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Palladio:

An Exploratory Environment for Circuit Design

Harold Brown, Christopher Tong, and Gordon Foyster

Stanford University

Introduction

Palladio* is a circuit design environment for ¢xperimenting with methodologies and knowledge-
based, expert-system design aids. Patladio’s framework is based on several premises about circuit
design: (a) circuit design is a process pf incremeatal refinement; (b) it is an cxploratory process in
which design specifications and design goals co-evolve; and (c) most importantly, circuit designers
need an integrated design environment that makes available compatibie design tools ranging from
simulators to layout generators. permits specification of digital systems in compatible languages
ranging anywhere from architectural to layout. and includes the means for explicitly representing.

constructing, and testing such design tools and languages.

* Andrea  Palladio (1518-1580) was the [alian architect who developed the methodology of proportion and  format
architectural style that has becomc known as clossicol architecture Tn a sense he was the first knowledgs engircer of

design principles, and his influential published works are still in pnnt four hundred years after his  death.




Organization of the Paper

In the introductory sectioq we discuss the concept of an integrated design cnvironment. In the
next three sections we describe the basic conceptual framework underlying Palladio: In the section
The Circuit Design Process, we discuss Palladio’s view of the design process as incremental
refincinent; in the section Design Perspectives, we introduce the central concept of Palladio--design
specification using structural and behavioral design perspectives; and in the scction A Partially
Structured Design Process we describe how Palladio permits certain  deviations from a fully
hierarchical component decomposition process. The next scction, Behavior Specification, describes
Palladio’s usc of a rule format for behavioral specification, and the system’s simulator is described in
the scction Palladio’s Simulator. The scction Implementation discusses how Palladio is implemenced
using multiple programming paradigms. An examplc of an expert-system design aid implemented
using Palladio is given in the section Design Tools as Expert Systems. The current status of the
Palladio systém and our future plans are described in the concluding scctions Status and

Conclusions.
Intcgrated Design Environments

There is a growing trend toward creating integrated design cnvironments, as opposed to isolated
design aids. During the past yecar, scveral commercial computer-aided cngineering (CAL)
workstations for assisting the circuit designer have emerged.! These workstations provide multiple-
level circuit specification chtry systems (c.g., functional specifications and schematics) and analysis
aids (c.g., logic simulators and timing verifiers). Tntegrated circuit designers have a special need for
such workstations because of the complexity of large integrated circuits and the high costs of
prototyping them. The Palladio enviromment integrates both design tools and design specification
languages and is an attempt to formalize the type of conceptual framework required by such an
integration. That such integration is only now taking place reflects the diversity and complexity of

the kinds of expert design knowledge tnat need to be integrated.




An integrated design environment reduces or climinates many needs artificially induced by lack
of integration. The need for certain  design tools is a by-product of unnecessary information loss;
for example, circuit extraction programs are requircd, in part. because one stage of the design
process (circuit design) fails to communicate its results to another stage (layout generation).
Designers often make some long chain of decisions, only to take back some of them when their
ncgative consequences finally become apparent. For example, a designer may implement a
multiplexer component using random gate logic and then later retract that implementation when it
becomes apparent that a PLA implementation would be more arca efficicnt. Such a lag beiween
the time of a dccision and the time when its consequences can be analyzed is, in part, inherent in
the exploratory nature of design; however, some of this nced for backtracking can be eliminated
given a common framework in which one can describe known laws, heuristics, and trade-offs
connecting high-level decisions (e.g., architectural decisions) with low-level consequences (e.g., area

of a layout).

Palladio differs from other integrated design environments by providing the means for
constructing, festing, and incrementally modifying or augmenting design tools and languages. For the
circuit designer, Palladio supports the construction of new specification languages particular to the
design task at hand and augmentation of the the system’s expert knowledge to reflect current design
constraints and goals. For the design environiment builder, Palladio provides several programming
paradigms: rulc based (cxpert systems oricnted),” data oriented, object oriented, and logical
reasoning based; these capabilitics arc largely provided by two of the experimental programming
environments in which Palladio is implemented: LOOPS? and MRS.® ‘The differing features of
these paradigms (described in the section Imiplementation) make cach useful for constructing

different elements of a design environment.
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*Sce, for cxample, Nau or IInycs-Rmh3 for an introduction to cxpert systems,




Perhaps the most significant property these programming paradigms share is that each makes
possible the explicit representation of specific kinds of design knowledge. A representation is explicit
if it can be trcated and manipulated as data by a program. Much of artificial intclligence research
in the last ten years can be viewed as contributing to a classification of different kinds of knowledge
and exploiting explicit knowledge representions.S Designing an integrated circuit requires a
significant body of expert knowledgc, taking a wide varicty of forms and often technology specific or
even circuit-type specific. The expert knowledge used by a design environment should be available
to a designer in an understandable und easily accessible form. Much valuable expert knowledge can
take the form cf a well-integrated collection of task-specific design aids. One of the primary uses of

Palladio is as a vehicle for acquiring and rccording the knowledge used by such design aids.
Elements of the Palladio Environment

Palladio provides a test bed for investigating elements of circuit design that includes
specification, simulation, expert-system design aids, and usc of previous designs in a current design.,
It has facilities for conveniently defining models of circuit structure or behavior. Thesc circuit
models, called perspectives, are similar to circuit design levels; the designer can use them to
interactively crcate and refine circuit design specifications. Perspectives can include composition
rules that constrain how circuit components may be combined in that perspective to forin more

complex components.

Palladio provides menu-driven, graphics interfaces for editing and  displaying  structural
perspectives of circuits in a uniform manner and a uniforim behavioral language with an associated
behavioral editor for specifying a design from a behavioral perspective.  Further, a generic, event-
driven behavioral simulator can simulate a circuit specified from any behavioral peispective and can
perform hicrarchical and mixed-perspective simulation. A color graphics display can be used for

showing dynamic simulation "movies.”

Zalladio has several facilitics for implementing design refinement aids as expert systems and for




conveniently creating and using librarics of prototype components. These libraries can contain

components of arbitrary complexity.

The Circuit Design Process

The design of a circuit can be viewed as the transformation of an initial specification of the
circuit into a final spcciﬁcation that adequately details how the circuit is to be realized physically.
The initial specification, which is usually imprecise and incompicte, focuses primarily on the circuit’s
Sunctionality. The final specification emphasizes the structure of the circuit (e.g., the geometry of
the fabrication masks) but can also include specifications of desired circuit behavior and qualitative
performance. Unless the circuit is so simple that its full detail can be grasped at once, the
transformation of an initial specification into one that is physically realizable is an incremental
process in which abstract specifications of thie circuit’s structure and behavior are gradually refined
into more detailed specifications. During the refinement process, the evolving design specifications
must be tested and evaluated against the goals and constraints of the design, that is, the desigh must
be verified. A circuit design environment should provide tools to assist the designer in both design

specification and design  verification throughout the refinement process.

Circuit design in many ways resembles the design of complex software systems (sce, e.g.,
Smith’). The design of circuits is more analogous to cxploratory programming than it is to
structurcd programming. We have modcled our circuit design environment after the lisp
programming cnvironmcnté devcloped for artificial intelligence research, for example, Interlisp.3 In
these environments, the design of a program (ie., the code) and the design of the program’s
specifications can cvolve together, as the programiner has available a well-integrated sct of powerful
tools to assist in the development process (c.g.. file management, interactive graphics, and dcbugging
tools).? An exploratory circuit design environment, like an exploratory programming environment,

must provide an intcgrated sct of teols to assist the designer.




