayuan, Lingtai and Weinan. However,

the biomass burnt by paleofires during the interglacial periods have been largely re-

duced, with the burned biomass of 25.5∼ 46.1 (mean value: ∼ 36), 14.2∼ 35.7 (mean

value: ∼24) and 16.5∼43.7 (mean value: ∼30) g dm m
−2

yr
−1

in Lijiayuan, Lingtai and

Weinan. Moreover, the burned biomass also shows a southward decline from Lijiayuan20

to Weinan.

3.3 The changes in estimated aboveground net primary productivity (ANPP)

over the last two glacial cycles

The reconstructed ANPP over the last two glacial cycles in Lijiayuan, Lingtai and

Weinan are shown in Fig. 6. In general, the ANPP during glacial periods are relatively25

lower than those during interglacial periods. During the glacial periods, the ANPP is
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respectively around 127 ∼ 139, 197 ∼ 206 and 216 ∼ 257 g dm m
−2

yr
−1

in Lijiayuan,

Lingtai and Weinan. Comparatively, the ANPP during interglacial periods is about

147 ∼ 163, 248 ∼ 260 and 263 ∼ 278 g dm m
−2

yr
−1

in Lijiayuan, Lingtai and Weinan,

respectively. However, the changes in the Holocene ANPP at the three study sites are

more complicated. For examples, the ANPP in the Holocene in Lijiayuan is around5

196 g dm m
−2

yr
−1

, much higher than those during both glacial and interglacial periods

whereas the ANPP in the Holocene in Lingtai and Weinan are between those during

glacial and interglacial periods with the value of 239 and 246 g dm m
−2

yr
−1

, respec-

tively.

3.4 Comparison of the biomass burnt by paleofires with the reconstructed10

ANPP over the last two glacial cycles

To examine the impact of paleofires on soil organic carbon storage, we use the ratio

of the biomass burned by paleofires to the reconstructed ANPP (BF/ANPP) as a proxy

indicator. The changes in the BF/ANPP ratios in Lijiayuan, Lingtai and Weinan over

last two glacial cycles are illustrated in Fig. 7. The results show that the average15

BBF/ANPP ratio during glacial periods in Lijiayuan is nearly 75%, three times higher

than that during interglacial periods. However, the average BBF/ANPP ratio during

glacial periods in Lingtai and Weinan is respectively 22% and 20%, two times higher

than those during interglacial periods in the areas.

4 Discussion and conclusions20

4.1 Trace gases emissions from paleo-biomass burning in Chinese Loess

Plateau and potential implications

Our results show that the trace gas mass emission rates (TGMER) from paleofires

in Lijiayuan, Lingtai and Weinan clearly display both glacial-interglacial and spatial
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variability (Fig. 3). Within the temporal series, the average TGMER of CO2, CO and

CH4 during glacial periods are 2∼ 3 times higher than those during interglacial peri-

ods. Geographically, the average TGMER of CO2, CO and CH4 in Lijiayuan are about

2 times higher than those in Lingtai and Weinan during both glacial and interglacial pe-

riods. This changing pattern is clearly different from the modeling study which shows5

a reduction in global fire carbon emission during LGM relative to interglacial period

(Thonicke et al., 2005). It may be attributed to different methods used for estimating

fire carbon emission between this study and the previous modeling study. The estimate

in this study is based on sedimentary BC records by emphasizing empirical usage of

paleo-record whereas the above modeling study seems to embed general features10

of biomass burning in the model by emphasizing on the strong control of vegetation

cover on biomass burning rather than the regional climate conditions e.g. “Cold/dry

regions with sparse or no vegetation show little or no biomass burning.” (Thonicke

et al., 2005). This difference implies that some region-specific fire regimes as revealed

by paleo-record should be considered in modeling global fire carbon emissions during15

glacial-interglacial periods so that a more reasonable and reliable estimate would be

obtained.

Comparatively, the CO2, CO and CH4 MER in Holocene show the values close to

those in glacial periods, much higher than the CO2, CO and CH4 MER in glacial

periods (Fig. 3). The far difference between TGMER in Holocene and those during20

interglacial periods could not be explained by the pattern of climate-induced natural

fires, but possibly by the intensification of human burning activity in Holocene (Wang

et al., 2005). To examine the contribution of human burning activity to TGMER in

Holocene, we use the average TGMER during interglacial periods as an analog of the

TGMER from natural fires in Holocene period provided the climates and vegetation dur-25

ing these two periods are almost under the same condition. Therefore, over Chinese

Loess Plateau, the anthropogenic fire emission in Holocene can be obtained by sub-

tracting the average of regional TGMER during interglacial periods (including last inter-

glacial period: 71∼125 kyr and penultimate interglacial period: 190∼216 kyr) from the
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regional TGMER in Holocene (0∼ 12 kyr) (Fig. 4). Thus, the anthropogenic fire emis-

sion in Holocene is respectively 6.53, 0.54 and 0.038 Tg C yr
−1

for CO2, CO and CH4

(totally 7.108 Tg C yr
−1

), comparable with the TGMER difference caused by altered fire

regimes between glacial and interglacial periods (e.g., 6.51, 0.68 and 0.054 Tg C yr
−1

for CO2, CO and CH4, totally 7.244 Tg C yr
−1

). This means the fire emission resulted5

from Holocene human activities in Chinese Loess Plateau did not exceed the natural

range of fire emission under different fire regimes.

