

Supporting Information © Wiley-VCH 2007

69451 Weinheim, Germany

Palladium-Catalyzed Direct Arylation of Aryl (Herero)Arenes with Aryl Boronic Acids

Shang-Dong Yang, Chang-Liang Sun, Zhao Fang, Bi-Jie Li, Yi-Zhou Li, and Zhang-Jie Shi*

Beijing National Laboratory of Molecular Sciences (BNLMS) and Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of
Education, College of Chemistry and Green Chemistry Center, Peking University,
Beijing 100871 and State Key Laboratory of Organometallic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, China

General. All the reactions were carried out under dry oxygen atmosphere. CH₃COOH was used without further purification. Pd(OAc)₂ was purchased from Alfa Aesar Chemical. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) were registered on Varian 300M spectrometers with CDCl₃ and acetone-d₆ as solvent and tetramethylsilane (TMS) as an internal standard. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 200-300 mesh. IR, GC, MS, and HRMS were performed by the State-authorized Analytical Center at Peking University.

General procedures for arylation of mesitylene:

Mesitylene **1a** (120.0 mg, 1.0 mmol, 2.0 equiv), phenyl boronic acid **2a** (61 mg, 0.5 mmol, 1.0 equiv), Cu(OAc)₂ (91.0 mg, 0.5 mmol, 1.0 equiv and Pd(OAc)₂ (5.6 mg, 0.025 mmol, 0.05 equiv) were added to a Schlenck tube. After the addition of CF₃COOH (5.0 mL) by syringe, the reaction solution was degassed twice and refilled with O₂ (1.0 atm). The reaction mixture was further stirred for 48 h at room temperature. CF₃COOH was distilled under reduced pressure and recovered. The residue was dissolved in CH₂Cl₂ (50 mL) and washed with aqueous NaHCO₃ (2 x 30 mL). The organic layer was dried over MgSO₄. The desired product **3aa** was detected by GC with the use of *n*-dodecane as an internal standard.

General procedures for 2-arylation of 1-methylindole 1b:

1-Methylindole **1b** (65.5 mg, 0.5 mmol, 1.0 equiv), phenyl boronic acid **2a** (91.5 mg, 0.75 mmol, 1.5 equiv) and $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 0.05 equiv) were added to a Schlenck tube. After AcOH (5.0 mL) was added by syringe, the resulting solution was degassed twice and refilled with O_2 (1.0 atm.). The mixture was stirred for 6-8 h at room temperature. AcOH was distilled under reduced pressure and recovered, and the residue was dissolved in CH_2Cl_2 (50 mL) and washed with aqueous $NaHCO_3$ (2 x 30 mL). The organic layer was dried over MgSO₄. After the removal of the solvent, the product **3ba** was purified in 77% yield by flash chromatography on silica gel (hexanes/dichloromethane = 10:1 as an eluent).

Reaction Condition Screening for Arylation of Mesitylene 1a.

Table 1. Direct Arylation of mesitylene (1a) with phenyl boronic acid (2a).a

ì	+ PhB(OH	Pd, oxidant		Ph
	PIIB(OF	Solvent, rt, 48 h		
	1a 2a		3	аа
entry	Pd (mol%)	oxidant (equiv)	solvent	GC yield (%)b
1	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	toluene	< 5
2	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	DMF	< 5
3	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	CH ₂ Cl ₂	< 5
4	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	HOAc	< 5
5	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	83
6	$Pd(OAc)_2$ (5.0)	Cu(OAc) ₂ (1.0)	TFA	48
7	$Pd(OAc)_2$ (5.0)	$Cu(OTf)_2 (1.0)/O_2$	TFA	12
8	$Pd(OAc)_2$ (5.0)	BQ (1.0)	TFA	15
9	$Pd(OAc)_2$ (5.0)	TBHP (1.0)	TFA	15
10	Pd(OAc) ₂ (5.0)	oxone (1.0)	TFA	42
11	Pd(OAc) ₂ (5.0)	$Cu(OTf)_2 (0.2)/O_2$	TFA	30
12	$Pd(OAc)_2$ (5.0)	O ₂ (1 atm)	TFA	20
13	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA/CH ₂ Cl ₂	68
14	PdCl ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	10
15	$Pd(PPh)_3Cl_2$ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	19
16	$Pd(PhCN)_2CI_2$ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	18
17	Pd(OTFA) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	13
18	Pd(dba) ₂ (5.0)	Cu(OAc) ₂ (1.0)/O ₂	TFA	< 5

^a All the reactions were carried out in the scale of 1.0 mmol of 1a and 0.5 mmol 2a.

^b Yield were determined by GC with the *n*-dodecane as an internal standard.


Reaction Condition Screening for Arylation of N-Methylindole 1b.

