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Abstract 

The youngest geomagnetic polarity reversal, the Matuyama–Brunhes (M–B) boundary, provides an important plane 

of data for sediments, ice cores, and lavas. The geomagnetic field intensity and directional changes that occurred dur-

ing the reversal also provide important information for understanding the dynamics of the Earth’s outer core, which 

generates the magnetic field. However, the reversal process is relatively rapid in terms of the geological timescale; 

therefore, adequate temporal resolution of the geomagnetic field record is essential for addressing these topics. 

Here, we report a new high-resolution paleomagnetic record from a continuous marine succession in the Chiba 

composite section of the Kokumoto Formation of the Kazusa Group, Japan, that reveals detailed behaviors of the 

virtual geomagnetic poles (VGPs) and relative paleointensity changes during the M–B polarity transition. The resultant 

relative paleointensity and VGP records show a significant paleointensity minimum near the M–B boundary, which is 

accompanied by a clear “polarity switch.” A newly obtained high-resolution oxygen isotope chronology for the Chiba 

composite section indicates that the M–B boundary is located in the middle of marine isotope stage (MIS) 19 and 

yields an age of 771.7 ka for the boundary. This age is consistent with those based on the latest astronomically tuned 

marine and ice core records and with the recalculated age of 770.9 ± 7.3 ka deduced from the U–Pb zircon age of the 

Byk-E tephra. To the best of our knowledge, our new paleomagnetic data represent one of the most detailed records 

on this geomagnetic field reversal that has thus far been obtained from marine sediments and will therefore be key 

for understanding the dynamics of the geomagnetic dynamo and for calibrating the geological timescale.
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Background
�e Earth’s latest magnetic field reversal event, the 

Matuyama–Brunhes (M–B) boundary, is an important 

calibration point on the geological timescale, connect-

ing sediments and volcanic rocks, and has therefore been 

the focus of a number of paleomagnetic studies. During 

the polarity transition of the M–B boundary as well as 

other reversals, the Earth’s geomagnetic field intensity 

dropped significantly (e.g., Valet et  al. 2005; Valet and 

Fournier 2016), resulting in the increased production of 

cosmogenic radionuclides, including 10Be, in the upper 

atmosphere (Beer et al. 2002). Hence, the M–B boundary 

has also been recognized as a positive spike in the 10Be 

flux recorded in marine sediments (e.g., Suganuma et al. 

2010; Valet et al. 2014) and in an Antarctic ice core (Rais-

beck et al. 2006; Dreyfus et al. 2008). �erefore, changes 
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in the geomagnetic field intensity and the 10Be produc-

tion rate in the atmosphere also provide a timescale that 

has been widely used in the geochronology of marine 

sediments (e.g., Guyodo and Valet 1999; Yamazaki 1999; 

Channell and Kleiven 2000; Laj et al. 2000; Stoner et al. 

2000; Kiefer et al. 2001; Christl et al. 2003, 2007; Horng 

et  al. 2003; Valet et  al. 2005, 2014; Yamazaki and Oda 

2005; Yamamoto et  al. 2007; Yamazaki and Kanamatsu 

2007; Suganuma et  al. 2008; Channell et  al. 2008, 2009, 

2010, 2014, 2016; Inoue and Yamazaki 2010: Macri et al. 

2010; Mazaud et al. 2012, 2015). �ese geomagnetic field 

intensity data associated with the directional change also 

contain essential information about the Earth’s magnetic 

field reversal; however, the nature of the geomagnetic 

dynamo in the Earth’s outer core remains a controversial 

topic (e.g., Valet and Fournier 2016). One key issue is that 

the reversal process is relatively rapid compared to the 

geological timescale; therefore, adequate temporal reso-

lution is required to describe the reversal process.

�e M–B boundary has a frequently cited age of 

780  ka, which is derived from astronomically tuned 

benthic and planktonic oxygen isotope records from 

the eastern equatorial Pacific (Shackleton et  al. 1990). 

�is marine, astronomically dated M–B boundary age, 

is supported by the 40Ar/39Ar ages of the Maui lavas 

at 775.6  ±  1.9  ka (Coe et  al. 2004; Singer et  al. 2005), 

amended to 781–783 ka by recent revisions to the refer-

ence age of the Fish Canyon Tuff sanidine standards for 
40Ar/39Ar geochronology (Kuiper et al. 2008; Renne et al. 

2011). However, an understanding of post-depositional 

remanent magnetization (PDRM) processes shows that 

lock-in of the geomagnetic signal occurs below the sedi-

ment–water interface in marine sediments (e.g., Roberts 

et  al. 2013; Suganuma et  al. 2011), which then tends to 

yield older ages for geomagnetic events than for deposi-

tions. Because this age offset is thought to be relative to 

the sedimentation rate (Suganuma et al. 2010), geomag-

netic records with higher sedimentation rates should 

minimize the age offset that can occur due to the PDRM 

lock-in process. Indeed, younger astrochronological M–B 

boundary ages of 772–773  ka are given for high-sedi-

mentation-rate records (Channell et al. 2010; Valet et al. 

2014), particularly for one of the records with no PDRM 

lock-in delay detected by Valet et al. (2014). �ese M–B 

boundary ages are consistent with the records of cosmo-

genic nuclides in marine sediments (e.g., Suganuma et al. 

2010) and an Antarctic ice core (Dreyfus et  al. 2008). 

