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Abstract

Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, 

autism and epilepsy. To gain insight into its instability, we sequenced the region in patients, 

normal individuals and nonhuman primates. We discovered five structural configurations of the 
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human chromosome 15q13.3 region ranging in size from 2 to 3 Mbp. These configurations arose 

recently (~0.5–0.9 million years ago) as a result of human-specific expansions of segmental 

duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 

core duplicons—a ~14 kbp primate-specific chromosome 15 repeat that became organized into 

larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of 

recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the 

human lineage, and independent structural changes in apes. The significant clustering (p=0.002) of 

breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic 

architecture in promoting evolutionary and disease-related instability of chromosome 15.

INTRODUCTION

A ~2.5 Mbp region on human chromosome 15q13.3, distal to the Prader-Willi/Angelman 

locus represents one of the most genetically unstable regions of the human genome1,2. Rare 

recurrent microdeletions between blocks of segmental duplications (SDs) (BP4 and BP5) are 

strongly associated with intellectual disability, schizophrenia, autism and other 

neurodevelopmental disorders3–7. The deletion is, in fact, now recognized as one of the most 

prevalent major risk factors for idiopathic generalized epilepsy (~1% of all cases)4. The 

reciprocal duplication as well as smaller internal deletions that encompass the entire 

CHRNA7 gene have also been described in patients with a range of neurodevelopmental 

phenotypes8,9. Numerous additional structural variants, including common copy number and 

an inversion polymorphism, have been reported within the 15q13.3 region3,8,10,11. The 

majority of the common and rare 15q13.3 structural polymorphisms are associated with 

complex, high-identity blocks of SDs that arose recently in primate evolution12–17. Owing to 

the genomic complexity of the region, neither the extent of human structural diversity nor 

the breakpoints of most rearrangement events are understood at the molecular genetic level.

In this study, we sought to better understand the mechanisms leading to genomic instability 

of the 15q13.3 locus by characterizing breakpoints of evolutionary and contemporary 

rearrangements. We used an integrated comparative genomics approach to sequence 

characterize structural haplotypes from multiple human and ape genomes. This entailed the 

construction of BAC libraries, high-quality finished sequencing using single-molecule real-

time (SMRT) sequencing technology to resolve structural haplotypes18, and cytogenetic-

based assays to characterize the organization, orientation and SD architecture of the 15q13.3 

region. We performed detailed sequence-based analysis of 80 15q13.3 microdeletions. Our 

results suggest a molecular convergence on specific repeat sequences as the potential source 

for genetic instability of these regions.

RESULTS

Copy number polymorphism

Since most breakpoints map to the large blocks of SDs at BP4 and BP5 (Figure 1a; Table 1), 

we first assessed the extent of copy number polymorphism of these regions using sequence 

read-depth approaches19 applied to 2313 human, ape and archaic hominin genomes 

(Supplementary Tables 1–3). We identified two large copy number polymorphic (CNP) 
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regions of ~300 kbp and ~210 kbp referred to here as CNPα and CNPβ, respectively. These 

two copy number variable regions are separated by a GOLGA8 repeat and correspond to two 

SDs, each with >99.5% identity, in which the breakpoints of the recurrent 2 Mbp deletions 

were originally predicted to occur3. CNPα is a human-specific SD whose diploid copy 

number (CN) ranges from 2–7, with 77% of humans apparently fixed for the duplication 

(diploid CN=4) (Figure 1b; Supplementary Figure 1). In contrast, copy number states for 

CNPβ range from 5–12 with 72% of humans showing a diploid copy number of 8 with four 

of these copies mapping elsewhere on chromosome 15. A strong correlation (r=0.82, 

Pearson correlation) in copy number is observed between CNPα and CNPβ suggesting that 

in the human lineage (but not in the ape lineage) the two SDs have expanded in concert as 

part of a larger 510 kbp cassette.

Based on the extremes observed in this study, the data suggest that individuals in the human 

population may differ by as much as 1 Mbp with respect to SD content between BP4 and 

BP5. We designed a series of three-color interphase fluorescence in situ hybridization 

(FISH) experiments to investigate the location of the copy number differences of CNPα 

among different individuals. The FISH analysis indicates copy number polymorphism at 

both breakpoints of the 15q13.3 microdeletion. At a chromosomal level, we estimate a 

haploid variable CN between 0 and 1 for BP4 and between 0 and 2 at BP5 (Figure 1c; 

Supplementary Table 4). Note: due to additional copies of CNPβ mapping to chromosome 

15, BP4 and BP5 signals could not be clearly resolved by FISH for CNPβ.

Discovery and characterization of the β inversion

Due to the potential for assembly errors within SD regions20–23, we established an alternate 

reference assembly for 15q13.3 from a hydatidiform (haploid) mole source (CHM1hTERT). 

