
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 358, Number 10, October 2006, Pages 4225–4250
S 0002-9947(06)03960-2
Article electronically published on May 9, 2006

PALEY–WIENER THEOREMS FOR THE DUNKL TRANSFORM

MARCEL DE JEU

Abstract. We conjecture a geometrical form of the Paley–Wiener theorem
for the Dunkl transform and prove three instances thereof, by using a reduction
to the one-dimensional even case, shift operators, and a limit transition from
Opdam’s results for the graded Hecke algebra, respectively. These Paley–
Wiener theorems are used to extend Dunkl’s intertwining operator to arbitrary
smooth functions.

Furthermore, the connection between Dunkl operators and the Cartan mo-
tion group is established. It is shown how the algebra of radial parts of in-
variant differential operators can be described explicitly in terms of Dunkl
operators. This description implies that the generalized Bessel functions coin-

cide with the spherical functions. In this context of the Cartan motion group,
the restriction of Dunkl’s intertwining operator to the invariants can be inter-
preted in terms of the Abel transform. We also show that, for certain values
of the multiplicities of the restricted roots, the Abel transform is essentially
inverted by a differential operator.

1. Introduction and overview

In recent times the study of special functions associated with root systems has
developed to a considerable degree. Starting with a number of conjectures by Mac-
donald, and the work of Heckman and Opdam on multivariable hypergeometric
functions in the late 1980’s, the development of the theory was greatly enhanced
by the introduction of rational Dunkl operators by Dunkl [7]. Through various
intermediate steps of generalization, these operators can even be said to have ulti-
mately provided crucial building blocks for Cherednik’s work on double affine Hecke
algebras and the q-Macdonald conjectures.

Originally, before the introduction of Dunkl operators, the idea when studying
special functions related to root systems was to consider root multiplicities in the
theory of spherical functions on Lie groups as parameters, and then to develop a
theory for Weyl group invariant objects in this more general situation, without the
aid of the presence of the group. It was this point of view which underlay the
Macdonald conjectures and which led Heckman and Opdam to the development
of their theory of hypergeometric functions in higher dimension. One of the main
technical problems in this context is the description of the generalized radial parts of
invariant differential operators. Apart from an explicit formula for the generalized
radial part of the Laplacian—an expression which was in fact the starting point for
Heckman and Opdam—the other operators remain somewhat intangible.
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This problem disappeared when Dunkl found the operators which have come to
bear his name. They are parameterized deformations of the ordinary derivatives, in-
volving a finite reflection group, for which it is still relatively easy to study the spec-
tral problem and develop the theory of the corresponding Fourier transformation—
the Dunkl transform. The invariant part of the theory then answers questions in
a generalized theory of spherical functions—for the Cartan motion group, to be
precise—as described above. The operators under consideration being explicitly
given, it is actually easier to study the general context of Dunkl operators, and
then specialize to invariant objects later on, than it is to restrict oneself to the
invariants from the outset. The same holds true for the modification of Dunkl op-
erators into Cherednik operators, which gives rise to a representation of the graded
Hecke algebra [28] and the non-invariant “envelope” of the work of Heckman and
Opdam on hypergeometric functions.

Quite remarkably, the theory of spherical functions in analysis on Lie groups can
in a number of situations thus be regarded as only the invariant part of a general
non-invariant theory for Dunkl-type operators. At the time of this writing, it is
unknown to the author whether there is an underlying reason for this phenomenon.

In view of all this, these Dunkl operators and their modifications have attracted
considerable attention in various areas of mathematics and mathematical physics
during the last decade. To get an impression of their influence on the development
of special functions associated with root systems—also in the general non-invariant
context—we refer to, e.g., [18], [29], [16], [31]. For their use in the study of integrable
quantum many body systems of Calogero–Moser–Sutherland type we refer to [5]
and the bibliography therein.

In this paper, we are mainly concerned with the further development of the
general theory of the Dunkl transform, notably with the Paley–Wiener theorem. In
addition, we describe the relation between Dunkl operators and the Cartan motion
group. We will now turn to an overview of the contents of this paper with regard
to these two subjects.

The first substantial results for the Dunkl transform, i.e., the Plancherel the-
orem and inversion theorem, were obtained by Dunkl [10] and the author [22].
Two Paley–Wiener theorems were established in [23, Chapter 3] (unpublished), of
which this paper is an extension. Whereas the proof of the inversion theorem in
[22] is partly a formal argument based on various symmetry properties of the eigen-
functions of Dunkl’s operators, it will become apparent below that quite some more
work is required in Paley–Wiener theory, due to the lack of adequate asymptotic re-
sults in the spectral domain. We will establish three Paley–Wiener theorems, each
of these being a special case of a conjectured geometrically more precise general
Paley–Wiener theorem, which can be found below as Conjecture 4.1. Each version
requires a different technique. The first and most general version relies on a reduc-
tion to the one-dimensional even case—where asymptotic results are available—and
some non-trivial results from general representation theory, and from the represen-
tation theory of the orthogonal group. The second version, which is proved for a
discrete set of parameters only, is established through shift operators. Finally, the
third version, which we prove for Weyl groups, follows from a limit transition from
results of Opdam [28]. This limit transition has some interest in itself, and for a
discrete set of parameters its validity has also been established by Ben Säıd and
Ørsted; cf. [2] and [3].
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Turning to the Cartan motion group (where the material is taken from [23]),
we will show how the algebra of radial parts of invariant differential operators can
be described explicitly in terms of Dunkl operators with suitable values of the
parameters. From this description it is easy to see that the invariant components
of the eigenfunctions of the Dunkl operators are precisely the spherical functions.
We can then also describe Dunkl’s intertwiner operator, or rather its restriction
to the invariants, in terms of the Abel transform. For certain multiplicities, the
results on shift operators imply that this Abel transform is essentially inverted by
a differential operator.

The organization of this paper is as follows. In Section 2 we establish the neces-
sary general definitions and notations, and we recall some previous results. Section 3
contains a number of useful formulas. We do not claim any originality in particular
for these formulas, but we believe that the proofs are considerably simpler than
the ones in the existing literature. The conjectured Paley–Wiener theorem can
be found in Section 4, as can the proven three instances of it that were described
above. These Paley–Wiener theorems are then used in Section 5 to extend Dunkl’s
intertwining operator to the smooth functions. To conclude, Section 6 contains the
details of the connection between Dunkl operators and the Cartan motion group,
including the results on the Abel transform.

2. Notations and previous results

Let a be a real vector space of finite dimension N which is equipped with an
inner product ( . , . ), inducing a Lebesgue measure dx on a. We let aC = a ⊗R C

denote the complexification of a, and we extend the form ( . , . ) to a bilinear form
on aC, again denoted by ( . , . ). Both a and aC can be identified with their duals via
( . , . ); for ξ in a or aC the corresponding linear functional is then denoted by ξ∗.
Define the orthogonal group O(N) = O(a, ( . , . )). The norm | . | which is induced
on a by ( . , . ) extends to an O(N)-invariant norm on aC, also denoted by | . |. There
is a natural action of O(N) on functions:

(g · f)(x) = f(g−1x).

Let G ⊂ O(N) be a finite (real) reflection group with corresponding root system
R. We may and will assume that (α, α) = 2 for all α ∈ R. If α ∈ R, then rα is
the orthogonal reflection in the hyperplane perpendicular to α. We choose and fix
a positive system R+ in R.

A function k : R �→ C is called a multiplicity function if k is G-invariant. We
write k ≥ 0 if all values of k are non-negative, with analogous notations Re k ≥ 0
and k > 0. We let K denote the vector space of multiplicity functions on R.

Let k ∈ K and ξ ∈ a. Then the corresponding Dunkl operator Tξ(k) is defined
by

Tξ(k) = ∂ξ +
∑

α∈R+

kα(α, ξ)M(α∗)−1(1 − rα).

Here ∂ξ (ξ ∈ a) is the (unnormalized) directional derivative operator; we have used
the notation Mf for pointwise multiplication by a function f .

The definition of the operators is independent of the choice of the positive sys-
tem. The Tξ(k) leave the polynomials P invariant, mapping the homogeneous
polynomials Pn of degree n into Pn−1. Furthermore, the spaces C∞(a) of smooth
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functions, D(a) of compactly supported smooth functions and S(a) of rapidly de-
creasing smooth functions are also invariant [22, Lemma 2.1].

Quite remarkably, the Tξ(k) form a commutative family: Tξ(k)Tη(k)=Tη(k)Tξ(k)
for all ξ, η ∈ a and all k ∈ K, as was proved by Dunkl [7]; see [14] for a different
proof. As a consequence of the commutativity the map ξ �→ Tξ(k) extends to P;
for p ∈ P the corresponding operator is then denoted by Tp(k). The important
k-Laplacian T| . |2(k) is denoted by ∆k.

For k ≥ 0, Dunkl [8] has constructed a linear isomorphism Vk : P �→ P, homoge-
neous of degree 0, such that Vk1 = 1 and Tξ(k)Vk = Vk∂ξ (ξ ∈ a). An alternative
approach for more general k can be found in [14]. A concrete description of this
intertwiner operator Vk is presently still unknown, with the exception of the one-
dimensional case [8] and the case A2 [11]. Significant abstract results were obtained
by Rösler [30], who showed, amongst others, that Vk is for k ≥ 0 a positive operator
which can be described in terms of measures.

