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Palladio:

An Exploratory Environment for Circuit Design

Harold Brown, Christopher Tong, and Gordon Foyster

Stanford University

Introduction

Palladio* is a circuit design environment for experimenting with methodologies and knowledge-

based, expert-system design aids. Palladio's framework is based on several premises about circuit

design: (a) circuit design is a process of incremental refinement. (b) it is an exploratory process in

which design specifications and design goals co-evolve; and (c) most importantly, circuit designers

need an integrated design environment that makes available compatible design tools ranging from

simulators to layout generators. permits specification of digital systems in compatible languages

ranging anywhere from architectural to layout, and includes the means for explicitly representing.

constructing, and testing such design tools and languages.

*Andrea Palladw. (1518-1580) was the Italian architect who developed [he methodology of proportion and formal

architectural st)le 'hat has become known as chmical architeclure In a wrcne lie was the first know4edg.." cagir,-er of

design principles, and his influential published works arv still in pnnt four hundr.d years after his death.
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Organization of the Paper

In the introductory section we discuss the concept of an integrated design environment. In the

next three sections we describe the basic conceptual framework underlying Palladio: In the section

The Circuit Design Process, we discuss Palladio's view of the design process as incremental

refinement; in the section Design Perspectives, we introduce the central concept of Palladio--design

specification using structural and behavioral design perspectives; and in the section A Partially

Structured Design Process we describe how Palladio permits certain deviations from a fully

hierarchical component decomposition process. The next section, Behavior Specification, describes

Palladio's use of a rule format for behavioral specification, and the system's simulator is described in

the section Palladio's Simulator. The section Implementation discusses how Palladio is implemented

using multiple programming paradigms. An example of an expert-system design aid implemented

using Palladio is given in the section Design Tools as Expert Systems. The current status of the

Palladio system and our future plans are described in the concluding sections Status and

Conclusions.

Integrated Design Environments

There is a growing trend toward creating integrated design environments, as opposed to isolated

design aids. During the past year, several commercial computer-aided engineering (CAE)

workstations for assisting the circuit designer have emerged.1 These workstations provide multiple-

level circuit specification entry systems (e.g., functional specifications and schematics) and analysis

aids (e.g., logic simulators and timing %crifiers). Integrated circuit designers have a special need for

such workstations because of the complexity of large integrated circuits and tile high costs of

prototyping them. The Palladio environment integrates both design tools and design specification

languages and is an attempt to formnalize the type of conceptual Iramcwork required by such an

integration. That such integration is orly now taking place reflects the diversity and complexity of

the kinds of expert design knowledge tnat need to be integrated.
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An integrated design environment reduces or eliminates many needs artificially induced by lack

of integration. The need for certain design tools is a by-product of unnecessary information loss;

for example, circuit extraction programs are required, in part. because one stage of the design

process (circuit design) fails to communicate its results to another stage (layout generation).

Designers often make some long chain of decisions, only to take back some of them when their

negative consequences finally become apparent. For example, a designer may implement a

multiplexer component using random gate logic and then later retract that implementation when it

becomes apparent that a PLA implementation would be more area efficient. Such a lag between

the time of a decision and the time when its consequences can be analyzed is, in part, inherent in

the exploratory nature of design; however, some of this need for backtracking can be eliminated

given a common framework in which one can describe known laws, heuristics, and trade-offs

connecting high-level decisions (e.g., architectural decisions) with low-level consequences (e.g., area

of a layout).

Palladio differs from other integrated design environments by providing the means for

constructing, testing, and incrementally modifying or augmenting dcsign tools and languages. For the

circuit designer, Palladio supports the construction of new specification languages particular to the

design task at hand and augmentation of the the system's expert knowledge to reflect current design

constraints and goals. For the design environment builder, Palladio provides several programming

paradigms: rule based (expert systems oriented),* data oriented, object oriented, and logical

reasoning based; these capabilities arc largely provided by two of the experimental programming

environments in which Paladio is implemented: LOOPS 4 and MIRS.5 The differing features of

these paradigms (described in the section Implementation) make each useful for constructing

different elements of a design environment.

*See. for example, Nau 2 or I layes-Roth fot an introduction to expert systems.
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Perhaps the most significant property these programming paradigms share is that each makes

possible the explicit representation of specific kinds of design knowledge. A representation is explicit

if it can be treated and manipulatcd as data by a program. Much of artificial intelligence research

in the last ten years can be viewed as contributing to a classification of different kinds of knowledge

and exploiting explicit knowledge representions.6 Designing an integrated circuit requires a

significant body of expert knowledge, taking a wide variety of forms and often technology specific or

even circuit-type specific. The expert knowledge used by a design environment should be available

to a designer in an understandable and easily accessible form. Much valuable expert knowledge can

take the form of a well-integrated collection of task-specific design aids. One of the primary uses of

Palladio is as a vehicle for acquiring and recording the knowledge used by such design aids.

Elements of the Palladio Environment

Palladio provides a test bed for investigating elements of circuit design that includes

specification, simulation, expert-system design aids, and use of previous designs in a current design.

It has facilities for conveniently defining models of circuit structure or behavior. These circuit

models, called perspectives, are similar to circuit design levels; the designer can use them to

interactively create and refine circuit design specifications. Perspectives can include composition

rules that constrain how circuit components may be combined in that perspective to form morc

complex components.

Palladio provides menu-driven, graphics interfaces for editing and displaying structural

perspectives of circuits in a uniform manner and a uniform behavioral language with an associated

behavioral editor for specifying a design from a behavioral perspective. Further. a generic, eve-nt-

driven behavioral simulator can simulate a circuit specified friom any beha\ioral pcispecti~e and can

perform hierarchical and mixed-pcrslpctive simulation. A color graphics displa. can be used for

showing dynamic simulation "movies."

Palladio has several facilities for implementing design refinement aids as expert systems and for
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conveniently creating and using libraries of prototype components. These ibraries can contain

components of arbitrary complexity.

The Circuit Design Process

The design of a circuit can be viewed as the transformation of an initial specification of the

circuit into a final specification that adequately details how the circuit is to be realized physically.

The initial specification, which is usually imprecise and incomplete, focuses primarily on the circuit's

functionality. The final specification emphasizes the structure of the circuit (e.g., the geometry of

the fabrication masks) but can also include specifications of desired circuit behavior and qualitative

performance. Unless the circuit is so simple that its full detail can be grasped at once, the

transformation of an initial specification into one that is physically realizable is an incremental

process in which abstract specifications of twe circuit's structure and behavior are gradually refined

into more detailed specifications. During the refinement process, the evolving design specifications

must be tested and evahlated against the goals and constraints of the design, that is, the design must

be verified. A circuit design environment should provide tools to assist the designer in both design

specification and design verification throughout the refinement process.

Circuit design in many ways resembles the design of complex software systems (see, e.g.,

Smith7). The design of circuits is more analogous to exploratory programming than it is to

structured programming. We have modcled our circuit design environment after the I.isp

programming environments developed for artificial intelligence research, for example, lnterlisp.8 In

these environments, the design of a program1 (i.e., the code) and the design of the program's

specifications can evolve together, as the programmer has available a wcll-integrated set of powerful

tools to assist in the development process (e.g.. file management, interactive graphics, and dcbugging

tools).9 An exploratory circu~it design enxironment, like an exploratory programming environment,

must provide an integrated set of tools to assist the designer.
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Hierarchical Design

Many factors complicate design refinement. The space of refinements is large and its elements

are complex, the generation and evaluation of a refinement is expensive, and only partial

informnation is available at any step in the process. Furthermore, it is impossible to predict all of

the consequences of choosing a particular refinement (and, thus, designers often retract one

refinement and pursue another).