For a purpose of comparison, we also carried out an estimate of the trace gas emis-

sion from modern biomass burning (forest fires and grassland fires) in Chinese Loess

Plateau based on the typical annual amounts of biomass burned in Gansu, Ningxia,10

Qinghai, Nei Mongol, Shaanxi, Shanxi and Henan provinces of this area (data cited

from Streets et al., 2003) and the emission factors listed in Table 1. The results

show that modern fire carbon emissions in Chinese Loess Plateau (CLP) are respec-

tively 14.52, 0.95 and 0.063 Tg C yr
−1

for CO2, CO and CH4 with a total emission of

15.533 Tg C yr
−1

, clearly higher than the average TGMER in both Holocene and glacial15

periods (Fig. 3). This indicates that forest and grassland fires are still one of main

sources for trace gas emissions although the fire suppression practices have been

undertaken for many years. Therefore, more effective measures should be taken to

reduce the fire emissions in the region. In addition, if we assumed the Holocene TG-

MER over CLP (e.g. 13.726 Tg C yr
−1

) could represent the pre-industrial level of carbon20

emission from biomass burning in this region, then the pre-industrial emission would

be ∼ 88% of present biomass burning. This result, although only from CLP region,

is comparable with ∼ 70% of present biomass burning on global scale as provided

by Mouillot et al. (2006), but far different from the frequently-used assumption that

pre-industrial emissions were only 10% of present biomass burning (Crutzen and Zim-25

mermann, 1991).
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4.2 Fire regimes and the carbon storage in soils in Chinese Loess Plateau

The carbon isotope analyses of soil organic matter and pollen studies show that the

Loess Plateau was covered by grassland vegetation both during glacial and interglacial

periods (Sun et al., 1997; Gu et al., 2003; Jiang and Ding, 2005). Currently, Grassland

soil carbon stocks amount to at least 10% of the global total (Eswaran et al., 1993).5

Even modest changes in inputs to grassland carbon storage may there result in signif-

icant and long-lived sequestration (Scurlock and Hall, 1998). Here we will assess the

effects of fire regime changes during glacial-interglacial periods on the carbon storage

in soils in Chinese Loess Plateau. Comparisons of the biomass burnt by paleofires

(BBF) with the above-ground net primary productivity (ANPP) show that the average10

BBF/ANPP ratio during glacial periods in Lijiayuan is about 75%, three times higher

than that during interglacial periods (Fig. 7). Moreover, the BBF/ANPP ratios in the sta-

dial periods of L1-1, L1-5, L2-1, L2-3 and L2-5 are higher than 100%, indicating some

below-ground biomass were also burnt by paleofires in those periods. This suggests

that paleofires may be the overwhelming force modulating the cycling of terrestrial or-15

ganic carbon in the northern part of Chinese Loess Plateau. However, the average

BBF/ANPP ratio during glacial periods in Lingtai and Weinan is respectively 22% and

20%, two times higher than those during interglacial periods in the areas. It means that

paleofires have had a minor impact on carbon storage in the southern part of Chinese

Loess Plateau during both glacial and interglacial periods. This case study proposes20

that wildfires is a very important disturbing factor in determining carbon inputs into soils

in semi-arid region like northern part of CLP. At the same time, the extent to which the

wildfires influence the carbon storage is highly variable even at relatively small regional

scale (e.g. within CLP). The data sets in this study may be used as fine constraints in

model parameterization where wildfires are considered in C-cycle model.25

Since the spatio-temporal patterns of fire occurrences in Chinese Loess Plateau

during the glacial-interglacial periods were governed by the wet-dry cycles (Wang et al.,

2005), the extent to which wildfire influenced the carbon storage in the region should
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ultimately determined by the precipitation. In Lijiayuan, northern part of CLP, the mean

annual precipitation when 100% ANPP was burnt during the glacial periods is about

280 mm. This may provide a baseline value for environmental conditions in future

assessment of carbon storage in semi-arid or arid regions of Northwestern China as

well as elsewhere in the world.5

4.3 Fire regimes and carbon cycling mechanism

Early study has shown that a large carbon sink (“missing sink”) in the global carbon

budget may be located in the terrestrial regions of the Northern Hemisphere (Tans

et al., 1990). Recent study has shown that the aboveground biomass of China’s grass-

land may have functioned as carbon sink in the past two decades (Piao et al., 2007).10