Let λ ∈ aC and consider the simultaneous eigenfunction problem

(2.1) Tξ(k)f = (λ, ξ)f (ξ ∈ a).

This problem was studied first by Dunkl [9] for k ≥ 0; later Opdam [27] treated the
general case. One more definition is needed to state the general result: a multiplicity
function k ∈ K is said to be singular if the simultaneous kernel of {Tξ(k)}ξ∈a in P
is non-trivial, i.e., if it properly contains the constants. We will use the self-evident
notations Ksing and Kreg.

The set Ksing has been determined in all cases [14], and some partial information
about the simultaneous kernel for singular multiplicities can also be found in [loc.
cit.]. The general nature of the simultaneous kernel for singular multiplicities is,
however, still unknown, with the exception of the case An of the symmetric groups
which has been solved by Dunkl [12, 13]. In this paper we will mainly be concerned
with multiplicities satisfying Re k ≥ 0. Such multiplicities are regular, as is most
easily seen by considering the operator

∑N
i=1 e∗i Tei

(k) for an orthonormal basis
{e1, . . . , eN} of a [14].

For regular multiplicities, the result from [27] for the eigenfunction problem is
as follows.

Theorem 2.1. For all k ∈ Kreg the eigenfunction problem (2.1) has a 1-dimension-
al solution space for all λ ∈ aC. This space contains a (unique) function ExpG(λ, k, .)
such that ExpG(λ, k, 0) = 1. Furthermore, ExpG(λ, k, . ) extends to a holomorphic
function on aC, and

ExpG( . , . , . ) : aC �→ C

is a meromorphic function with poles precisely in Ksing.

In order to be able to define the corresponding Fourier transform—the Dunkl
transform—for sufficiently general functions, one needs non-trivial bounds for the
eigenfunctions. It is shown in [22] that for Re k ≥ 0 one has

(2.2) |ExpG(λ, k, z)| ≤
√
|G| exp(max

g∈G
Re (gλ, z)) (λ, z ∈ aC),

in particular

(2.3) |ExpG(iλ, k, x)| ≤
√
|G| (λ, x ∈ a).

If k ≥ 0, then the constant
√
|G| in (2.2) and (2.3) can in fact be improved to 1,

as a consequence of Rösler’s results on the intertwiner operator [30].
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Following Dunkl, we define for Re k ≥ 0 the G-invariant complex-valued weight
function wk =

∏
α∈R+

|α∗|2kα . The Tξ(k) are anti-symmetric with respect to this
weight function: if f ∈ S(a) and g is smooth such that both g and Tξ(k)g are of at
most polynomial growth, then

(2.4)
∫

a

(Tξ(k)f) gwk dx = −
∫

a

f (Tξ(k)g)wk dx.

In view of (2.3), the Dunkl transform for Re k ≥ 0 is meaningfully defined on
L1(a, |wk(x)|dx) as

Dkf(λ) =
1
ck

∫
a

f(x)ExpG(−iλ, k, x)wk(x) dx (λ ∈ a, f ∈ L1(a, |wk(x)|dx)).

Its alleged inverse is

Ekf(x) =
1
ck

∫
a

f(λ)ExpG(iλ, k, x)wk(λ) dλ (x ∈ a, f ∈ L1(a, |wk(λ)| dλ)).

Here the normalizing constant ck is the Mehta integral, which is defined as

ck =
∫

a

e−
|x|2
2 wk(x) dx.

There is a closed expression for this integral; this former Macdonald conjecture
has been proved by Opdam, first for Weyl groups [26] and later for finite reflection
groups in general [27]. For our needs it suffices to know that ck �= 0 if Re k ≥ 0,
which can be proved by more elementary means [22, Corollary 4.17].

The first results for the transform, and notably a version of the Plancherel the-
orem, were obtained by Dunkl [10]. Later on, a more systematic study was under-
taken in [22]. The main properties and results are as follows.

Theorem 2.2. Let Re k ≥ 0 and ξ ∈ a. Then:

(1) DkTξ(k)f = Miξ∗Dkf (f ∈ S(a)).
(2) EkTξ(k)f = −Miξ∗Ekf (f ∈ S(a)).
(3) DkMiξ∗f = −Tξ(k)Dkf (f ∈ S(a)).
(4) EkMiξ∗f = Tξ(k)Ekf (f ∈ S(a)).
(5) Dk is a linear homeomorphism of S(a), with inverse Ek.
(6) If f ∈ L1(a, |wk(x)|dx) and Dkf ∈ L1(a, |wk(x)|dx), then DkEkf = EkDkf

= f a.e.
(7) If k≥0, then Dk maps L1(a, wk(x)dx)∩L2(a, wk(x)dx) into L2(a, wk(x)dx),

isometrically with respect to the two-norm corresponding to wk(x) dx, and
extends uniquely from L1(a, wk(x) dx) ∩ L2(a, wk(x) dx) to a unitary oper-
ator on L2(a, wk(x) dx).

Remark 2.3. The definition of Dunkl operators can be generalized to complex re-
flection groups [15].

3. Formularium

In this section we establish some useful formulas. Some of them are known from
the work of Dunkl, who based his proofs to a large extent on the existence of a
k-harmonic decomposition for polynomials [6, Theorem 1.7]. However, with the
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benefit of hindsight we can simplify some of the original proofs considerably, by
systematically exploiting the following commutator relation [7, Proposition 2.2]:

(3.1)
[
Mξ∗ ,

∆k

2

]
= −Tξ(k) (ξ ∈ a).

To start, we first note that ∆k : P �→ P is homogeneous of degree −2, hence
locally nilpotent. This enables us to define the linear automorphisms e±

∆k
2 of P.

These automorphisms will play an important part in what follows, together with
the Gaussian ψ(x) = exp(−|x|2/2). It is known [10], [22] that the Gaussian is an
eigenfunction of both Dk and Ek with eigenvalue 1.

Lemma 3.1. Let ξ ∈ a. Then for arbitrary k we have

(1) in EndC(P):
[
Mξ∗ , e−

∆k
2

]
= Tξ(k) ◦ e−

∆k
2 ;

(2) in HomC(P,S(a)): Tξ(k) ◦ Mψ ◦ e−
∆k
2 = −Mψ ◦ e−

∆k
2 ◦ Mξ∗ .

Proof. The first part follows immediately from (3.1) and the obvious fact that
[∆k, Tξ(k)] = 0. As to the second part, note that Tξ(k) ◦Mψ = Mψ ◦ Tξ(k)−Mψ ◦
Mξ∗ , as a consequence of the G-invariance of ψ. Hence

Tξ(k) ◦ Mψ ◦ e−
∆k
2 = Mψ ◦ Tξ(k) ◦ e−

∆k
2 − Mψ ◦ Mξ∗ ◦ e−

∆k
2

= Mψ ◦ Tξ(k) ◦ e−
∆k
2 − Mψ ◦

{[
Mξ∗ , e−

∆k
2

]
+ e−

∆k
2 ◦ Mξ∗

}
= Mψ ◦ Tξ(k) ◦ e−

∆k
2 − Mψ ◦

{
Tξ(k) ◦ e−

∆k
2 + e−

∆k
2 ◦ Mξ∗

}
= −Mψ ◦ e−

∆k
2 ◦ Mξ∗ . �

Repeated application of the second part of Lemma 3.1 yields the formula

(3.2) Tp(k)
{(

e−
∆k
2 q
)

ψ
}

= (−1)deg p
{

e−
∆k
2 (pq)

}
ψ,

for homogeneous p ∈ P and arbitrary q ∈ P. Taking q = 1 this implies, together
with Theorem 2.2, the following result, which is equivalent to [10, Proposition 2.1].

Corollary 3.2. If p ∈ P is homogeneous and Re k ≥ 0, then

(1) Dk(pψ) = (−i)deg p
(
e−

∆k
2 p
)

ψ.

(2) Ek(pψ) = i deg p
(
e−

∆k
2 p
)

ψ.

The second part of Lemma 3.1 also enables us to reprove the symmetry of a
bilinear form which was introduced by Dunkl [9], as follows. For p, q ∈ P, put
(p, q)k = (Tp(k)q) (0). Although it is not obvious from the definition, this bilin-
ear form on P is actually symmetric. This symmetry follows from the following
generalization by Dunkl [loc. cit.] of a result of Macdonald:

(3.3) (p, q)k =
1
ck

∫
a

(
e−

∆k
2 p
)(

e−
∆k
2 q
)

ψwk dx (Re k ≥ 0, p, q ∈ P),
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in which the right-hand side is obviously symmetric. In order to re-establish (3.3),
denote the right-hand side by [p, q]k. Now (2.4) and Lemma 3.1 imply that

[p, Tξ(k)q]k =
1
ck

∫
a

(
e−

∆k
2 p
)(

Tξ(k)e−
∆k
2 q
)

ψwk dx

=
1
ck

∫
a

−Tξ(k)
{(

e−
∆k
2 p
)

ψ
}(

e−
∆k
2 q
)

wk dx

=
1
ck

∫
a

{
e−

∆k
2 (Mξ∗p)

}(
e−

∆k
2 q
)

ψwk dx

= [Mξ∗p, q]k.

But the other form ( . , . )k also has this property: (Mξ∗p, q)k = (p, Tξ(k)q)k, as a
direct consequence of its definition. Since it is easy to see that (1, q)k = [1, q]k, an
induction with respect to deg p then proves that (p, q)k = [p , q]k, which is (3.3).