We constructed a map of 23 contiguous BAC clones (CH17) and sequenced 21 of these 

using SMRT and capillary sequencing methods to establish a 4 Mbp high-quality alternate 

reference assembly (Supplementary Figure 2a; Supplementary Table 5). The new reference 

differed structurally from GRCh37 by a 130 kbp inversion corresponding to CNPβ at BP4 

(Supplementary Figure 3). To ensure the β inversion was not a hydatidiform cell line 

artifact, we identified a set of eight single nucleotide variants that distinguished it from 

GRCh37 (Supplementary Tables 6 and 7) and screened additional DNA samples from the 

1000 Genomes Project24, identifying a European individual, NA12891, that was 

heterozygous for the β inversion. We constructed and arrayed a large-insert genomic BAC 

library from this DNA sample (VMRC54) as well as the two other members of the 

NA12878 trio (Methods; Supplementary Table 8). We recovered and sequenced VMRC54 

BAC clones from the BP4 region, independently validating the sequence structure of the β 

inversion and the GRCh37 configuration (Figure 2a and b; Supplementary Table 9). For 

simplicity, we refer to the CH17 haplotype as Hα2βinv because it carries the β inversion and 

two haploid copies of CNPα compared to the directly oriented structural configuration 

(Hα2) of the reference assembly.

The β inversion consists of three SDs (Supplementary Figure 2b): a pair of two highly 

identical (58 kbp, 99.6% identity) inversely oriented SDs flanking a 95 kbp duplication. The 

flanking 58 kbp palindrome corresponds to the GOLGA8 gene family15,16, one of the core 
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duplicons found to be associated with most of the interspersed SD blocks across 

chromosome 1515,16. The β inversion configuration increases the length of the largest 

contiguous tract of directly oriented SDs between BP4 and BP5 from 58 to ~188 kbp of near 

perfect sequence (99.4% identity) (Supplementary Figure 4) in principle creating a better 

substrate for unequal crossover and instability associated with disease. To assess the 

breakpoints of the β inversion, we constructed a multiple sequence alignment (MSA) from 

three distinct haplotypes (Figure 2c; Supplementary Figure 5) and used unique sequence 

differences in the duplicated regions to define the most likely breakpoint transition region. 

We narrowed the inversion breakpoint to a ~12 kbp region spanning from intron 2 of the 

GOLGA8 repeat to 9.6 kbp upstream of the gene (Figure 2c; Supplementary Table 10).

Sequence structure of the γ inversion

We sequence resolved the larger human inversion polymorphism spanning the entire BP4-

BP5 region (referred to as the γ inversion)3,10,11 (Figure 1). This entailed sequencing of 21 

clones from a BAC library (VMRC53) constructed from a heterozygous individual 

(NA12878); single nucleotide polymorphism (SNP) genotyping to assign maternal and 

paternal haplotypes; and high-quality sequencing of 11 nonredundant clones to generate an 

alternate reference assembly at the breakpoint region (Figure 3a and b; Supplementary 

Figure 2c; Supplementary Figures 6 and 7; Supplementary Table 9). Compared to the 

reference, the γ inversion spans ~1.844 Mbp from BP4 to BP5 and is flanked by palindromic 

SDs containing two GOLGA8 genes and a ULK4P3 gene, (~71 kbp, 98.5% identity; Figure 

3c; Supplementary Figure 2d). The Hα1γinv assembly contains a single copy of CNPα at 

BP4 and CNPβ at BP5 suggesting that it arose from a simpler human haplotype Hα1 where 

CNPα was moved from BP5 to BP4 by the inversion (Supplementary Figure 8). Based on 

sequence alignment, we refined the γ inversion breakpoints to a ~32 kbp region within the 

palindrome containing the ULK4P3 gene and flanked on either side by GOLGA8 core 

duplicons (Figure 3c; Supplementary Figure 9; Supplementary Table 10). The high sequence 

identity of the duplications as well as alternative sequence signatures consistent with 

historical gene conversion events made it impossible to refine the breakpoint with any 

further precision (Supplementary Table 11).

Population frequency of β and γ inversion polymorphisms

To estimate the frequency of the γ inversion, we initially tested lymphoblastoid cell lines 

from 20 diverse HapMap individuals using a three-color interphase FISH assay 

(Supplementary Figure 10). Without exception, all chromosomal haplotypes (n=16/16) with 

higher copy number of CNPα (n=2–3) were directly configured similar to the reference 

genome (Supplementary Table 4). In contrast, all γ inversion haplotypes showed a single 

copy of CNPα consistent with our BAC sequencing results. Note: 10/24 of the 

chromosomes with a single copy of CNPα carried the γ inversion. An additional series of 

three-color FISH experiments confirmed that when there is a single haploid copy number of 

CNPα and it carries the γ inversion (Hα1γinv configuration) (Supplementary Figure 11), we 

always observe an absence of CNPα at BP5 consistent with a single structural haplotype for 

this inversion. Thus, CNPα varies between 1 and 3 copies only in the directly oriented 

configurations for the BP4-BP5 region (Hα1, Hα2, Hα3) (Supplementary Figure 8) with 0 

and 1 copies at BP4 and between 1 and 2 copies at BP5 (Supplementary Table 4). 
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Combining this cytogenetic inference with copy number data from 1311 human genomes 

with ethnicities matching our original FISH survey, we estimate an allele frequency of 6% 

for the γ inversion (Supplementary Table 12) with slightly elevated frequency of the 

inversion in Tuscany and African populations. Notably, our inversion frequency estimate is 

lower than previously reported3. In the previous study, a two-probe FISH assay was used to 

genotype the γ inversion resulting in a higher error of detection compared to our study, 

which used a three-probe assay.