Designers have, in part, coped with the difficulties of the design process by using the

principle of divide and conquer. As Simon (among others) has observed:

To design ... a complex structure, one powerful technique is to discover viable ways of

decomposing it into semi-independent components corresponding to its many functional

parts. The design of each component can then be carried out with some degree of

independence of the design of others. 10

This top-down technique of hierarchical partitioning is used universally by designers to simplify

the de.ign process. The process of partitioning a component into constituent components to reduce

the complexity of the design process is itself a difficult and knowledge-intensive task. An

inappropriate partition simply transfers complexity from the process of designing the constituent

components to the subsequent process of recomposing the designed components into an overall

design. Using appropriate design specification levels helps ensure that the recomposition process is

tractable.

The design paradigm supported by Palladio is incremental refinement of design specifications,

interspersed with validation of the specifications by simulation. The basic hierarchical step in

structural refinement is the partitioning of a component specified at a given structural description

level (i.e., from a given perspective) into constituent components specified either at that level or at a
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less abstract level. Other permissible refinement steps are adding detail to the structural

specification of a component (e.g., clock phase to a register or mask level to a wire) and specifying

behavior with respect to some behavioral description level. The hierarchical use of multiple

structural and behavioral descriptions and the allowed refinement steps constitute Palladio's model

of the design process.

Design Specification

In Palladio designs are specified using design perspectives. A design perspective provides both a

conceptual model for viewing the structure or the behavior of a circuit that emphasizes certain of the

circuit's features while suppressing others and a language for specifying the circuit from the

perspective. For example, a circuit can be viewed as a finite state machine or as a collection of

clocked storage registers and combinational logic elements, and specified using state transition tables

or a register-transfer language. A perspective in Palladio is either structural or behavioral. This

explicit decoupling of behavioral perspectives from structural perspectives allows a modularity not

admitted by most circuit design languages; one or more behavioral perspectives can be associated

with a structural perspective and vice versa. This modularity permits, for example, a component to

be specified from a very abstract behavioral perspective at an early stage in the design process and

from a more concrete behavioral perspective at a later stage in the process. Moreover, a circuit

designer can use Palladio to construct structural and behavioral perspectives specifically tailored for

a particular circuit. (Some examples of such circuit-specific perspectives are given later in this

section).

Palladio defines a structural perspective by the types of components alloýcd when partitioning a

component into constituent compotents with respect to that perspective. For example, from a

register and combinational logic perspective, a circuit can be partitioned into only registers,

combinational logic blocks and interconnect. Some of the component types allowed by a

perspective are primitive with respect to the perspective, that is, they cannot be palrtitioned from the

perspective: while ohlier allowed component types are co•nposite with respect to the perspective,
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that is, they permit further decomposition from the perspective. For example, from a switches and

gates perspective, a component of type switch is primitive while a component of type gate may be

further partitioned into switchcs and other primitive components. A circuit is fully, partitioned with

respect to a perspective if all of the components at the lowest level of the circuit's component

hierarchy are primitive with respect to the perspective.

The definition of a perspective can also include composition rules that limit the ways in which

components can be interconnected. These rules help ensure that circuits specified from the

perspective are correct with respect to that perspective's concerns. The allowed component types

and the composition rules of a perspective constrain the manner in which a given component can be

partitioned with respect to the perspective. In this manner, the use of structural perspectives

complements the component decomposition process. Using appropriate perspectives helps ensure

that the recomposition process is tractable.

Examples of Structural Perspectives

We now present two examples of experimental perspectives that have been implemented using

Palladio. The first example perspective is useful for designing a broad variety of nMOS circuits.

The second example perespective was constructed to investigate a specific machine architecture.

Example 1: CSG Perspective. One of" the more conc.ete experimental perspectives (i.e., its

specifications arc close to being physically realizable) we have implemented is the ('locked Switches

and Gates (CSG) perspective. The CSG perspective views a circuit as networks of steering logic,

clocking logic, and restoring logic gates, and it is specialized for nMOS circuits that use a two phase,

nonoverlapping clocking scheme. The perspective is concerned primarily With the digital behavior

of a circuit, that is, with the avoidance of indeterminate logic levels, Such indeterminate levels can

be caused by improper connection of components, improper operating regions of devices, and

leakage of stored charge. The CSG perspective is based on concepts presented in Stefik 11 and is

closely related to switch level simulators (e.g., Bryant1 2).
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The primitive component type for steering logic is a steering switch. A steering switch

represents a pass transistor with its ports labeled as shown in Figure la.

CONTROL QUALIFIED CLOCK CONTROL

DATA INPUT - STEERED OUTPIJT DATA INPUT . CLOCKED OUTPUT

(a) STEERING SWITCH (b) CLOCKING SITCH

POWER PULLOOW OR POWER POWER

DATA INPUT CONTROL

PULLDOWNP OR GROUND OUTPUT
OUTPUT

Ie) PULLUP (d) PULLDOWN WATCH 4o) CONTROLLED PULLUP

Figure I CSG primitive component types.

The composite component type steering net is used to represent networks of steering switches.

An example of a component of type steering net, a 2-by-2 barrel shifter, is shown in Figure 2a. As

their names imply, steering switches and ncts are used solely for guiding data--they perform no

clocking or data-storage functions.

The primitive component type for clocking logic is a clocking switch. A clocking switch also

represents a pass transistor, but with its ports labeled as shown in Figure ilb. Clocking switches are

used primarily for gating data into data storage components and have an associatei clock phase, pl

or 42.

A (restoring) logic gate component type reprcscnts the usual nNIOS ratio logic element. A

component of type logic gate can be decomposed into a component of type pullup and
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INPUT

lt-
IN~I I--
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GROUND

Wd) INIVERTING WJPRUUPJPUR

GROUND

Is LOGIC SATE MPLUEMENTING
OUT - NOTHIIINA IN 2) V IN 31)

f.igure 2. Examipls ofrCSG composite comnponents.

one or more components of type pulldown switch. The component type puifup represents a

dcplction mode transistor with it,. gate tied to its source as illustrated in Fignre Ic. Tlhe componcit

type pu/Idown switch represents an enhancement mode transistor with its ports lhcled as shown in

Figure Id. In the CSG perspective, pullups and pulldown switches can be used only as comnponclnts,

of logic gates. The simplest component of type logic gate is an in•erter, whitch coiisic;ts of a pullup

and a pulldown s~itch connected as shown in Figure 2b. Components of type lgic ,ate
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perfonning more complex functions can be constnrcted using appropriate nets of pultdown switches.

For example, a component of type logic gate performing the function

Out = (NOT((Inl AND In2) OR 1n3))

is shown in Figure 2c.

A component of type controlled gate is a variant of a logic gate; it is composed of a component

of type controlled pullup and one or more components of type pulldown switch. The component

type controlled pullup represents a depletion mode transistor with its ports labeled as shown in

Figure le. An example of a component of type controlled gate is the super-buffer shown in Figure

2d.

The component types defining the CSG perspective are listed in Table 1.

Table 1.

CSG Component Types.

Primitive Components

Steering Switch
Clocking Switch
Pulldown Switch
Pullup
Controlled Pullup

Composite Components

Steering Net
Clock Qualifier
Gate
Controlled Gate
Subsystem
Circuit

Interconnect Components

Wire
Contact
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Example 2: A Circuit-specific Perspective. The Palladio system has been used to create several

architectural-level perspectives for investigating the abstract behavior of specific circuits. One such

circa.., a MIMI) architecture designed by Bruce Dclagi of Digital Equipment Corporation, consists

of an 8X8 grid of nodes where processing proceeds by concurrent message passing between nodes.