How has the changes in fire regimes influenced the carbon sequestration in the grass-

land in Chinese Loess Plateau? For entire Loess Plateau, the overall difference in

fire-burned biomass between glacial period (27.73 Tg dm yr
−1

) and interglacial period

(12.87 Tg dm yr
−1

) is 14.86 Tg dm yr
−1

, corresponding to ∼ 5.944 Tg C yr
−1

. It means

this amount of vegetation carbon must have been burnt during the glacial periods15

instead of having been incorporated into soil organic carbon cycles during the inter-

glacial periods. Recent observations on wildfires in tropical savannas have shown

that a high grass biomass accumulates during the wet seasons and burns occur at

1–3 years intervals and generally during the dry season (e.g., Gillon, 1983; Coutinho,

1990; Mistry, 1998). Due to similar ecological and fire weather features, natural fires20

in Chinese Loess Plateau may share the same burning pattern as that in savannas.

In this case, about 14.86 Tg dm (∼5.944 Tg C) of extra biomass may be annually burnt

by more frequent or intense wildfires in the dry season during the glacial period and

largely contribute to intra- and/or inter-annual variation of atmospheric carbon budgets

in Chinese Loess Plateau. To date, several researchers have estimated using a carbon25

cycle model, CASA (Carnegie-Stanford-Ames Approach) that the size of biomass car-

bon sink is ∼ 7.2 Tg C yr
−1

in China’s grassland (with an area of 331×10
4

km
2
) from

1982 to 1999 (Fang et al., 2003; Piao et al., 2005). Applying the estimate of biomass
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C sink per area (7.2 Tg C yr
−1/331×10

4
km

2
) to our study, the biomass C sink could

be ∼ 0.96 Tg C yr
−1

in grassland of CLP (with an area of 44×10
4

km
2
). Thus, the net

loss of ∼ 5.944 Tg C yr
−1

resulted from fire regime changes in CLP over interglacial-

to-glacial cycle, although having some uncertainties, accounts for more than six times

of the estimated carbon sink. It indicates that long-term changes in fire regimes over5

past two glacial cycles may have substantial impact on the carbon sink in grassland

in Northwestern China. Therefore, more frequent wildfires in Chinese Loess Plateau

during the glacial periods must have shifted the grassland from being a carbon sink to

net carbon source.

Comparatively, the biomass left unburnt due to less frequent wildfires during the10

interglacial periods would incorporate into soil carbon pool and experience multiple

carbon cycling processes with different turnover times (e.g. Parton et al., 1988; Trum-

bore, 2000). For example, coarse particles that are mainly fresh litter have mean res-

idence times between 0.5 and 20 years, whereas the carbon in the clay fraction has

mean residence times of about 60–80 years (Balesdent, 1996); Batjes and Sombroek15

(1997) quote a global mean of 22 years (litter included), and a maximum of up to 5000

years. That means carbon release from soil carbon pool needs much longer time than

that from biomass burning. In soil carbon cycling, outputs are dominated by the ef-

flux of CO2 from the soil and the production of CO2 in soils is almost entirely from

root respiration and microbial decomposition of organic matter. Because the efflux of20

CO2 from soils (often lumping microbial and root respiration together as “soil respira-

tion”) tends to increase with temperature and often soil water content or precipitation

(Davidson and Janssens, 2006), higher level CO2 efflux from soil in Chinese Loess

Plateau must occur at summer time. However, the produced CO2 can be immediately

sequestered by local vegetation in this growing season and thus would not contribute25

to intra-annual variation of atmospheric carbon budgets. Therefore, it seems that the

altered fire regimes from glacial to interglacial period can change carbon flow partly

from rapid cycling process (vegetation-atmosphere cycle) to a relatively slow cycling

process (vegetation-soil-atmosphere cycle). In this sense, less frequent wildfires in
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Chinese Loess Plateau during the interglacial periods would still make the grassland

serving as a transient carbon sink.

For the long-term carbon cycle, the more consumed biomass of ∼ 14.86 Tg dm yr
−1

by frequent wildfires during glacial periods than during interglacial periods could yield

∼ 0.117 Tg BC yr
−1

in loess surface, which represents a net sink of biospheric carbon5

and thus of atmospheric CO2 as well as a source of O2 (e.g. Seiler and Crutzen, 1980),

but can only compensate ∼ 1.95% of the annually more released trace gases from

wildfires during glacial periods than that during interglacial periods.
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Table 1. Emission factors used in this study for the pyrogenic species of CO2, CO, CH4 and

black carbon produced by biomass burning.