Table 2. Direct Arylation of N-methylindole (1b) with phenyl boronic acid (2a).^a

H+	PhB(OH) ₂	Pd, oxidant	Ph
N	PIIB(OH) ₂	solvent, rt, 48 h	N
1b ^{Me}	2a	5517511t, 1t, 40 11	3ba ^{Me}

entry	Pd (mol%)	oxidant (equiv)	solvent	GC yield (%)b
1°	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	CH ₂ Cl ₂	64
2 ^c	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	CH ₃ CN	43
3°	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	DMF	27
4°	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	dioxane	58
5 ^c	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	toluene	31
6 ^c	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.0)	HOAc	76
7 ^c	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (2.5)	HOAc	89 (74)
8	Pd(OAc) ₂ (5.0)	BQ (1.0)	HOAc	66
9	$Pd(OAc)_{2}$ (5.0)	TBHP (1.0)	HOAc	79
10	$Pd(OAc)_2$ (5.0)	oxone (1.0)	HOAc	47
11	Pd(OAc) ₂ (5.0)	Cu(OAc) ₂ (0.2)/O ₂	HOAc	96
12	$Pd(OAc)_{2}$ (5.0)	O ₂ (1 atm)	HOAc	94 (77)
13	PdCl ₂ (5.0)	O ₂ (1 atm)	HOAc	45
14	$Pd(PPh)_3Cl_2$ (5.0)	O ₂ (1 atm)	HOAc	52
15	$Pd(PhCN)_2CI_2$ (5.0)	O ₂ (1 atm)	HOAc	49
16	Pd(OTFA) ₂ (5.0)	O ₂ (1 atm)	HOAc	92
17	Pd(dba) ₂ (5.0)	O ₂ (1 atm)	HOAc	38
18	Pd(OAc) ₂ (1.0)	O ₂ (1 atm)	HOAc	58

^a All the reactions were carried out in the scale of 0.5 mmol of **1b** and 1.0 mmol of **2a**. ^b Yields were determined by GC with the use of with the *n*-dodecane as an internal standard. Isolated yields were reported in parathesis ^c These reactions were carried out at 60 °C.

2-Phenyl-1*H***-indole** (**11a**): Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **11a** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0801 g (83%). H NMR (300 MHz, CDCl₃): 8.32 (s, 1 H), 7.69 (d, J = 8.4 Hz, 2 H), 7.52 (d, J = 7.8 Hz, 1 H), 7.49-7.41 (m, 4 H), 7.33-7.14 (m, 2 H), 6.87-6.6 (m, 1 H). NMR (75 MHz, CDCl₃): 137.8, 136.7, 132.3, 129.2, 129.0, 127.7, 125.1, 122.3, 120.6, 120.2, 110.9, 99.9. m/z (EI) 193 (M⁺, 100%), 165 (32%); IR (KBr plate, CDCl₃) v 3444, 1457, 742, 689.

1-Methyl-2-phenyl-1*H***-indole** (**3ba**):² Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 6-8 h. product **3ba** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0797 g (77%). ¹H NMR (300 MHz, CDCl₃): 7.64 (d, J = 7.9 Hz, 1H), 7.51-7.34 (m, 6H), 7.24 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 6.56 (s, 1H), 3.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 141.5, 138.3, 132.8, 129.3, 128.4, 127.9, 127.9, 127.8, 121.6, 120.4, 119.8, 109.6, 101.6, 31.1. m/z (EI) 207 (M⁺, 100%), 169 (18%); IR (KBr plate, CDCl₃) v 3055, 2923, 1468, 749, 702.

5-Methoxy-2-phenyl-1*H***-indole** (**1ma**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **1ma** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0814 g (73%). ¹H NMR (300 MHz, CDCl₃): 8.22 (s, 1H), 7.61 (d, J = 7.2 Hz, 2H), 7.43-7.24 (m, 4H), 7.08 (s, 1H), 6.85 (d, J = 8.1, 1H), 6.74 (s, 1H), 3.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 154.4, 152.0, 138.5, 129.7, 128.1, 127.7, 125.0, 112.6, 111.6, 102.2, 99.8, 55.8. m/z (EI) 223 (M⁺, 100%), 199 (22%); IR (KBr plate, CDCl₃) v 3424, 1476, 1215, 1150, 763, 737.

6-Chloro-2-phenyl-1*H***-indole** (**1na**): ⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 20 h. product **1na** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0601 g (53%). ¹H NMR (300 MHz, acetone-d₆): 10.85 (s, 1H), 7.83 (d, J = 7.2 Hz, 2H), 7.54 (d, J = 8.1 Hz,1H), 7.47-7.35 (m, 2H), 7.34-7.29 (m, 1H), 7.04(d, J = 10.5 Hz, 1H), 6.90 (s, 1H). ¹³C NMR (75 MHz, acetone-d₆): 139.6, 138.3, 132.7, 129.4, 128.5, 128.2, 127.5, 125.6, 121.9, 120.6, 111.4, 99.6. m/z (EI) 229(M⁺, 33%), 227 (M⁺, 100%), 203 (37%); IR (KBr plate, acetone-d₆) v 3433, 1450, 1346, 1063, 815,787, 688.