A node in the grid is composed of a communication chip and a local processor with local memory.

Each communication chip is doubly connected to its four neighboring communication chips and to

its local processor. All communication paths in the circuit are byte-wide.

The structural perspective created for the circuit has three component types: a communication

component which has ten 8-bit-parallel, full-duplex ports and an internal buffer; a processor

component with ftill-duplex input and output ports, both 8-bit-parallel: and an 8-bit-parallel wire

component. These three component types suffice to specify the architectural strlcture of the circuit.

The purpose of the investigation was to evaluate message congestion in the grid under different

protocols for establishing virtual processor-to-processor communication paths and using different

length buffers in the communication chip. Each communication protocol was implemented in

Palladio by defining an associated behavior for the communication chip using a circuit-specific

behavioral perspective based on the concept of message passing. In Palladio the specification of a

componcnt's behavior is transparent and easily modified (see the section Behavioral Perspectives).

Thus, we were able to rapidly model different communication protocols and investigate the

associated mesage passing behavior of the resulting circuit using Palladio's simulator. "These

investigations resulted in a refined communication protocol which exhibits nmch less message

congcstion than the originally proposed protocols.

Composition Rules

A structural perspective focuses the concel Ivs of the desicgne by its allot% ed component t1) ps. It

cmi also focus these conccrns by limlitilng 01i11 cut1 .posilio n a'les the manner in \ hich components
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are connected. For example, for nMOS layout, the primitive components are regions (e.g.,

rectangles) of metal, polysilicon, and diffusion. The composition rules for layout are geometric rules

(e.g., the Lambda rules13) governing the sizes and spacings of the regions. These geometric

composition rules provide a shallow model of composition that is a conservative simplification of a

deep model of composition accounting for electrical properties and the fabrication process.

Following the rules ensures that spacing errors will not occur in a correctly fabricated circuit; such

errors could create shorts, opens, or inadvertent transistors (among other problems).

For example, the composition rules of the CSG perspective specify how primitive and

composite CSG components can be connected. They are based on a shallow model of digital

behavior, and they account for voltage level restoration and charge storage. 'lThree of the

composition rules for the CSG perspective are:

Rule 1. A control input of a steering switch or a steering net can only be connected to an output of a

restoring logic gate.

'[his composition rule forbids the use of a pass transistor's output for driving the gate of

another pass transistor. This prohibition reflects a shallow model property, namely, that the level of

a signal is reduced when it passes through a pass transistor and that this reduction cascades when

the output of a pass transistor is used to control another pass transistor. The cascading effect could

result in an output signal in the indeterminate range.

Rule 2. A control input oJa clocking switch can onlyl be connected to a basic clock or to an output of

a clock qualificr component.

This rule enlbrces the CSG methodology's distinction between those pass transistors that clock

data and those that steer data.

Rule J. An output of a chl(king switch can ond) l)b connected to an llpitlt (f a restoring logic gate.

This rule implies that steering logic cannot he intcrsperscd beetct'cn cloAking ,witchcs and logic
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gates. The rule helps prevent charge sharing errors. Charge sharing takes place when a charge is

allowed to leak to or from a logic gate storage point (i.e., the input capacitance of the logic gate)

and can result in an indeterminant logic level at the storage point.

Additional CSG composition rules deal with fanout, series of pass transistors, simple cases of

unclocked feedback, and the compatibility of signal levels in interconnection networks. The

composition rules for signal level compatability prevent power-to-ground shorts and the fan-in of,

for example, the outputs of a logic gate and a pass transistor.

In general, locally detectable errors are those most readily constrained away using composition

rules; the Lambda rules for layout design are an example. 13 Errors of a more global nature (e.g.,

illegitimate feedback loops) are harder to prevent and often escape detection until some "post-

design" verification technique like simulation is applied. Composition rules in Palladio are

primarily concerned with avoiding local errors.

Prototype Component Libraries

Although the component types of a structural perspective are adequate for structural

specification, they are usually not particularly convenient; experienced designers rarely create circuit

specifications directly out of primitives. The design of a new circuit usually makes extensive use of

previously designed circuits. For example. a designer may know several alternative implementations

for a state storage device in nMOS circuits and know how to evaluate these alternatives within the

context of a specific circuit, or designing a new circuit may consist of modifying some existing

circuit design. The use of existing designs, particularly of frequently used components (e.g., logic

gates and registers), is supported by most design systems. Palladio supports the use of existing

designs with libraries of prototype components. Associated with each design specification is a library

of prototypes used in the specification. '11Tis prototype library can either be shared by many designs

or created specifically for the design of a single circuit.

A prototype library component can be specified from one or more structural or behavioral
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perspectives. For example, one prototypc library in Palladio contains n X n registers and 1/0 pads

specified from the CSG perspective as well as from more abstract perspectives. From the CSG

perspective, registers and pads are composite components which are specified in terms of basic

switches and logic gates. From more abstract perspectives, they are primitive, that is, they cannot

be decomposed any further.

Figure 3 illustrates the relationships between perspective types, prototype libraries and

components in circuit designs. The prototype library component FO0 has two partitionings, one

with respect to the CSG perspective and one with respect to a layout perspective. The perspective

types for each perspective used in the library are (virtually) in the library. The components in each

partitioning of FOO with respect to a perspective are actually pointers to the appropriate perspective

types.

CIRCUWT P•OTOTWE LWRARV

Figure 3. Component prototypes aLd types.
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There are three instances of FOO in the circuit design. The circuit components FI and F2 are

instantiated in the circuit from the CSG and layout perspectives, respectively. That is, the

partitionings of F) and F2 in the circuit are as specified by the respective partitionings of FO0 in

the librbary. The circuit component F3 is an instance of FO0 which has no current partitioning

(i.e., it is specified from a "black-box" perspective). The use of the three different perspectives for

the instances of FOO in the circuit might represent a situation where the designer needs three

components each of whose functionality is the same as that of FOO's and a) is satisfied with the

library layout for the circuit component F), b) wants to hand layout the circuit component F2

following the structure given by the CSG perspective of FOO in order to optimize FOO with

respect to speed, and c) is as yet uncertain how to implement the circuit component F3.

The clock switch component appearing in the circuit illustrates that the component types of a

perspective are treated as prototype components by any prototype library using the perspective.

Thus, instances of perspective types can be used directly in circuit designs.

The Design of Perspectives

The creation of useful circuit perspectives is a difficult, incremental design process. Most of the

perspectives currently in use (i.e., design levels) have evolved over a relatively long period (e.g.,

finite state machine, register transfer, gate level, switch level and, symbolic layout). Some of these

levels (e.g., gate level) have their origins in discrete component technologies and may be

inappropriate for certain integrated circuit technologies. The derivation of suitAble circuit

abstractions is an area of active research and development (see, e.g.. "Towards the Principled

Engineering of Knowledge"14). A circuit perspective represents a signilicant body of expert

knowledge about circuits and circuit design. One of the major purposes of the Palladio

environment is to provide mechanisms for easily implementing and experimenting with structural

and behavioral perspectives.

In experimcnting with different perspecti'cs in Palladio wec have recogni/ed dhe following four
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properties as being relevant to the construction of design perspectives:

Property 1. The use of structural perspectives and hierarchical component decomposition is

complementary.

The use of structural perspectives complements the component decomposition process. In a

hierarchical component decomposition, the degree to which the components can be considered

independently, that is, the degree to which the design of a component can be carried out

independent of the design of the other components, is directly proportional to the degree of

abstractness of the perspective being used to specify the design; the more detailed the specification

of the components, the more component interactions must be taken into account. This reflects the

fact that in any physical circuit resulting from the design, the (conceptual) components are usually

highly interdependent.