Since the β inversion is smaller and embedded within a complex region flanked by high-

identity duplications, FISH could not be used to assess its frequency. Instead, we leveraged 

the unique tag SNPs used to recover and sequence the inversion in NA12891. Using these 

SNPs as a surrogate, we designed molecular inversion probes (MIPs)25,26 to capture, 

sequence (Illumina), and genotype the eight haplotype-tagging variants across 904 

individuals from diverse human populations from the 1000 Genomes Project 

(Supplementary Tables 13, 14, and 15). We estimate a haplotype frequency of ~38% across 

European populations (n=275, CEU, TSI, and GBR) with reduced frequencies of ~10% in 

African populations (n=299, LWK, MKK, YRI, ESN, and GWD) and ~4% in Asian 

populations (n=221, CHB, CDX, KHV, and JPT). No β inversion haplotypes were observed 

in either Chinese Dai (CDX) or Cambodian (KHV) populations. These data suggest 

considerable stratification especially between Europeans and Asians (average Fst=0.28), 

with a maximum Fst of 0.36 between Toscani (TSI) and Chinese Dai (CDX) populations 

(Supplementary Table 16).

Evolution of chromosome 15q13.3

We examined the organization of the region in multiple nonhuman ape samples by FISH and 

found that chimpanzee and orangutan show a direct orientation between BP4 and BP5, while 

gorilla is in inverted orientation compared to the human reference genome (Supplementary 

Figure 12; Supplementary Table 17). Next, we sequenced 48 BAC clones from chimpanzee, 

gorilla and orangutan in order to reconstruct the most likely ancestral sequence structure of 

the breakpoint regions (Supplementary Figure 13; Supplementary Table 18). Sequencing 

data show that both gorilla and orangutan lack the ULK4P3 gene where the γ inversion 

breakpoints map in humans, indicating that the 1.8 Mbp γ inversion likely occurred as two 

independent events in human and gorilla lineages. Recurrences of large inversion events 

across primate species have been reported for other regions, including the 17q21.31 and 

16p12.1 microdeletion regions23,27.

Our sequence analysis reveals a much simpler organization of the 15q13.3 orthologous 

region in nonhuman primates when compared to human (Figure 4). The sequenced 

chimpanzee, gorilla and orangutan haplotypes, for example, lack the large SDs found at 

most human BP4 regions predicting that BP5 was the ancestral source (Supplementary 

Figures 14 and 15). Phylogenetic analysis confirms this and predicts that the proximal 

GOLGA8 repeats at BP4 are orthologous among apes and humans and, thus, pre-existed the 

duplicative transpositions of CNPα and CNPβ to the region (Supplementary Figure 16; 

Supplementary Table 19). This duplication also includes ARHGAP11, a gene that was 

previously described to have undergone a human-specific expansion compared to other 
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primate lineages19. In this case, we observe that the proximal breakpoint of the ARHGAP11 

duplication maps within a GOLGA8 repeat (13.8 kbp resolution) (Supplementary Figure 17).

There are numerous additional structural differences between apes and humans in this 

region. Our analysis shows that CNPβ maps in an inverted orientation in chimpanzee at BP5 

(120 kbp inversion) with a GOLGA8 repeat defining at least one boundary of this 

chimpanzee-specific event (Figure 4; Supplementary Figures 13 and 14). A ~80 kbp 

inversion of the distal portion of CNPα is identified in gorilla at BP5. This particular 

segment is also partially duplicated at BP4 in gorilla, and in both instances the 

rearrangement (duplication at BP4 and inversion at BP5) is flanked by the GOLGA8 repeats. 

Finally, the CHRNA7-adjacent SD (purple block with orange arrow in Figure 4) is 

completely absent at BP4 in all analyzed primates with the exception of a partial duplication 

in gorilla. Interestingly, the distal breakpoint of the CHRNA7-adjacent duplication at BP4 in 

humans maps within a GOLGA8 repeat.

To estimate the order and timing of the major structural changes during human evolution, 

we constructed a series of phylogenetic trees and estimated the coalescence/divergence time 

using locally calibrated molecular clocks and predicted divergence time of 6 million years 

between human and chimpanzee. The earliest events in restructuring this region include the 

duplicative transposition of the adjacent CHRNA7 segment to the proximal 15q13.3 region 

before divergence of the African apes (12.16 ± 0.58 mya) (Figure 5; Supplementary Figure 

18). This was followed by the human-specific ARHGAP11 duplication from BP5 

(ARHGAP11A) to BP4 (ARHGAP11B), which occurred soon after humans and chimpanzees 

diverged (5.28 ± 0.48 mya) (Supplementary Figure 19). We estimate that the largest CNPα 

and CNPβ duplications from BP5 to BP4 occurred in close succession or concurrently at 995 

± 61 and 862 ± 99 thousand years ago, respectively (Supplementary Figure 20). These 

estimates are consistent with the finding that both duplications were already present before 

the split of Denisova and Neanderthal from the Homo sapiens lineage (Figure 1b). Further, 

by comparing sequences between the human CH17 contig (CNPβinv) and GRCh37 (CNPβ), 

we predict the β inversion to have occurred shortly thereafter 748 ± 92 thousand years ago 

(Supplementary Figure 20b). We calculate that the time to most recent common ancestor of 

the inverted NA12878 Hα1γinv and the Hα1 haplotype (direct for the γ inversion) is 578 ± 

47 thousand years ago (Supplementary Figure 21).