Hicrarchical Design

Many factors complicate design refinement. The space of refinements is large and its elements
are complex, the gencration and evaluation of a refinement is expensive, and ofxly partial
inforination is available at any step in the process. Furthermore, it is impossible to predict all of
the conscquences of choosing a particular refinement (and, thus, designers often retract one

refinement and pursue another).

Designers have, in part, coped with the difficulties of the design process by using the

principle of divide and conquer. As Simon (among others) has observed:

To design . . . a complex structure, one powerful technique is to discover viable ways of
decomposing it into semi-independent components corresponding to its many functional
parts. The design of each component can then be carried out with some degree of

independence of the design of others.0

This top-down technique of hierarchical partitioning is used universally by designers to simplify
the design process. The process of partitioning a component into constituent components to reduce
the complexity of the design process is itself a difficult and knowledge-intensive task. An
inappropriate partition simply transfers complexity from the process of designing the constituent
components to the subsequent process of rccomposing the designed components into an overall
design. Using appropriate design specification levels helps ensure that the recomposition process is

tractable.

The design paradigm supported by Palladio is incremental refinement of design specifications,
interspersed with validation of the specifications by simulation. The basic hicrarchical step in
structural refinement is the partitioning of a component specificd at a given structural description

level (i.c., from a given perspective) into constituent components specified cither at that level or at a




less abstract level.  Other permissible refinement steps are adding detail to the structural
specification of a component (e.g., clock phase to a register or mask level to a wire) and specifying
behavior with respect to some behavioral description level. The hierarchical use of multiple
structural and bchavioral descriptions and the allowed refinement steps constitute Palladio’s model

of the design process.

Design Specification

In Palladio designs are specificd using design perspectives. A design perspective provides both a
conceptual model for viewing the structure or the behavior of a circuit that cmphasizes certain of the
circuit’s featurcs while suppressing others and a language for specifying the circuit from the
perspective.  For example, a circuit can be viewéd as a finite state machine or as a collection of
clocked storage registers and combinational logic elements, and specified using state transition tables
or a register-transfer language. A perspective in Palladio is cither structural or behavioral. This
cxplicit decoupling of behavioral perspectives from structural perspectives allows a modularity not
~ admitted by most circuit design languages; one or more behavioral perspectives can be associated
with a structural perspective and vice versa. 'This modularity permits, for example, a component to
be specified from a very abstract behavioral perspective at an carly stage in the design process and
from a more concrete behavioral perspective at a later stage in the process.  Morcover, a circuit
desiguer can use Palladio to construct structural _and behavioral perspectives specifically taitored for
a particular circuit. (Some cxamples of such circuit-specific perspectives are given later in this

section).

Palladiv defines a structural perspective by the types of components allowed when partitioning a
component into constituent components with respect (o that perspective.  For example, from a
register and combinational logic perspective, a circuit can be partitioned into only registers,
combinational logic blocks and interconnect.  Some of the component types allowed by a
perspective are primitive with respeet to the perspective, that is, they cannot be partitioned from the

perspective:  while other allowed component types arc composite with respect to the perspective,




that is, they permit further decomposition from the perspective. For example, from a switches and
gates perspective, a component of type switch is primitive while a component of type gate may be
further partitioned into switches and other primitive components. A circuit is fully partitioned with
respect to a perspective if afl of the components at the lowest level of the circuit's component

hicrarchy are primitive with respect to the perspective.

The definition of a perspective can also include composition rules that limit the ways in which
components can be interconnected. ‘These rules help ensure that circuits specified from the
perspective are correct with respect to that perspective’s concerns. The allowed component types
and the composition rules of a perspective constrain the manner in which a given component can be
partitioned with respect to the perspective. In this manner, the use of structural perspectives
complements the component decomposition process. Using appropriate perspectives helps ensure

that the recomposition process is tractable.
Fxamples of Structural Perspectives

We now present two examples of experimental perspectives that have been implemented using
Palladio. The first example perspective is useful for designing a broad variety of nMOS circuits.

The sccond example perespective was constructed to investigate a specific machine architecture.

Example 1: CSG Perspective. One of the more conc.cte experimental perspectives (i.c., its
specifications are close to being physically realizable) we have implemented is the Clocked Swirches
and Gates (CSG) perspective. ‘The CSG perspective views a circuit as networks of steering logic,
clocking logic, and restoring logic gates, and it is specialized for nMOS circuits that use a two phase,
nonoverlapping clocking scheme. “The perspective is concerned primarily with the digital behavior
of a circuit, that is, with the avoidance of indeterminate logic tevels. Such indeterminate levels can
be caused by improper conncction of components, improper cperating regions of devices, and
leakage of stored charge. 'the CSG perspective is based on concepts presented in Stefik!! and is

closely related to switch level simulators (e.g.. Bryant'?).




The primitive component type for stecring logic is a steering switch. A steering switch

represents a pass transistor with its ports labeled as shown in Figure la.

CONTROL QUALIFIED CLOCK CONTROL
1 1
DATA INFUT — STEERED OUTPUT TA 1 I~ CLOCKED OUTPUT
- - DATA INPUT — —
(o) STEERING SWITCH (b) CLOCKING SWAITCH
POWER PULLDOWN OR POWER POWER
L L 1
|
DATA INPUT —~ -‘ CONTROL ~—
1 I
T PULLDOWN OR GROUND ouTPUT
ouTrPUT
(o) PULLUP {(d) PULLOOWN SWITCH o) CONTROLLED PULLUP

Figure 1 CSG primitive component types.

The composite component type steering net is used to represént networks of steering switches.
An cxample of a component of type steering net, a 2-by-2 barrel shifter, is shown in Figure 2a. As
their names imply, steering switches and ncts are used solely for guiding data--they perform no

clocking or data-storage functions.

The primitive comnponent type for clocking logic is a clocking switch. A clocking switch also
represents a pass transistor, but with its ports labeled as shown in Figure ib. Clocking switches are
used primarily for gating data inw data storage components and have an associated clock phase, ¢l

or g2

A (restoring) logic gate component type represents the usual nMOS ratio logic clement. A

component of type logic gate can be decomposed into a component of type pullup and
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GROUND
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OUT = (NOT((INIAIN 2) V IN 3}

Figure 2. Fxamples of CSG composite components.

onc or morc components of type pulldown switch.  The component type pullup represents a
depletion made transistor with it. gate tied (o its source as illustrated in Figure e, The component
type pulldown switch represents an enhancement mode transistor with its poerts lebeled as shown in
Figure 1d. In the CSG perspective, pullups and pulldown switches can be used only as components
of logic gatcs. The simplest component of type logic gate is an imverter, which cousists of « pullup

and a pulldown switch connccted as shown in Figure 2b.  Components of type legic aite
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performing more complex functions can be constructed using appropriaie nets ol pulldown switches.

For example, a component of type logic gate performing the function

Out = (NOT((Inl AND In2) OR In3))

is shown in Figure 2c.

A component of type controlled gate is a variant of a logic gate; it is composed of a component
of type controlled pullup and one or more componcnts of type pulldown switch. The component
type controlled pullup represents a depletion mode transistor with its ports labeled as shown in
Figure le. An example of a component of type controlled gate is the super-buffer shown in Figure

2d.
The component types defining the CSG perspective are listed in Table 1.

Table 1.

CSG Component Types.