The use of abstract perspectives throughout the design process provides leverage by allowing a

designer to deal with less complex specifications for the components and less complex interactions

between them. In particular, the partitioning process is easier at the more abstract perspectives

(although physical properties such as area and speed can be more difficult to predict from an

abstract perspective). The effective use of abstract perspectives and associated component

decompositions requires following a design methodology that ensures, in the refinement process. the

preservation of the semi-independence of abstractly specified componcnts. Otherwise, the designer

could be faced with the impossible task of having to consider the circuit essentially in toto at some

later stage in the refinement process "ilic use of appropriate perspectives helps ensure that the

recomposition process is tractable.

Property 2. A trade-aof exists between the optintality of a design and the guaranteed absence of

certain classes of simple rrrors in that design.

Construction of a design perspective can involve trading off flexibility and optimality against the

guaranteeable absence of certain simple classes of design errors; the constraints placed on the
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designer by the perspective (i.e., which circuit constructs are permitted) are balanced against the

degree to which the resulting methodology ensures thc correctness of circuit specifications with

respect to the perspective's concerns. For example, in the CSG perspective, depletion mode

transistors may only be used as pullups. This constraint excludes designs such as the 3-to-1 selector

with sticks diagram as shown in Figure 4a. This selector design results in a very compact layout;

however, the resulting circuit is quite sensitive to small variations in the fabrication process.

Cl C2 C3

A----- -.--.-.-- -- --

(a) CMB COI4TRAENIED hELECTOR

C1 C2 C3

ITIIKIWO -

A2- ST1T9MING
AS-M

MI

CI C2 CID

Al--------------'

A.--- - --- S Key

AS--

(b) CM ALLOWED SELECTOR

Figure 4. 3-to-I selectors.

An allowable CSG perspective deign fi)r a 3-to-I selector along with one possible
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corresponding sticks diagram is shown in Figure 4b. This second design leads to a layout with

greater area than the first design, but, the resulting circuit is more robust and less sensitive to

fabrication tolerances.

Property 3. The greater the correspondence between the components in a circuit's decomposition and

specific areas of a physical realization of the circuit, the easier the process of refinement.

The component types of a perspective should be chosen so that resulting component

decompositions agree reasonably well with the final physical structure of the circuit (i.e., there is a

well-defined, but not necessarily one-to-one, correspondence between perspective-specific

components and particular areas of the physical circuit). An abstract perspective that permits the

partitioning of a circuit into components whose functionality is diffusely spread across any concrete

implementation of the circuit (e.g., certain of the "software-like" hardware design languages) is of

limited utility in an integrated design environment. Design refinement is very difficult when using

such perspectives. The refinement process is relatively easy to model and more powerful design

refinement tools can be created for perspectives whose component types correspond reasonably

directly to their implementations.

Property 4. Structural and behavioral porspective5 complement each other: A lbehv!ioral perspective

depends on the existence of an associated structural perspective: perspectives of one kind can be

coupled with mnany' perspectives of the other kind

Palladio's perspectives emphasize structurc or structurc-specific behavior; in contrast, some of

the hardware design languages tend to emphasize Ruinctionality without providing a means for

associating function with structure. In Palladio, structural specifications are complemented with

behavioral specifications.

*We are currently experimenting with a single conccptual model of circuits that spans the iunction-bchavior-structure

spLctrum of digital s.istcn specifications.
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Just as in structural specification, various perspectives can be used in Palladio to specify the

behavior of a circuit. Each behavioral perspective provides a designer with a conceptual model and a

language for specifying behavior. For example, a behavioral perspective based on a 3-valued logic

(0, 1, and undefined) views a digital circuit as networks of unidirectional Boolean devices, while a

behavioral perspective based on state transition tables views a digital circuit as a finite state

machine.

In Palladio, each structural perspective can be associated with one or more behavioral

perspectives, and vice versa. For example, the CSG structural perspective has associated with it

both a 3-valued logic perspective and an n X m-valued logic perspective (based on Bryant's notion

of level-strength pairs 12) that admits bidirectional signals. Conversely, the 3-valued logic behavioral

perspective is associated with both the CSG structural perspective and a clocked register and

combinational logic structural level.

Use of Multiple Perspectives

Using Palladio, we have experimented with a number of different structural and behavioral

perspectives, and associations between them. Examples include:

A cell-based, sticks-diagram-with-sized-transistors structural perspective (the SST

perspective) with an associated 3 X 4-valued level-strength logic behaxioral

perspective.

A clocked registers and combinational logic structural perspective with an associated

3-valued logic behavioral perspective.

A synchronous finite state machine structural perspective with an associated state

transition table behavioral perspective.
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A structural per.;pective whose basic component t pes include communication nodes

and servers, with an associated message-scnding protocol behavioral perspective for

investigating packet-switching networks.

A structural perspective whose basic component types include task queues, instruction

fetch units, operand fetch units, registers, cache memories, function units, and

instruction counters with associated behavior at the appropriate levels (e.g., task,

instruction, and operand-fetch). This perspective has been used to investigate a

pipelined style of MIMD architecture.

Since all of these perspectives are implemented in a single system, a component specified from

any one perspective can be partitioned using any other perspective. This allows, for example, a

digital system specified at an architectural perspective to be incrementally refined through

intermediate perspectives to a sticks perspective without ever leaving the Palladio environment (at

least in principle; see the section Status for the current limitations of Palladio).

Palladio does not constrain the num-iber of perspcctive-specific partitions associated with a given

circuit component. Our initial experin;ents seem to indicate that multiple behavioral perspectives of

a given component are often useful. For exanp)Ie, specifying the behavior of a given component

both from a 3-valued logic perspective anid from a 3 X 4-valued logic perspective can allow certain

econonics when simulating a circuit coit-ining that component. However, parallel partitionings of

a given component into subcomponents with respect to different structural perspectives are rarely

used (as opposed to partitioning a component into subcomponents with respect to one perspective

and then partitioning the subcomponmnts with respect to another perspective). For example,

directly partitioning a given component both into a collection of finite state machines and into a

collection of logic gates is of limited utility because it is very difficult to verify that the two
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component decompositions are consistent (i.e., represent the same circuit). For behavioral

perspectives, the interperspective consistency problem is more tractable; for example, there is a

direct relationship between a 3-valued logic and an n X ?n level-strength logic.

A Partially Structured Design Process

In the Palladio environment, the specification of a circuit component is the totality of its

existing perspectives. At any point in the design process, a component's specification can consist of

complete or partial specifications from one or more perspectives. The refinement of a component's

specification proceeds by an iterative sequence of steps, each of which alters the values of certain

attributes of the component with respect to some perspective.

In a strictly structured design process (analogous to structured programming), design refinement

proceeds uniformly through a hierarchy of structural perspectives, from the most abstract to the

most concrete, partitioning components hierarchically along the way. That is, the design is first

fully specified from the most abstract perspective; the components at this perspective are then, in

turn, partitioned into components, either all specified from the original perspective or all specified

at the next more detailed perspective. This process results in a treelike component hierarchy. In

general, such a fully structured hardware design process is not feasible; even in the cases where it is

possible, it often results in highly suboptimal designs.

A fully structured design process has two major problems. The first is that it requires a

complete partitioning of a component into the primitives of one structural perspective before

considering partitions at a less abstract perspective. The design process is. in part, a continuing

trade-off between design objectives as given by the current specification and what can actually be

achieved because of limitations imposed, for example, by the device physics or the fabrication

technology, that is, it is an exploratory process. Designers must decide how much of the overall

specification at a given perspective to complete before more concrete specifications for particular

components are developed. When designers work on more detailed specifications for particular
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components, they --e exploring what can be achieved for the overall design.