The following proposition will be used in the reduction of the proof of the Paley–
Wiener theorem, Theorem 4.10, to the one-dimensional even case.

Proposition 3.3. If Re k, Re k′ ≥ 0, then

Ek′Dk (pψ) =
(
e−

∆
k′
2 e

∆k
2 p
)

ψ (p ∈ P).

Proof. We may assume that p is homogeneous. Then Corollary 3.2 implies that

Ek′Dk (pψ) = (−i)deg pEk′

[{ ∞∑
n=0

1
n!

(
−∆k

2

)n

p

}
ψ

]

= (−i)deg p

[ ∞∑
n=0

i deg p−2n

n!
e−

∆
k′
2

{(
−∆k

2

)n

p

}]
ψ

=
(
e−

∆
k′
2 e

∆k
2 p
)

ψ. �

To conclude this section, we re-establish a formula of Heckman [17] which ex-
presses the pivotal role of the k-Laplacian ∆k:

(3.4) Tp(k) =
1
n!

(
ad

∆k

2

)n

Mp,

for p ∈ Pn. The proof in [loc. cit.] is based on representation theory for sl(2), but it
can also be seen directly, as follows. We may assume that Mp =

∏n
i=1 Mξ∗

i
. Then(

ad
∆k

2

)n

Mp =
∑
∑

ji=n

n!
j1! · · · jn!

{(
ad

∆k

2

)j1

Mξ∗
1

}
◦ · · · ◦

{(
ad

∆k

2

)jn

Mξ∗
n

}
.

But (ad ∆k)2 Mξ∗
i

= 0 as a consequence of (3.1) and the commutativity of the Tξ(k),
so the only surviving term in the summation is the one with j1 = . . . = jn = 1.
Using (3.1) once more, this proves (3.4).

4. Paley–Wiener theorems

In this section, we conjecture a geometrical form of the Paley–Wiener theorem
for the Dunkl transform, and present several theorems to support it.

Establishing notation, for S ⊂ a we let D(S) denote the smooth compactly
supported functions with support contained in S. If S is compact and non-empty,
then we define the indicator IS : a �→ R as IS(x) = maxy∈S(x, y) for x ∈ a. For
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such S, let HS be the functions on aC of Paley–Wiener type corresponding to S,
i.e., those entire functions with the property that for each integer M ≥ 0 there
exists a constant γM such that |f(λ)| ≤ γM (1 + |λ|)−M exp IS(Imλ) for all λ ∈ aC.
We then conjecture the following.

Conjecture 4.1 (Paley–Wiener conjecture). Let G be a finite reflection group. If
Re k ≥ 0 and S is a non-empty G-invariant compact convex subset of a, then Dk is
a linear isomorphism between D(S) and HS .

There is some evidence supporting this conjecture:
• The inversion theorem and [22, Corollary 4.10] show that Dk is an injective

map from D(S) into HS .
• For k = 0 the statement holds [21, Theorem 7.3.1].
• If S is a ball centered at the origin, then a reduction to the one-dimensional

even case, where asymptotics can be used, enables us to establish the state-
ment as Theorem 4.10 below.

• If the kα are all strictly positive integers, then the statement can be estab-
lished, using shift operators, as Theorem 4.11 below.

• If G is a Weyl group and S is the intersection of convex hulls of orbits,
then a limit transition from results of Opdam establishes the statement as
Theorem 4.15 below.

The main obstacle for a possible proof of the conjecture along the usual lines,
using a contour shift, is the absence of adequate asymptotic results for the Dunkl
kernel. There are some asymptotic results available [32], but these fall far short
of what is needed. It is to be expected that better results could be obtained if
more was known about Rösler’s representing measures [30], but as yet these remain
elusive. But even if much stronger asymptotic results became available, the proof
of Theorem 4.4 below seems to suggest that additional monodromy arguments may
then still be necessary.

Remark 4.2. In [40], a proof of Conjecture 4.1 if k ≥ 0 and
∑

α∈R+
kα > 0 is

presented. That proof, however, is not correct, and to our knowledge Conjecture 4.1
is at the time of writing still open.

4.1. The case of arbitrary G and Re k ≥ 0. Throughout this section, BR will
denote the closed ball in a with radius R and the origin as center. The space D(BR)
carries the usual Fréchet topology of uniform convergence of all derivatives.

Our approach of the Paley–Wiener theorem for such sets—under the assumption
that Re k ≥ 0—consists of three steps; cf. the proof of Theorem 4.10. First, we prove
the result for even functions in one dimension. Second, it is shown that this implies
the theorem for radial functions in arbitrary dimension. In the third step we finally
prove that the result for radial functions implies the theorem for general smooth
functions with support in a closed ball BR.

Remark 4.3. The special role of radial functions in the theory has been noted by
several authors [23], [41], [33], [39], e.g., the Dunkl transform of a radial function
is again radial [33]. In Paley–Wiener theory this phenomenon is encountered once
more, when reducing the radial case in arbitrary dimension to the even case in one
dimension. The one-dimensional even case can be handled by either Weyl fractional
integral operators [39] or by our approach below, which uses classical results for
the asymptotics of Bessel functions combined with a contour shift. The final step
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in our approach, from the radial to the general case, and for which a reference
to [23] was given in [39], is in a sense the deepest, since it ultimately rests on the
general theory of representations of compact groups in Fréchet spaces. Recently, an
alternative reduction to the one-dimensional case was introduced which circumvents
the inference of the general case from the radial one [36]. This reduction is based
on results for k-harmonic polynomials, and for functions supported in BR it gives
a proof of the Paley–Wiener theorem which is independent of the results in the
present paper.

Starting with the proof, the one-dimensional even case is settled in the following
theorem, where, as usual, invariance is denoted by superscripts.

Theorem 4.4. Let a be one dimensional and Re k ≥ 0. If f ∈ HZ2
BR

, then Ekf ∈
D(BR)Z2 .

Proof. Let f be as in the statement. Then obviously Ekf is an even rapidly de-
creasing smooth function. We have to show that∫ ∞

−∞
f(λ)ExpZ2

(iλ, k, x)|λ|2k dλ = 0

if x > R. Fix such x. From [10] we have

ExpZ2
(iλ, k, x) = Γ(k +

1
2
)
(

λx

2

) 1
2−k {

Jk− 1
2
(λx) + iJk+ 1

2
(λx)

}
.

Using the invariance of f we see that we are left to show that

(4.1)
∫ ∞

−∞
f(λ) (λx)

1
2−k

Jk− 1
2
(λx)|λ|2k dλ = 0.

This expression makes it obvious that there are two obstructions for a direct appli-
cation of the classical argument of shifting the contour to infinity. First, the Bessel
function has exponential growth in both the positive and negative imaginary di-
rections, and second, the weight function |λ|2k is in general not the restriction of a
holomorphic function on the upper or lower half-plane. So we proceed indirectly.

Recall the definition of the Bessel functions of the third kind:

H(1)
ν =

J−ν − e−νπiJν

i sin νπ
,

H(2)
ν =

J−ν − eνπiJν

−i sin νπ
,

so that

Jν =
H

(1)
ν + H

(2)
ν

2
.

If ν is an integer, then a limit has to be taken. In our case, this occurs if k is a
half-integer, but by continuity in k we may and will assume that this is not the
case.

For our purposes, the important property of these functions is the asymptotic
behaviour [1, 9.2.7]:

(4.2) H(1)
ν (z) =

√
2
πz

ei(z− νπ
2 −π

4 )
(

1 + O

(
1
z

))
,
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valid if −π < arg z < 2π (which is to be interpreted in the sense of analytic
continuation). Note that the range of validity of this asymptotic development
contains the entire upper half-plane and that (in contrast to the ordinary Bessel
function) this Hankel function has exponential decrease in the positive imaginary
direction.

Define φ(1), φ(2) : (0,∞) �→ C by

φ(1)(λ) = (λx)
1
2−kH

(1)

k− 1
2
(λx)λ2k

and
φ(2)(λ) = (λx)

1
2−kH

(2)

k− 1
2
(λx)λ2k.

Let φ
(1)
c denote the analytic continuation of φ(1) from (0,∞) to C \ {it | t ≤ 0}. If

one recalls that Jν(z) = zν J̃ν(z) with J̃ν entire and Z2-invariant, one notes that
φ

(1)
c (λ) remains bounded as λ → 0 in C \ {it | t ≤ 0}, since Re k ≥ 0. A small

computation will also make it clear that φ
(1)
c (λ) = φ(2)(−λ) for λ < 0.

Using the invariance of f and the weight function, we then compute as follows:∫ ∞

−∞
f(λ) (λx)

1
2−k

Jk− 1
2
(λx)|λ|2k dλ

= 2
∫ ∞

0

f(λ) (λx)
1
2−k Jk− 1

2
(λx)λ2k dλ

=
∫ ∞

0

f(λ) (λx)
1
2−k
(
H

(1)

k− 1
2
(λx) + H

(2)

k− 1
2
(λx)

)
λ2k dλ

=
∫ ∞

0

f(λ)
(
φ(1)(λ) + φ(2)(λ)

)
dλ

= lim
ε↓0

{∫ ∞

ε

f(λ)φ(1)(λ) dλ +
∫ ∞

ε

f(λ)φ(2)(λ) dλ

}
= lim

ε↓0

{∫ ∞

ε

f(λ)φ(1)(λ) dλ +
∫ −ε

−∞
f(−λ)φ(2)(−λ) dλ

}
= lim

ε↓0

{∫ ∞

ε

f(λ)φ(1)
c (λ) dλ +

∫ −ε

−∞
f(λ)φ(1)

c (λ) dλ

}
.