Overall, these data suggest radical restructuring of this region in the Homo lineage over a 

short epoch of evolutionary time and a clear polarity of duplicative transposition events 

moving segments from BP4 to BP5 in association with GOLGA8 repeats. These events have 

led to the emergence of at least five alternate chromosomal configurations in the human 

population ranging from ~2 to >3 Mbp in size.

15q13.3 microdeletion patient breakpoint analysis

We analyzed 80 total DNA samples from children with autism, intellectual disability, and/or 

developmental delay that were previously identified as carrying 15q13.3 microdeletions by 

clinical array comparative genomic hybridization (CGH). These include 77 cases with 

intellectual disability and developmental delay referred to Signature Genomic Laboratories 

(24 unpublished and 53 previously reported)1 and three cases with idiopathic autism from 
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the Simons Simplex Collection (SSC)28. We screened the 80 patients using complementary 

methods targeted to the 15q13.3 region: (1) a higher density customized microarray and (2) 

sequencing via MIP-capture of singly unique nucleotide (SUN) k-mers (SUNKs). Both 

methods mapped the breakpoints of the disease-critical region to a ~500 kbp region spanned 

by the CNPα and CNPβ SDs (Supplementary Figures 22 and 23; Supplementary Tables 20 

and 21).

Since the β inversion configuration creates a potentially more competent substrate for non-

allelic homologous recombination (NAHR) because of its longer stretch (188 kbp) of 

directly oriented sequence, we tested whether this particular configuration was enriched in 

patients as has been observed for other microdeletion regions23,29,30. We compared the 

frequency of this configuration in patients and controls of European ancestry using sequence 

markers specific for the β inversion (Figure 2a). We found that the frequency of the β 

inversion does not differ significantly in 15q13 microdeletion patients [~28% (n=40) when 

compared to the European average (38%) (p=0.27, Fisher’s exact two-tailed test); 

Supplementary Table 15]. These data suggest that factors other than simply the length of 

homology promote the instability of this locus.

To refine the breakpoints with greater precision, we performed whole-genome sequencing of 

two idiopathic autism patients from the SSC carrying de novo 15q13.3 microdeletions along 

with their unaffected parents using the Illumina HiSeq 2000 (101 bp PE reads) 

(Supplementary Table 22). The generated sequences were aligned to the human GRCh37 

reference and the alternate CH17 Hα2βinv assembly. We investigated paralog-specific read-

depth over 1 bp windows in each trio at all sites where both parents had the expected copy 

number of 2. Using SUN variants that allowed us to discriminate between the paralogous 

copies19, we narrowed proband 13647.p1 breakpoints to a 14 kbp segment at BP4 and a 22 

kbp segment at BP5 and proband 13301.p1 breakpoints to a 155 kbp segment at BP4 and a 

30 kbp at BP5 (Figure 6; Supplementary Table 10). The two probands have different 

breakpoints but in both cases the breakpoints map at or adjacent to directly oriented copies 

of GOLGA8 (Figure 7).

We tested by simulation to determine if the apparent clustering of evolutionary and disease 

breakpoints within or near GOLGA8 sequences was significant. We identified the positions 

of all GOLGA8 sequences (Supplementary Table 23) within the BP4 and BP5 regions and 

created a null model by randomly distributing the breakpoint intervals to the SDs mapping 

to this portion of 15q13.3 (chr15:30,362,914–31,196,467 and chr15:32,442,314–32,927,877; 

Supplementary Table 24). We computed the number of times the mean distance of sampled 

breakpoints from the null distribution was less than or equal to the mean of the observed 

distances between 15q13.3 breakpoints and GOLGA8 repeats (66,801 bp). The results 

suggest that the clustering of breakpoints with GOLGA8 sequences is significant (empirical 

p=0.002, n=100,000 permutations).

DISCUSSION

Our comparative sequence analysis of human and primate genomes reveals that the 15q13.3 

region has become increasingly complex over the course of human evolution, with an 
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expansion in size from 1.8 Mbp in apes to 2–3.5 Mbp in humans. There has been a clear 

polarity with most duplicative transpositions occurring from BP5 to BP4. Most of the largest 

structural changes, including large-scale inversion polymorphisms, arose over a narrow 

evolutionary period (500–900 thousand years ago)—a time when ancestral Homo sapiens 

was diverging from archaic hominins31,32. We have resolved five distinct structural 

configurations in humans that differ radically in organization and SD content. Our results 

suggest that human chromosomal 15q13.3 haplotypes can vary by as much as 75% of their 

euchromatic length and are stratified among different populations. The simplest ancestral 

configurations (e.g., Hα1) show elevated frequency among African populations while some 

of the largest and potentially disease-prone configurations are enriched in out-of-Africa 

populations (e.g., Hα2βinv in Europeans and Hα3 in East Asians).