A second problem with a fully structured hardware design process is that it requires

conceptually viewing the component hierarchy as tree-like. High-level software languages have

mechanisms that allow such a viewpoint. For example, a software designer can decompose modules

recursively, treating each submodule conceptually as a distinct entity even though two or more

submodules may ultimately correspond to the same piece of code. "This module decomposition

yields a treelike hierarchy. Such a simple conceptual hierarchy is allowed because the systems that

support the resulting code contain mechanisms fcr handling shared codc (e.g., procedure calls and

link loaders). In contrast, structure-sharing in hardware designs is not currently automated.

The following two examples illustrate structure sharing. Viewed from a data path perspective,

the circuit in Figure 5a consists of a state machine and a data path in which two of the outputs of

the state machine are the inputs to the data path.

A refinement of the circuit from a clocked register and logic perspective is illustrated in Figure

5b. This refinement treats the two components independently and pcinits, in particular,

independent editing and simulation of the two components. However, the refinement does not take

advantage of a possible economy gained through shared structure: The data common to the two

components could share a register. A refinement of the circuit that uses the shared r,:gistcr is

shown in Figure 5c. This form of structure shario'g is viewed as the use of a shered comlponent by

the two components.



DATA OUTUT 24
S~CONTROL

DA TA IMPU 
B TA OUT PUT

DATA PATD

STATE MACHINE

(a) DATA PATH PERSPECTIVE

OUIT

(b) CLOCKED REGISTER AND LOGIC PEriPICTIVE

[ -2

MITN LOGIC REGISTER LOGIC Rao

DATA PATH

STATE MACHINE

(a) CLOCKED REGISTER AND LOGIC PERSPECTIVE WITH SMARED RE iTER

Figure 5. An example of structure sharing.

A second example of structure sharing is illustrated in Figure 6. The circuit consists of a

multiplexer controlled by the external signal s which steers a0 or al into a selectively loadable,

clocked, 1-bit register dependent on the value of s. The circuit is specified from the CSG

perspective in Figure 6a.

The circuit's function may be realized more economically by the circuit shown in Figure 6b,

which merges the steering and clocking functions of the two components. This form of structure-

sharing is viewed as the merging of the two components. Steele and Sussman 15 call component

decompositions as in the above examples alnosi-hierarchical.
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Figure 6. An examplc of structure merging.

'Me forms of structure sharing illustrated above arc the only ones admitted by our design

paradigm. This constr-aint aIloA.s effective management of' the relationships between component

(almost) hierarchics and pcerspectivcs. Palladio enables the designer to represent shared structure

through tric usC of tw~o distinguished com~pouent categories: shurcd compplý Pin-1 nltncrgcd

conmponenths. A shared component occuIs (N~ir-tually) in all components sharill.- int

Thus, components sharing a component can be inidcpendcntly edited ald, 'Ihe

relationship between a merged component and the components which it mer-ges is also mv~ i ai ted

by Palladio. In particular11, maintaining suIch a relationship permits verification (by simulation) that

the merged component or its refinements achieve the cumihined functionaflity of the components

which it merges.
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Behavioral Perspectives

Specifying behavior is an. integral part of the circuit design process. The behavior of a digital

circuit is the change of its state over time. The slate of a circuit consists of the internal state of its

components and the values of signals on their ports at a particular time; Palladio models time as

discrete and linearly organized contexts. Behavioral specifications play a critical role in the

verification of a design; a refined design specification must meet the design goals and satisfy the

constraints imposed by the original specification. Verification is concerned with several aspects of

the evolving design: functional behavior, functional performance, design quality (e.g., testability,

understandability, robustness), and physical realizability. Circuit verification is usually performed by

simulation*; which, in Palladio, means modeling the circuit's structure in the computer, specifying

an initial state for the circuit, and then using the behavioral specifications of components to infer

states in future contexts (not necessarily just the next context) from the current state.

Specification of Behavior as Rules

Behavior is expressed as perspective-specific rides that are triggered by changes in a

component's state and that, in turn, change the state of the circuit. A unidirectional pass transistor

has three ports: IN, OUT, and CTI.. An example of a 3-valued logic behavioral rule for a

unidirectional pass transistor is:

if Signal (Port CTI) == lHGH at time I

then Signal (lort O(UT) = Signal (Port IN) at time tI +I

A different perspective of the pass transistor might use a 3 X 3

IThcre is solme current work on using formal i.ctho•l for behaviotal verification of circoits: sce. for example, IBarnw
1 6
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level-strength logic.12 The following three behavioral rules specify the pass transistor's behavior from

this perspective.

if Signal (Port CTL) Level = 3, Strength = s at time I

then Signal (Port OUT) = Signal (Port IN) at time t+-1.

if Signal (Port CTI) Level = /. Strength sl at time t

and Signal (Port OUT) Level = 1, Strength = s2 at time t

then Signal (Port OUT) Level I, Strength I at time 1+-1.

if Signal (Port CTL) Level = 2 Strength = s at time I

then Raise error flag.

Motivations for Behavioral Specification via Rules

In an integrated design environment, specification of behavior must take a fairly flexible form,

as it must serve many diverse purposes:

Purpose L The behavioral specification is part of the overall specification of the design and must be

in a formn the designer can both enter and (at some later point) comprehend.

"The rule format has the advantage of being fairny transparent and well structured.

Purpose 2. Ihe behavioral specification must be usable by a simulator: furthennore. connected

components whose behavioral specifications are at different perspectives should be simulatable.

The re fonnat can be used to express any kind of behavior that can be expressed as
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computation (as it permits embedded calls to Lisp functions). In particular. the rule format can

accommodate behavior that transcends traditional logic modes for digital design. For example, the

rule syntax permits Boolean logic control to be integrated with high-level function units:

if Signal (Port CTL) = HIGH at time t

then Signal (Port OUT) = Signal (Port INI) times Signal (Port IN2)

Purpose 3. A component's behavioral specification must be compatible with its structural specification.

A component's behavioral specification can be compared, by simulation, with the behavioral

specifications of its interconncctcd components, to verify the correctness of the component

decomposition. For example, in Figure 7, the HAIF-REG component could be verified by

simulations using its indicated behavioral specification and using the behavior it derives from its

components.
CLOCK OE

DATAO01 CLOCK

GROUND

Behavior for tlal.reglsIlr:

IF Sipnai(Pol Clock) . HIGH at tun1e T

THEMN SqwI(Ponl Out) - INVERT SainalPoni In) &Il Une T, 3.

Behavior got Clock Switch:

IF SignaliPort Clock) - HIGH at tinme r

THEN SInaRjPonl Out) - Snil(Potn In) at fime T * I

Behavior for Invertler:

IF S.onaI(Pon IN) - $ at lmO ?

THEN Signsl(POul Out) - INVERT SignaPiPo0 In) at th"•mT 2

Iigure 7. Vcrificalioi: of behavior.
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Purpose 4. The behavioral specification may serve as a constraint or as input for other programs, for

example, an automatic refinement program.

For instance, behavior described from a Boolean logic perspective could be used as input to a

PLA generator to produce a layout perspective design. Rules express behavior in a form that is

convenient to use as input to other programs.

Purpose 5. It should be possible to specify behavior for "dummy components" that are not

implemented, but are only used for generating or monitoring signals during a simulation.

Such dummy components arc analogous to "PRINT" statements that are used to help debug a

software program but are removed afterwards

Purpose 6. The behavioral specification should be usable jbr providing explanations for a particular

simulation result.

It is easy to produce primitive explanations from records of rule activations.3

Alternatively, programming language procedures could have been used for behavioral

specification, as they too are very flexible. However, procedures are generally less comprehensible

than rules, can be difficult to use as input to other programs, and admit no simple explanation

facility.