Now fφ
(1)
c is holomorphic on C \ {it | t ≤ 0}, and, since x > R, it has exponential

decrease in the positive imaginary direction, as a consequence of (4.2). The classical
argument therefore establishes (4.1), with a minor modification involving a semi-
circle of radius ε around 0 in the upper half-plane and using the fact that fφ1

c is
bounded around 0. �

Next, we proceed with the reduction of the general radial case to the one-
dimensional even case. To this end, fix x0 �= 0 in a, and define the map Resx0 :
S(a)O(N) �→ S(R)Z2 by restricting to the line passing through x0:

(Resx0 f)(s) = f

(
s

x0

|x0|

) (
s ∈ R, f ∈ S(a)O(N)

)
.

The following proposition, which implies the Paley-Wiener theorem for radial
functions (as will become apparent in the proof of Theorem 4.10), involves the
Dunkl transform for general a and R both at the same time. We therefore add a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PALEY–WIENER THEOREMS FOR THE DUNKL TRANSFORM 4235

subscript Z2 in the latter case for clarity. Let S(a)O(N) denote the O(N)-invariants
in S(a).

Proposition 4.5. Suppose Re k ≥ 0. Let f ∈ S(a)O(N) and put γ =
∑

α∈R+
kα.

Then
Resx0 EkD0f = Eγ,Z2D0,Z2Resx0 f

for all non-zero x0 ∈ a.

Proof. Let S0(a) = {pψ | p ∈ P}, with ψ denoting the Gaussian as in Section 3. It
is known that S0(a) is dense in S(a); see [35, p. 263] for this particular result, or [24]
for a general framework for this type of problem. Note that the canonical projection
from S(a) onto S(a)O(N) is continuous as a consequence of the closed graph theorem,
implying that S0(a)O(N) is dense in S(a)O(N). It is therefore, by linearity and
continuity, sufficient to prove the proposition for a function f of the form |x|2qψ,
where q is a non-negative integer. This can be done using Proposition 3.3 and an
identity for Laguerre polynomials. Recall the definition:

L(α)
n (x) =

n∑
m=0

(−1)m

m!

(
n + α

n − m

)
xm.

Then the following identity holds [1, 22.12.6]:

(4.3)
n∑

m=0

L(α)
m (x)L(β)

n−m(y) = L(α+β+1)
n (x + y).

It is known [9, Proposition 3.9] that e
∆0
2 |x|2q = 2qq!L(N/2−1)

q

(
−|x|2/2

)
and

e−
∆k
2 |x|2q = (−2)qq!L(N/2 +γ−1)

q

(
|x|2/2

)
. Using Proposition 3.3 we therefore find

EkD0

(
|x|2qψ

)
=
(
e−

∆k
2 e

∆0
2 |x|2q

)
ψ

= 2qq!
q∑

m=0

(−1)m

(
N/2 + q − 1

q − m

)
L(N/2 +γ−1)

m

(
|x|2/2

)
ψ

= (−2)qq!
q∑

m=0

(
−N/2 − m

q − m

)
L(N/2+γ−1)

m

(
|x|2/2

)
ψ.

The special case n = q, y = 0, α = N/2 + γ − 1 and β = −N/2 − q of (4.3) then
shows that

EkD0

(
|x|2qψ

)
= (−2)qq!L(γ−q)

q

(
|x|2/2

)
ψ.

Curiously enough, the dimension N has dropped out, and the proposition follows
immediately from this observation. �

It follows easily from this result that the Dunkl transform of a radial function is
again radial, retrieving this result from [33].

Let D0(BR) = Span{Tp(0)f | p ∈ P, f ∈ D(BR)O(N)}. The following density
result is crucial in the step from the radial to the general case.

Proposition 4.6. D0(BR) is dense in D(BR).

This proposition implies a special case of [20, Cor. 7.8, p. 310], but the latter
result does not seem to imply the proposition. The proof of Proposition 4.6 is based
on representation theory for compact groups in general and O(N) in particular; we
recall a few facts to start with.
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Let π : K �→ Aut(E) be a strongly continuous representation of the compact
group K in the automorphism group of a Fréchet space E. A vector e ∈ E is K-
finite if the orbit of e under K spans a finite-dimensional subspace of E. If δ ∈ K̂
(the unitary dual of K), then a vector e ∈ E is K-finite of type δ if the span of the
orbit of e decomposes into finitely many copies of δ. For δ ∈ K̂, let Eδ denote the
subspace of K-finite vectors of type δ. By [19, Lemma 1.9, p. 396] the subspace⊕

δ∈K̂
Eδ of K-finite vectors is dense in E.

The natural action of O(N) on D(BR) is such a strongly continuous representa-
tion. Hence Proposition 4.6 will be implied by the density of the K-finite vectors,
as mentioned above, once we have proved the following result.

Proposition 4.7. D0(BR) is the space of O(N)-finite vectors in D(BR).

Obviously, any element of D0(BR) is O(N)-finite, but the reverse appears to be
harder. The proof of Proposition 4.7 below uses some Fourier analysis; for clarity
of notation, we will temporarily denote the ordinary Fourier transform by F rather
than D0. We need the following classical result in the representation theory of
O(N).

Theorem 4.8. Let Hn be the harmonic polynomials in Pn. Any p ∈ Pn has a
unique decomposition of the form

p =
[ n
2 ]∑

l=0

|x|2lpl

with pl ∈ Hn−2l. The map πn,l : Pn �→ Hn−2l that sends p to pl is O(N)-
equivariant. Furthermore, the representations of O(N) on the spaces Hn (n =
0, 1, . . . ) are irreducible and mutually inequivalent.

As a further preparation for the proof of Proposition 4.7 we need the following
result.

Lemma 4.9. Let δ ∈ Ô(N) and f ∈ D(BR). Suppose that the orbit of f un-
der O(N) spans a copy Vδ of δ in D(BR). Then there exist a harmonic homoge-
neous polynomial p of type δ and scalars λm (m = 0, 1, . . . ), such that F(f)(z) =
p(z)

∑∞
m=0 λm(z, z)m (z ∈ CN ), where the series converges uniformly on compact

subsets of C
N .

Proof. By the Paley–Wiener theorem the Fourier transform F(f) is an entire func-
tion on C

N . F commutes with the O(N)-action, so there is a copy of δ in the space
of functions of Paley–Wiener type. Since the action of O(N) on entire functions is
homogeneous (in the sense that the action is on each homogeneous component of
the power series development around 0 separately), we conclude that δ also occurs
in P. By Theorem 4.8 there exists a unique copy, Hl say, of δ as the harmonics of
some homogeneous degree.

For n ≥ 0, let πn,l denote the map Pn �→ Hl defined by the decomposition in
Theorem 4.8. Also, for n ≥ 0 and g ∈ Vδ, let Fn(g) denote the component of
homogeneous degree n in the power series development of F(g) around 0. Consider
the O(N)-equivariant maps πn,l ◦ Fn : Vδ �→ Hl (n ≥ 0). Since F(f) �= 0, there
exists n0 such that πn0,l ◦ Fn0 is non-zero, hence an isomorphism. But then for
all n the map (πn,l ◦ Fn) ◦ (πn0,l ◦ Fn0)

−1 : Hl �→ Hl must be equal to a multiple
λn of the identity. Hence f(z) =

∑∞
m=0 λm(z, z)mp(z) (z ∈ CN ) for some non-zero
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p ∈ Hl. Since there exist z ∈ CN with p(z) �= 0 and |z| arbitrarily large, the factor
p(z) can be brought outside the summation. �

Proof of Proposition 4.7. As remarked before, D0(BR) is certainly contained in the
space of O(N)-finite vectors in D(BR). Conversely, let f ∈ D(BR) be an O(N)-
finite vector. We may assume that the orbit of f spans a copy of δ in D(BR) for
some δ ∈ Ô(N). Applying Lemma 4.9 one obtains a factorization F(f) = ph of
F(f) in a polynomial p and an entire O(N)-invariant function h. We proceed to
show that h is in fact in HBR

. By [34, Lemma 8.3] there exists a constant A > 0
such that

(4.4) |h(z)| ≤ A

∫
T N

|F(f)(z + w)| dσN (w) (z ∈ C
N ),

where TN = {(eiθ1 , . . . , eiθN ) | θj ∈ R (j = 1, . . . , N)} is the N -torus and σN is the
normalized Haar measure on TN . There exist constants γM (M = 0, 1, 2, . . . ) such
that

(4.5) |F(f)(z)| ≤ γM (1 + |z|)−MeR|Im z| (z ∈ C
N ).

Now note that
1 + |z|

1 + |z + w| ≤ 1 +
|w|

1 + |z + w| ≤ 1 +
√

N (z ∈ C
N , w ∈ TN ).

Since in addition |Im (z + w)| ≤ |Im z|+
√

N for z ∈ CN and w ∈ TN , we conclude
from (4.4) that h also satisfies estimates as in (4.5), i.e., h ∈ HBR

. Hence F−1(h) is
in D(BR), and in fact F−1h ∈ D(BR)O(N) since h is O(N)-invariant. This implies
that f ∈ D0(BR), as required. �

This concludes the proof of Proposition 4.6.
We can now prove the Paley–Wiener theorem of this section by putting the pieces

together.