Recently, Suganuma et al. (2015) presented a new U–Pb 

zircon age of 772.7 ± 7.2 ka from a volcanic ash layer just 

below the M–B boundary in the Chiba composite sec-

tion (a very rapidly deposited marine sediment) in Japan. 

�is U–Pb zircon age, coupled with an astronomical age 

for the marine sediment, yields an M–B boundary age of 

770.2 ± 7.3 ka. �is is the first direct comparison of the 

astronomical age calibration, U–Pb dating, and geomag-

netic reversal records for the M–B boundary; however, 

there has been no relative paleointensity record from the 

Chiba composite section, which is a key requirement for 

calibrating the geological timescale.

In this paper, we performed a high-resolution paleo-

magnetic analysis for the Yoro-Tabuchi and Yoro-River 

sections of the main part of the Chiba composite section 

in the Kokumoto Formation of the Kazusa Group, Japan, 

to provide very detailed records of the virtual geomag-

netic poles (VGP) and the relative paleointensity changes 

through the M–B boundary. �is record provides one of 

the most detailed descriptions of the M–B polarity tran-

sition obtained thus far from marine sediments and will 

therefore be key for understanding the dynamics of the 

geomagnetic dynamo and for calibrating the geological 

timescale.

Methods
Geology of the studied section and samples

�e Kazusa Group, distributed in the southeastern 

Japanese islands, is one of the thickest (approximately 

3000 m) Lower and Middle Pleistocene sedimentary suc-

cessions (e.g., Ito 1998; Kazaoka et al. 2015) (Fig. 1a). �e 

Kazusa Group is the forearc basin fill of Kazusa; it was 

developed in response to the west-northwestward sub-

duction of the Pacific plate beneath the Philippine Sea 

plate along the Japan and Izu-Bonin trenches (e.g., Seno 

and Takano 1989) and was deposited in the basin plain, 

submarine fan, slope, shelf, and coastal environments 

(Katsura 1984; Ito and Katsura 1992). Because the Kanto 

Basin was uplifted from the southern margin and the 

marine strata dip gently northward, the strata exposures 

are particularly good in the central part of the Boso Pen-

insula (Fig.  1b). �e thickest succession (up to 3000  m) 

crops out along the Yoro-River, where numerous studies 

based on lithostratigraphy, biostratigraphy, and paleo-

magnetic and oxygen isotope stratigraphy have been 

focused. Well-preserved microfossils (e.g., Oda 1977; 

Sato et  al. 1988; Cherepanova et  al. 2002) and oxygen 

isotope stratigraphy (Okada and Niitsuma 1989; Picker-

ing et al. 1999; Tsuji et al. 2005) place the Kazusa Group 

to the age between 2.4 and 0.45  Ma (Ito et  al. 2016). 

Although the sedimentation rate of the Kazusa Group 

is generally very high (ca. 2 m/kyr on average) (Kazaoka 

et  al. 2015), sedimentation rates within the group are 

most likely controlled by the lithological changes (sand-

stone- and siltstone-dominated units), corresponding to 

the eustatic sea level changes through the glacial–inter-

glacial cycles.

�e Kokumoto Formation represents an expanded 

and well-exposed sedimentary succession across the 
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Lower–Middle Pleistocene boundary, particularly in 

the Chiba composite section (Yoro-Tabuchi, Yoro-River, 

Yanagawa, and Kogusabata sections) (Fig.  1b). �e pre-

dominant silty beds of the Chiba composite section are 

intensely bioturbated, and there is a lack of evidence for 

episodic deposition such as slumps or muddy turbidites, 

although minor sandy beds are intercalated within the 

silty section, particularly in the lower part of the sec-

tion (Nishida et al. 2016). Marine oxygen isotope records 

reveal continuous deposition from MIS 21 to MIS 18 

with glacial and interglacial cycles corresponding to 

sandstone- and siltstone-dominated units, respectively 

(Okada and Niitsuma 1989; Pickering et  al. 1999; Suga-

numa et al. 2015). �e Byk-E tephra is widely distributed 

in the area and provides an excellent stratigraphic marker 

for the Lower–Middle Pleistocene boundary in the Chiba 

composite section (Suganuma et  al. 2015). �e Byk-E 

tephra bed consists of white, glassy, fine-grained ash and 

has 1–3 cm in thickness (Kazaoka et al. 2015).

In the present study, a suite of rock samples for pale-

omagnetic and oxygen isotopic analyses was collected 

from the Yoro-River and Yoro-Tabuchi sections of the 

main part of the Chiba composite section (Fig. 2) located 

at 35°17.66′ N, 140°8.79′ E, which outcrops on the gorge 

walls of the Yoro-River and along a branch creek of the 

Yoro-River. �e Yoro-River section was used be called as 

the “Tabuchi” section (Kazaoka et al. 2015; Nishida et al. 

2016; Suganuma et al. 2015). Since we newly investigated 

and sampled from the section along a branch creek of the 

Yoro-River, we named the section as “Yoro-Tabuchi” sec-

tion and renamed the Tabuchi section as “Yoro-River” 

section. 

Mini-cores with 1  in. diameters were collected at 213 

horizons with a 10-cm stratigraphic interval using a port-

able engine drill and covering a 29-m succession across 

the Byk-E tephra bed (Fig.  2). All mini-cores were ori-

ented with a magnetic compass before being removed 

from the outcrop. Each mini-core was cut into approxi-

mately 2-cm-long specimens. �e samples for the oxy-

gen isotopic analysis were collected at 72 horizons with a 

20-cm stratigraphic interval covering an 18-m succession 

(Fig. 2). Sandstones were avoided for the sampling.