Primitive Components

Steering Switch
Clocking Switch
Pulidown Switch
Pullup
Controlled Pullup

Composite Components

Steering Net
Clock Qualifier
Gate
Controlled Gate
Subsystem
Circuit

Interconnect Components

Wire
Contact
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Example 2: A Circuit-specific Perspective. The Palladio system has been used to create several
architectural-level perspectives for investigating the abstract behavior of specific circuits. One such
circ:..t, a MIMD architecture designed by Bruce Delagi of Digital Equipment Corporation, consists
of an 8X8 grid of nodes where processing proceeds by concurrent message passing between nodes.
A node in the grid is composed of a communication chip and a local processor with local memory.
Each communication chip is doubly connccted to its four neighboring communication chips and to

its local processor. All comununication paths in the circuit are byte-wide.

The structural perspective created for the circuit has three component types: a communication
component which has ten 8-bit-paralicl, full-duplex ports and an internal buffer; a processor
component with full-duplex input and output ports, both 8-bit-parallel; and an 8-bit-parallel wire

component. These three component types suffice to specify the architectural structure of the circuit.

The purpose of the investigation was to ¢valuate message conécslion in the grid under different
protocols for establishing virtual processor-to-processor communication paths and using different
length buffers in the communication chip. Each communication pretocol was implemented in
Palladio by defining an associated behavior for the communication chip using a circuit-specific
hehavioral perspective based on the é()nccpl of message passing. In Palladio the specification of a
component’s behavior is transparent and easily modified (sce the section Behavioral Perspectives).
Thus, we were able to rapidly model difterent communication protocols and  investigate the
associated message passing behavior of the resulting circuit using Palladio’s simulator.  These
investigations resulted in a refined communication protocol which exhibits much less message

congestion than the originally  proposed  protocols.

Composition Rules

A structural perspective focuses the concerns of the designer by its allowed component types, Tt

can also focus these concerns by limiung with composition riles the manner in which components
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are connected. For cxample, for nMOS layout, the primitive components are regions (c.g.,
rectangles) of metal, polysilicon, and diffusion. The composition rules for layout are geometric rules
(c.g.. the Lambda rules!3) governing the sizes and spacings of the regions. These gcometric
composition rules provide a shallow modcl of composition that is a conservative simplification of a
deep model of composition accounting for clectrical properties and the fabrica[ioﬁ process.
Following the rules ensures that spacing errors will not occur in a correctly fabricated circuit; such

crrors could create shorts, opens, or inadvertent transistors (among other problems).

For example, the composition rules of the CSG perspective specify how primitive and
composite CSG componcents can be connccted. They arc based on a shallow model of digital
behavior, and they account for voltage level restoration and charge storage. ‘Three of the

composition rules for the CSG perspective are:

Rule 1. A control input of a steering switch or a steering net can only be connected to an output of a

restoring logic gate.

This composition rule forbids the usc of a pass transistor's output for driving the gate of
another pass transistor. This prohibition reflects a shallow model property, namely, that the level of
a signal is reduced when it passes through a pass transistor and that this reduction cascades when
the output of a pass transistor is used to control another pass transistor. ‘The cascading cftect could

result in an output signal in the indetcrminate range,

Rule 2. A control input of a clocking swiich can only be connected 1o a busic clock or 1o an output of

a clock qualifier comporent,

This rule enforces the CSG micthodology's distinction between those pass transistors that clock

data and thosc that steer data.
Rule 3. An output of a clocking switch can only be connected to an input of a restoring logic gate.

This rule implics that steering logic cannot he interspersed between clocking switches and logic
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gates. The rule helps prevent charge sharing errors. Charge sharing takes place when a charge is
allowed to leak to or from a logic gate storage point (i.c., the input capacitance of the logic gate)

and can result in an indetérminant logic level at the storage point.

Additional CSG composition rules deal with fanout, serics of pass transistors, simplc cases of
unclocked fecdback, and the compatibility of signal levels in interconnection nctworks. The
composition rules for signal level compatability prevent power-to-ground shorts and the fan-in of|

for example, the outputs of a logic gate and a pass transistor.

In general, Jocally detectable errors are those most readily constrained away using composition
rules; the Lambda rules for layout design are an example!3 Errors of a more global nature (c.g.,
illegitimate feedback loops) are harder to prevent and often escape detcction until some “post-
design" verification technique like simulation is applied. Composition rules in Palladio are

primarily concerned with avoiding local errors.
Prototype Componcnt Libraries

Although the componcnt types of a structural perspective are adcquatc for structural
specification, they are usually not particularly convenient; experienced designers rarely create circuit
specifications directly out of primitives. The design of a new circuit usually makes cxtensive use of
previously designed circuits. FFor cxample. a designer may know scveral alternative implementations
for a state storage device in nMOS circuits and know how to cvaluate these alternatives within the
context of a specific circuit, or designing a new circuit may consist of modifying some existing
circuit design. The use of cxisting dcsigns, particularly of frequently used components (c.g., logic
gates and registers), is supported by most design systems. Palladio supports the use of cxisting
designs with librarics of prototype components. Associated with cach design specification is a library
of prototypes used in the specification. 'This prototype library can cither be shared by many designs

or created specifically for the design of a single circuit.

A prototype library component can be specified from one or morc structural or behavioral
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perspectives. For example, one prototype library in Palladio contains n X m registers and 170 pads
specified from the CSG perspective as well as from more abstract perspectives.  From the CSG
perspective, registers and pads are composite components which are specified in terms of basic
switches and logic gates. From more abstract perspectives, they are primitive, that is, they cannot

be decomposed any further.

Figure 3 illustrates the rclationships between perspective types, prototype libraries and
components in circuit designs. The prototype library component FOO has two partitionings, one
with respect to the CSG perspective and one with respect to a layout perspective. The perspective
types for each perspective used in the library are (virtually) in the library. The components in each
partitioning of FOO with respect to a perspective are actually pointers to the appropriate perspective

types.

CIRCUIT PROTOTYPE LIBRARY

Figure 3. Componcent prototypes and types.
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There are three instances of FOOQ in the circuit design. The circuit components F/ and F2 are
instantiated in the circuit from the CSG and layout perspectives, respectively. That is, the
partitionings of F/ and F2 in the circuit arc as specificd by the respective partitionings of 00 in
the librbary. The circuit component F3 is an instance of FOO which has no current partitioning
(i.c., it is spccified from a "black-box" perspective). The use of the three different perspectives for
the instances of FOO in the circuit might represent a situation where the designer needs three
components each of whose functionality is the same as that of FOO's and a) is satisfied with the
library layout for the circuit component FI, b) wants to hand layout the circuit component F2
following the structure given by the CSG perspective of FFOO in order to optimize FOO with

respect to speed, and c¢) is as yet uncertain how to implement the circuit component F3.

The clock switch component appearing in the circuit illustrates that the component types of a
perspective are treated as prototype components by any prototype library using the perspective.

Thus, instances of perspective types can be used directly in circuit designs.
* 'The Design of Perspectives

The creation of useful circuit perspectives is a difficult, incremental design process. Most of the
perspectives currently in usc (i.c., design levels) have evolved over a relatively long period (e.g.,
finite statc machine, register transfer, gate level, switch level and, symbolic layout). Some of these
levels (e.g., gate level) have their origins in discrete component technolugics and may be
inappropriatc for certain integrated circuit techrologics.  The derivation of suitable circuit

abstractions is an area of active rescarch and development (sce, e.g. "Towards the Principled
Ingincering of Knowledge **). A circuit perspective represents a significant body of expert
knowledge about circuits and circuit design.  One of the major purposes of the Palladio

environment is to provide mechanisms for easily implementing and experimenting with structural

and bchavioral perspectives.

In experimenting with different perspectives in Palladio we have recognized the following four
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propertics as being relevant to the construction of design perspectives:

Property 1. The use of structural perspectives and hierarchical component decomposition is

complementary.