Theorem 4.10 (Paley–Wiener theorem, first version). Let G be a finite reflec-
tion group and suppose that Re k ≥ 0. Then the Dunkl transform Dk is a linear
isomorphism between D(BR) and HBR

, for all R ≥ 0.

Proof. In view of the inversion theorem, all that needs to be done is to show that
Ekg ∈ D(BR) for all g ∈ HBR

. To this end, start by noting that EkD0f ∈ D(BR) if
f ∈ D(BR)O(N), as an immediate consequence of Proposition 4.5 and Theorem 4.4.
But then we also have EkD0f ∈ D(BR) for f ∈ D0(BR), since Ek ◦ D0 ◦ ∂ξ =
Tξ(k) ◦ Ek ◦ D0. From Proposition 4.6 and continuity we can then conclude that
EkD0f ∈ D(BR) for f ∈ D(BR). By the Paley–Wiener theorem for D0, we see
that Ekg ∈ D(BR) for all g ∈ HBR

, as required. �

4.2. The case of arbitrary G and strictly positive integral k. If all kα are
strictly positive integers, Conjecture 4.1 can be established from the correspond-
ing theorem for the Fourier transform, by showing that ExpG is then in fact an
elementary function. This can be seen by starting from Heckman’s work on shift
operators [17].

We introduce some notation. Let R =
⋃m

i=1 Si be the decomposition of R into
G-orbits, and put Si,+ = Si ∩ R+. Define πi =

∏
α∈Si,+

α∗, and let Res denote
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restriction to the G-invariant functions. Then we have the following results [17],
valid for p ∈ PG:

Res
(
M−1

πi
Tπi

(k)
)
Res (Tp(k)) = Res (Tp(k + 1Si

))Res
(
M−1

πi
Tπi

(k)
)
,(4.6)

Res (Tπi
(k)Mπi

) Res (Tp(k + 1Si
)) = Res (Tp(k))Res (Tπi

(k)Mπi
) ,(4.7)

where (k + 1Si
)α = kα + 1 if α ∈ Si and (k + 1Si

)α = kα if α /∈ Si.
The generalized Bessel kernel JG is defined for k ∈ Kreg by

(4.8) JG(λ, k, x) =
1
|G|
∑
g∈G

ExpG(λ, k, gx)

and is (up to multiples) the unique G-invariant solution of the Bessel system

Tp(k)f = p(λ)f (p ∈ PG).

It follows immediately from (4.6), (4.7) and the uniqueness of invariant solutions
of the Bessel system that there exist complex constants c1,2(λ, k) such that

M−1
πi

Tπi
(k)JG(λ, k, . ) = c1(λ, k)JG(λ, k + 1Si

, . )

and
Tπi

(k)Mπi
JG(λ, k + 1Si

, . ) = c2(λ, k)JG(λ, k, . ).

Evaluation at zero yields c2(λ, k) = (πi, πi)k, where ( . , . )k is the bilinear form from
Section 3.

c1(λ, k)(πi, πi)kJG(λ, k, . ) = c1(λ, k)Tπi
(k)Mπi

JG(λ, k + 1Si
, . )

= Tπi
(k)Mπi

M−1
πi

Tπi
(k)JG(λ, k, . )

= π2
i (λ)JG(λ, k, . ).

Hence

(4.9) π2
i (λ)JG(λ, k + 1Si

, . ) = (πi, πi)kM−1
πi

Tπi
(k)JG(λ, k, . ).

Suppose then that the (fixed) value of k on Si is ki, a strictly positive integer.
Repeated application of (4.9) yields

wk(λ)JG(λ, k, . ) =
m∏

i=1

ki∏
n=1

(πi, πi)(n−1)1Si
+
∑

j<i kj1Sj

(4.10)

·
m∏

i=1

ki∏
n=1

M−1
πi

Tπi

⎛⎝(n − 1)1Si
+
∑
j<i

kj1Sj

⎞⎠ 1
|G|
∑
g∈G

e(gλ, . ).

We conclude from (4.10) that there exist functions pg(λ, x) on aC×a
reg
C

(we suppress
the dependence on our fixed k) which are polynomials in λ with rational functions
in x as coefficients (with poles with respect to x along the singular hyperplanes, if
any) such that

wk(λ)JG(λ, k, x) =
∑
g∈G

pg(λ, x)e(gλ,x) (λ ∈ aC, x ∈ a
reg),

where as usual areg = {x ∈ a | (α, x) �= 0 ∀α ∈ R} and a
reg
C

is defined similarly.
Now the first operator acting in (4.10) is Tπ1(0), showing that the pg are divisible
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by π1(λ). Since the numbering of the Si is arbitrary we see that the pg are in fact
divisible by π(λ) =

∏m
i=1 πi(λ). Thus

(4.11) wk(λ)JG(λ, k, x) = π(λ)
∑
g∈G

p′g(λ, x)e(gλ,x) (λ ∈ aC, x ∈ a
reg),

where the p′g are of the same form as the pg. It is here that we have used that the
kα are strictly positive integers, in order to obtain the factor π(λ) in the right hand
side of (4.11) which is needed below.

There is a similar expression for ExpG, which we obtain using a result of Opdam
[27] describing how ExpG may be obtained from JG. According to [loc. cit., 6.4–6.6]
there exists a rational function Q(λ, x) on aC × aC such that:

• (λ, x) �→ π(λ)Q(λ, x) is a polynomial on aC × aC;
• TQ(λ, . )(k)JG(λ, k, . ) = ExpG(λ, k, . ) (λ ∈ a

reg
C

, x ∈ aC).

Using this and (4.11) we see that, for λ ∈ a
reg
C

and x ∈ areg,

wk(λ)ExpG(λ, k, x) = TQ(λ, . )wk(λ)JG(λ, k, . )(4.12)

= TQ(λ, . )π(λ)
∑
g∈G

p′g(λ, x)e(gλ,x)

= Tπ(λ)Q(λ, . )

∑
g∈G

p′g(λ, x)e(gλ,x)

=
∑
g∈G

p′′g(λ, x)e(gλ,x),

where again the p′′g are of the same form as the pg. But then (4.12) is in fact valid
by continuity for λ ∈ aC (rather than λ ∈ a

reg
C

) and x ∈ areg. This observation
allows us to establish Conjecture 4.1 for strictly positive integral multiplicities.

Theorem 4.11 (Paley–Wiener theorem, second version). Let G be a finite re-
flection group and suppose that the kα are all strictly positive integers. If S is a
non-empty G-invariant compact convex subset of a, then Dk is a linear isomorphism
between D(S) and HS .

Proof. Suppose f ∈ HS , x ∈ a, x /∈ S. In view of the inversion theorem, the only
thing that remains to be proved is

(4.13)
∫

a

f(λ)ExpG(iλ, k, x)wk(λ) dλ = 0.

If x ∈ areg, then (4.12) allows us to write this integral as∑
g∈G

∫
a

f(λ)p′′g(iλ, x)ei(λ,g−1x) dλ,

where the p′′g are polynomials in λ with rational functions in x as coefficients (with
poles with respect to x along the singular hyperplanes, if any). Hence the geometri-
cal form of the Paley–Wiener theorem for the Fourier transform [21, Theorem 7.3.1]
shows that each of the summands is zero. Then (4.13) holds for all x /∈ S by con-
tinuity. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4240 MARCEL DE JEU

4.3. The case where G is a Weyl group and Re k ≥ 0. In the case where G
is a Weyl group and Re k ≥ 0, a Paley–Wiener theorem for intersections of convex
hulls of orbits can be obtained by a limit transition from the results of Opdam on
Cherednik operators for k ≥ 0 [28]. If every non-empty G-invariant compact convex
set was the intersection of the convex hulls of orbits, then this would establish
Conjecture 4.1 for Weyl groups. However, this intersection property does not hold,
as the two-dimensional example of the closed unit ball and A1 × A1 shows. Thus,
Conjecture 4.1 remains open even for Weyl groups, and this example also shows
that in this context neither Theorem 4.10 above nor Theorem 4.15 below implies
the other.

We start by collecting the relevant results from [28].
Suppose that R is an integral root system, and let k : R �→ C be a multiplicity

function. We will assume that R is reduced, which is sufficient for our purposes.
Choose a system R+ of positive roots, and define the Cherednik operator Dξ, for
ξ ∈ aC, as

Dξ(k) = ∂ξ +
∑

α∈R+

kα(α, ξ)M(1−e−α∗)−1(1 − rα) − (ρ(k), ξ),

where ρ(k) = 1
2

∑
α∈R+

kαα. The Cherednik operators are not equivariant, and
their definition is dependent on the choice of R+. For fixed multiplicity they form a
commutative family, and together with G they then generate an algebra of operators
which is an isomorphic copy of the graded Hecke algebra, corresponding to the
choice of R+ and k, as is defined by Lusztig [25]. We refer to [4] for this isomorphism,
or to [28]. Aside, we remark that the Dξ(k) certainly depend on the length of the
roots, in contrast to the Dunkl operators, but it will become apparent that this is
innocent for our purposes.