Paleomagnetic and rock‑magnetic measurements

To determine the grain size, the composition of the mag-

netic materials, and the stability for thermal demagneti-

zation (�D) analysis, the following rock-magnetic and 

paleomagnetic measurements were taken in addition to 

the previous paleomagnetic studies conducted by Suga-

numa et al. (2015).

Before any other measurements were taken, low-field 

magnetic susceptibility (volumetric) measurements were 

taken on all specimens using a Kappabridge suscepti-

bility meter (KLY-3; AGICO, Brno, Czech Republic) at 

Ibaraki University. �e natural remanent magnetiza-

tion (NRM) was measured using a three-axis cryogenic 
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magnetometer (SRM-760R; 2G Enterprises, USA) 

installed in a magnetically shielded room at the National 

Institute of Polar Research (NIPR). Stepwise alternating 

field demagnetization (AFD) was performed in 2.5- to 

10-mT increments up to 80 mT using an AF demagnet-

izer with a set of static 3-axis AF coils installed on the 

magnetometer. Stepwise thermal demagnetization (�D) 

was performed in 20–50  °C increments up to 700  °C 

using thermal demagnetizers (TDS-1; Natsuhara-Giken, 

Japan) at the NIPR.

To evaluate the magnetic grain concentrations in a 

specimen, remanence after the acquisition of anhyster-

etic remanent magnetization (ARM) was measured. �e 

ARM acquisition was performed in a 0.03-mT DC field 

with an 80-mT AF using the SRM-760R magnetometer 

at the NIPR. �e isothermal remanent magnetization 

(IRM), regarded as saturation IRM (SIRM), was imparted 

at 1.5  T using a pulse magnetizer (MMPM-9; Magnetic 

Measurements, UK) at the NIPR. �en, IRM of 0.1 and 

0.3 T was acquired in the opposite direction of the initial 

IRM, and the S-ratio0.1T and S-ratio0.3T were calculated 

following the definition of Bloemendal et al. (1992).

Magnetic hysteresis was measured with a maximum 

magnetic field of 0.5  T for selected specimens using an 

alternating gradient magnetometer (PMC MicroMag 

2900 AGM; Lake Shore cryogenics Inc., USA) at the 

NIPR. �e ratio of saturation magnetization to saturation 

remanence (Mrs/Ms) is commonly used as a proxy for the 

magnetic grain size of ferrimagnetic particles (Day et al. 

1977). Magnetic hysteresis properties were also obtained 

using first-order reversal curve (FORC) diagrams, which 

provide enhanced mineral and domain state discrimina-

tion (Pike et al. 1999; Roberts et al. 2000; Muxworthy and 

Roberts 2007).

�ermomagnetic experiments were performed on 

selected specimens using a thermomagnetic balance 

(NMB-89; Natsuhara-Giken, Japan) at the Center for 

Advanced Marine Core Research, Kochi University. �e 

specimens were heated in air and in a vacuum from room 

temperature up to 700 °C in a field of 300 mT.

Oxygen isotope analysis

�e rock samples for the oxygen isotopic analysis were 

disaggregated primarily using Na2SO4 and partly using a 

high-voltage pulse power fragmentation system (SELF-

RAG Lab; SELFRAG AG, Switzerland) installed at the 

NIPR. �e non-magnetic fraction, including foraminif-

eral tests, was concentrated using an isodynamic sepa-

rator at Ibaraki University. We manually picked benthic 

foraminifera from the non-magnetic fraction for each 

sample. Oxygen isotopic measurements were taken with 

an MAT 253 mass spectrometer with a Kiel IV carbon-

ate device installed at the Department of Geology and 

Paleontology, National Museum of Nature and Science. 

Jcp-1 and NBS-19 were used as standards to calibrate the 

measured isotopic values to the Vienna Pee Dee Belem-

nite (VPDB). �e standard deviation of the oxygen iso-

topic measurements was calculated as 0.038‰ from 119 

measurements of NBS-19 working standard samples. We 

used Bolivinita quadrilatera and Cibicides spp., which 

were the dominant species yielded from this succes-

sion, for the isotopic measurements. Okada et al. (2012) 

reported that B. quadrilatera has δ18O values identical to 

the genus Uvigerina, which is thought to have an equilib-

rium δ18O value with the bottom water. Shackleton and 

Hall (1984) reported 0.64‰ as the average δ18O differ-

ence of Uvigerina spp. minus Cibicidoides wuellerstorfi. 

In the Chiba composite section, Suganuma et  al. (2015) 

used this value to adjust the δ18O measurements of the 

Cibicides spp., which is a genus closely related to Cibici-

doides, to those of the Uvigerina spp. because the average 

δ18O difference between them (0.74 ± 0.18‰; 95% confi-

dence limit of the average) reasonably matched the value 

reported by Shackleton and Hall (1984). We therefore 

corrected the δ18O values of the Cibicides spp. to those 

of B. quadrilatera by adding 0.64‰, in accordance with 

Suganuma et al. (2015).