The use of structural perspectives complements the component decomposition procéss. In a
hierarchical component decomposition, the degree to which the components can be considered
independently, that is, the degree to which the design of a component can be carried out
independent of the design of the other components, is directly proportional to the degree of
abstractness of the perspective being used to specify the design; the more detailed the specification
of the components, the more component interactions must be taken into account. This reflects the
fact that in any physical circuit resulting from the design, the (conceptual) components are usually

highly interdependent.

The use 6f abstract perspectives throughout the design process provides leverage by allowing a
designer to deal with less complex specifications for the components and less complex interactions
between them. In particular, the partitioning process is easicr at the more abstract perspectives
(although physical propertics such as arca and speed can be more difficult to predict from an
abstract perspective).  ‘The cffective use of abstract perspectives and associated component
decompositions requires following a design methodology that ensures, in the refincment process. the
prescrvation of the semi-independence of abstractly specified components. Otherwise, the designer
could be faced with the imbossible task of having to consider the circuit essentially in fofo at some
later stage in the refinement process  The use of appropriate perspectives helps ensure that the

recomposition  process is tractable,

Property 2. A irade-off exists between the optimality of a design and the guaranteed absence of

certain clusses of simple errors in that design.

Construction of a design perspective can involve trading off flexibility and optimality against the

guarantccable abscnce of certain simple classes of design crrors; the constraints placed on the
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designer by the perspective (i.e.,, which circuit constructs are permitted) arc balanced against the
degrec to which the resulting methodology cnsures the correctness of circuit specifications with
respect to the perspective’s concerns. For example, in the CSG perspective, depletion mode
transistors may only be used as pullups. This constraint excludes designs such as the 3-to-1 selector
with sticks diagram as shown in Figure 4a. This sclector design results in a very compact layout;

however, the resulting circuit is quite sensitive to small variations in the fabrication process.

c1 c2
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Figure 4. 3-to-1 sclectors.

An allowable CSG perspective design for a 3-to-1 sclector along with onc possible
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corresponding sticks diagram is shown in Figure 4b. This sccond design leads to a layout with
greater area than the first design, but, the resulting circuit is more robust and less sensitive to

fabrication tolerances.

Property 3. The greater the correspondence between the components in a circuit’s decomposition and

specific areas of a physical realization of the circuil, the easier the process of refinement.

The component types of a perspective should be chosen so that resulting comronent
decompositions agrce reasonably well with the final physical structure of the circuit (i.e., there is a
well-defined, but not necessarily one-to-one, correspondence between perspective-specific
components and particular areas of the physical circuit). An abstract perspective that permits the
partitioning of a circuit into components whose functionality is diffuscly spread across any concrete
implementation of the circuit (c.g., certain of the "software-like" hardware design languages) is of
limited utility in an integrated design environment. Design refincmient is very difficult when using
such perspectives. The refincment process is relatively easy to model and more powerful design
refinement tools can be created for perspectives whose component types correspond reasonably

directly to their implementations.

Property 4. Structural and behavioral perspectives complemnent each other: A behavioral perspective
depends on the existence of an associated structurul perspective: perspectives of one kind can be

coupled with many perspectives of the other kind

Palladio’s perspectives emphasize structure or structure-specific behavior; in contrast, some of
the hardware design languages tend to emphasize functionality without providing a means for
associating function with structure.  In Palladio, structural specifications arc complemented with

. . . *
behavioral specifications,

*We are currently caperimenting with a single conceptual model of circuits that spans the function-behavior-structure

spectrum of  digital  system specifications.
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Just as in structural specification, various perspectives can be used in Palladio to specify the
behavior of a circuit. Each behavioral perspective provides a designer with a conceptual model and a
language for specifying behavior. For example, a behavioral perspective based on a 3-valued logic
(0, 1, and wundefined) views a digital circuit as networks of unidirectional Boolean devices, while a
behavioral perspective bascd on state transition tables views a digital circuit as a finite state

machine,

In Palladio, each structural perspective can be associated with one or more behavioral
perspectives, and vice versa. For example, the CSG structural perspective has associated with it
both a 3-valued logic perspective and an n X m-valued logic perspective (based on Bryant’s notion
of level-strength pairs'?) that admits bidirectional signals. Conversely, the 3-valued logic behavioral
perspective is associated with both the CSG structural perspective and a clocked register and

combinational logic structural level.
Use of Multiple Perspectives

Using Palladio, we have experimented with a number of different structural and behavioral

perspectives, and associations between them. Examples include:

A cell-based, sticks-diagram-with-sized-transistors structural perspective (the SS7
perspective) with an  associated 3 X d4-valued level-strength logic behavioral

perspective.,

A clocked registers and combinational logic structural perspective with an associated

J-valued logic behavioral perspective.

A synchronous finite statc machine structural perspective with an associated state

transition table behavioral perspective.
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A structural perspective whosc basic component types include communication nodes
and scrvers, with an associated message-sending protocol behavioral perspective for

investigating packet-switching networks,

A structural perspective whose basic component types include task qucues, instruction
fetch units, opcrand fetch units, registers, cache memories, function units, and
instruction counters with associated bchavior at the appropriate levels (e.g., task,
instruction, and operand-fetch). This perspective has been used to investigate a

pipelined style of MIMD architecture.

Since all of these perspectives are implemented in a single system, a component specified from
any onc perspective can be partitioned using any other perspective. This allews, for example, a
digital system specificd at an architcctural perspective to be incrementally refined through
intermediate perspectives to a sticks perspective without ever leaving the Palladio environment (at

least in principle; sce the scction Status for the current limitations of Palladio).

Palladio docs not constrain the number of perspective-specific partitions associated with a given
circuit component. Our initial experimients seem te indicate that multiple behavioral perspectives of
a given component are often uscful.  For exainple, specifying the behavior of a given component
both from a 3-valued logic perspective and from a 3 X 4-valued logic perspective can allow certain
cconomics when simulating a circuit containing that component. However, parallel partitionings of
a given componcent into subcomponcents with respect to different structural perspectives are rarely
usced (as .opposcd to partitioning a component into subcomponents with respect to one perspective
and then partitioning the subcomponents with respect to another perspective). For example,
dircctly partitioning a given component both into a collection of finite statc machines and into a

collection of logic gates is of limited utility because it is very difficult to verify that the two
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component decompositions are consistent (i.e., represent the same circuit). For behavioral
perspectives, the interperspective consistency problem is more tractable; for example, there is a

direct relationship between a 3-valued logic and an n X m level-strength logic.

A Partially Structured Design Process

In the Palladio environment, the spccification of a circuit component is the totality of its
existing perspectives. At any point in the design process, a component's specification can consist of
complete or partial specifications from one or more perspectives. The refinement of a component's
specification proceeds by an iterative sequence of steps, cach of which alters the values of certain

attributes of the component with respect to some perspective.

In a strictly structured design process (analogous to structured programming), design refinement
proceeds uniformly through a hierarchy of structural perspectives, from the most abstract to the
most concrete, partitioning components hicrarchically along the way. That is, the design is first
fully specified from the most abstract perspective; the components at this perspective are then, in
turn, partitioned into components, cither all specified from the original perspective or all specified
at the next more detailed perspective. This process results in a treclike component hicrarchy. In
general, such a fully structured hardware design process is not feasible; even in the cases where it is

possible, it often results in highly suboptimal designs.