The Dunkl kernel ExpG can be obtained from the eigenfunctions of the Cherednik
operators by taking a suitable limit. To see this, we recall a weakened version of
some of Opdam’s results [28, cf. Theorem 3.15 and Proposition 6.1].

Theorem 4.12. For all k ≥ 0 there exists an open neighborhood U of 0 ∈ a and a
holomorphic function CG( . , k, . ) : aC × (a+ iU) �→ C with the following properties:

(1) CG(λ, k, 0) = 1 for all λ ∈ aC;
(2) Dξ(k)CG(λ, k, . ) = (λ, ξ)CG(λ, k, . ) for all λ, ξ ∈ aC;
(3) if λ ∈ aC, and z = x + iy with x ∈ a and y ∈ U , then

(4.14) |CG(λ, k, z) ≤
√
|G|e−ming∈G(g Im λ,y)+maxg∈G(g ρ(k),y)+maxg∈G(g Re λ,x).

The estimate in (4.14) enables us to prove the following limit transition.

Theorem 4.13. Let k ≥ 0 be fixed, and suppose that S ⊂ aC × aC is a non-empty
compact subset. Then, as ε → 0 through the complex numbers, we have

(4.15) lim
ε→0

CG(ε−1λ, k, εz) = ExpG(λ, k, z),

uniformly for (λ, z) ∈ S. Here it is understood that |ε| is taken sufficiently small,
so that CG(ε−1λ, k, εz) is defined for all (λ, z) ∈ S.

Proof. Suppose, to the contrary, that there exist η > 0, a non-empty compact set
S ⊂ aC × aC, and a complex sequence εn → 0 such that, for all n,

(4.16) sup
(λ,z)∈S

|CG(ε−1
n λ, k, εnz) − ExpG(λ, k, z)| ≥ η.
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Take an open neighborhood of S of the form V1 × V2, with V1, V2 ⊂ aC open balls
centered at the origin, and define φn : V1 ×V2 �→ C by φn(λ, z) = CG(ε−1

n λ, k, εnz),
discarding a finite number of εn if necessary. From (4.14) one sees that the sequence
{φn}∞n=1 is uniformly bounded on V1 × V2. By Montel’s theorem we may therefore
assume, passing to a subsequence if necessary, that the φn converge uniformly on
compact subsets of V1 × V2 to a holomorphic function φ∞ on V1 × V2.

Now a small computation shows, for fixed λ ∈ V1 and for arbitrary ξ ∈ aC, that
as functions on V2 we have⎧⎨⎩∂ξ + εn

∑
α∈R+

kα
(α, ξ)

1 − e−εn(α, . )
(1 − rα)

⎫⎬⎭φn(λ, . ) = {(ξ, λ) + εn(ρ(k), ξ)}φn(λ, . ).

Passing to the limit one obtains⎧⎨⎩∂ξ +
∑

α∈R+

kα
(α, ξ)
(α, . )

(1 − rα)

⎫⎬⎭φ∞(λ, . ) = (ξ, λ)φ∞(λ, . ).

This is the defining equation for the Dunkl kernel, which has a local solution
space spanned by ExpG(λ, k, . ). Since obviously φ∞(λ, 0) = 1, we conclude that
φ∞(λ, z) = ExpG(λ, k, z) for all (λ, z) ∈ V1 ×V2. But this implies that the φn con-
verge uniformly to ExpG( . , k, . ) on the compact set S ⊂ V1 × V2 after all, which
contradicts (4.16). �

In the end, we will only need the special case where λ ∈ ia from the following
corollary. Note that the function involved is defined for all ε under consideration.

Corollary 4.14. Let k ≥ 0. Then, as ε → 0 through the real numbers, we have
limε→0 CG(ε−1λ, k, εx) = ExpG(λ, k, x) for all λ ∈ aC and all x ∈ a.

We will now invoke Opdam’s Paley–Wiener theorem. To this end, fix x ∈ a, let
co(G · x) denote the convex hull of the orbit of x, and fix y /∈ co(G · x). Suppose
that f ∈ Hco(G·x). Then, if kα > 0 for all α, the Paley–Wiener theorem for the
Cherednik transform [28, Theorem 8.6.(2)] implies that∫

a

f(λ)CG(iλ, k, y)
∏

a∈R+

(
1 − kα(α, α)

2i(λ, α)

) ∏
α∈R+

∣∣∣∣∣∣
Γ
(

2i(λ,α)
(α,α) + kα

)
Γ
(

2i(λ,α)
(α,α)

)
∣∣∣∣∣∣
2

dλ = 0,

where the integrand should be read as 0 for all λ ∈ asing. Now note, for real ε �= 0,
that the map λ �→ f(ελ) is an element of Hco(G·εx). Since εy /∈ co(G · εx), we have

∫
a

f(ελ)CG(iλ, k, εy)
∏

a∈R+

(
1 − kα(α, α)

2i(λ, α)

) ∏
α∈R+

∣∣∣∣∣∣
Γ
(

2i(λ,α)
(α,α) + kα

)
Γ
(

2i(λ,α)
(α,α)

)
∣∣∣∣∣∣
2

dλ = 0.

After a change of variables it follows that∫
a

f(λ)CG(iε−1λ, k, εy)
∏

a∈R+

(
1 − εkα(α, α)

2i(λ, α)

)
(4.17)

·
∏

α∈R+

∣∣∣∣∣∣εkα

Γ
(

2iε−1(λ,α)
(α,α) + kα

)
Γ
(

2iε−1(λ,α)
(α,α)

)
∣∣∣∣∣∣
2

dλ = 0,
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for all ε > 0. Now it follows from a well-known result for the Gamma function [37,
p. 151] that, for each a ∈ R, there exist constants M1(a), M2(a), M̃1(a), M̃2(a) ≥ 0
such that, for all s ∈ R, ∣∣∣∣Γ(is + a)

Γ(is)

∣∣∣∣ ≤ M1(a)|s|a + M2(a),(4.18) ∣∣∣∣(1 − a

is

) Γ(is + a)
Γ(is)

∣∣∣∣ ≤ M̃1(a)|s|a + M̃2(a).(4.19)

Furthermore, for all s, a ∈ R, s �= 0, one has

(4.20) lim
ε↓0

∣∣∣∣εa Γ(iε−1s + a)
Γ(iε−1s)

∣∣∣∣ = |s|a.

From (4.18) and (4.19) one sees that the dominated convergence theorem applies
in (4.17) as ε ↓ 0, since f ∈ S(a) and |CG(iε−1λ, k, εy)| ≤

√
|G| by (4.14). In the

limit one thus obtains from (4.20) and Corollary 4.14 that

(4.21)
∫

a

f(λ)ExpG(iλ, k, y)wk(λ) dλ = 0,

for k > 0, x ∈ a, f ∈ Hco(G·x), and y /∈ co(G · x).
It is now an easy matter to prove the following.

Theorem 4.15 (Paley–Wiener theorem, third version). Let G be a Weyl group
and suppose that Re k ≥ 0. If S ⊂ a is an intersection of convex hulls of G-orbits,
then the Dunkl transform is a linear isomorphism between D(S) and HS .

Proof. As in the proof of Theorem 4.11, in view of the inversion theorem all that
needs to be done is to prove that Ek : HS �→ S(a) has its image contained in D(S).
To this end, first assume that S is the convex hull of one orbit and that k > 0.
In that case, (4.21) is just the required result. But then (4.21) actually holds for
Re k > 0 by analytic continuation in k, and the case Re k ≥ 0 follows from this
again by continuity. The result for an intersection of convex hulls of orbits follows
trivially from the result for the convex hull of one orbit. �

Remark 4.16. The type of limit transition above was introduced by Ben Säıd and
Ørsted [3]. The approach in [loc. cit.] starts from the invariant case, using shift
operators, and then proceeds to the general case. The use of shift operators thus
restricts the validity of the proofs to integral multiplicities. The approach to this
transition in the present paper appears to be somewhat simpler, since Corollary 4.14
is seen to hold directly in the general case and for more general multiplicities.

5. Extending the intertwining operator

In this section we return to the general situation of an arbitrary reflection group
and Re k ≥ 0. With the aid of the Paley–Wiener theorems, we will define a linear
isomorphism Vk : C∞(a) �→ C∞(a) such that Tξ(k)Vk = Vk∂ξ (ξ ∈ a), and which
extends the intertwiner operator as it was originally constructed for polynomials
by Dunkl for k ≥ 0 [8]. The polynomial case for general regular k was considered
in [14], and an extension of the intertwiner operator to an algebra of real analytic
functions was constructed in [9] for k ≥ 0. The extension to C∞(a) for Re k ≥ 0 as in
this section was first established in [23]. The case where k ≥ 0 and

∑
α∈R+

kα > 0
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was later also considered in [39], using Rösler’s representing measures which are
presently only known to exist when k ≥ 0.

Recall that the symmetry S, defined by Sf(x) = f(−x), relates Ek and Dk by
SDk = DkS = Ek [22, Lemma 4.3]. The Paley–Wiener theorem, Theorem 4.10,
therefore implies that DkE0 = SEkE0 maps D(a) into itself. This map is easily seen
to be continuous in the standard inductive limit topology (e.g., as a consequence
of the closed graph theorem), and it is actually a homeomorphism since the inverse
is D0Ek. Thus the transpose (DkE0)t : D′(a) �→ D′(a) is a homeomorphism in the
weak∗-topology, leaving S ′(a) invariant as a consequence of part (5) in Theorem 2.2.