Results
Rock‑magnetic characteristics

Hysteresis loops of the representative specimens exhibit 

no evidence of wasp-waisted characteristics (Fig.  3a), 

indicating there are no obvious contributions from 

superparamagnetic grains or high-coercivity magnetic 

minerals (Roberts et al. 1995; Tauxe et al. 1996). In gen-

eral, higher and lower values of Mrs/Ms correspond to 

finer and coarser magnetic grain sizes, respectively. �e 

hysteresis data fall within a limited range of magnetic 

grain sizes that correspond to pseudo-single-domain 

(PSD) sizes (Fig.  3b). FORC diagrams indicate limited 

spreading along the Bu axis and are compatible with 

fine-grained magnetite with coercivities extending up to 

~80 mT (Fig. 3c).

Suganuma et  al. (2015) reported the results of rock-

magnetic investigations, including thermomagnetic 

experiments and progressive thermal demagnetization 

on composite 3-axis IRMs (Lowrie 1990) performed on 

specimens from the Yoro-River section. Figure  4 shows 

the typical results of those rock-magnetic investiga-

tions using a specimen obtained from 315 cm below the 

Byk-E bed (drawn using data from Suganuma et al. 2015). 

According to the results, the thermomagnetic experi-

ments demonstrate that the specimen heated in air has 

a single Curie temperature at 580 °C with a pronounced 

increase between 400 and 450  °C, indicating the crea-

tion of a ferromagnetic mineral phase. However, the 
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thermomagnetic curve in the cooling process has a lower 

magnetization compared to the respective heating curve. 

�is finding indicates that the ferromagnetic or ferrimag-

netic mineral created between 400 and 450  °C was fur-

ther altered by continued heating to form a higher Curie/

Néel temperature mineral such as hematite. In contrast, 

the specimen heated in a vacuum has a single Curie/Néel 

temperature at 580 °C as well as in air but no increase in 

the magnetization between 400 and 450 °C, and the curve 

shows an increase in magnetization through the cooling 

process compared to heating. Progressive �D in air on 

composite 3-axis IRMs demonstrates a major decrease 

in intensity for the 0.03- and 0.5-T components between 

450 and 580 °C, which indicates the existence of a mag-

netic mineral with soft to medium coercivity, likely mag-

netite or low-Ti titanomagnetite. Subsequently, a small 

decrease in intensity is observed above 600  °C for all 

components. �is observation indicates that specimens 

heated in air contain a small contribution from a higher-

temperature component, such as hematite. In contrast, 

specimens heated in a vacuum show that the magneti-

zations, mostly carried by the 0.03-T and 0.5-T compo-

nents, are completely demagnetized below 580 °C, which 

indicates the dominance of magnetite. �ese results sug-

gest that the main magnetic carrier of those specimens 

from the Yoro-River section is magnetite dominant, 

except for the component that is demagnetized and/or 

decomposed by 400 °C. 

In the present study, we performed repeated ther-

momagnetic experiments in air to determine the upper 

limit temperature at which the magnetic minerals are 

not decomposed due to oxidation. For each experiment, 

the destination temperature was progressively increased 

from 300 to 500  °C at 50  °C increments to monitor the 

magnetic stability of the specimens during the heat-

ing process. �e results show that magnetizations of 

the specimens are mostly stable up to 400 °C, indicating 

that a thermal demagnetization at less than 400 °C does 

not change the magnetic mineralogy of the specimens 

(Fig. 5).

To evaluate the variation in rock-magnetic properties, 

the magnetic susceptibility (k) and the ARM susceptibility 

(k ARM) as well as the ratio of both parameters through-

out the stratigraphic sequence are shown in Fig.  6. 

Although several spikes are observed, likely correspond-

ing to tephra and/or sandy layers, these data indicate that 

the rock-magnetic characteristics are relatively homoge-

neous throughout the Yoro-Tabuchi and Yoro-River sec-

tions (Fig.  6). �e values of the S-ratios are also shown 

in Fig. 6. �e S-ratio(0.3T) exhibits a high average value of 

more than 0.96 with little fluctuation indicating that the 

magnetic grains mostly consist of low coercivity miner-

als like magnetites throughout the sections. �is finding 

is consistent with the results of the thermomagnetic and 

the 3-axis IRM experiments. In contrast, the S-ratio(0.1T) 

exhibits a little fluctuation with an average value of 

about 0.78. �e fluctuation seems to change coherently 

with the k/kARM ratio, suggesting that the S-ratio(0.1T) 

is influenced by the magnetic grain size as well as the k/

kARM is. Although a little fluctuation observed on the 
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S-ratio(0.1T), the range of variations (standard deviation) 

is confined only within 7% of the average value. �ose 

observations on the S-ratios suggest that the sediments 

from the Yoro-River and the Yoro-Tabuchi sections have 

a quite homogeneous rock-magnetic property in terms of 

magnetic mineralogy and the grain size.

Remanent magnetization

Examples of the stepwise alternating field and ther-

mal demagnetization (AFD and �D) results are shown 

with Zijderveld diagrams (Zijderveld 1967) in Fig. 7a–e. 