Palladio's Simulator

Palladio's simulator is based upon MARS t 7 (Multiple Abstraction Rule-based Simulator), a

gencral-purpose, event-driven simulator whose generality derives, in part, from the logic reasoning

system, MRS 5, in which it is implemented. A logic reasoning system contains, as data, a set of

assertions and a collection of rules triggered by the presence of assertions and capable of producing

new assertions; a logic reasoning system uses ifelrence ru/cs to control the manner in which new

assertions are added to the current set of assertions. MARS expresses the state of a circuit as a set
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of assertions and maps the behavioral rule formalism described earlier into MRS's rule formalism in

a straightforward way. Repeated use of the inference rule modus ponens (i.e., if A and A => B then

B) produces new circuit states by causing MRS to cycle through the state-representing assertions,

applying all applicable behavioral rules to each assertion and adding new assertions to tie end of

the current set of assertions.

This very general simulation framework allows the hybrid simulation of high-level, sparsely

detailed functional blocks and low-level, highly detailed gates and switches. By simulating at the

highly detailed perspectives only when it is necessary to verify the design from that perspective, the

component hierarchy can be exploited to achieve large gains in simulation performance. In a typical

hierarchical simulation, the majority of components are being simulated from their high-level

behavioral perspective, either out of necessity (as their structure has not yet been fleshed out) or

because their low-level behavior has already been verified.

In Palladio, a simulator run can be dynamically displayed on a color graphics screen. For

example, for a logic simulation various state attribute values can be denoted by distinct colors. This

dynamic display produces a "movie" of tme circuit's behavior. The state history of a simulation can

also be saved in a formatted text file for later analysis.

" I1plementation

Palladio is implemented using object-orientcd, data-oriented, rule-based, and logic-language

programuniing paradigms.

The object-oriented, data-oriented. and rule-based facilities are iargely provided by the /.OOPS

(I.isp Object--Oriented Programming System) programming environment. 4  LOOPS was developed

by l)aniel IBobrow and Mark Setfik and is implemented in lnterlisp-l),18 a programming

en ironinent that augments lnterlisp8 with interactive bitmap graphics, multipie processes, e'nd

networking capabilities. lntcrlisp-l) runs on the Xerox 1)-scries workstations.
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The logic language system, AIRS (Metalevel Reasoning System),5 is based on the predicate

calculus and includes full logic inference capabilities. MRS was developed by Michael Genesereth.

LOOPS' rule facilities and MRS each provide Palladio with the mechanisms for developing,

integrating, and testing knowledge-based expert system design aids.

The overall software architecture of Palladio is illustrated in Figure 8. Thie circled entities in the

figure are groups of objecis while the boxed entities are supporting systems.

EXPERT C
PROTOTYPE SYSTEM STRUCTUIRE PROTOTYPE WNAVIOR

RULEG SIMULATORS

INTERLISP- 0

Figure 8. Palladio systcm architecture.

Object-oriented Programming

Palladio is mainly implemented in an objeci-oriented programming paradigm whose basic entities
are objects, classes, messages, and methods (see, e.g., Smalltalkl). Fcerv major s)stcY component

in Palladio (e.g., structure editors. hehavior editors, and simulators) is represented as an object. that

is, a package that includcs a data structure and a set of melhods (i.e., procedures) for operating on

that structure. Every circuit entity in Palladio is also an object (e.g., circuit, components, ports, and

wires).
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Large classes of objects often share identical data structures, differing only inl the values of those

data structures (e.g., all wires have two ends and anl associated signal type, signal Strength, etc.).

Object-oriented languages exploit this property with classes, special objects that define a basic data

structure and its associated methods; a class serves as a template for creating its instances- -those

objects sharing the same data structure as their class. In Palladio, a prototype component is defined

by a class object, and any instance of the prototype occurring in a circuit specification is an instance

object of the prototype class object.

The data structure part of a LOOPS object is a frame composed of attribute-value pairs. The

frame of a 2-input NAND gate instance specified from the CSG perspective is shown inl Figure 9.

The value of an attribute canl he any LOOPS or Lisp datatype (e.g., atom, list, array, object, active

value)-, the values of some of the attributes in the example are pointers to other objects. (This is

denoted in the figure by values of the form W.x which stands for "a pointer to an object of type

x.") A class describes its instances by specifying the names and default values of attributes.

Compnent<2-NwWid nstance>
IPrint Name.N
iInternal Wire <Wire Instanc>

Print aMwei 2-Nad -.0 External Wire <Were In"tonc>
flArthor Ioss State UnknownLCreetioni Date 44an-11113:4111-16 Mask Lw#W P6ly
Edit Record 1!=-JIM9-:03:13 Berown),. Comments i1nput Pon'.
Prototyps <ae Cho.>Cosrit in
Overoomponent <Composite InIstanre> L
Ports Bx(0 0 2 4
Portsin Box Po 1 1 > .. t <2-Nand Instaims>
Structural Pespectivi 1-C Struc Pwwwecnie Instance >.. S
Behavioral PerPSpcOtie D-na Persecive Instance> .. Sbcie <CnoetIsac
Cinwfrei ts'O LOgiC Mnts 2-input Nac' (u~r < Wire instance >... )

[Costrint Noe Sb~otra(< Comonent Instance>.. .

<2-ktoid instance>
Perspetive -Logic

Locl/IhertedRUIN Local
ehmv~~~or uls IRublInesen-e>...)

i'igure 9. 2-input NAND) gate frame.

Instances of a clatss aire createdI %01 it ttrilbutes ;is desecribed in its c I'ns liit, attribute v'alues.

an instance contains the information that distinl-Iishes it urnothril ~ nc ti l.Ih im

for the class Wire is shown in Heure[ It).
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Attributes

Print Name WIRE
Author Unknown
Creation Date Unknown
Prototype (Sell>
Ova rcomponent None
Connected I None
Connected 2 None
Signal Type Unknown
Paint List None
Mask Level Unknown
Behavioral Perspectives (<Behav Perot, ;we Instance>).)

Messages

ADD Interactively adds an instance of WIRE tona component.
DELETE Deletes a wire instance from a component.
INSTANTIATE Creates a new instance of WIRE.
INTERSECT? Returns intersection of a wire instance with a region.
SPLIT Splits a wire instance into Iwo wire instances at a point.
SELECT Highlights a wire instance if displayed in an open window.
DESELECT Unhighiights a wire instance.
DISPLAY Displays a wire instance in a window.
MIT? Returns T it a displayed wire instance Is pointed at by the cursoir.

Figure 10. Wirc class object.

An instancec of tile class Wire is shown in Figure 11.

PrWn Mam VOD1
Aaudio Foysier
creation DNO 18-Mar-6315:34:41111
Proltotype < Wke Class>
Onaroompionuia < Composite Comiponent I nstance>
Connected I < Port or Contac Instance >
Connscited 2 < Part or Contac instances>
Signll11 Type POWsr
Point Liet ((20.18) (40.13) (40.50)) Comoneneet <Wire Instanoe>
Mmdc Level momtalmt 3-Loon
SiBhavioral Pmwecitivm (< Balmv Pei peCt. Instance>... Loa/lnhsited Ruinm Inheriad

urtak Ruin NoLoad

Figure IL. Wit e instance object.