At least nine 15q13.3 rearrangement breakpoints (six human, one chimpanzee, and two 

gorilla rearrangements) map at or adjacent to GOLGA8 core duplicons (Table 1; Figures 4, 

6, and 7). Although our breakpoint precision ranges from 12–155 kbp and cannot be further 

refined due to the presence of virtually identical sequence within these regions 

(Supplementary Table 10), our simulations strongly suggest that this association is 

significant. The GOLGA repeat encodes a primate-specific chromosome 15 gene family of 

14 kbp15 that expanded over the last 20 million years of primate evolution12,13. It has 

become dispersed to multiple locations across the long arm of chromosome 15 and is the 

most enriched sequence associated with SD blocks promoting disease instability, including 

Prader-Willi/Angelman syndromes, 15q24 microdeletions and 15q25.2 microdeletions33–36 

(Supplementary Figure 24a and b). GOLGA is one of fourteen “core duplicons” associated 

with the burst of interspersed SDs in human–great ape ancestral lineage17,37.

We propose that the GOLGA core duplicons are preferential sites of genomic instability that 

have driven both disease and evolutionary instability of chromosome 15. In addition to the 

clustering of breakpoints on chromosome 15q13.3, other data are supportive of a more 

global association. We note, for example, that this same GOLGA repeat demarcates a 

pericentric inversion breakpoint between human and chimpanzee 15q11-q1338 and a more 

ancient inversion in the Catarrhini ancestor39. Analysis of the SDs mapping at other 

chromosome 15 microdeletion regions (e.g., 15q24 and 15q25) show the breakpoints often 

occur in directly orientated duplications that are short and have a low percentage of identity 

(Supplementary Figures 24c and 25) but contain multiple copies of the GOLGA repeats. 

Array CGH experiments on ten previously published 15q24 microdeletion cases confirm 

that the GOLGA repeat maps at or near most rearrangement breakpoints (Supplementary 

Figures 24c and 26)33,40. These findings are also consistent with our observation that we 

find no evidence of an enrichment of the Hα2βinv haplotype among 15q13.3 deletion 

patients even though this configuration expands the directly orientated segment from 58 to 

188 kbp in length. Although orientation, length and degree of sequence identity between 

duplicated sequences are frequently deemed the most important parameters for NAHR1,41, 

the presence of a GOLGA repeat may bias the actual position of the unequal crossover (i.e., 

an NAHR hotspot).

These results also bear striking similarities to the microdeletion encompassing the 

neurofibromatosis type-1 (NF1) gene and its flanking regions at 17q11.2. The most common 
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NF1 microdeletions (type-1) span 1.4 Mbp and have breakpoints located within SDs 

containing LRRC37 core duplicons42. The same LRRC37 core duplicons at 17q21.31 are 

known to have mediated the 970 kbp polymorphic inversions of the MAPT locus that also 

underlies the syndromes associated with recurrent 17q21.31 microdeletions27. The presence 

of core duplicons at multiple evolutionary breakpoints as well as at a variety of recurring 

disease-associated rearrangements are indicative of the high degree of genomic instability 

driven by these sequences.

Our evolutionary reconstruction suggests that the GOLGA8 core, in particular, has promoted 

both inversions and the formation of large palindromic SD structures. Palindromic 

sequences, or inverted repeats, have been known to be unstable and represent hotspots for 

deletion or recombination in bacteria, yeast, and mammals43–46. This genetic instability has 

generally been related to DNA replication: slow replication was observed in an inverted 

repeat sequence in Escherichia coli44, and inverted repeats lead to chromosomal 

rearrangements more frequently in yeast that are deficient in DNA polymerase activity47,48. 

In the events discussed here, the presence of palindromic structures might have promoted 

stalling of the replication fork, creating an opportunity for the chromosome to break, and 

recombination might have occurred in a non-allelic fashion using the homology of the 

GOLGA repeats. In humans, short palindromic AT-rich repeats (or PATRR) have been 

implicated in chromosomal aberrations via non-homologous end joining leading to gross 

transchromosomal events49 and instability in cancer cells50. Most experimental 

demonstrations of palindrome formation and instability have involved smaller structures. 

The putative palindromes here are massive—for instance, ~210 kbp in length with 58 kbp 

inverted arms flanking a 95 kbp spacer for CNPβ—and attempts to detect its formation by in 

vitro snapback assays50 were inconclusive.