�e results of AFD after �D at 300  °C are also shown 

in Fig.  7c, f. �e stepwise �D analysis (up to 700  °C, 

with 10–50  °C temperature increments) shows that sev-

eral specimens, especially from the low-paleointensity 

intervals shown later, do not have components of char-

acteristic remanent magnetization (ChRM) that decay 

toward the origin (Fig. 7e). In contrast, the AFD analysis 

(up to 80 mT) after the �D at 300  °C appears to effec-

tively extract a characteristic component that decays 

toward the origin (Fig.  7f ). �is finding indicates that 

some of the specimens become unstable for �D analy-

sis at temperatures higher than 300 °C, which is consist-

ent with the thermomagnetic experiments exhibiting an 

unstable magnetic feature above 400  °C. Characteristic 

remanent magnetization (ChRM) directions, calculated 

using principal component analysis (Kirschvink 1980), 

are deduced using data after the hybrid demagnetization 

method (AFD after �D at 300 °C). �e ChRM directions 

are plotted in Fig. 6 with the AFD at 20 mT and the �D 

at 300 °C. �e maximum angular deviation (MAD) asso-

ciated with each ChRM calculation generally remains 

below 10°, although it exhibits a much higher value in 

some instances. �erefore, we avoided using ChRMs with 
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MADs greater than 15° for the subsequent discussion. 

�e AFD directions show that both inclination and dec-

lination appear to reverse polarity at approximately 2 m 

below the Byk-E tephra, as previous studies have found 

(Niitsuma 1971; Okada and Niitsuma 1989). In contrast, 

the hybrid ChRMs, similar to but less scattered than the 

�D directions, show the polarity reversal at approxi-

mately 1–2  m above the Byk-E tephra, which is almost 

consistent with Suganuma et  al. (2015) (Fig.  6). Inclina-

tions and declinations from the ChRMs distributed for 

normal and reversed polarity regions are antipodal in a 

broad sense, which indicates that the Yoro-Tabuchi and 

Yoro-River sections preserve reliable primary magnetiza-

tions through the M–B boundary (Fig. 6). Although, the 

averages of declination and inclination of the ChRMs 

from the reversed polarity interval, where the intensities 

are strong enough, are around 160° and −40°, respec-

tively. �is indicates that a tectonic rotation and incli-

nation error can be supposed. �e Kanto region, central 

part of the Honshu island, including the Boso Peninsula 

has supposed to be undergone a clockwise rotation at 

around 1  Ma, which is caused by a collision of the Izu 

massif to the Honshu island, and after 1 Ma, no system-

atic tectonic rotation has been detected (e.g., Koyama 

and Kitazato 1989). If the rotation effect remains on the 

Chiba composite section, the average declination should 

be more than 180° in opposite to our result. �is sug-

gests that the dipole moment has possibly behaved as 

non-“axial dipole” likely to be prepared the reversal. To 

evaluate precisely the tectonic rotation and/or inclination 

error effects, we need to have paleomagnetic data from 

much wider horizon avoiding reversal-related intervals, 

which should be done as a future work. In this study, we 

assume that any effect due to a tectonic rotation and/or 

inclination error is negligible in our record.

�ese data indicate that a remarkably deep PDRM lock-

in reported by Okada and Niitsuma (1989) most likely 

originated from an overprint of magnetization due to the 

formation of secondary magnetic mineral under the sedi-

ment surface. �us, the �D analyses at 300 °C are effec-

tive for removing the secondary component, indicating 

that the deeper M–B boundary horizons reported by pre-

vious studies (Niitsuma 1971; Okada and Niitsuma 1989; 

Aida 1997) should be revised by the data represented in 

this study. Accordingly, a detailed VGP path for the Yoro-

Tabuchi and Yoro-River sections was established at a 

10-cm resolution and clearly identifies the geomagnetic 

polarity reversal (Fig. 9a).
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Fig. 6 Remanent magnetization and rock-magnetic properties of samples from the Yoro-River and Yoro-Tabuchi sections. From top to bottom, 

relative paleointensity, declination, inclination, maximum angular deviation (MAD) values, the S-ratios, the ratio of ARM susceptibility (k ARM) to mag-

netic susceptibility (k), and k (red) or k ARM (blue) are shown. Shading represents the polarity transition zone of the M–B boundary. All the properties 

were derived from the all (213) sample horizons except for the S-ratios which were from the selected 52 horizons (Additional file 1)
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Relative paleointensity

�e concentration-dependent parameters, including k 

and k ARM, all vary by a factor of less than 4; the mag-

netic grain-size-dependent parameter k/k ARM varies 

by a factor of less than 2. �e relatively constant concen-

tration and grain size of the magnetic grains satisfy the 

criteria suggested for the construction of relative paleoin-

tensity proxies (e.g., Tauxe 1993). �e magnetic-concen-

tration-sensitive parameters, ARM and k, are often used 

to normalize the NRM for constructing paleointensity 

proxies (e.g., Valet 2003; Suganuma et  al. 2008, 2009). 

However, the low-temperature component is thought to 

be a secondary acquired “noise” with respect to the pri-

mary magnetic signal, as shown by rock-magnetic experi-

ments. In this study, we use the ARM after �D at 300 °C 

as a normalizer for the concentration of magnetic grains 

that carries a primary signal to avoid the secondary low-

temperature component. �e ratio of NRM300/ARM300 

(both proxies are coercivity fractions between 30 and 50 

mT for the NRM and ARM vectors after thermal demag-

netization at 300 °C) is used as a paleomagnetic paleoin-

tensity proxy. Although a similar method was used by 

Wu et  al. (2015), they used magnetic susceptibility as a 

normalizer. �e uppermost diagram of Fig.  6 displays a 

prominent low in the relative paleointensity proxy at the 

directional change zone of the M–B boundary (indicated 

by a shaded bar).