5-Chloro-2-phenyl-1*H***-indole** (**10a**): Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 20 h. product **10a** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0692 g (61%). H NMR (300 MHz, acetone-d₆): 10.85 (s, 1H), 7.83 (d, J = 7.2 Hz, 2H), 7.54 (d, J = 8.1 Hz,1H), 7.47-7.35 (m, 2H), 7.34-7.29 (m, 1H), 7.04(d, J = 10.5 Hz, 1H), 6.90 (s, 1H). NMR (75 MHz, acetone-d₆): 139.6, 138.3, 132.7, 129.4, 128.5, 128.2, 127.5, 125.6, 121.9, 120.6, 111.4, 99.6. m/z (EI) 229(M⁺, 33%), 227 (M⁺, 100%), 203 (37%); IR (KBr plate, acetone-d₆) v 3350, 1700, 1247, 762, 692.

1-Methyl-2-phenyl-1*H***-pyrrole** (**1ja**): Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **1ja** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0307 g (43%). ¹H NMR (300 MHz, acetone-d₆): 7.37-7.50 (m, 4H), 7.27-7.34 (m, 1H), 6.72 (t, J = 2.0 Hz, 1H), 6.19-6.26 (m, 2H), 2.88 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆): 134.5, 133.3, 128.5, 128.2, 126.6, 123.6, 108.6, 107.7, 34.9. m/z (EI) 143 (M⁺, 100%), 128 (21%); IR (KBr plate, acetone-d₆) v 3062, 1478, 1308, 741, 698.

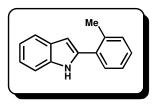
2-Phenyl-1*H***-pyrrole** (**1ka**): Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 6 h. product **1ka** was obtained after silica gel chromatography (40:10 hexanes: dichloromethane), yield 0.0358 g (56%). ¹H NMR (300 MHz, acetone-d₆) 10.62 (s, 1 H), 7.51-7.54 (m, 2 H), 7.39-7.45 (m, 2 H), 7.21-7.29 (m, 1 H), 6.90-6.92 (m, 1 H), 6.58-6.60 (m, 1 H), 6.36 (d, J = 3.6, 1 H). ¹³C NMR (75 MHz, acetone-d₆): 133.2, 132.5, 133.2, 132.5, 129.3, 126.6, 124.3, 119.3, 110.5, 106.4. m/z (EI) 129 (M⁺, 100%), 54 (13%); IR (KBr plate, acetone-d₆) v 3434, 3391, 1465, 1033, 904, 757, 719, 605.

1,5-Dimethyl-2-phenyl-1*H***-indole** (**1pa**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **1pa** was obtained after silica gel chromatography (10:1

hexanes:dichloromethane), yield 0.0762 g (69%). 1 H NMR (300 MHz, CDCl₃): 7.48-7.34 (m, 6H), 7.21 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 2.1 Hz, 1H), 6.46 (s, 1H), 3.68 (s, 3H), 2.46 (s, 3H). 13 C NMR (75 MHz, CDCl₃): 141.5, 136.8, 132.9, 130.5, 129.2, 129.0, 128.4, 128.2, 127.6, 123.2, 120.1, 109.3, 101.2, 30.2, 21.4; m/z (EI) 221 (M⁺, 100%), 204 (12%); IR (KBr plate, CDCl₃) v 3026, 2914, 1478, 1183, 795, 761, 695. Anal. Calcd. for $C_{16}H_{15}N$: C, 86.84; H, 6.83; N, 6.33. Found: C, 86.79; H, 6.81; N, 6.23.

5-Chloro-1-methyl-2-phenyl-1*H***-indole** (**10a**): Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 16 h. product **10a** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0735 g (61%). ¹H NMR (300 MHz, CDCl₃): 7.64 (d, J = 2.4 Hz, 1H), 7.54-7.47 (m, 5H), 7.29-7.21 (m, 3H), 6.54 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): 142.8, 136.7, 132.2, 130.0, 129.2, 128.8, 128.5, 128.1, 125.4, 121.7, 120.1, 110.5, 101.1, 31.2. m/z (EI) 241 (M⁺, 100%), 205 (31%); IR (KBr plate, CDCl₃) v 3058, 1470, 1277, 1065, 765, 698. Anal. Calcd. for C₁₄H₁₂NOCl: C, 74.53; H, 5.00; N, 5.79. Found: C, 74.49; H, 4.91; N, 5.68.