For the formulation of the following theorem, we let B′
R denote the open ball of

radius R, centered at the origin.

Theorem 5.1. Let G be a finite reflection group and suppose that Re k ≥ 0. The
map Wk : C∞(a) �→ D′(a), defined by

Wkf =
c0

ck
(DkE0)t(fwk),

is actually a linear automorphism of C∞(a). Let Vk : C∞(a) �→ C∞(a) be its
inverse. Then both Wk and Vk commute with the G-action, and the following hold:

(1) WkTξ(k) = ∂ξWk (ξ ∈ a).
(2) Wk1 = 1.
(3) WkPn = Pn.
(4) (a) If f ∈ C∞(a) vanishes on B′

R, then Wkf vanishes on B′
R.

(b) If U is an open G-invariant convex subset of a, and f ∈ C∞(a) van-
ishes on U , then Vkf vanishes on U .

(5) If f ∈ C∞(a) ∩ L1(a, |wk(x)|dx), Dkf ∈ L1(a, |wk(x)|dx), and x ∈ a, then

Wkf(x) =
c0

ck
E0(wkDkf)(x) =

1
ck

∫
a

Dkf(λ) exp(i(λ, x))wk(λ) dλ.

(6) If f ∈ C∞(a) ∩ L1(a, dx), D0f ∈ L1(a, dx), and x ∈ a, then

Vkf(x) =
ck

c0
Ek(w−1

k D0f) =
1
c0

∫
a

D0f(λ)ExpG(ix, k, λ) dλ.

Proof. As a preparation, we recall from [22, Lemma 4.13] that
∫

a
(Dkf)gwk dx =∫

a
f(Dkg)wk dx for f, g ∈ L1(a, |wk(x)|dx), and similarly for Ek.
Suppose T ∈ D′(a) and supp T ∩ B′

R = ∅. Then supp (DkE0)tT ∩ B′
R = ∅.

Indeed, let ψ ∈ D(B′
R). Then 〈(DkE0)tT, ψ〉 = 〈T, DkE0ψ〉 = 〈T, EkD0ψ〉 = 0 by

the Paley–Wiener theorem, Theorem 4.10.
Now let f ∈ C∞(a). Fix R > 0 and choose φ ∈ D(a) such that φ = 1 on

B′
R. Then supp (φfwk − fwk) ∩ B′

R = ∅, hence by the above we have for arbitrary
ψ ∈ D(B′

R),

〈(DkE0)t(fwk), ψ〉 = 〈(DkE0)t(φfwk), ψ〉(5.1)

=
∫

a

ψ(x)E0 (Dk(φf)wk) (x) dx.

Note that Dk(φf) ∈ S(a), so E0 (Dk(φf)wk) is smooth. Since the left-hand side
in (5.1) does not depend on φ, the restriction of E0 (Dk(φf)wk) to B′

R is appar-
ently also independent of the choice of φ. Hence we can unambiguously define a
smooth function representing the distribution (DkE0)t(fwk), by choosing for x ∈ a

any B′
R such that x ∈ B′

R, any φ ∈ D(a) such that φ = 1 on B′
R, and putting
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((DkE0)t(fwk)) (x) = E0 (Dk(φf)wk) (x). This shows that Wk maps C∞(a) into
itself. It follows from the remarks before the statement of the theorem that Wk is
injective.

In order to see that Wk is also surjective we consider (D0Ek)t. A geometrically
more precise property with respect to supports can be proved for (D0Ek)t than
for (DkE0)t. To be precise, if U is an open G-invariant convex subset of a, and
T ∈ D′(a) is such that suppT ∩ U = ∅, then supp (D0Ek)tT ∩ U = ∅. Indeed, if
ψ ∈ D(U), then 〈(D0Ek)tT, ψ〉 = 〈T, D0Ekψ〉 = 〈T, E0Dkψ〉 = 0 by the geometrical
form of the Paley–Wiener theorem for the ordinary Fourier transform; note that
Dkψ is of Paley–Wiener type corresponding to the G-invariant compact convex set
co(G · suppψ) ⊂ U . Let R > 0 and f ∈ C∞(a) and choose φ as above. Taking the
open ball B′

R as U , we then compute as follows for arbitrary ψ ∈ D(B′
R):

〈(D0Ek)tf, ψ〉 = 〈(D0Ek)t(φf), ψ〉(5.2)

=
∫

a

D0(φf)(λ)(Ekψ)(λ) dλ

= c−1
k

∫
a

D0(φf)(λ)
{∫

a

ψ(x)ExpG(ix, k, λ)wk(x) dx

}
dλ

=
∫

a

{
c−1
k

∫
a

D0(φf)(λ)ExpG(ix, k, λ) dλ

}
ψ(x) wk(x) dx.

Now the function gφ : x �→ c−1
k

∫
a
D0(φf)(λ)ExpG(ix, k, λ) dλ is smooth on a

since the derivatives of ExpG(i . , k, λ) are of polynomial growth in λ [22, Corollary
3.7] and D0(φf) ∈ S(a). The gφ patch together, as before, to a smooth function
g on a which satisfies (D0Ek)tf = gwk by construction. Taking inverses we find
(DkE0)t(gwk) = f , showing that Wk is surjective, as required.

It is easy to check that Wk and hence its inverse Vk commutes with the G-action,
using an invariant function φ in the construction, and noting that Dk and E0 have
this property.

Continuing, we define the Dunkl operator T ′
ξ(k) on D′(a) by 〈T ′

ξ(k)T, ψ〉 =
−〈T, Tξ(k)ψ〉. We have the compatibility T ′

ξ(k)(fwk) = (Tξ(k)f)wk for f ∈ C∞(a).
Hence

〈(DkE0)t((Tξ(k)f)wk), ψ〉 = 〈(Tξ(k)f)wk, DkE0ψ〉
= 〈T ′

ξ(k)(fwk), DkE0ψ〉
= −〈fwk, DkE0∂ξψ〉
= 〈∂ξ((DkE0)t(fwk)), ψ〉,

proving part (1).
For parts (2) and (3) we consider Dt

k : S ′(a) �→ S ′(a). By the inversion theo-
rem we have Dt

kwk = ckδ, hence (DkE0)twk = ckEt
0δ = ckc−1

0 , proving part (2).
Furthermore, one easily verifies the relation Dt

k(Mξ∗T ) = iT ′
ξ(k)Dt

kT for T ∈ S ′(a)
and ξ ∈ a. Thus for p ∈ Pn we have Dt

k(pwk) = ckinT ′
p(k)δ. By the homogeneity

of the Tξ(k), there exists a differential operator D̃ with constant coefficients and of
homogeneous degree n such that ckinT ′

p(k)δ = D̃δ. Hence (DkE0)t(pwk) = Et
0D̃δ

is in Pn, as stated in part (3).
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Part (4) follows from the properties regarding the supports of distributions which
we have used above.

Parts (5) and (6) follow by performing the computations in (5.1) and (5.2) with
φ = 1, which is validated by the integrability conditions. �

Remark 5.2.
(1) It is easily seen that the validity of Conjecture 4.1 would imply that the open

ball in part (4)(a) for Wk could be replaced by an open G-invariant convex
set, as for Vk in part (4)(b). In fact, if all multiplicities are strictly positive
integers, then we already know that this stronger statement actually holds,
in view of Theorem 4.11. Likewise, if the group is a Weyl group, then we
know that this stronger statement holds for the interior of an intersection
of convex hulls of orbits, in view of Theorem 4.15.

(2) For k ≥ 0, part (4)(b) also follows from the properties of Rösler’s repre-
senting measures; cf. [39].

6. Connection with the Cartan motion group

If G is a Weyl group W , then, for certain multiplicities, the W -invariant part of
the theory for Dunkl operators has an interpretation in terms of the Cartan motion
group, as we will explain in this section. The starting point is Heckman’s result

(6.1) Tp(k) =
1
n!

(
ad

∆k

2

)n

Mp,

for p ∈ Pn; cf. Section 3. A double application of this result enables us to give
an explicit description of the radial parts in terms of Dunkl operators. From this
description we can then conclude that the generalized Bessel functions coincide with
the restriction of the spherical functions to a. This identification, in turn, enables
us to identify the restriction to the invariants of the operators Wk and Vk from
Theorem 5.1 in terms of (the flat analogue of) the Abel transform. Furthermore,
we show that in certain cases shift operators can be used to essentially invert the
Abel transform by an invariant differential operator.

Establishing terminology, let G be a connected non-compact semisimple Lie
group with finite center, maximal compact subgroup K and corresponding Car-
tan decomposition g = k ⊕ p of the Lie algebra. The group G0 = K � p acts on the
flat symmetric space G0/K � p as isometries for the Killing form. The group of
isometries of p thus obtained is known as the Cartan motion group.

Choose a maximal abelian subspace a ⊂ p. Then there is a restriction iso-
morphism Res p

a : C∞(p)K �→ C∞(a)W , with analogues for compactly supported
smooth invariant functions and for invariant polynomials. Let Σ be the restricted
roots with multiplicities mα (α ∈ Σ). We consider Σ to be a subset of a by means
of the Killing form ( . , . ), and we let W be the Weyl group, acting on a.