Oxygen isotope curve and age model

Marine oxygen isotope records of the Kokumoto Forma-

tion by Pickering et  al. (1999) and Okada and Niitsuma 

(1989) revealed a continuous sedimentary record from 

MIS 21 to MIS 18 with glacial and interglacial cycles 

corresponding to sandstone- and siltstone-dominated 

units, respectively. Suganuma et al. (2015) established an 

age model for the Chiba composite section, which was 

deduced by a comparison between a benthic δ18O record 

with 1-m stratigraphic resolution and an Atlantic ben-

thic δ18O record (U1308; Channell et  al. 2010), indicat-

ing that the sedimentation rates during the high-stand 

period of MIS 19, including the M–B boundary, became 

quite low—down to 0.32 m/kyr compared to other hori-

zons that reach up to 3 m/kyr. �is finding suggests that 

a δ18O record with a much higher time resolution would 

be needed to reconstruct a reliable age model, especially 

during the high-stand period of MIS 19. To meet this 

demand, we obtained a new 20-cm stratigraphic resolu-

tion benthic δ18O record from the Yoro-River and Yoro-

Tabuchi sections (Additional file 2). We used this record 

combined with the record from Suganuma et al. (2015) to 

establish a new age model for the Chiba composite sec-

tion. As a target curve to compare with our record, we 

selected an astronomically tuned eustatic sea level curve 

deduced by using benthic foraminiferal δ18O and Mg/

Ca ratios of the ODP 1123 cores from the South Pacific 

(Elderfield et al. 2012) to avoid local δ18O variations due 

to changes in regional seawater temperature. Accord-

ing to the visual correlation between the two curves, we 

assigned 6 tie points where the sea level curve exhibits 

peaks or troughs to establish a more reliable age model 

for the Chiba composite section (Fig.  8; Table  1). �is 

age model matches quite well with that of Suganuma 

et  al. (2015), except for the transgression and the high-

stand part of MIS 19, where the resolution of the δ18O 

record from the Yoro-River and Yoro-Tabuchi sections 

is substantially improved. �e resultant age model and 

the deduced sedimentation rates are shown in Fig. 8 and 

indicate that the sedimentation rates basically decrease 

in the high-stand periods and drastically increase in the 

low-stand and regression periods. �ose observations are 

thought to be reasonably explained by a sequence strati-

graphic interpretation as follows: A high stand providing 

an additional accommodation place for sediments yields 

a reduced sedimentation rate on the slope and the basin 

floor, and a low stand and regression providing move-

ment ahead of a sediment body yields an increased sedi-

mentation rate on the slope and the basin floor. �is type 

of phenomenon is also seen in the variation of sedimen-

tation rates between the interglacial and glacial cycles for 

the Kazusa Group. Pickering et  al. (1999) showed that 

the average sedimentation rates for the interglacial and 

glacial cycles from MIS 33 to MIS 17 are 2.1 ± 1.4 and 

4.3 ± 2.8 m/kyr, respectively. Although these data could 

not show a variation in sedimentation rates during an 

interglacial period due to insufficient resolution, a com-

parable variation in sedimentation rates observed in this 

study within an interglacial period cannot be excluded. 

�e M–B boundary is detected in the interval showing 

a sedimentation rate of 61  cm/kyr, which is a relatively 

low rate compared to other parts of the Chiba composite 

section, but it might still be high enough to minimize the 

lock-in effect (Suganuma et al. 2010) and to reconstruct 

a high-resolution paleomagnetic record during the M–B 

polarity transition.

Discussion
Matuyama–Brunhes polarity at the Yoro‑River 

and Yoro‑Tabuchi sections and the VGP path

�e M–B boundary for the Kokumoto Formation and 

detailed geomagnetic behavior during the polarity transi-

tion have been reported by Niitsuma (1971) and Okada 

and Niitsuma (1989). In these reports, the M–B bound-

ary was considered to be 1–2 m below the Byk-E tephra. 

In addition, Tsunakawa et  al. (1999) reconstructed the 

geomagnetic field variability during the M–B polarity 

transition by applying a deconvolution technique using 
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Table 1 The age model derived from a comparison between the oxygen isotopic record from the Chiba composite section 

(this study and Suganuma et al. 2015) and the record of sea level change by Elder�eld et al. (2012)

Sample Thickness from Byk‑E (m) Thickness without sand (m) Age (ka) Sedimentation rate (m/kyr)

KG03 65.90 63.23 749 4.74

KG27 28.00 28.00 757 2.60

YG05 4.60 4.60 766 0.61

TB15 −1.45 −1.45 776 0.46

TB83 −8.30 −8.30 791 2.33

YW02 −19.94 −13.92 796
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a continuous paleomagnetic record from the Kokumoto 

Formation. �ese paleomagnetic data were obtained 

using only AF demagnetization techniques; however, 

Suganuma et  al. (2015) indicated that these previous 

studies were not successful in removing the overprint on 

the magnetic signals based on thermal demagnetization 

for the specimens from same section and concluded that 

their VGP records needed revision.