5-Methoxy-1-methyl-2-phenyl-1*H***-indole** (**1ra**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **1ra** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.1019 g (86%). ¹H NMR (300 MHz, CDCl₃): 7.59-7.46 (m, 5H), 7.32 (d, J = 9.3 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 7.00 (d, J = 11.4, 1H), 6.58 (s, 1H), 3.94 (s, 3H), 3.77 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 154.3, 142.0, 133.7, 132.8, 129.2, 128.4, 128.1, 127.7, 111.8, 110.3, 102.1, 101.2, 55.8, 31.2. m/z (EI) 237 (M⁺, 100%), 222 (55%), 194 (67%); IR (KBr plate, CDCl₃) v 3054, 2927, 1490, 1209, 1085, 752, 714.


1-Benzyl-2-phenyl-1*H***-indole (1sa):** Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **1sa** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.1033 g (73%). ¹H NMR (300MHz, CDCl₃) δ 7.85 (d, J = 4.2 Hz, 1H), 7.62 (d, J = 4.2 Hz, 2H), 7.60 (m, 3H), 7.51-7.32 (m, 6H), 7.18 (d, J =

6.3 Hz, 2H), 6.84 (s, 1H), 5.50 (s, 2H), ; ¹³C NMR (75 MHz, CDCl₃) δ141.7, 138.1, 137.9, 132.6, 129.1, 128.7, 128.5, 128.2, 127.9, 127.1, 125.9, 121.9, 120.5, 110.5, 102.3, 47.6; *m/z* (EI) 283 (M⁺, 100%), 165 (9%), 91 (69%); IR (KBr plate, CDCl₃) 3060, 2924, 1461, 1346, 747, 697

2-Phenyl-benzo[*b*]**thiophene** (**1ha**): Following the general procedures, the reaction was performed in a 0.5 mmol, 10 mol % Pd(OAc)₂ and 0.5 mmol CF₃SO₃Na scale at 100 °C for 12 h. product **1ha** was obtained after silica gel chromatography (hexanes), yield 0.0714 g (68%). ¹H NMR (300 MHz, CDCl₃): 7.83 (d, J = 8.7 Hz, 2H), 7.55 - 7.39 (m, 4H), 7.35 -7.21 (m, 3H), 6.98(s, 1H); ¹³C NMR (75 MHz, CDCl₃): 155.9, 154.8, 130.4, 129.2, 128.8, 128.5, 124.9, 124.2, 122.9, 120.9, 111.1, 101.3; m/z (EI) 178 (M⁺, 100%), 134 (48%); IR (KBr plate, CDCl₃) v 3021, 1463, 1109, 904, 755, 725, 605.

2-Phenyl-benzofuran (**1ia**): Following the general procedures, the reaction was performed in a 0.5 mmol, 5 mol % Pd(OAc)₂ and 0.5 mmol NaOAc scale at 60°C for 8 h. product **1ia** was obtained after silica gel chromatography (hexanes), yield 0.0213-0.0563 g (22-58%). ¹H NMR (300 MHz, CDCl₃): 7.86 (d, J = 9.9 Hz, 2H), 7.59 - 7.42 (m, 4H), 7.37 -7.22 (m, 3H), 7.02(s, 1H); ¹³C NMR (75 MHz, CDCl₃): 155.9, 154.8, 130.4, 129.2, 128.8, 128.5, 124.9, 124.2, 122.9, 120.9, 111.1, 101.3; m/z (EI) 194 (M⁺, 100%), 165 (62%); IR (CHCl₃): 3020, 1615, 1510, 1492, 1109, 904, 755, 725, 605.

1-Methyl-2-o-tolyl-1*H***-indole (3bb):**³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3bb** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0966 g (87%). ¹H NMR (300 MHz, CDCl₃): 7.63 (d, J = 9.8 Hz, 1H), 7.37-7.14 (m, 7H), 6.55 (s, 1H), 3.75 (s, 3H), 2.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 141.7, 138.3, 138.1, 132.7, 130.1, 128.6, 128.3, 127.9, 126.4, 121.5, 120.4, 119.8, 109.5, 101.5, 31.3, 21.5. m/z (EI) 221 (M⁺, 100%), 206 (29%); IR (KBr plate, CDCl₃) v 3052, 2935, 1463, 766, 749, 734.

2-o-Tolyl-1*H***-indole** (**3lb**):⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **3lb** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0517 g (50%). ¹H NMR (300 MHz, acetone-d₆): 7.53 (d, J = 7.5 Hz, 1H), 7.22 (s, 1H), 7.15 (s, 1H), 7.05 (s, 1H), 6.88-6.78 (m, 3H), 6.41 (s, 1H), 5.89 (s, 1H), 3.60 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆): 147.5, 141.2, 138.1, 127.8, 126.6, 123.1, 121.5, 120.3, 119.8, 109.7, 108.3, 101.2, 31.0. m/z (EI) 207 (M⁺, 100%), 155 (13%); IR (KBr plate, acetone-d₆) v 3400, 1455, 1302, 797, 746, 720.

