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Abstract: Air-stable broadband saturable absorbers (SAs) 
exhibit a promising application potential, and their prep-
arations are also full of challenges. Palladium selenide 
(PdSe

2
), as a novel two-dimensional (2D) layered material, 

exhibits competitive optical properties including wide 
tunable bandgap, unique pentagonal atomic structure, 
excellent air stability, and so on, which are significant in 
designing air-stable broadband SAs. In our work, theo-
retical calculation of the electronic band structures and 
bandgap characteristics of PdSe

2
 are studied first. Addi-

tionally, PdSe
2
 nanosheets are synthesized and used for 

designing broadband SAs. Based on the PdSe
2
 SA, ultra-

fast mode-locked operations in 1- and 1.5-µm spectral 
regions are generated successfully. For the mode-locked 
Er-doped operations, the central wavelength, pulse 
width, and pulse repetition rate are 1561.77 nm, 323.7 fs, 
and 20.37  MHz, respectively. Meanwhile, in all normal 
dispersion regions, mode-locked Yb-doped fiber laser 
with 767.7-ps pulse width and 15.6-mW maximum average 
output power is also generated successfully. Our results 
fully reveal the capacity of PdSe

2
 as a broadband SA and 

provide new opportunities for designing air-stable broad-
band ultra-fast photonic devices.

Keywords: palladium selenide; broadband saturable 
absorber; air-stable ultra-fast devices; mode-locked lasers.

1   Introduction

The emergency of two-dimensional (2D) layered materi-
als provided exciting opportunities for the development 
of novel opto-electric, bio-medical, and energy devices 
[1–13]. Recently, novel ultra-fast optical devices such as 
Q-switchers, mode-lockers, optical switchers, and so on 
have been investigated extensively due to their excellent 
opto-electric characteristics including wide-absorption 
band, ultra-fast recovery time, high-damage threshold, 
etc. [1–5]. Especially, 2D material-based mode lockers were 
widely employed for proposing ultra-fast pulsed fiber 
lasers, which have important applications in the fields of 
medicine, optical spectroscopy, chemical and biomedical 
researches, and so on [1–3, 14–20]. In addition, 2D mate-
rial-based mode-locked fiber lasers were also regarded as 
excellent test platforms for the research of various kinds 
of soliton phenomena, promoting the rapid progress of 2D 
ultra-fast device-based soliton research [21].

Graphene was the pioneer in exploring ultra-fast appli-
cations of 2D materials and exhibited excellent performance 
in demonstrating pulsed fiber laser operating from visible 
to mid infrared bands [22–29]. As is known, the zero-band-
gap structure of graphene also brought great obstacles to 
its optoelectronic device applications. Since then, inspired 
by graphene, various 2D layered materials including multi-
elemental (transition metal dichalcogenides (TMDs) [30–41], 
topological insulator (TIs) [42–47], ferromagnetic insulator 
(FIs) [48–50], metal chalcogenide [51, 52], MXenes [53–56], 
etc.) and mono-elemental (Xenes (phosphorene [57–66], 
graphdiyne [67], antimonene [68], bismuthene [69–71], tel-
lurene [72, 73]) and selenene [74]) were prepared as mode 
lockers for obtaining pulsed fiber lasers extensively. Among 
which, black phosphorus (BP) was regarded as an ideal satu-
rable absorption material due to its obvious advantages of a 
tunable bandgap value of 0.3–1.5 eV [57–59], high nonlinear 
coefficient, and so on. However, the air-unstable property of 
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BP also limited its wide in-deep photoelectric applications. 
In general, exploring air-stable materials with wide tunable 
bandgap value is of great significance in promoting the prac-
tical optical device applications of 2D materials.

In our contribution, PdSe
2
 was selected as the base 

material for designing wide absorption-band ultra-fast 
optical devices. Reported results have proven that PdSe

2
 

exhibited several competitive excellent properties. Most 
importantly, PdSe

2
 exhibits a thickness-dependent wide-

tunable bandgap value, which can be narrowed from 1.3 
eV for the monolayer to 0 eV for bulk [75–81]. Moreover, 
as is known that the thickness-dependent bandgap is not 
a unique property of PdSe

2
 [82, 83], the thickness-depend-

ent bandgap is regarded as a commonality of two-dimen-
sional materials. However, in comparison with PdSe

2
, the 

bandgaps of commonly reported TMDs (MoS
2
, WS

2
, SnS

2
, 

etc.) always vary between 1 and 2 eV. In other words, 2D 
materials with such a widely tunable band gap as PdSe

2
 

were rarely reported before. Such a competitive wide 
optical bandwidth coverage is the most unique advan-
tages of PdSe

2
 compared with other types of 2D materials, 

indicating that PdSe
2
 is a promising material for preparing 

wide absorption band photoelectric devices. Second, in 
comparison to other isotropic TMDCs, PdSe