In the present study, a detailed VGP path from the 

Yoro-River and Yoro-Tabuchi sections was newly estab-

lished at 10-cm resolution across the M–B boundary 

(Figs.  6, 9). �e VGPs cluster at high latitudes in the 

Southern Hemisphere from the bottom of the succession 

up to 0.25 m. �en, the VGP swings to high latitudes in 

the Northern Hemisphere at 1.95 m after a rebound-like 

feature at 0.85 m. Subsequently, the VGP exhibits several 

rebounds between the middle latitudes in the Northern 

Hemisphere and equatorial regions and then finally set-

tles in the north polar region at a horizon higher than 

11.5  m. According to these observations, we define the 

zone between 0.25 and 1.95  m, where the VGP swings 

from the southern to the northern high-latitude region, 

as the directional transition zone of the M–B boundary 

(shown as a gray bar in Fig.  5). �e directional transi-

tion zone can be called the “polarity switch” of the M–B 

boundary (Valet et al. 2012). We also define the midpoint 

of this zone in the Yoro-River section, which appears 

1.10 m above the Byk-E tephra, as the M–B boundary at 

this section from a magnetostratigraphic point of view. 

�e horizon of the M–B boundary in the Yoro-River sec-

tion is almost consistent with that shown in a boring core 

from the vicinity of this section (Hyodo et al. 2016) and 

in the Yanagawa section (Suganuma et al. 2015).

�e VGP path for the M–B boundary from the Yoro-

River and Yoro-Tabuchi sections appears to be one of 

the most detailed illustrations of the geomagnetic polar-

ity reversal obtained from marine sediments. �is path 

shows that the VGP swings back and forth several times 

after the “polarity switch.” �ese swings are thought 

to be “rebounds” after the “polarity switch” (e.g., Valet 

et  al. 2014) corresponding to the M–B boundary. �ese 

rebound-like VGP swings contain clustering features in 
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South Asia or the equatorial western Pacific and in North 

America. �e VGP clustering in North America is likely 

to be consistent with that observed in marine sediment 

cores from the North Atlantic Ocean 983B (Channell and 

Kleiven 2000) and the Indian Ocean V16-58 (Clement 

and Kent 1991) as well as in the Tahitian lavas (Hoffman 

and Mochizuki 2012).

Relative paleointensity and comparison with other records

�e relative paleointensity record from the Yoro-River 

and Yoro-Tabuchi sections plotted against age is shown 

in Fig. 10. �is record contains a significant paleointen-

sity minimum near the M–B boundary, which indicates 

that the geomagnetic field was weak, as expected, dur-

ing the polarity transition, as shown in other studies (e.g., 

Valet et al. 2005).

Figure  10 also compares our relative paleointensity 

record with the MD90-0961 record from the Indian 

Ocean (Valet et al. 2014), the ODP Site 983 and the IODP 

Site U1308 from the Iceland Basin in the North Atlantic 

(Channell et al. 1998, 2010; Channell and Kleiven 2000), 

and the paleointensity stack curve of PISO-1500 (Chan-

nell et  al. 2009). �e 10Be data from MD97-2143 (Suga-

numa et  al. 2010), MD90-0961 (Valet et  al. 2014), and 

the EPICA Dome C (Raisbeck et al. 2006; Dreyfus et al. 

2008) are also shown for comparison. Although small 

discrepancies exist in the ages and sharpness of the peaks 

and valleys, these paleointensity records generally show 

similar long-term variations and patterns. A distinctive 

common feature of these records is a paleointensity low 

at approximately 770–780 ka, which corresponds to the 

M–B boundary. �ese consistencies, including the hori-

zons of the M–B boundary and its reversal interval in 

these records, support the relevance of the oxygen iso-

tope age model for the Chiba composite section.

Unfortunately, a recovery of the paleointensity to the 

normal level seen before the reversal is not observed in 

our record due to a shortage of sampling horizons in the 

upper section. However, the generally observed com-

mon variations seen in all relative paleointensity records 

from widely separated areas with different sedimentary 

responses to climate changes should represent the true 

geomagnetic field behavior.

The M–B boundary age

Based on our age model, an age of 771.7  ka is assigned 

to the M–B boundary in the Yoro-River and Yoro-Tabu-

chi sections of the Chiba composite section (Fig. 8). �e 

duration of the M–B directional transition zone observed 

between 0.25 and 1.95  m in our record is estimated to 

be 2.8 kyr, which is consistent with those of high-resolu-

tion marine sedimentary records from the North Atlan-

tic Ocean (2.9–6.2 kyr) (Channell et al. 2010). �e M–B 

boundary “precursor” (Hartl and Tauxe 1996), which 

predates the M–B boundary by ~18 kyr (e.g., Valet et al. 

2014), is not observed in our record.

�is M–B boundary age of 771.7  ka is apparently 

younger than the frequently cited astrochronological 

age of 777.8–780.1  ka for the M–B boundary based on 

marine records of low depositional rate (e.g., Shackleton 

et al. 1990; Lisiecki and Raymo 2005; Pilans and Gibbard 

2012). In contrast, Suganuma et  al. (2015) recently pre-

sented a new U–Pb zircon age of 772.7 ± 7.2 ka from the 

Byk-E tephra and gave an age of 770.2 ±  7.3  ka for the 

M–B boundary based on the depositional time interval 

between the tephra and the M–B boundary. According 

to our new age model, the sedimentation rate of the sec-

tion including the M–B boundary is deduced as 61 cm/

kyr, which provides an age for the VGP midpoint horizon 

of the directional transition zone that is 1.8 kyr younger 

than the depositional age of the Byk-E tephra. Based on 

this age model, we recalculate the M–B boundary age 

using the U–Pb zircon age of Byk-E as 770.9  ±  7.3  ka 

(error includes uncertainty in orbital tuning), showing 

remarkable consistency with the M–B boundary age of 

771.7 ka derived by the correlation of the oxygen isotope 

records.