1-Methyl-2-m-tolyl-1*H***-indole (3bc):** Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3bc** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0966 g (87%). ¹H NMR (300 MHz, CDCl₃): 7.61 (d, J = 7.5 Hz, 1H), 7.32-7.12 (m, 7H), 6.53 (s, 1H), 3.67 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 141.7, 138.3, 138.1, 132.7, 130.0, 128.6, 128.3, 127.9, 126.4, 121.5, 120.4, 119.7, 109.5, 101.5, 31.1, 21.4. m/z (EI) 221 (M⁺, 100%), 204 (20%); IR (KBr plate, CDCl₃) v 3050, 1465, 1146, 776, 749, 701.

2-m-Tolyl-1*H***-indole** (**3lc**):⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **3lc** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0755 g (73%). ¹H NMR (300 MHz, acetone-d₆): 10.51 (s, 1H), 7.69-7.55 (m, 3H), 7.43 (d, J = 9.0 Hz, 1H), 7.16-7.00 (m, 3H), 6.87 (s, 1H), 2.35 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆): 143.4, 143.2, 142.6, 137.8, 134.5, 133.9, 130.8, 127.3, 126.8, 125.3, 124.7, 116.2, 104.1, 25.7. m/z (EI) 207 (M⁺, 100%), 155 (16%); IR (KBr plate, acetone-d₆) v 3431, 2921, 1607, 1303, 785, 747, 688.

1-Methyl-2-p-tolyl-1*H*-indole (3bd):³ Following the general procedures, the reaction

was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3bd** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0718 g (65%). 1 H NMR (300 MHz, CDCl₃): 7.73 (d, J = 8.4 Hz, 1H), 7.51-7.43 (m, 3H), 7.38-7.31 (m, 3H), 7.25 (m, 1H), 6.64 (s, 1H), 3.81 (s, 3H), 2.51 (s, 3H). 13 C NMR (75 MHz, CDCl₃): 141.6, 138.2, 137.7, 129.9, 129.2, 129.1, 127.9, 121.4, 120.3, 119.7, 109.5, 101.2, 31.0, 21.2. m/z (EI) 221 (M⁺, 100%), 204 (11%); IR (KBr plate, CDCl₃) v 3054, 2913, 1465, 828, 773, 751.

2-p-Tolyl-1*H***-indole** (**3ld**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **3ld** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0797 g (77%). ¹H NMR (300 MHz, acetone-d₆): 10.56 (s, 1H), 7.71 (t, J = 8.4 Hz, 2H), 7.52 (d, J = 9.0 Hz, 1H), 7.38-7.34 (m, 1H), 7.23 (d, J = 7.8, 1H), 7.08-7.03 (m, 2H), 7.00-6.95 (m, 1H), 6.80 (s, 1H), 2.29 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆): 138.1, 137.1, 130.8, 130.2, 125.7, 122.3, 120.8, 120.2, 111.8, 99.2, 21.0. m/z (EI) 221 (M⁺, 100%), 169 (18%); IR (KBr plate, acetone-d₆) v 3441, 1698, 1248, 904, 790, 748.

2-(4-Methoxy-phenyl)-1*H***-indole** (**3le**):⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **3le** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0591 g (53%). ¹H NMR (300 MHz, acetone-d₆): 10.55 (s, 1H), 7.85-7.77 (m, 2H), 7.53 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 9.0, 1H), 7.01-6.97 (m, 4H), 6.76 (s, 1H), 3.86 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆): 165.1, 143.8, 143.1, 135.2, 132.1, 131.1, 126.9, 125.5, 125.1, 120.0, 116.6, 103.5, 60.4. m/z (EI) 223 (M⁺, 100%), 109 (53%); IR (KBr plate, acetone-d₆) v 3432, 1501, 1027, 834, 786, 748.

2-(4-Methoxy-phenyl)-1-methyl-1*H***-indole** (**3be**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3be** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0995 g (84%). ¹H NMR (300 MHz, CDCl₃): 7.67 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 9.9 Hz, 1H), 7.22 (m, 1H), 7.04 (d, J = 11.7 Hz, 2H), 6.55 (s, 1H), 3.92 (s, 3H), 3.76 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 159.3, 141.3, 138.1, 130.5, 127.9, 125.1, 121.3,

120.2, 119.7, 113.9, 109.5, 100.9, 55.2, 30.9. *m/z* (EI) 237 (M⁺, 100%), 222 (63%); IR (KBr plate, CDCl₃) v 3050, 2924, 1496, 1466, 1245, 841, 786, 750.