Objec-oriented pr( .'ra unmli ng provides a powerful, flexible soIlutiOn to the problem of

representhig generic actions: every ty:pe of' entity provides its own definition for a generic action

such as displiyi ng itsell' on thle screen. A nichssai,' sent to all object resuults inl tile ill oCat ion ot tile
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method associated with that message in dhe definition of the object's class. For example, a Palladio

editor or simulator is invoked for a particular circuit by sending an ACTIVATE message to the

editor or simulator, respectively; to display a component in a screen window, a DISPLAY message

is sent to the component, and to add an instance of a prototype component to a circuit, an ADD

message is sent to the prototype. The message-passing technique is a natural means for creating

software modularity. Also, the sender of a message only need know that a particular recipient can

respond to a particular message and not how that recipient will respond; the recipient of the

message knows the appropriate method and how to invoke it.

Palladio's Class Inheritance Network.

Object-oriented programming uses the class/instance distinction to exploit the fact that large

classes of objects share identical data structures. Object-oriented programming also exploits the fact

that classes often have similar, but not identical, data structures. In LOOPS, classes are organized

into an inheritance network; a subclass inherits the attribute descriptions of, and the messages

understood, by its parent classes. A subclass can also have noninhlrited attributes and messages

with their associated methods; furthermore, the default values of its inherited attributcs and the

associated methods of its inheritcd mcssages can differ from those of its parents.

Part of the class inheritance network for lPalladio's ciicuit objects is shown in Figure 12.
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generic classes arc used for definitions only; no instances are ever created. The third category,

prototype classes, contains prototype circuit components (e.g., Register and NAND Gate). Each

prototype class is a subclass of a prototype, generic, or kernel class that differs from its parent only

in its default attribute values. The class inheritance mechanism is used to create new prototype

components or new perspectives. For instance, a 3-input NAND gate prototype class could be

created as a subclass of either the Gate class or the NAND class.

Palladio provides interactive graphics editors for defining new prototype components. The

definition of a new perspective, however, can invol e the creation of new generic classes that have

attributes and methods not inherited from their kernel parents. Currently, such classes are created

with the LGOPS object editor, which requires familiarity with the underlying object representations

and lnterlisp.

Data-oriented Programming

In data-oriented programming, reading or writing onl the value of a particular attribute of an

object causes attribute-specific side effects. LOOPS permits data-briented programming through a

notation that allows the programmer. to distinguish passive and active attribute values; reading or

writing on an active value produces side effects by activating a procedure associated with the active

value. For example, each CSG perspective wire has an associated signal type (e.g.. Power, Ground,

(pl, Passed), which is useful for checking composition rules or assigning interconnect mask levels.

When a wire is created, its signal type cannot always be determined immediately; for example, the

signal type of a wire connecting ports of two abstract subsystems %hose internal structures arc still

unspecified is indeterminate. Eventually, the design becomes sufficently dtfiled so that the signal

type of the wire can be inferred from its connections. An active value is used as a data dcmon that

(conceptually) monitors the value of the signal type attribute on all wires; whcnever that value is

set, the active value's procedure propagates the signal type throughout the wir,.'s net and veii•lies

that the signal type is consistent within the net.
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Design Tools as Expert Systems

We are developing knowledge-bascd design aids based on the perspective framework provided

by Palladio. These design aids are small expert systems that perform some of the refinement

necessary to move from an abstract circuit specification to more concrete circuit specifications. By

providing a uniform framework of multiple perspectives, the Palladio environment simplifies the

implementation of such expert systems.

The expertise needed by such design aids can take various fonns, such as an algorithm to

implement registers as gates or heuristic knowledge expressed symbolically. We are currently

experimenting with formulating circuit design aids as rule-based expert systems.20

An Example of a Design Aid

Given a design spccified from the CSG perspective, one of the refinement steps in deriving a

layout is to assign mask levels to the interconnect (wires and contacts) between the components.

Given a design tool that could perform this task, a designer can quickly see the consequences of

circuit refinement and avoid intrL)ducing unnecessary errors.

'[he goal of wire assignment is to produce a cell-based sticks diagram ror the ciicuit. The

strategy we have used begins at the most detailed level of the circiuit's component hierarchy and

progresses to the most abstract, assigning nask levels (e.g.. metal, polysilicon. or di fflltion) to

interconnect along the w'Y. 'lhus. after a port of a comptonent (1 is attached to a wkire with a

particular mask level, the mask level assigner tries 'o ni:untain the ailready established mask level

assignment when considering a component C2. which cont.ains (1.

The mask level assignment strategy considers such qualitati\e factors as minimi/ing puwcr and

delay and introducing as few vias (vertical channels conmecting %ircs %%ith different mask Itsel) as

possible. It avoids introducing any unintended connections bet•c ncu intersecting Aires or any

inadvertant transistors (by intersecting polysilicon and difflision).
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To keep the problem manageable, a constraint was introduced: The planar topology of the

interconnect nmust remain as given in the CSG perspective: that is, components and wires must

remain in the same relative positions after mask level assignment.

Many expert systems distinguish base-level actions from control-level actions: Base-level actions

modify the representation of the problem and its solution, while control-level actions determine

which base-level actions to take. Control-level actions can be represented as rules of the form:

if siluation-predicate then action

where the predicate tests for the existence of a particular situation before performing its action. The

mask level assigner is implemented using lisp procedures for the base-level actions, and LOOPS

rules to control usage of tic Lisp procedures. There are two base level actions: (!) assignment of a

mask level to a wire and (2) introduction of vias for changing mask level along a wire.

"lie overall strategy followed by tic ina-k level assigner is:

1. Identify all sýirc intersections;

2. Order the intersections according to a set of rules:

3. For each intersection, apply rules that

a. detcrmiiie whcther mask levels need to be assigned or rcas!.igncd for the two

.atersecting wires,

h. generate costs associated with different mask levels for each wire,

c. gcne,'atq costs for the various types of vias. and
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d. invoke base-level procedures to produce least-cost assignments for the wires using

the derived costs.

This strategy focuses on one intersection at a time (even with wires that intersect many other

wires). When producing an assignment for a wire by focusing on one intersection, the mask level

assigner can inadvertently introduce a short or transistor at some other intersection. This means that

step (3) in the above strategy must be repeated until al wires have been assigned a mask level and

no unintentional shorts or transistors have been produced.

The control-rule sets take into account factors such as the current mask level (if any) of a wire,

the estimated length of a wire, the signal type it carries (e.g., power or clock), and the total number

of intersections along a wire. Figure 13 gives examples of control rules.

Determine If mask levels need to be reassigned

IF Wirel:MaskLevel - POLY
AND
Wore2:MaskLevel - 0IFF

THEN ReassignMaskLevels

Order treatment of wires

IF Wirel:Signal u Power
AND
Witre2Signal - PHIl

THEN Assign Wire 1 before Wire2

Specify costs for different layers for a wire

IF Wire Endportl , POLY
THEN Cost(POLY) *- LOW

Invoke base level actions

IF MaskLeveiNeedsAssignment
AND
MaskCosts~efinedForWire

THEN AssignLowestCostToWire

I.igtnre 13. I'.\aml)lcs of %%ire mask assigner control rules.

llkcitae ldlaldio illo\As access to iný part of i circuit's structure, the rule sets c.;n mlike use of
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whatever global information is necessary to achieve high performance within a highly focused

(localized) control strategy. For example, ranking of intersections uses a set of rules to determine

the relative importance of each intersection. This rule set requires such global information as the

types of components connected by a wire and the connection networks of intersecting wires. Easy

and quick access to circuit information is a central factor contributing to the high performance and

the quick implementation of the mask level assigner.

Implementation of the Mask Level Assigner

LOOPS provides rule-oriented programming in which a rule set can be associated with an

object. Individual rules in a rule set can test the attribute values of the object and conditionally

execute procedures, set attributes values, or send messages. When a rule set is invoked, the rules are

tested and the conditional actions are executed.