�e age of 771.7  ka is also consistent with the astro-

chronological ages obtained from the high-sedimen-

tation-rate records in the North Atlantic (773.1  ka; 

Channell et al. 2010) and in the equatorial Indian Ocean 

(772  ka; Valet et  al. 2014). Recent reports of the ages 

of the 10Be flux anomaly from marine sediments in the 

equatorial Indian (772  ka; Valet et  al. 2014) and Pacific 

(770  ka; Suganuma et  al. 2010) Oceans are also con-

sistent with our M–B boundary age estimate. Because 

the paleomagnetic records from sections with higher 

(See figure on next page.) 

Fig. 10 Comparison of the relative paleointensity records from the Yoro-Tabuchi and Yoro-River sections with other published paleointensity and 
10Be data across the M–B boundary. The relative paleointensity records are from this study, MD90-0961 (Valet et al. 2014), ODP Site 983 (Channell 

et al. 1998; Channell and Kleiven 2000), IODP Site U1308 (Channell et al. 2010), and PISO-1500 (Channell et al. 2009). The 10Be data are from MD98-

2143 (Suganuma et al. 2010), MD90-0961 (Valet et al. 2014), and EPICA Dome C (Raisbeck et al. 2006; Dreyfus et al. 2008). The 10Be flux from the 

EPICA Dome C ice core is corrected to Antarctic Ice Core Chronology 2012 (Bazin et al. 2013). Note that the 10Be flux records are inverted. This inver-

sion allows us to indicate the age of the paleomagnetic M–B boundary for each record. The M–B boundary ages and transitional intervals (duration 

of the M–B transition) from MD90-0961 (green), Site U1308 (orange), Site 983 (red), and the Yoro-Tabuchi and Yoro-River sections (blue) are shown by 

arrows and bars
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sedimentation rates are thought to be less affected by the 

PDRM lock-in (e.g., Suganuma et  al. 2010, 2011), more 

reliable records with higher sedimentation rates may pro-

vide younger M–B boundary ages.

A rapid polarity transition and older M–B bound-

ary ages have recently been reported (Sagnotti et  al. 

2014, 2016) for the last reversal from a paleolacustrine 

sequence from the central Apennines, Italy. However, 

since continental sediments likely behave differently 

than marine environments, further studies would be 

needed to compare the reversal timing between the con-

tinental and marine records. Although M–B boundary 

age and reversal duration may depend on the site loca-

tion or on the local non-dipole field configuration, fur-

ther investigation of suitable stratigraphic sequences, 

particularly from marine sediments, is still needed to 

understand the exact timing and nature of the geomag-

netic field reversal.

Conclusions
Despite a long history of paleomagnetic studies, no con-

sensus has been reached on the nature of geomagnetic 

field reversals. In addition, refining the chronology for 

geomagnetic polarity reversals, such as the M–B bound-

ary, is very important for precise correlations among 

sediments, ice cores, and lavas. Because the geomagnetic 

polarity reversal is a relatively rapid process in terms 

of the geological timescale, polarity transition records 

with a higher time resolution are essential to address 

these topics. In this article, we report a high-resolution 

paleomagnetic and oxygen isotope record for the M–B 

polarity transition from a continuous marine succes-

sion in the Yoro-River and Yoro-Tabuchi sections of the 

main part of the Chiba composite section in the Koku-

moto Formation of the Kazusa Group in Japan. Rock-

magnetic experiments indicate that magnetic carriers 

contained in the samples are mainly composed of PSD-

sized magnetite. �e thermomagnetic experiments show 

that magnetizations of the samples are mostly stable up 

to 400  °C. �e variations in rock-magnetic properties 

are relatively homogeneous throughout the Yoro-River 

and Yoro-Tabuchi sections. Progressive alternating field 

demagnetization after thermal demagnetization at 300 °C 

reveals a ChRM direction change that indicates a clear 

“polarity switch” corresponding to the M–B boundary 

in the section. �e relative paleointensity records also 

show a significant paleointensity minimum near the 

M–B boundary. A newly obtained high-resolution oxy-

gen isotope chronology indicates that the M–B boundary 

is located in the middle of MIS 19 and yields an age of 

771.7 ka for the boundary. �is new M–B boundary age 

is consistent with the findings based on the latest astro-

nomically tuned high-resolution marine sedimentary 

records, Antarctic ice cores, and the recalculated age of 

770.9 ± 7.3 ka deduced from the U–Pb zircon age of the 

Byk-E tephra using the new age model based on oxygen 

isotopes. �is record shows one of the most detailed 

behaviors of the M–B polarity transition that has been 

obtained thus far from marine sediments and will there-

fore be key for understanding the dynamics of the geo-

magnetic dynamo. In addition, the Chiba composite 

section is one of the candidate sites for the Lower–Mid-

dle Pleistocene Boundary GSSP; therefore, this record 

has certain merit for calibrating the geological timescale, 

including the use of methods such as astronomical tun-

ing, U–Pb dating, and magnetostratigraphy for the M–B 

boundary.
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