A fully structured design process has two major problems. The first is that it requires a
complete partitioning of a component into the primitives of one structural perspective before
considering partitions at a less abstract perspective. The design process is, in part, a continuing
trade-off between design objectives as given by the current specification and what can actually be
achieved becausc of limitations imposed, for example, by the device physics or the fabrication
technology, that is, it is an cxploratory process. Dcsigners must decide how much of the overall
specification at a given perspective to complete before more concrete specifications for particular

componcnts are devcloped. When designers work on more detailed specifications for particular
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components, they ~-2 exploring what can be achicved for the overall design.

A second problem with. a fully structured hardware dcsign process is that it requircs
conceptually viewing the component hicrarchy as tree-like. High-level software languages have
mechanisms that allow such a viewpoint. For example, a software designer can decompose modules
recursively, treating each submodule conceptually as a distinct entity cven though two or more
submodules may ultimatcly correspond to the same piece of code. This module decomposition
yields a treelike hierarchy. Such a simple conceptual hierarchy is allowed because the systems that
support the resulting code contain mechanisms fcr handling shared codc (e.g., procedure calls and

link loaders). In contrast, structurc-sharing in hardware dcsigns is not currently automated.

The following two examples illustrate structure sharing. Viewed from a data path perspective,
the circuit in Figure 5a consists of a state machinc and a data path in which two of the outputs of

the state machine are the inputs to the data path,

A refincment of the circuit from a clocked register and logic perspective is illustrated in Figure
Sb.  This rcfinement treats the two components independently and permits, in particular,
independent cditing and simulation of the two components. However, the refinenient does not take
advantage of a possible cconomy gained through shared structure: The data conimen to the two
components could share a register. A refinement of the circuit that uses the shared register is
shown in Figure Sc. This form of structurc sharing is viewed as the usc of a shered componeni by

the two components.
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Figure 5. An example of structure sharing.

A second cxample of structure sharing is illustrated in Figure 6. The circuit consists of a
multiplexer controlled by the external signal s which steers a0 or al into a selectively loadable,
clocked, 1-bit register dependent on the value of 5. The circuit is specified from the CSG

perspective in Figure 6a.

The circuit’s function may be realized more cconomically by the circuit shown in Figure 6b,
which merges the steering and clocking functions of the two comiponents. This form of structure-
sharing is vicwed as the merging cf the two components. Steele and Sussman’d call component

decompositions as in the above cxamples almost-hicrarchical.
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Figurc 6. An example of structure merging.

The forms of structure sharing illustrated above are the only oncs admitted by our design
paradigm. This constraint allows effective management of the relationships between coinponent
(almost) hicrarchics and perspectives. Palladio ¢nables the designer to represent shared structure
through tae use of two distinguished compoient categories: sharcd componeits ind merged
components. A shared component occuts (virtually) in all components sharing mpenent
Thus, components sharing a component can be independently edited and v The
relationship between a merged component and the components which it merges s also maintained
by Paltadio. In particular, maintaining such a relationship permits verification (by simulation) that
the merged component or its retinements achieve the combined functionality of the components

which it merges.
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Behavioral Perspectives

Specifying behavior is an- integral part of the circuit design process. The behavior of a digital
circuit is the change of its state over time. The state of a circuit consists of the internal state of its
components and the values of signals on their ports at a particular time; Palladio models time as
discrete and linearly organized contexts. Behavioral specifications play a critical role in the
verification of a design;. a refined design specification must meet the design goals and satisfy the
constraints imposed by the original spccification. Verification is concerned with several aspects of
the evolving design: functional behavior, functional performance, design quality (e.g., testability,
understandability, robustness), and physical realizability. Circuit verification is usually performed by
simulation®; which, in Palladio, means modeling the circuit’s structurc in the computer, specifying
an initial state for the circuit, and then using the behavioral specifications of components to infer

states in future contexts (not necessarily just the next context) from the current state.
Specification of Behavior as Rules

Bchavior is expressed as perspective-specific rules that are triggered by changes in a
componcent’s state and that, in turn, change the state of the circuit. A unidirectional pass transistor
has three ports: IN, OUT, and CI1. An examplc of a 3-valued logic behavioral rule for a

unidirectional pass transistor is:

if Signal (Port CTI) = HIGH at time ¢
then Signal (Port OUT) = Signal (Port IN) at time -+ 1

A different perspective of the pass transistor might use a 3 X 3

*There is some curcent work on using formal mcthods for behavioral verification of circuits: see, for example, Barrow 16




level-strength logic.}2 The following three behavioral rules specify the pass transistor's behavior from

this perspective.

if Signal (Port CTL) level = 3, Strength = s at time ¢

then Signal (Port OUT) = Signal (Port IN) at time t+ 1.

if Signal (Port CTL) Level = I, Strength = sl at time ¢
and Signal (Port OUT) Level = I Strength = s2 at time ¢

then Signal (Port QUT) lLevel = I, Strength = 1 at time (+1.

if Signal (Port CTL) Level = 2, Strength = s at time ¢

then Raise error flag.

Motivations for Behavioral Specification via Rules

In an integrated design cnvironment, specification of bchavior must take a fairly flexible form,

as it must scrve many diverse purposes:

Purpose 1. The behavioral specification is part of the overall specification of the design and must be

in a form the designer can both enter and (at some later point) comprehend.

The rule format has the advantage of being fairy transparent and well structurcd.

Purpose 2. The behavioral specification must be usable by a simulator; furthermore, connected

components whose behavioral specifications are at different perspectives should be sinmulatable.

The rule fonnat can be used to express any kind of behavior that can be expressed as
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computation (as it permits embedded calls to Lisp functions). In particular, the rule format can
accommodate behavior that transcends traditional logic modes for digital design. For example, the

rule syntax permits Boolean logic control to be integrated with high-level function units:

if Signal (Port CTl) = HIGH at time ¢

then Signal (Port OUT) = Signal (Port INI) times Signal (Port IN2)

Purpose 3. A component’s behavioral specification must be compatible with its structural specification.

A component’s bchavioral specification can be compared, by simulation, with the behavioral
specifications of its interconnected components, to verify the correctness of the component
decomposition. For example, in Figurc 7, the HALF-REG component could be verified by

simulations using its indicated bchavioral specification and using the behavior it derives from its

componcnts.
CLOCK POWER
POWER
€LOCK QUY
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Behavior for Hall-register:
IF Signal{Port Clock) = HIGH at tune 7
THEN Signal(Pont Out) » INVERT Signal(Port In) at time T+ 3.
Behavior for Clock Switch:

IF Signal(Port Clock) = HIGH attime '
THEN Signal{Port Out) = Signai{Port In) al time Tel.

Behavior lor inverter:

IF SignaltPost IN) = st ime 7
THEN Signat{Port Out) » INVERT Signal{Portin) sttime 7« 2.

Figure 7. Verification of hehavior,
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Purpose 4. The behavioral specification may serve as a consiraint or as input for other programs, for

example, an automatic refinement program.

For instance, behavior described from a Boolean logic perspective could be used as input to a
PLA generator to produce a layout perspective design. Rules express behavior in a form that is

convenient to use as input to other programs.

Purpose 5. It should be possible to specify behavior for "dummy components” that are not

implemented, but are only used for generating or monitoring signals during a simulation.

Such dummy components are analogous to "PRINT" statcments that arc used to help debug a

software program but are removed afterwards

Purpose 6. The behavioral specification should be usable for providing explanations for a particular

simulation result.

It is easy to produce primitive explanations from records of rule activations.?