2-(3-Methoxy-phenyl)-1*H***-indole** (**3lf):** ⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 10 h. product **3lf** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0669 g (60%). ¹H NMR (300 MHz, CDCl₃): 8.23 (s, 1H), 7.61 (d, J = 7.2 Hz, 2H), 7.43-7.24 (m, 4H), 7.08 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.74 (s, 1H), 3.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 154.4, 152.0, 138.6, 129.7, 128.9, 127.5, 125.0, 112.6, 111.6, 102.2, 99.8, 55.8. m/z (EI) 223 (M⁺, 100%), 109 (53%); IR (KBr plate, CDCl₃) v3432, 1501, 1027, 834, 786, 748.

2-(3-Methoxy-phenyl)-1-methyl-1*H***-indole (3bf):**⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3bf** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0995 g (84%). ¹H NMR (300 MHz, CDCl₃): 7.68 (d, J = 8.4 Hz, 1H), 7.38-7.27 (m, 2H), 7.22 (d, J = 8.2 Hz, 1H), 7.19-7.09 (m, 2H), 6.99 (d, J = 9.3, 1H), 6.62 (s, 1H), 3.88 (s, 3H), 3.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 159.5, 141.3, 138.3, 134.1, 129.4, 127.8, 121.7, 120.4, 119.8, 115.0, 113.3, 109.6, 101.6, 55.3, 31.1. m/z (EI) 237 (M⁺, 100%), 194 (25%); IR (KBr plate, CDCl₃) v3050, 2924, 1496, 1466, 1245, 841, 786, 750.

$$\begin{array}{|c|c|}\hline \\ \hline \\ \hline \\ H \\ \hline \\ \end{array}$$

2-(4-Fluoro-phenyl)-1*H***-indole** (**3lg**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 10 mol % $Pd(OAc)_2$ scale at room temperature for 22 h. product **3lg** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0812 g (77%). ¹H NMR (300 MHz, acetone-d₆): δ 10.58 (s, 1H), 7.89-7.84 (m, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 10.2 Hz, 1H), 7.24-7.01 (m, 3H), 6.84 (s, 1H). ¹³C NMR (75 MHz, acetone-d₆): δ 164.3, 138.1, 129.9, 127.6, 127.5, 122.4, 120.8, 120.2, 116.3, 116.1, 111.7, 99.6. m/z (EI) 211 (M⁺, 100%), 169 (34%); JR (KBr plate, acetone-d₆) v 3415, 1499, 1235, 837, 794, 756.

2-(4-Fluoro-phenyl)-1-methyl-1*H***-indole (3bg):** Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 16 h. product **3bg** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0922 g (82%). ¹H NMR (300 MHz, CDCl₃): 7.64 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.35-7.12 (m, 5H), 7.10 (d, J = 7.2, 1H), 6.48 (s, 1H), 3.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 136.6, 131.0, 128.6, 127.8, 121.8, 121.4, 120.7, 119.6, 115.4, 109.4, 100.8, 32.8. m/z (EI) 225 (M⁺, 100%), 183 (18%); IR (KBr plate, CDCl₃) v 3061, 2925, 1495, 1219, 842, 787, 734.

2-(4-Chloro-phenyl)-1*H***-indole** (**3lh**):³ Following the general procedures, the reaction was performed in a 0.5 mmol and 10 mol % Pd(OAc)₂ scale at room temperature for 22 h. product **3lh** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0874 g (77%). ¹H NMR (300 MHz, acetone-d₆): δ 11.59 (s, 1H), 7.82 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 8.1, 1H), 7.00 (d, J = 7.8, 1H), 6.94 (d, J = 0.9 Hz, 1H). ¹³C NMR (75 MHz, acetone-d₆): δ 137.1, 136.3, 131.7, 131.4, 128.4, 126.8, 121.8, 120.2, 120.1, 119.4, 111.3, 99.2. m/z (EI) 227 (M⁺, 100%), 191 (22%); IR (KBr plate, acetone-d₆) v 3443, 1701, 1246, 1095, 831, 793, 748.

2-(4-Chloro-phenyl)-1-methyl-1*H***-indole (3bh):** Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 12 h. product **3bh** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0819 g (68%). ¹H NMR (300 MHz, CDCl₃): 7.80-7.66 (m, 5H), 7.41 (d, J = 7.9 Hz, 1H), 7.37 (m, 1H), 7.27 (d, J = 7.9, 1H), 6.71 (s, 1H), 3.81 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): 139.8, 138.7, 136.3, 129.4, 127.8, 125.4, 122.3, 120.9, 120.2, 109.7, 102.8, 31.2. m/z (EI) 241 (M⁺, 100%), 205 (19%); IR (KBr plate, CDCl₃) v 3058, 2923, 1323, 1109, 1067, 789, 732.