The spherical function ψλ (λ ∈ aC) on the symmetric space p satisfies the equa-
tions ∂(p)ψλ = p(λ)ψλ for all p in the algebra S(p)K of K-invariant polynomials on
p, where as usual ∂(p) is the constant coefficient differential operator correspond-
ing to p. Furthermore, ψλ(0) = 1. By [19, Corollary 2.3, p. 402], ψλ is the unique
K-invariant function on p with these two properties.

We let R ⊂ a be the normalized root system of the finite reflection group W (so
some roots in a component BCn of Σ will coincide in R). Choose the multiplicity
function k : R �→ R as kα = 1/4

∑
β∈Rα∩Σ mβ. With these multiplicities, we
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define the corresponding operators Tp(k) (acting on functions on a) for the finite
reflection group W . The crucial observation, with Rad denoting the radial part, is
the following:

(6.2) Rad(∂(p))f = TRes p
ap(k)f

(
p ∈ S(p)K, f ∈ C∞(a)W

)
.

Before proving this relation, let us note that it shows how the algebra of radial
parts can be obtained from Dunkl operators, as follows. One computes the operator
Tq(k) for each polynomial q in a set of fundamental invariants, and then restricts
it to the invariant functions on a. This restriction acts as a differential operator
(a moment’s thought will make this clear), and the differential operators which are
thus obtained generate the algebra of radial parts.

Turning to the proof of (6.2), we first recall [7] that

∆k = ∆0 + 2
∑

α∈R+

kαM(α∗)−1

{
∂α − M(α∗)−1(1 − rα)

}
.

Let ∆p denote the ordinary Laplacian on p. By the choice of k, the expression for
Rad ∆p in [19, Proposition 3.13, p. 270], and the above expression for ∆k, we have
Rad ∆pf = ∆kf for f ∈ C∞(a)W .

Now let p ∈ S(p)K be homogeneous of degree n and suppose f ∈ C∞(a)W . We
apply (6.1) first on p (with k = 0) and then on a (for our particular choice of k) to
prove (6.2):

Rad(∂(p))f =
1
n!

Rad
((

ad
∆p

2

)n

Mp

)
f

=
1
n!

{(
ad

Rad ∆p

2

)n

(Rad Mp)
}

f

=
1
n!

{(
ad

∆k

2

)n

(MRes p
ap)
}

f

= TRes p
ap(k)f.

After having identified the radial parts in terms of Dunkl operators, it is now
easy to show how the Bessel kernel JW , i.e., the W -invariant component of ExpW

as in (4.8), is related to the restrictions of the spherical functions to a. Indeed, if
λ ∈ aC, then we note that JW (λ, k, . ) has an extension Jext

W (λ, k, . ) to a smooth K-
invariant function on p. This extension is evidently equal to 1 in 0, and satisfies the
equations ∂(p)Jext

W (λ, k, . ) = p(λ)Jext
W (λ, k, . ) for all p ∈ S(p)K, as a consequence

of (6.2) and the very definition of radial parts. By the uniqueness mentioned above,
we conclude that Jext

W (λ, k, x) = ψλ(x) for λ ∈ aC and x ∈ a.
In this context of the Cartan motion group, we will now proceed to identify

the restrictions to the invariants C∞(a)W of the linear automorphisms Wk, Vk :
C∞(a) �→ C∞(a) from Theorem 5.1. Recall [19, p. 467] that

(6.3)
∫

p

f(x) dx = (2π)
dim p

2 c−1
k

∫
a

Res p
af(x)wk dx (f ∈ C∞

c (p)K).

The constant is determined by considering the Gaussian. Since we have identified
the spherical functions as Bessel functions, we see from this integral formula that
the normalized spherical transform F , defined by

Ff(λ) = (2π)−
dim p

2

∫
p

f(x)ψ−iλ(x) dx (λ ∈ a, f ∈ C∞
c (p)K),
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factors as F = DkRes p
a. From this relation one sees that the inversion, Plancherel

and Paley–Wiener theorems for the spherical transform follow from the correspond-
ing theorems for Dk, when specialized to the invariants (the first two admittedly
being almost trivial for the Cartan motion group).

Let q be the orthocomplement of a in p and define the (flat analogue of the)
Abel transform:

Af(x) =
∫

q

f(x + q) dq (f ∈ C∞
c (p)K, x ∈ a).

Since the spherical transform can also be written as

Ff(λ) = (2π)−
dim p

2

∫
p

f(x)e−i(λ,x) dx (λ ∈ a, f ∈ C∞
c (p)K),

Fubini’s theorem yields an additional factorization ofF, namely F =(2π)−
dim q

2 D0A.
The relation (2π)−

dim q

2 D0Af = DkRes p
af for f ∈ C∞

c (p)K together with the Paley–
Wiener theorems for D0 and Dk then show that the Abel transform establishes a
linear isomorphism between C∞

c (p)K and C∞
c (a)W . It is easily verified that A :

C∞
c (p)K �→ C∞

c (a)W is in fact a linear homeomorphism, so that the isomorphisms
At : D′(a)W �→ D′(p)K and (A−1)t : D′(p)K �→ D′(a)W are defined.

Recall the symmetry S from Section 4, defined by Sf(x) = Sf(−x), and note
that, as maps from C∞

c (a)W into itself, we have

DkE0 = DkSD0 = (2π)
dim q

2 DkSFA−1 = (2π)
dim q

2 DkSDkRes p
aA

−1

= (2π)
dim q

2 DkEkRes p
aA

−1 = (2π)
dim q

2 Res p
aA

−1.

Let Ext p
a : C∞(a)W �→ C∞(p)K be the inverse of Res p

a. Using (6.3) we find, for
f ∈ C∞(a)W and ψ ∈ C∞

c (a)W ,

〈Wkf, ψ〉a = (2π)
dim a

2 c−1
k 〈(DkE0)t(fwk), ψ〉a

= (2π)
dim a

2 c−1
k 〈fwk, DkE0ψ〉a

= (2π)
dim p

2 c−1
k 〈fwk, Res p

aA
−1ψ〉a

= 〈Ext p
af, A−1ψ〉p

= 〈(A−1)tExt p
af, ψ〉a.

We conclude that Wk = (A−1)tExt p
a, as maps with domain C∞(a)W . For the

right-hand side, we know a priori only that it maps C∞(a)W into D′(a)W , but
this equality and Theorem 5.1 show that it is actually a linear automorphism of
C∞(a)W . It follows from this that (A−1)t, which a priori is only known to map
C∞(p)K ⊂ D′(p)K into D′(a)W , in fact establishes a linear isomorphism between
C∞(p)K and C∞(a)W . This enables us to identify the restriction of Dunkl’s inter-
twiner to C∞(a)W as Vk = Res p

aA
t, where the fact that At : C∞(a)W �→ C∞(p)K is

a linear isomorphism is then implicitly used in the interpretation of the right-hand
side.

Remark 6.1. For certain multiplicities of the restricted roots, the results on shift
operators can be used to essentially invert the Abel transform, as follows. Assume
that kα = 1/4

∑
β∈Rα∩Σ mβ is an integer for all α ∈ R. Then (4.10) implies

that there exists a W -invariant differential operator D̃ of order 1/4
∑

α∈Σ mα, with
poles along the singular hyperplanes only, such that Ekg = D̃E0g for all rapidly
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decreasing g ∈ C∞(a)W . Therefore, if f ∈ C∞
c (a)W , we find that Res p

aA
−1f =

(2π)−
dim q

2 DkSD0f = (2π)−
dim q

2 EkD0f = (2π)−
dim q

2 D̃E0D0f = (2π)−
dim q

2 D̃f .
This shows that the Abel transform is for such multiplicities essentially inverted by
the W -invariant differential operator (2π)−

dim q

2 D̃.

Remark 6.2. In this section it has become clear that the theory of spherical functions
for the Cartan motion group is intimately connected with the invariant part of the
theory of Dunkl operators. It can, however, not be excluded that the general
theory of these operators is also relevant in this context, for conceptual reasons
which have gone unnoticed sofar. The author at least finds it hard to believe that,
e.g., the description of the algebra of radial parts should not be the reflection of
some more direct connection. There are, in effect, two additional indications that
such a connection may exist.

The first of these is given by the estimates on the spherical functions ψλ. One
has the integral representation

ψλ(x) =
∫
K

e(λ,kx) dk,

for λ ∈ aCand x ∈ a. The Kostant convexity theorem [19, Theorem 10.2, p. 473]
then yields the estimate |ψλ(x)| ≤ exp(maxw∈W Re (wλ, x)). But alternatively, this
also follows from the estimate for ExpW in Section 2 and the identification of the
spherical functions as generalized Bessel functions, as explained in this section. This
natural occurrence of ExpW points to relevance of the original Dunkl operators in
the Cartan motion group case.

The second indication consists of Torossian’s application of Dunkl operators in
the inversion of the Chevalley restriction isomorphism between the K-invariant poly-
nomials on p and the W -invariant polynomials on a [38]. Here the original Dunkl
operators make an appearance, not just the operators corresponding to invariant
polynomials.

Remark 6.3. When the results in this section are combined with similar results for
the Cherednik operators of Section 4.3 and with Theorem 4.13, one obtains a limit
transition from the spherical functions for a Riemannian symmetric space of the
non-compact type to the spherical functions for the corresponding Cartan motion
group. This has previously been proved in a direct fashion by Ben Säıd and Ørsted
in [2]. This limit transition enables one to obtain explicit formulas for the spherical
functions for the Cartan motion group.
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