The recurrent use of GOLGA core duplicons suggests a fundamental role in the cycles of 

chromosomal rearrangement that have intertwined large-scale inversions and SD expansions 

in this region. We note that most of the largest interspersed SDs have been transposed in an 

inverted orientation. Similar inverted configurations also occur for contemporary 

rearrangements such as the PLP1 locus, which is known to be associated with inverted 

repeats51,52. Microhomology-mediated break-induced replication (MMBIR) mechanisms 

may be responsible for initial SD formation53,54, and sequences such as GOLGA may also 

represent preferred or “fragile” sites for MMBIR. It is intriguing that the GOLGA repeats 

corresponding to sites of rearrangement and conversion maintain an open reading frame 

while those at the periphery are disrupted (see Supplementary Note). We previously showed 

that core sequences are generally more transcriptionally active than unique or flanking 

duplicated sequence16. Thus, transcription and maintenance of an open reading frame may 

be a critical feature of core duplicons in order to serve as seeds of genomic instability and 

punctuated SD in the human genome. The mechanism by which these elements promote 

evolutionary and disease instability during replication will require future experimental 

investigation.
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METHODS

FISH analysis

Interphase nuclei and metaphase spreads were obtained from lymphoblast and fibroblast cell 

lines from 20 human HapMap individuals (Coriell Cell Repository, Camden, NJ), four 

chimpanzees (Katie; Veronica; Cochise; PTR8), two gorillas (GGO5; GGO8) and three 

orangutans (PPY9; PPY16; PPY13). All cell lines were tested for mycoplasma 

contamination. Primate cell lines were previously collected at the University of Washington 

and at the University of Bari (Supplementary Table 17) and have not been authenticated. 

FISH experiments were performed using fosmid clones directly labeled by nick-translation 

with Cy3-dUTP (PerkinElmer), Cy5-dUTP (PerkinElmer), and fluorescein-dUTP (Enzo) as 

described previously23. A minimum of 50 interphase cells were scored for each inversion to 

statistically determine the orientation of the examined region.

Copy number variation analysis

Array CGH was performed on 80 samples with 15q13.3 microdeletions using custom, high-

density oligonucleotide 4×180K Agilent chips targeted to with a density of 1 probe per 100 

bp. Labeling, hybridization, scanning, and data processing were performed as directed by 

the manufacturer. DNA sample NA19240 was used as reference. We estimated the copy 

number of 15q13.3 SDs among 2225 HapMap individuals of different ethnicity24 using a 

sequence read-depth method19. The duplication content of human, chimpanzee, gorilla, 

orangutan, and macaque was determined using the whole-genome shotgun sequence 

detection (WSSD) method as described in Marques-Bonet, et al.37.

BAC library construction and screening

We constructed individual BAC libraries from each member of the NA12878 parent-child 

trio, namely: NA12878 (VMRC53), NA12891 (VMRC54) and NA12892 (VMRC57). High 

molecular weight DNA was isolated, partially EcoRI digested, and subcloned into 

pCC1BAC vector (Epicentre) to create >150 kbp insert libraries using previously described 

protocols 56. Clones were plated into 384 microtiter plates and were transferred to high-

density nylon filters for library screening.

Illumina sequencing of BAC clones

DNA from CH17, VMRC53, VMRC54, CH251, CH276 and CH277 BAC clone libraries 

was isolated, prepped into barcoded genomic libraries and sequenced (PE101) on an 

Illumina HiSeq 2000 using a Nextera protocol29. Sequencing data (~300-fold coverage) 

were mapped with mrsFAST57 to the reference genome and SUN identifiers were used to 

discriminate between highly identical SDs19.

PacBio clone sequencing and assembly

DNA was isolated from CH17, VMRC53, VMRC54, CH251, CH277 and CH276 BAC 

clones, PacBio SMRTbell libraries were prepared and sequenced using RSII C2P4 

chemistry (one SMRT cell/BAC sample with two 45-minute movies). Inserts were 

assembled using Quiver and HGAP as described18. Alternate human genome assemblies, 
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including PacBio and capillary sequenced clones from CH17, RP11 and VMRC53 BAC 

libraries, were assembled with Sequencher and compared to the human reference genome 

using Miropeats55 and BLAST58.

Sequence analyses

Multiple sequence alignments (MSAs) of representative human haplotypes, paralogs, and/or 

orthologs from human, chimpanzee, gorilla and orangutan were generated using Clustal 

W59. We constructed a series of phylogenetic trees using the neighbor-joining method with a 

complete deletion option (MEGA5)60. Genetic distances were calculated using the Kimura 

2-parameter with standard error estimates (an interior branch test of phylogeny; N=500 boot 

straps replicates); Tajima’s relative rate test was used to assess validity of the molecular 

clock. We then estimated the coalescence/divergence time using the equation T=K/2R and 

an estimated divergence time of 6 million years between human and chimpanzee and 15 

million years between human and orangutan.

Whole-genome sequencing of 15q13.3 microdeletion samples

Using SSC autism trios (proband, father, and mother) 13301 and 13647, 3 μg of genomic 

DNA were sheared, end-repaired, an A-tail added, and adaptors ligated to the fragments as 

described61. Afterwards, ligation samples were run on a 6% pre-cast polyacrylamide gel 

(Invitrogen, Cat. No. EC6265BOX). The band at 400–550 bp was excised, diced, and 

incubated as described above. Size-selected fragments were amplified with 0.5 μL of 

primers, 25 μL of 2X iProof, 0.25 μL of SYBR green, and 8.25 μL of dH2O under the 

following conditions: 98°C for 30 sec, 30 cycles of 98°C for 10 sec, 60°C for 30 sec, 72°C 

for 30 sec, 72°C for 15 sec followed by 72°C for 2 min. Fluorescence was assessed between 

the 30 and 15 sec 72°C step. Amplified, size-selected libraries were quantified using an 

Agilent 2100 Bioanalyzer and paired-end sequenced (101 bp reads) on an Illumina HiSeq 

2000. Sequence read-depth corresponding to SUNs was used to refine the breakpoints as 

previously described19. Digital comparative genomic hybridization (dCGH) was performed 

using the sequences from these samples using previously described methods17.