2-(3-Nitro-phenyl)-1*H*-indole (3li):⁶ Following the general procedures, the reaction

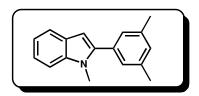
was performed in a 0.5 mmol and 10 mol % Pd(OAc)₂ scale at room temperature for 24 h. product **3li** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0976 g (82%). 1 H NMR (300 MHz, acetone-d₆): δ 10.53 (s, 1H), 8.35 (s, 1H), 8.21 (d, J = 9.0, 1H), 7.81 (d, J = 9.0, 1H), 7.66-7.58 (m, 2H), 7.38-7.16 (m, 4H), 6.65(s, 1H). 13 C NMR (75 MHz, acetone-d₆): δ 148.3, 138.7, 134.9, 134.4, 129.5, 127.6, 123.6, 122.6, 120.8, 120.3, 109.8, 103.2. m/z (EI) 238 (M⁺, 100%), 192 (21%); IR (KBr plate, acetone-d₆) v 3370, 1517, 1349, 794, 734.

1-Methyl-2-(3-nitro-phenyl)-1*H***-indole (3bi):**⁶ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 16 h. product **3bi** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0794 g (63%). ¹H NMR (300 MHz, CDCl₃): δ 8.35 (s, 1H), 8.21 (d, J = 9.0, 1H), 7.81 (d, J = 9.0, 1H), 7.66-7.58 (m, 2H), 7.38-7.16 (m, 4H), 6.65(s, 1H), 3.76 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 148.3, 138.7, 134.9, 134.4, 129.5, 127.6, 123.6, 122.6, 120.8, 120.3, 109.8, 103.2, 31.3. m/z (EI) 252 (M⁺, 100%), 206 (18%); IR (KBr plate, CDCl₃) v 2963, 2917, 1523, 1348, 738, 727.

$$CF_3$$

2-(4-Trifluoromethyl-phenyl)-1*H***-indole** (**3lj):**⁴ Following the general procedures, the reaction was performed in a 0.5 mmol and 10 mol % Pd(OAc)₂ scale at room temperature for 22 h. product **3lj** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0770 g (59%). ¹H NMR (300MHz, acetone-d₆) δ 10.36(br, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.43-7.24 (m, 4H), 6.64 (s, 1H); ¹³C NMR (75 MHz, acetone-d₆) δ 140.2, 138.4, 133.9, 130.4, 128.7, 121.9, 120.5, 119.9, 109.6, 101.9; *m/z* (EI) 261 (M⁺, 100%), 199 (21%); IR (KBr plate, acetone-d₆)3424, 1330, 1122, 1113, 842, 796, 756.

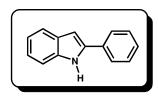
$$\boxed{\bigcirc \mathsf{CF}_3}$$

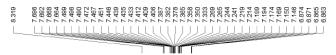

1-Methyl-2-(4-trifluoromethyl-phenyl)-1*H***-indole** (**3bj**):² Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 16 h. product **3bj** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.1076 g (78%). ¹H NMR (300MHz, CDCl₃) δ 7.73 (d, J = 8.9 Hz, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.43-7.24 (m, 4H), 6.64 (s, 1H), 3.80 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 140.2, 138.4, 133.9, 130.4, 128.7, 121.9, 120.5, 119.9, 109.6, 101.9, 31.1; m/z (EI) 275 (M⁺, 100%), 205

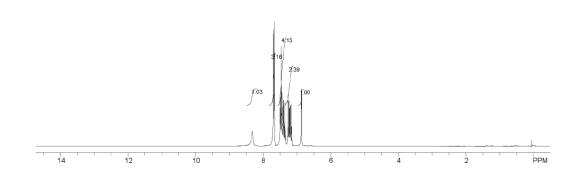
(24%); IR (KBr plate, CDCl₃) 3046, 2925, 1466, 1089, 834, 792, 736.

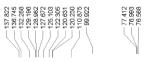
2-Benzo[1,3]dioxol-5-yl-1*H***-indole (3lk):⁵** Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 12 h. product **3lk** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0628 g (53%). ¹H NMR (300 MHz, acetone-d₆): 11.6 (s, 1 H), 7.87 (d, J = 8.4 Hz, 2 H), 7.52 (d, J = 7.8 Hz, 1 H), 7.41-7.49 (m, 3 H), 7.29-7.34 (m, 1 H), 7.09-7.14 (m, 1 H), 6.99-7.04 (m, 1 H), 6.91 (d, J = 0.9 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): 147.6, 147.4, 141.2, 138.1, 127.8, 126.7, 123.2, 121.5, 119.8, 109.7, 109.5, 108.3, 101.3, 101.2. m/z (EI) 237 (M⁺, 100%), 178 (17%); IR (KBr plate, acetone-d₆) 3417, 2899, 1702, 1481, 1451, 1041, 789, 750.