2
 has another 

unique property of pentagonal atomic structure in which 
Pd atoms coordinate with four Se atoms, forming a square 
backbone lattice (Figure 1A and B). The waved Pd–Se 
layers are held together by van der Waals force with a 
distance of about 0.4 nm (Figure 1C) [77–81]. Owing to the 
unique pentagonal atomic structure, in comparison with 
commonly used TMDs, PdSe

2
 devices present a unique 

anisotropic response to external stimulations, which will 
provide opportunities for designing anisotropic photo-
electric devices. Especially, PdSe

2
 also has the essen-

tial basic properties used as the optoelectronic device: 
excellent air stability [80]. Besides, high-quality PdSe

2
 

nanosheets can be easily prepared by the cost-effective 
liquid-phase exfoliation (LPE) method. All the mentioned 

properties indicate that PdSe
2
 is an excellent air-stable 

low-cost nonlinear absorption material with wide absorp-
tion bandgap. Previously, the nonlinear absorption appli-
cations of PdSe

2
 have been investigated within solid state 

lasers preliminarily [84, 85]. Besides that, the thickness-
dependent wide-band ultra-fast optical applications of 
PdSe

2
 are still far from thoroughly investigated. Explor-

ing the wide-band absorption applications of PdSe
2
 and 

designing PdSe
2
-based broadband optical devices are 

meaningful for promoting the practical development of 
2D-based ultra-fast optical devices.

In this work, first, based on the density function 
theory, the electronic band structures and bandgap char-
acteristics are calculated. The calculated results prove 
that PdSe

2
 exhibits a wide tunable indirect bandgap 

of 0–1.3 eV, which is suitable for designing broadband 
ultra-fast optical devices. In addition, PdSe

2
 nanosheets 

with 15- to 16-layer thickness are prepared and employed 
for proposing as an saturable absorber (SA) successfully. 
Based on the PdSe

2
 SA, within all anomalous dispersion 

regions, a mode-locked Er-doped fiber laser with a 323.7-
fs pulse width under a pulse repetition rate of 22.7  MHz 
is obtained. Meanwhile, within all normal dispersion 
regions, a mode-locked Yb-doped fiber laser with a 767.7-
ps pulse width and 15.6-mW maximum average output 
power is also generated successfully. The excellent wide-
band absorption performance of PdSe

2
 presents that PdSe

2
 

exhibits great potential and capacity in designing wide 
absorption band ultra-fast optical devices.

2   Density function theory (DFT) 

calculation

In our work, the Vienna ab initio simulation package 
(VASP, University of Vienna) was employed to optimize 
crystal structures and calculate electronic structures with 

A B C

0.385 nm

Pd Se

Figure 1: Atomic structures of PdSe
2
.

(A) Top view of a 2 × 2 × 1 supercell of the single-layer PdSe
2
. (B) A sketch of the Cairo tessellation formed from pentagons. (C) Side view of 

the three-layer PdSe
2
.
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the framework of density functional theory [86, 87]. We 
tested several functionals implemented in VASP, includ-
ing PBE [88], optPBE [89], optB88 [89], PBE-D2 [90], 
PBE-D3 [91], and PBE-TS [92]. It is found that the func-
tional of optPBE yields reasonable results for structural 
and electronic and properties. The energy cutoff for the 
plane-wave basis was set to 500 eV for all calculations 
and the k-point spacing of the reciprocal space was fixed 
to 0.02 Å−1. All atoms were relaxed until the residual forces 
were below 0.001 eV/Å. For the 2D slab calculations (mon-
olayer and few-layer PdSe

2
 systems), a vacuum region of at 

least 20 Å in the out-of-plane direction was used to avoid 
spurious interactions with periodic images.

The calculated electronic band structures of bulk 
and single-layer PdSe

2
 are provided in Figure 2A and B, 

respectively. For the bulk PdSe
2
, no bandgap is recorded. 

Meanwhile, the single-layered PdSe
2
 exhibits an obvious 

indirect bandgap of about 1.31 eV, which is close to its 
direct bandgap of 1.43 eV. The relationship between the 
bandgap value and layer number is also calculated and 
shown in Figure 2C. As is shown, when the layer number 
increases from 1 to 15, the bandgap value decreases from 
1.31 to 0.02 eV. In addition, the bandgap values for 20 
layers and bulk PdSe

2
 are 0 and −0.01 eV, respectively, 

which also proves that bulk PdSe
2
exhibits no bandgap. 

Especially, such a large tunable bandgap is of great signif-
icance for designing broadband opto-electronic devices.