Molecular inversion probe (MIP) genotyping

We used 70 bp MIPs to capture and sequence the β inversion haplotype-tagging variants 

(n=8) and SUNKs (n=235) spanning the 15q13.3 region. The β inversion haplotype-tagging 

variants were identified from an MSA of CNPβ at BP4 and BP5 from our CH17-derived 

assembly and the human reference (Supplementary Table 6). We identified 3544 SUNKs 

across the 15q13.3 region (chr15:30,350,000–32,950,000; GRCh37) using previously 

described methods19. MIP design, capture, and sequencing were performed as previously 

described26,62. MIP sequences are listed in Supplementary Table 13. Any individual with 

less than 5000 reads mapping was removed from subsequent analyses. In the case of the β 

inversion haplotype-tagging variants, we genotyped an individual as carrying the β inversion 

if they had at least one read mapping to seven out of the eight variants (Supplementary 

Table 14).
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Human subjects

The human samples included in this study do not meet the federal definitions for human 

subjects research. All samples were publicly available or encoded with no individual 

identifiers available to the study authors. Samples were collected at respective institutions 

after receiving informed consent and approval by the appropriate institutional review boards. 

There are no new health risks to participants. Samples that fall within this category include 

autism probands and parents from the SSC, probands with intellectual disability and 

developmental delay referred to Signature Genomic Laboratories, and individuals from 

representative human populations from the 1000 Genomes Project.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 15q13.3 structural variation
(a) Different structural rearrangements at the 15q13.3 region include a 2 Mbp microdeletion 

between BP4 and BP53, a 430 kbp microdeletion involving the CHRNA7 gene8, a 1.8 Mbp 

polymorphic inversion of the same region (γ inversion)3,10,11, two CNP SDs (CNPα and 

CNPβ) mapping at BP4 and BP5 of the 15q13.3 microdeletion, and a small inversion (β 

inversion) overlapping CNPβ at BP4. (b) Read-depth-based copy number estimates of 

CNPα and CNPβ in 2225 HapMap individuals from the 1000 Genome Project and 86 

nonhuman ape, Neanderthal and Denisova genomes (circled in red). The number of 

individuals from each population is indicated in parentheses. A strong correlation (r=0.82, 

Pearson correlation which is significant using an F test) in copy number is observed between 
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CNPα and CNPβ in humans but not apes. (c) FISH analysis using a probe mapping at CNPα 

(WIBR2-1388I24, green) and two probes mapping in the unique sequence 

(WIBR2-1462O20, red; WIBR2-3158E16, blue) shows a variable copy number between 0 

and 1 at BP4 and between 0 and 2 at BP5.
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Figure 2. Sequence refinement of β inversion breakpoints
(a) A 210 kbp β inversion was identified, validated, and sequenced using the VMRC54 BAC 

library (NA12891 individual). Illumina-generated sequences of clones spanning the BP4 

CNPβ were mapped to human reference GRCh37. Clones sequenced using PacBio are 

indicated with asterisks. The copy number (CN) heat map shows the total diploid CN of a 

region in the CH17 hydatidiform mole cell line. The locations of the β inversion haplotype-

tagging variants are pictured as dots. The blue arrows represent the BP4 CNPβ (dark blue) 

with the flanking 58 kbp inverted SDs (light blue). (b) Homologous sequences of clones, 

generated using PacBio and assembled into sequence contigs, are connected with colored 

lines between the direct (Hα2) and inverted (Hα2βinv) haplotypes from NA12891 using 

Miropeats55. Vertical arrows indicate the minimal inversion breakpoints. (c) Homologous 

sequences (58 kbp) from the BP4 CNPβ flanking inverted SDs were aligned from multiple 

individuals (NA12891 and CH17) and haplotypes (β direct: SDs 1 and 3, and β inverse: SDs 

2 and 4; see Supplementary Figure 5 for a more detailed alignment) and variant sites 

compared. Variant positions showing signatures of being within or outside of the β inversion 

breakpoints are indicated as colored lines under the picture of the distal β inverse SD 

including: within the inversion (orange; consensus of SDs 1 & 4 and SDs 2 & 3), outside the 
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inversion (yellow; consensus of SDs 1 & 2 and SDs 3 & 4), and gene conversion (gray; 

consensus of SDs 1 & 3 and SDs 2& 4). The inversion breakpoint, refined to a region in 

which we observe a transition from orange to yellow lines, is highlighted with a dash-

outlined red box.
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Figure 3. Sequence refinement of γ inversion breakpoints
(a) The γ inversion was identified, validated, and sequenced using the VMRC53 BAC 

library (NA12878 individual). Illumina-generated sequences of clones spanning the 15q13.3 

BP4 (green bars) and BP5 (red bars) loci were mapped to the human reference GRCh37. 