Species C3 Emission C4 Emission Species/BCresidue Species/BCresidue

factors factors ratio for C3 ratio for C4

g species kg
−1

g species kg
−1

g C-species g C-species

dry matter dry matter g
−1

C
−1

g
−1

C
−1

CO2 1568
a

1664
a

54.55 113.45

CO 106
a

63
a

5.79 6.75

CH4 4.8
a

2.2
a

0.46 0.41

BCsmoke 0.56
a

0.48
a

0.07 0.12

BCresidue 7.84
b

4.0
b

1 1

a
Data by Andreae and Merlet (2001).

b
Adapted values from mean BC/CE (carbon exposed to fire) (%) provided by Kuhlbusch and Crutzen (1995) with

a conversion factor of 4.0, where C3 emission factor for BCresidue is from extratropical forest (pine needle and deciduous
wood) and C4 emission factor for is BCresidue from savanna grass.
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 25 

 1 

 2 

Figure 1. Schematic map showing the locality of the studied section labeled as the five-angle 3 

star. The arrow indicates the dominant subaerial wind direction in winter seasons, coinciding 4 

with the observed decrease in grain size and thickness of loess. The desert (dotted) and 5 

mountains (black areas) around and within the Loess Plateau are shown. The solid square in 6 

the inset map shows the locality of the Loess Plateau in continental China. 7 

 8 

Fig. 1. Schematic map showing the locality of the studied section labeled as the five-angle star.

The arrow indicates the dominant subaerial wind direction in winter seasons, coinciding with

the observed decrease in grain size and thickness of loess. The desert (dotted) and mountains

(black areas) around and within the Loess Plateau are shown. The solid square in the inset

map shows the locality of the Loess Plateau in Continental China.
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 1 

 2 

Figure 2. Correlation of the δ13C of soil organic matter with growing season precipitation 3 

(GSP) in Chinese Loess Plateau since LGM. 4 

 5 

 6 

 7 

Fig. 2. Correlation of the δ13
C of soil organic matter with growing season precipitation (GSP)

in Chinese Loess Plateau since LGM.
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 1 

Figure 3. The mass emission rates (MER) of CO2, CO and CH4 released by biomass burning 2 

in Lijiayuan, Lingtai and Weinan over the last two glacial cycles. 3 
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Fig. 3. The mass emission rates (MER) of CO2, CO and CH4 released by biomass burning in

Lijiayuan, Lingtai and Weinan over the last two glacial cycles.
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 1 

Figure 4. The estimated TGMERs in the whole Chinese Loess Plateau at different time 2 

intervals over the last two glacial cycles. 3 
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Fig. 4. The estimated TGMERs in the whole Chinese Loess Plateau at different time intervals

over the last two glacial cycles.

4489

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/4459/2011/bgd-8-4459-2011-print.pdf
http://www.biogeosciences-discuss.net/8/4459/2011/bgd-8-4459-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

8, 4459–4492, 2011

Paleofires and

carbon cycling in

Chinese Loess

Plateau

X. Wang and Z. L. Ding

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

 29 

 1 

Figure 5. The changes in biomass burned by paleofires in Lijiayuan, Lingtai and Weinan over 2 

over the last two glacial cycles. 3 
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Fig. 5. The changes in biomass burnt by paleofires in Lijiayuan, Lingtai and Weinan over over

the last two glacial cycles.
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 1 

Figure 6. The reconstructed aboveground net primary productivity (ANPP) in Lijiayuan, 2 

Lingtai and Weinan over the last two glacial cycles. 3 
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Fig. 6. The reconstructed aboveground net primary productivity (ANPP) in Lijiayuan, Lingtai

and Weinan over the last two glacial cycles.
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 1 

Figure 7. Comparison of the biomass burned by paleofires with the reconstructed ANPP in 2 

Lijiayuan, Lingtai and Weinan over the last two glacial cycles. 3 
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Fig. 7. Comparison of the biomass burnt by paleofires with the reconstructed ANPP in Lijiayuan, Lingtai and Weinan
over the last two glacial cycles. All the three loess-soil sections consist of the Holocene soil S0, the last glacial loess
deposit L1, the last interglacial soil S1, the penultimate glacial loess unit L2 and the penultimate interglacial soil S2.
The loess deposit (L1) generally contains two weakly developed soils (L1-2 and L1-4) in the middle portion, which
formed during marine isotope stage 3, and the upper and lower parts of L1 are two typical loess layers (L1-1 and L1-5),
which correlate, respectively to isotope stages 2 and 4. The loess unit (L2) also consists of two weakly developed
soils (L2-2 and L2-4) in the middle part. The S2 soil developed during the oxygen isotope stage of 7 and is usually
composed of two separated soils named S2-1 and S2-2.
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