Alternatively, programming language procedures could have been used for behavioral
specification, as thcy too are very flexible. However, procedures are generally less comprehensible
than rules, can be difficult to use as input to other programs, and admit no simple explanation

facility.
Palladio’s Simulator

Palladio’s simulator is based upon MARS! (Multiple Abstraction Rule-based Simulator), a
general-purpose, event-driven simulator whose gencerality derives, in part, from the logic reasoning
system, MRS?, in which it is implemented. A logic reasoning system contains. as data, a set of
assertions and a collection of rules triggered by the presence of assertions and capable of producing
new assertions: a logic rcasoning system uses inference rules to control the manner in which new

asscrtions are added to the current set of assertions, MARS expresses the state of a circuit as a set
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of assertions and maps the behavioral rule formalism described carlier into MRS's rule formalism in
a straightforward way. Repeated usc of the inference rule modus ponens (i.e., if A and A => B then
B) produces new circuit states by causing MRS to cycle through the state-representing assertions,
applying all applicable bchavioral rules to cach asscrtion and adding new assertions to the end of

the current set of assertions.

This very general simulation framcwork allows the hybrid simulation of high-level, sparsely
detailed functional blocks and low-level, highly detailed gates and switches. By simulating at the
highly detailed perspectives only when it is necessary to verify the design from that perspective, the
component hierarchy can be exploited to achieve large gains in simulation performance. In a typical
hierarchical simulation, the majority of components are being simulated from their high-level
behavioral perspective, cither out of necessity (as their structure has not yet been fleshed out) or

because their low-level behavior has alrcady been verified.

In Palladio, a simulator run can be dynamically displayed on a color graphics screcn. For
cxample, for a logic simulation various state attribute valucs can be denoted by distinet colors. This
dynamic display produces a "movic" of tne circuit’s behavior. The state history of a simnulation can

also be saved in a formatted text file for later analysis.

"~ Implementation

Palludio is implemented using object-oriented, data-oriented, rule-based, and logic-language

programming paradigms.

The object-oriented, data-oriented. and rule-based facilities arc largely provided by the J.OOPS
(Lisp Object-Oriented Programming System) programming environment.?  LOOPS was developed
by Danicl Bobrow and Mark Stefik and is implemented in Interlisp-1),'® a programming
cmironment that augments lntcrlisp8 with interactive bitmap graphics, multipic processes, end

networking capabilities.  Interlisp-1) runs on the Xcrox 1)-scries workstations,
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The logic language system, MRS (Metalevel Reasoning System).® is based on the predicate
calculus and includes full logic inference capabilities. MRS was devcloped by Michacel Genescreth.
LOOPS’ rule facilitics and MRS each provide Palladio with the mechanisms for devcloping,

integrating, and testing knowledge-based expert system design  aids.

The overall software architecture of Palladio is illustrated in Figure 8. The circled entitics in the

figure are groups of objects while the boxed entities arc supporting systems.

STRUCTURE PROTOTVYPE BEMAVIOR
EDITORS EDITORS EDITORS

Figure 8. Palladio system architecture.

Object-oricnted Programming

Palladio is mainly implemented in an objeci-oriented programming paradigm whose basic entitics
arc objects, classes, messages. and mcthods (see, c.g.. Swalltalk'%).  Exery major system compoenent
in Palladio (c.g., structure cditors, behavior editors, and simulators) is represented as an vbject, that
is, a package that includes a data structure and a set of methods (i.c.. procedurcs) for operating on
that structurc. Every circuit entity in Palladio is also an object (e.g., circuit, components, ports, and

wircs).
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Large classes of objects often share identical data structures, differing only in the values of those
data structures (c.g.. all wires have two ends and an associated signal type, signal strength, ctc.).
Object-oriented languages exploit this property with classes, special objects that define a basic data
structure and its associated methods; a class scrves as a template for creating its instances--those
objects sharing the same data structure as their class. In Palladio, a prototype component is defined
by a class object, and any instance of the prototype occurring in a circuit specification is an instance

object of the prototype class object.

The data structure part of a 1.LOOPS object is a frame composed of attribute-value pairs. The
frame of a 2-input NAND gate instance specificd from the CSG perspective is shown in Figure 9.
The value of an attribute can be any LLOOPS or Lisp datatype (c.g., atom, list, array, object, active
valuc); the values of some of the attributes in the example are pointers to other objects. (This is
denoted in the figure by values of the form <x> which stands for “a pointer to an object of type

x.")} A class describes its instances by specifying the names and default values of attributes.

Figure 9. 2-input NAND gate frame.

Instances of a class are created with attributes as deseribed in its ¢lass, T ity attribute values,
an instance contains the information that distinguishes it from other instanees of its class, The frame

for the class Wire is shown in Figure 10.

)

Component <2-Nand Instance >
Print Neme N1
{nternal Wire <Wire instance >
[Print Name 2-—-Nand — External Wire <Wire Instance >
Austhor Foyster State Unknown
Crestion Dete 4-Jon-83-13:46:16 Mask Level Poly
Edit Record uwaa-om-n Brown). . .) Comments “Input Port”
Prototype Constraints None
component Instance > -
Bounding Box Fo 104 20 24) r
Ports Port Instance >. . )____1 Component <2-Nend instance >
Structurs) Perspectives Struc Perspective INStance >. . .) m——in-| POrspective CSG
Behavioral Perspactives < Bohav Perspective Instance>. . .} = SubActives (< Component Instance>. .
Commaents Ratio Logic nMos 2-input Nand”’ SubWires (< Wire instance>. . )
| Constraints None W {< Contace Instance>. .
Comcxm_mt <2-Nend instance >
Perspective 3 Logic
» Local/Inherited Rules Loce!
Bohevior Rules < Rule Instance>. . )

)
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Attributes
Print Name WIRE
Author Unknown
Creation Date Unknown
Prototype <Sell>
Overcomponent None
Connected 1 None
Connecled 2 None
Signal Type Unknown
Paoint List None
Mask Level Unknown
Behavioral Perspectives (<Behav Pers;: .veinslance>...)
Messages
ADD Interactively adds an instance of WIRE to a component.
DELETE Deletes a wirg instance from a component.
INSTANTIATE Creates a new instance of WIRE.
INTERSECT? Returns intersection of a wire instance with a region.
SPUIY Splits a wire instance into two wire instances at a point.
SELECT Highlights a wire instance if disptayed in an open window.
DESELECT Unhighlights a wire instance.
DISPLAY Displays a wire instance in a window.
HIT? Returns T if a displayed wire instance is pointed at by the cursor.

Figure 10. Wire class object.

An instance of the class Wire is shown in Figure 11.

Print Newme vDD
Author Foyster
Crestion Dete 18-Mar 83-15:34:07
Prototype <Wire Cless >
Overcomponent < Composite Component |nstance >
Connected 1 < Port or Contact |nstance >
Connected 2 < Port or Contact instanos >
P;»im JVII' ({20.18) (40.18) (40.50)) Componant
int . 2 A
Lsd-vionl Perspectives (< Bohav Perspective Instance >. . .)e——p Local/Inherited Rules

Behavior Rules

Figure 11. Wire instance object.

<Wire instance >
3-Logic

Nol.ocel

Object-oriented  programming  provides a powerful, flexible solution to the problem of

representing generic actions: every type of entity provides its own definition for a generic action

such as displaying itsclt on the screen. A message sent o an object results in the invocation of the
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method associated with that message in the definition of the object’s class. For cxample, a Palladio
editor or simulator is invoked for a particular circuit by sending an ACTIVATE message to the
editor or simulator, respectively; to display a component in a screen window, a DISPLAY message
is sent to the component, and to add an instance of a prototype component to a circuit, an ADD
message is sent to the prototype. The message-passing technique is a natural means for creating
software modularity. Also, the scnder of a message only nced know that a particular recipient can
respond to a particular message and not how that recipient will respond; the recipient of the

message knows the appropriate method and how to invoke it
Palladio’s Class Inheritance Network.