The nine clones pictured were sequenced using PacBio. The copy number (CN) heat map 

shows total diploid CN of a region in the CH17 hydatidiform mole cell line. The minimal 

region of the inversion spans ~1.8 Mbp (highlighted with a dashed box and a red bar). The 

orange arrows represent the flanking 72 kbp flanking inverted SDs that mediate the γ 

inversion. The Hα1γinv haplotype likely arose from the Hα1 haplotype, which does not 

harbor CNPα and CNPβ at BP4. (b) Homologous sequences of clones, generated using 

PacBio and assembled into contigs, and the human reference are connected with colored 

lines between γ direct (Hα2) and inverse (Hα1γinv) haplotypes using Miropeats55. Vertical 

arrows indicate the minimal inversion breakpoints. (c) Homologous sequences (72 kbp) 

from the orange flanking inverted SDs were aligned from multiple individuals (NA12878, 

CH17, and GRCh37) and haplotypes (γ direct: SD 3, and γ inverse: SDs 2 and 4; see 

Supplementary Figure 9 for a more detailed alignment) and variant sites compared. Variant 

positions showing signatures of being within or outside of the γ inversion breakpoints are 

indicated as colored lines under the picture of the distal γ inverse SD including: within the 

inversion (blue; consensus of SDs 2 & 3), and outside the inversion (green; consensus of 
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SDs 3 & 4). The inversion breakpoint, refined to a region in which we observe a transition 

from blue to green lines, is highlighted with a dash-lined red box.
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Figure 4. Comparative sequence analysis of the 15q13.3 region among apes
The genomic structure is schematized within the context of a generally accepted phylogeny 

of orangutan, gorilla, chimpanzee and human. A tiling path of BAC clones was sequenced 

for each haplotype (dashed lines Illumina/solid lines PacBio or capillary finished sequence). 

A total of 66 BACs were completely sequenced and used to determine the SD organization 

(colored boxes). Colored boxes with lighter shades indicate segments that are single copy 

but duplicated in other species. Nonhuman primates lack most of the larger duplications 

(including CNPα and CNPβ) observed in humans but do carry ancestral GOLGA8 repeats. 

The region has expanded from 1.8–1.9 Mbp in nonhuman apes to 2–3 Mbp in humans as a 

result of SD accumulation (colored rectangles). The size of each haplotype is indicated on 

the right, with the size of the duplicated bases in parentheses. The addition of a polymorphic 

500 kbp at BP4 occurred specifically in the human lineage, associated with an expansion of 

the GOLGA8 repeats at BP4 (CN=6 compared to CN=2 in human simpler haplotypes and 

nonhuman primates). Sequence and FISH data indicate that chimpanzee and orangutan were 

found to be in direct orientation while gorilla was found to be in inverse orientation for the γ 

inversion suggesting separate inversion events occurred at this locus across primate species.
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Figure 5. Model of chromosomal 15q13.3 evolution
Based on comparisons to outgroup primates, we propose a simpler human ancestral 

organization (Hα1)—a configuration that is found enriched in contemporary African 

populations. A 510 kbp duplicative transposition from BP5 to BP4 (α and β duplications) 

occurred potentially in a palindromic configuration (Hα2), followed by an inversion of β at 

BP4 (Hα2βinv) between 700–900 thousand years ago. NAHR within BP5 leads to 

tandemization of the 510 kbp duplication (Hα3) and larger configurations primarily in East 

Asian populations. Approximately 500 thousand years ago, the 1.8 Mbp γ inversion 

independently rearranged to the Hα1γinv inverted haplotype.
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Figure 6. 15q13.3 microdeletion breakpoints analysis
Array CGH data for two 15q13.3 microdeletion patient samples are mapped against the 

GRCh37 human reference. The microdeletion breakpoints map within a 500 kbp region 

(yellow boxes) where both α and β SDs are mapping. Digital comparative genomic 

hybridization (dCGH)17 was used to detect regions of gain or loss in probands (p1) 

compared to their parents (mo, mother; fa, father). The method measures differences in 

Illumina sequence read-depth compared to a reference genome to define sites of copy 

number variation. Paralog-specific read-depth analysis in each proband and their parents 

was performed at all sites where both parents had the expected copy number of 2. This 

allowed us to refine proband 13647.p1 breakpoints to a 13 kbp segment and proband 

13301.p1 breakpoints to a 30 kbp between BP4 and BP5 (red boxes). The two probands 
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have different breakpoints but in both cases the breakpoints map at or adjacent to the 

GOLGA8 repeats.
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Figure 7. Summary of 15q13.3 rearrangements mediated by GOLGA8 repeats
Shown are eight independent rearrangements at the 15q13.3 region. Colored boxes indicate 

the breakpoints identified for each rearrangement (Supplementary Table 10). The size and 

the percent of similarity of the paralogous sequences at the rearrangement breakpoints are 

shown.
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