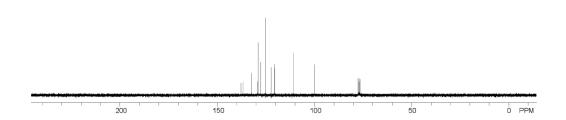
2-Benzo[1,3]dioxol-5-yl-1-methyl-1*H***-indole** (**3bk**):⁵ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 16 h. product **3bk** was obtained after silica gel chromatography (5:1 hexanes: dichloromethane), yield 0.0778 g (62%). ¹H NMR (300 MHz, CDCl₃): 7.53 (d, J = 7.8 Hz, 1 H), 7.23 (m, 1 H), 7.15 (m, 1 H), 7.05 (m, 1 H), 6.88-6.79 (m, 3 H), 6.41 (s, 1 H), 5.89 (s, 2 H), 3.50(s, 3 H). ¹³C NMR (75 MHz, CDCl₃): 147.6, 147.4, 141.2, 138.1, 127.8, 126.7, 123.2, 121.5, 119.8, 109.7, 109.5, 108.3, 101.3, 101.2, 29.7. m/z (EI) 251 (M⁺, 100%), 192 (12%); IR (KBr plate, CDCl₃) 2955, 2923, 2853, 1475, 1232, 1039, 781, 750.


2-(3,5-Dimethyl-phenyl)-1*H***-indole** (3**II):**⁸ Following the general procedures, the reaction was performed in a 0.5 mmol and 10 mol % Pd(OAc)₂ scale at room temperature for 10 h. product 3**II** was obtained after silica gel chromatography (4:1 hexanes: dichloromethane), yield 0.0685 g (62%). ¹H NMR (300 MHz, acetone-d₆) δ 8.35 (bs, 1 H), 7.73 (d, J = 8.1 Hz, 1 H), 7.46-7.20 (m, 5 H), 7.06 (s, 1 H), 6.90-6.87 (m, 1 H), 2.47 (s, 6 H); ¹³C NMR (75 MHz, acetone-d₆): δ 138.6, 138.3, 136.8, 132.3, 129.6, 129.4, 123.1, 122.2, 120.7, 120.2, 111.0, 99.8, 21.5. m/z (EI) 221 (M⁺, 100%), 191 (38%); IR (KBr plate, acetone-d₆) v 3402, 3049, 2918, 1607, 1457, 1311, 844, 797, 744. Anal. Calcd. for C₁₆H₁₅N: C, 86.84; H, 6.83; N, 6.33. Found: C, 86.72; H, 6.84; N, 6.69.




2-(3,5-Dimethyl-phenyl)-1-methyl-1*H***-indole (3bl):**³ Following the general procedures, the reaction was performed in a 0.5 mmol and 5 mol % Pd(OAc)₂ scale at room temperature for 8 h. product **3bl** was obtained after silica gel chromatography (10:1 hexanes: dichloromethane), yield 0.0587 g (50%). ¹H NMR (300 MHz,CDCl₃) δ 8.35 (bs, 1 H), 7.73 (d, J = 8.1 Hz, 1 H), 7.46-7.20 (m, 5 H), 7.06 (s, 1 H), 6.90-6.87 (m, 1 H), 2.47 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ 138.6, 138.3, 136.8, 132.3, 129.6, 129.4, 123.1, 122.2, 120.7, 120.2, 111.0, 99.8, 21.5. m/z (EI) 235 (M⁺, 100%), 197 (34%); IR (KBr plate, CDCl₃) v3050, 1465, 1146, 776, 749, 701.


References:


- 1. X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc. 2005, 127, 4996.
- 2. B. S. Lane, D. Sames, Org. Lett. 2004, 6, 2897.
- 3. N. R. Deprez, D. Kalyani, A. Krause, M. S. Sanford, *J. Am. Chem. Soc.* **2006**, *128*, 4972.
- 4. Y. Fang, M. Lautens, Org. Lett. 2005, 7, 3549.
- 5. A. F. Rstner, P.W. Davies, J. Heterocycl. Chem., 1978, 15, 859.
- 6. A. Adejare, D. D. Miller, *Ind. J. Chem.*, *Section B:Org. Chem. Inc. Med. Chem.*, **1978**, *16B*(*6*), 533.
- 7. J. Becht, A. Gissot, A. Wagner, C. Mioskowski, Chem. Eur. J. 2003, 9, 3209.
- 8. S. Cacchi, G. Fabrizi, L. M. Parisi, Org. Lett. 2003, 5, 3843.