Object-oriented programming uses the class/instance distinction to exploit the fact that large
classes of objects share identical data structurcs. Objcct-oriented programming also cxploits the fact
that classes often have similar, but not identical, data structuccs. In LLOOPS, classcs are organized
into an inheritance network; a subclass inherits the attribute descriptions of, and the messages
understood, by its parent classes. A subclass can also have noninherited autributes and messages
with their associated methods; furthermore, the default values of its inherited attributes and the

associated methods of its inhcrited mcssages can differ from those of its parents.

Part of the class inheritance network for Palladio’s circuit objects is shown in Figure 12,
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Figure 12, Partial class inheritance network.
As indicated in the figuic, classes fall into three categories. The kernel classes (c.g.. Composite)

arc part of a special sct of classes that define the basic Palladio environment.  ‘The generie classes

(c.g.. State Composite) are used in the definition of one or more circuit perspectives. Kernel and
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generic classes arc used for definitions only; no instances arc cver created. The third category,
prototype classes, contains prototype circuit componcents (c.g., Register and NAND Gate). Each
prototype class is a subclass of a prototype, gencric, or kernel class that differs from its parent only
in its default attribute values. The class inheritance mechanism is used to create new prototype
components or ncw perspectives.  For instance, a 3-input NAND gate prototype class could be

created as a subclass of either the Gate class or the NAND class.

Palladio provides interactive graphics editors for defining new prototype components. The
definition of a ncw perspective, however, can invol.c the creation of new generic classes that have
attributes and mcthods not inherited from their kernel parents. Currently, such classes are crcated
with the LGOPS object editor, which requires familiarity with the underlying object representations

and Interlisp.

Data-oriented Programming

In data-oriented programming, reading or writing on the value of a particular attribute of an
object causes attribute-specific side cffects. LOOPS permits data-oriented programming through a
notation that allows the programmer to distinguish passive and active attribute values; reading or
writing on an active value produccs side effects by activating a procedure associated with the active
value. For example, cach CSG perspective wire has an associated  signal type (c.g.. Power, Ground,
¢l. Passed), which is uscful for checking compusition rules or assigning interconnect mask levels.
When a wirc is created, its signal type cannot always be determined immediately: for example, the
signal type of a wire connecting ports of two abstract subsystems whose internal structures are still
unspecificd is indcterminate.  Eventually, the design becomes sufficently detailed so that the signal
type of the wire can be inferred from its connections.  An active value is used as a data demon that
(conceptually) monitors the value of the signal type attribute on all wires; whenever that value is
sct, the active valuc’s procedure propagates the signal type throughout the wir?'s net and veiities

that the signal type is consistent within the nct.




Design Tools as Expert Systems

We are devcloping knowledge-based design aids based on the perspective framework provided
by Palladio. These design aids arc small expert systcms that perform some of the refinement
necessary to move from an abstract circuit specification to more concrete circuit specifications. By
providing a uniform framework of multiple perspectives, the Palladio environment simplifies the

implementation of such expert systems.

The cxpertise needed by such design aids can take various fonms, such as an algorithm to
implement registers as gates or heuristic knowledge cxpressed symbolically. We are currently

experimenting with formulating circuit design aids as rule-based expert systems. 20

An Example of a Design Aid

Given a design specified from the CSG perspective, one of the refincment steps in deriving a
layout is to assign mask lcvels to the interconnect (wires and contacts) between the components.
" Given a design tool that could perform this task, a designer can quickly see the consequences of

circuit refinement and avoid introducing unneccssary Crrors.

The goal of wire assignment is to produce a cell-based sticks diagram for the ciicuit.  'The
strategy we have used begins at the most detailed level of the circuit’'s component hicrarchy and
progresses to the most abstract, assigning mask levels (e.g.. metal. polysilicon, or ditfusion) tw
interconnect atong the way. ‘Thus, after a port of a component 7 is attached to a wire with a
particular mask level, the mask level assigner tries (0 muintain the already established mask level

assignment when considering a component (2, which contains €'/,

The mask level assignment strategy considers such qualiative factors as minimizing power and
delay and introducing as few vias (vertical channels connccting wires with different mask levais) as
possible. It avoids introducing any unintended conncctions between intersecting wires or any

inadvertant transistors (by intersecting  polysilicon and  diffusion).
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To kcep the problem manageable, a constraint was introduced: The rlanar topology of the
interconnect must remain as given in the CSG perspective, that is, components and wires must

remain in the same relativé positions after mask level assignment.

Many expert systems distinguish base-level actions from control-level actions: Base-level actions
modify the representation of the problem and its solution, while control-level actions dctermine

which basc-level actions to take. Control-level actions can be represented as rules of the form:
if situation-predicate then action

where the predicate tests for the existence of a particular situation before performing its action. The
mask level assigner is implemented using Lisp procedures for the basc-level actions, and LOOPS
rules to control usage of the Lisp procedures. There are two base level actions: (1) assignment of a

mask level 1o a wire and (2) introduction of vias for changing mask level along a wire.

The overall strategy followed by the inask level assigner is:

1. ldentify all wire intersections;
2. Order the intersecuions according o a set of rules;
3. For cach intersection, apply rules that

a. determine whether mask levels need to be assigned or reassigned for the two

.tersecting wires,
h. generate costs associated with different mask levels for each wire,

c. generata costs for the various types of vias, and
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d. invoke basc-level pracedures to produce least-cost assignments for the wires using

the derived costs.

This strategy focuscs on one intersection at a time (even with wires that intersect many other
wires). When producing an assignmient for a wire by focusing on one intersection, the mask level
assigner can inadvertently introduce a short or transistor at some other intersection. This means that
step (3) in the above strategy must be repeated until all wires have been assigned a mask level and

no unintentional shorts or transistors have becn produced.

The control-rule scts take into account factors such as the current mask level (if any) of a wire,
the estimated length of a wire, the signal type it carries (e.g., power or clock), and the total number

of interscctions along a wirc. Figure 13 gives cxamples of control rules.

Determine If mask levels need to be reassigned

IF Wire1:MaskLevel = POLY
AND
Wire2:MasklLevel = DIFF
THEN ReassignMaskLevels

Order treatment of wires

IF Wire1:Signal = Power
AND
Wire2:Signal = PHIt
THEN Assign Wire1 before Wire2

Specify cosis for different layers for a wire

IF Wire:Endport1 = POLY
THEN Cost(POLY) « LOW

Iinvoke base lavel aclions

IF MaskLevelNeedsAssignment
AND
MaskCostsDefinedF orWire
THEN AssignLowestCostToWire

Figure 13, Examples of wire niask assigner control rulcs.

Because Palladic allows access to any part of o cireuit’s structure, the rule scts can make use of
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whatever global information is nccessary to achieve high performance within a highly focused
(localized) control strategy. For cxample, ranking of intersections uses a sct of rules 1o dctermine
the relative importance of cach intersection. This rule set requires such global information as the
types of components connected by a wire and the connection nctworks of intersecting wires. Easy
and quick access to circuit information is a central factor contributing to the high performance and

the quick implementation of the mask level assigner.
Implementation of the Mask Level Assigner

LLOOPS provides rule-oricnted programming in which a rule set can be associated with an
object. Individual rules in a rule set can test the attribute values of the object and conditionally
execute procedures, set attributes values, or send inessagcs. When a rule sct is invoked, the rules are

tested and the conditional actions are exccuted.