The WireAssigner is an object created to carry out the mask level assignment task. A

WireAssigner responds to tie following messages:

1. The Activate message takes a circuit as a pl>rameter and initialhies the assignrnent

process.

2. The Findlnitersections message finds all intersections btecen %A ires in the circoit ntrder

consideration. The method for this message creatcs a new lnter~ection object 1t7r each

intersection found and stores the objects in a list.

3. The Reordcr/n,'ersicons message sorts tile intersection object list iccording to the

importance of htie intersections as determined by a set of rules.

4. The AlakeAssigninctit message in\okes the appropriate hase lc'cl actions which pcrtiwnn

the actual assignment of a mask leel (inv-luding introducincg ias) to a wire.

Intersection objects respond to the messages 1Iask(',,nwlwc and Rl¢ldvc(. onlict. Ihe
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ResolveConflict message is sent to an Intersection object if a conflict cxists, that is, if AlaskConflict

responds affirmatively. The assignment process terminates when all the wires are assigned mask

levels and there are no further mask level conflicts.

The MaskConflict? and ResolveConflict methods for an Intersection object are implemented as

nile sets. These rule sets detennine the priority of two conflicting wires and the costs associated with

different mask levels for each wire. To generate the minimal cost assignment for a given wire, a

WireCosts object is created containing attributes for the costs of various mask levels. When the cost

values have been established, the GenerateAlinAssignment message is sent to the WireCosts object,

resulting in a search through possible assignments (where introducing vias is considered legitimate).

When the WireCosts object finds the lowest cost assignment, it sends the MakeAssignment message

to the WireAssigner, and the assignment is made. The wire assignment process can be dynamically

displayed on the color screen.

Infinite loops in the wire assignment process could occur because a prior assignment to a wire

can be undone by another assignment of the same wire when considering a different intersection.

Wc have eliminated this possibility by introducing a cosi for each intersection consisting of the sum

of the costs of previous assignments to the two wires. By inicreasing the intersection cost each time a

conflict is resolved, the assignment process is forced to terminate.

Benefits of an expert systems approach

After its basic strategy was outlined, the mask level assignment expert system "as implemented

in two days. TVhc initial system contained only a small number of rules: the resulting assignmcnts

were error free, but of poor overall quality. For example, unnecessary vias were introduced, and

power and ground wires were run in polysilicon or diffitsion for no good reason. Adding nrles that

accoumted for the types of signals running in a \Nirc and that ordered wire assigmnnents in a more

intelligent manner greatly impro~ed the resulting sticks diagrams.

The current system produces mask level assignrmonts for large-scale circuits comparble to those
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produced by human designers. "[he mask level assigner demonstrates one of tile premises of expert

system construction: The performance of an expert system can be incrementally improved by the

addition of more knowledge. Also, specifying the control knowledge as rules has made the system

easy to understand and modify.

Status

The basic Palladio framework has been operational for about a year. The current system

provides:

1. Interactive graphics editors which treat components as rectangular boxes with attached

ports. Wires connect ports, and components can be partitioned into subcomponents.

Components that are added to an evolving design are selected from standard or designer-

created libraries of prototype components. Prototype component editors can be envoked

from within circuit design editors. This allows a designer to easily augment a prototype

component library during the circuit design process.

2. A behavioral rule editor wl ch gives syntactic support for entering and modifying

behavioral specifications of both prototype components and circuit components.

3. An cvcnt-drivcn simulator Mhich Lj-cs the behavioral and structural specifications of a

circuit to simulate it. The simulator can perform hierarchical simulation (i.e., use either the

specified behavior of a component or the behavior induced by the behavior of its

sobcoinponents and their interconncctions) and mixed-perspwctive simulation (e.g.,

simulation of a circuit in which some of the components have behavior specilied from a 3-

value logic perspective and some of which have behalvior specified from a 3 X 4-valued

logic level.

4. A frame-based mechanismn for assigning multiple perspectives to components. 'I he

mcchanism also allows those limited forms of nonhierarchical component decomposition
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which we have found to be useful in Palladio.

5. A protocol for creating new structural and behavioral perspectives based on Palladio's

object-oriented paradigm.

6. Mechanisms for implementing rule-based, expert-systcm design aids. These mechanisms

are largely provided by LOOPS and MRS.

Our initial (and current) implementation of Palladio was a research effort. Our interest was in

in investigating a set of concepts about circuit design environments. We have used Palladio to

design several circuits using perspectives ranging from architectural through cell-based sticks

diagram levels. We feel that even this limited expeience has substantiated the utility of many of

Palladio's underlying concepts, for example, the hierarchical use of multiple perspectives, distinct

structural and behavioral perspectives, behavioral specifications using a rule format, a behavioral

simulator applicable to all levels of behavioral specification, and design aids imnplemented as rule-

based expert systems. However, in its current implementation, Palladio is difficult to use effectively

by anyone other than its builders, it is not particularly robust, and it has significant efficency

problems (e.g., about eight hours on a Xerox 1100 computer to run a 1000 event simulation of the

multi-processor circuit described on page 10).

Palladio's Performance

l)uring the implementation of Palladio we were often uncertain as to exactly what system

capabilities would prove to be u:tcful. Thus, whenever we were faced with a flexibility versus

efficency trade-off, we opted for flcxibility. We haýe paid a price for this flexibility. Running on a

Xerox 1100 we can deal adequately only with circuit designs consisting of tens of high-level

components and at most hundreds of low-level components.

The current implementation of Palladio is overly general. We have found that some of the

capabilities of tie system are of very limited utility. for example, the completely general underlying
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representational mechanismns for circuit structure and behavior. We are currently reimplemcnting

Palladio observing more realistic flexibility versus efficiency trade-offs. This rcimplcrncntation

should result in an overall order-of-magnitude pcrformance improvement. However, even with such

improvments and running on the more powerful Xerox 1132 computer we estimate that we would

be limited to circuits with at most tens-of-thousands of low-level components. Our conjecture is

that flexible, fully-integrated design environments for custom, VLSI-scale circuits will require

computers more powerful than those that are currently available.

Conclusions

"The Palladio system is an exploratory design environment that recognizes the need to integrate

diverse design tools and design languages; perspectives are an attempt at creating the flexible

framework required to support experiments widt such tools and languages. In Palladio, we have

acknowledged that the construction of the "perfect set" of design tools and languages is a never-

ending process that must keep pace with the ever-expanding boundaries of circuit technology and of

computer-aided design; this requires representation of the tools and languages in an easily

modifiahle and augmncttable form.

Table 2 is a summary of the viays in which we havc uscd different programming paradigms for

building different elements of the design environment.

Table 2. Progranmminig Ilaraldigin Applications.

Programming paradigm Design environment application

Rule-based Incrementally constructed expert design aids

Object oriented Design specification

Logical language Simulation

Data oriented Constraint propagation
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Multiple programming paradigms have proved useful for explicitly representing diverse kinds of

tools and languages and for making their modification and extension as straightforward and rapid as

possible. The table is meant to suggest only a few preliminary correspondences: finding best fits

between programming paradigms and design environment applications is a novel and worthwhile

area for research. Palladio is an exploratory design environment that contains an exploratory

programming environment in order to experiment easily with varying elements of an integrated

design environment.

Further research areas we are actively pursuing include the design of a language that spans the

spectnhm of functionality, behavior, and stnrcture, thus eliminating some of the parallel languages

required, and the design of a language in which circuit design problems (and theories of circuit

design) can be stated, based on the assumption that the circuit design problem and the circuit

design co-evolve. Basic terms of such a language include design goals, tasks, constraints, and trade-

offs.

Palladio is an early attempt to exp!ore tie stuff on which circuit design environments are built.
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