The WireAssigner is an object created to carry out the mask level assignment task. A

WireAssigner rcsponds to the following messages:

1. The Activate message takes a circuit as a parameter and initializes the assignment

process.

2. I'nc FindIntersections message finds all intersections between wires in the circuit under
consideration. The method for this message creates a new  Intersection object tor cach

intersection found and stores the objects in a list

3. Ihe Reorderluersecrions message sorts the intersection object list according 1o the

importance of the intersections as determined by a set of rules,

4. The MakeAssignment message invokes the appropriate base level actions which perform

the actual assignment of a mask level (including introducing vias) to a wire.

Intersection objects respond  to the messages  MaskConflict? and ResolveConflict. The




41

ResolveConflict message is sent to an Intersection object if a conflict cxists, that is, if MaskConflict
responds affirmatively.  The assigninent process terminates when all the wires are assigned mask

levels and therc are no further mask level conflicts.

The MaskConflict? and ResolveConflict methods for an Intersection object are implemented as
rule sets. These rule scts determine the priority of two conflicting wires and the costs associated with
different mask lIevels for each wire. To generate the minimal cost assignment for a given wire, a
WireCosts object is crcated containing attributes for the costs of various mask levels. When the cost
values have been established, the GenerateMinAssignment message is sent to the WireCosts obiject,
resulting in a scarch through possible assignments (where introducing vias is considered legitimate).
When the WireCosts object finds the lowest cost assignment, it sends the AlakeAssignment message
to the Wiredssigner, and the assignment is made. The wirc assignment process can be dynamically

displayed on the color screen.

Infinite loops in the wire assignment process could occur becausc a prior assignment to a wire
can be undone by another assignment of the same wirc when considering a different intersection.
We have climinated this possibility by introducing a cost for cach intersection consisting of the sum
of the costs of previous assignments to the two wires. By increasing the intersection cost each time a

conflict is resolved, the assignment process is forced to terminate.

Benefits of an expert systems approach

After its basic strategy was outlined, the mask level assignment expert system was implemented
in two days. The initial system contained only a small number of rules: the resulting assignments
were crror free, but of poor overall quality. For cxample, unnceessary vias were introduced. and
power and ground wires were run in polysilicon or diffusion for no good reason. Adding rules that
accounted for the types of signals running in a wire and that ordered wire assignments in a more

intclligent manner greatly improved the resulting sticks diagrams,

The current system produces mask Tevel assignments for large-scale circuits comparable to those
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produccd by human dcsigners. ‘The mask level assigner demonstrates one of the premises of expert
system construction: The performance of an expert system can be incrementally improved by the
addition of morc knowledge. Also, specifying the control knowledge as rules has made the system

easy to understand and modify.

Status

The basic Palladio framework has been operational for about a year. The current system

provides:

1. Interactive graphics editors which treat components as rectangular boxes with attached
ports. Wires conncct ports, and components can be partitioned into subcomponents.
Components that ar¢ added to an evolving design are sclected from standard or designer-
created libraries of prototype components. Prototype component cditors can be envoked
from within circuit design editors. This aflows a designer to casily augment a prototype

component library during the circuit design process.

2. A behavioral rule cditor wl ch gives syntactic suppoit for entering and modifying

behavioral specifications of both prototype components and circuit components.

3. An cvent-driven simulator which uses the behavioral and structural specifications of a
circuit to simulate it. The simulator can perform hicrarchical simulation (i.e., use cither the
specificd behavior of a component or the behavior induced by thce behavior of its
subcomponents  and their interconncctions) and  mixed-perspective  simulation  (e.g.,
simulation of a circuit in which some of the components have behavior specified from a 3-
value logic perspective and some of which have behavior specified from a 3 X 4-valued

logic level,

4. A frame-based mechanism for assigning multiple perspectives to components.  ‘The

mcechanism also allows those limited forms of nonhicrarchical component decompaosition
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which we¢ have found to be useful in Palladio.

5. A protocol for creating new structural and bchavioral perspectives based on Palladio’s

object-oriented paradigm.

6. Mechanisms for implementing rule-bascd, expert-system design aids. These mechanisms

are largely provided by LOOPS and MRS.

Our initial (and current) implementation of Palladio was a research effort.  Our interest was in
in investigating a sct of concepts about circuit design environments. We have used Palladio to
design several circuits using perspectives ranging from architectural through cell-based sticks
diagram levels. We feel that even this limited cxpeience has substantiated the utility of many of
Palladio’s underlying concepts, for cxample, the hicrarchical usc of multiple perspectives, distinct
structural and behavioral perspectives, behavioral specifications using a rule format, a behavioral
simulator applicable to all levels of behavioral specification, and dasign aids implemented as rule-
based expert systems. However, in its current implementation, Palladio is difficult to use effectively
by anyonc other than its builders, it is not particularly robust, and it has significant ctficency
problems (e.g., about cight hours on a Xcrox 1100 computer to run a 1000 event simulation: of the

multi-processor circuit described on page 10).
Palladio’s Performance

During the immplementation of Palladio we were often uncertain as to exactly what systen
capabilities would prove to be useful. Thus, whenever we were faced with a flexibility versus
cfficency trade-off, we opted for flexibility. We have paid a price for this flexibility. Running on a
Xerox 1100 we can deal adequately only with circuit designs consisting of tens of high-level

components and at most hundreds of low-level components.

The current implementation of Palladio is overly gencral. We have found that some of the

capabilitics of the system are of very limited utility. for example, the completely gencral underlying
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representational mechanisms for circuit structure and behavior.  We are currently reimplementing
Palladio observing more realistic flexibility versus cfficiency trade-offs. This rcimplementation
should result in an overall order-of-magnitude performance improvement. However, even with such
improvments and running on the morc powerful Xerox 1132 computer we estimate that we would
be limited to circuits with at most tens-of-thousands of low-level components. Qur conjecture is
that flexible, fully-integrated design cnvironments for custom, VLSI-scale circuits will require

computcers more powerful than those that are currently available.

Conclusions

The Palladio system is an exploratory design environment that recognizes the need to integrate
diverse design tools and dcesign languages; perspectives arc an attempt at creating the flexible
framework required to support experiments with such tools and languages. In Palladio, we have
acknowledged that the construction of the "perfect set” of design tools and {anguages is a never-
ending process that must keep pace with the ever-exparding boundarics of circuit technology and of
computer-aided design;  this requires representation of the tools and languages in an casily

modifiable and augmceutable form.

Table 2 is a summary of the ways in which we have usced different programming paradigms for

building different clements of the design environment.

Table 2. Programming Paradigm Applications.

Programming paradigm Design environment application

Rule-based Incrementally constructed expert design aids
Object oriented Design specification
Logical language Simulation

Data oriented Constraint propagation
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Multiple programming paradigms have proved useful for explicitly representing diverse kinds of
tools and languages and for making their medification and extension as straightforward and rapid as
possible. The table is meant to suggest only a few preliminary correspondences; finding best fits
between programming paradigms and design environment applications is a novel and worthwhile
area for rescarch. Palladio is an exploratory design environment that contains an exploratory
programming environmen! in order to cxperiment easily with varying elements of an intcgrated

dcsign environment.

Further rescarch areas we are actively pursuing include the design of a language that spans the
spectrum of functionality, behavior, and structure, thus climinating some of the parallel languages
required, and the design of a language in which circuit design problems (and theories of circuit
design) can be stated, based on the assumption that the circuit design problem and the circuit
design co-evolve. Basic terms of such a language include design goals, tasks, constraints, and trade-

offs.

Palladio is an carly attempt to explore the stuff on which circuit design environments are built.
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