3   Preparation and characteristics of 

the PdSe
2

Because PdSe
2
 exhibits excellent air stability, thus, in our 

work, PdSe
2
 nanosheets were prepared by the commonly 

used low-cost LPE method. The preparation process is pro-
vided in Figure 3 (progress 1) and described as follows: 10 mg 
PdSe

2
 powder is added into 100 ml of ethanol for soaking for 

about 96 h. The soaked soliton is kept under ice-bath soni-
cation for 24 h. The sonication is beneficial for stripping a 
few layers of the PdSe

2
 nanosheets. After that, the suspen-

sion is centrifuged for 30  min at 5000  rpm to obtain few-
layered PdSe

2
 nanosheet dispersion. Finally, the dispersed 

PdSe
2
 nanosheets is mixed with 100 ml of 5 wt% polyvinyl 

alcohol (PVA) solution and placed in the ultrasonic cleaner 
for another 6 h to obtain a uniform PdSe

2
-PVA solution. In 

preparing the 2D material-based PdSe
2
-PVA SA with good 

stability characteristics, a novel preparation method for iso-
lating the oxygen and the materials, reported in our previ-
ous work [37], is employed. The preparation process is also 
provided in Figure 3 (progress 2) and described as follows: 
first, a thin liquid glass film is spin coated on the sapphire 
substrate. After solidification of the liquid glass, a thin 
PdSe

2
-PVA film is spin coated on the surface of the liquid 

glass. Then, another liquid glass film is spin coated on the 
2D materials to isolate the oxygen. In addition, another sap-
phire is coated on the liquid glass resulting in a five-layer 
sandwich structure. Finally, the sapphire substrates on both 
sides are removed, and the remaining structure is polished 
and cut to 1 × 1 mm2 for proposing as SA, which is under the 
protection of the two outer glass films. In our experiment, 
the prepared three-layer glass-PdSe

2
-glass material was 

inserted between two fiber ferrules so as to be easily inte-
grated into the fiber laser cavity acting as a mode locker.

Figure 4 depicts the characterized results includ-
ing Raman, transmission electron microscope (TEM), 
and atomic force microscope (AFM), which are benefi-
cial in understanding the layered structure and satura-
ble absorption characteristics of the PdSe

2
 nanosheets. 

Figure 4A gives the Raman spectrum of the PdSe
2
 powder 

recorded by a Raman spectrometer (Horiba HR Evolu-
tion). Four obvious Raman peaks located at 143.6, 205.3, 
220.8, and 255.7 cm−1 are presented, which correspond to 
the 1 2 3

1g
A , A , B , and A

g g g
 Raman active modes of PdSe

2
 [78–

80]. In general, the Raman characteristics of the PdSe
2
 

nanosheets should be studied as a comparison. However, 
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Figure 2: Calculated results of the electronic band structures and bandgap values.

Electronic band structures of (A) bulk PdSe
2
 and (B) single-layered PdSe

2
. (C) Relationship between the bandgap value and layer number.
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in our experiment, after centrifugation, the concentra-
tion of PdSe

2
 nanosheets in the solution is too dilute for 

testing their Raman characteristics. Therefore, for the 
further detailed characterization of the layered structure 
characteristics of the PdSe

2
 nanosheets, their structure 

characteristics of PdSe
2
 nanosheets are further character-

ized by TEM and AFM. The TEM and high-resolution TEM 
(HRTEM) images are shown in Figure 4B–D. As shown 
in Figure 4B, the PdSe

2
 nanosheets exhibit an obvious 

layered structure. Clear crystal lattices with a d-spacing of 
∼0.4 nm are depicted in Figure 4C and D, indicating that 
the prepared PdSe

2
 nanosheets possess excellent layered 

structure and crystallinity properties. After the prepara-
tion progress including soaking, ultrasonic, and centrifu-
gation, the maintained layered structure and crystallinity 
indicates that the PdSe

2
 material exhibits excellent air-

stable properties, As is mentioned, PdSe
2
 exhibits a wide 

tunable thickness-dependent bandgap and corresponding 
nonlinear optical properties. Thus, the thickness charac-
teristics have great significance in designing PdSe

2
-based 

broadband devices. Based on an atomic force microscope 
(AFM, Bruker Multimode 8, Bruker, Karlsruhe, Germany), 
the thickness characteristics are recorded and shown in 
Figure 4E and its inset. As is shown, the prepared PdSe

2
 

nanosheets exhibit uniform thickness and flat surface. In 
addition, overlapping phenomenon also occurs between 
the nanosheets (the inset in Figure 4E). The correspond-
ing thicknesses of the marked areas of Figure 4E are pro-
vided in Figure 4F. The thicknesses of the PdSe

2
 are about 

6  nm, corresponding to ∼15–16 layers [80], presenting a 
small fluctuation of thickness. The AFM results prove that 

PdSe
2
 nanosheets with uniform thickness characteristics 

were prepared successfully.
For an SA, its nonlinear optical properties including 

saturation intensity, modulation depth, and nonsaturable 
loss are basic and important for evaluating its nonlinear 
absorption performance. In our experiment, based on 
a commonly used power-dependent transmission tech-
nique, the nonlinear optical properties of the PdSe

2
 SA were 

investigated experimentally. The experimentally setup 
is shown in the inset of Figure 5A. As is shown, pulsed 
laser is employed as the pump source. In the experiment, 
homemade mode-locked Yb-doped and Er-doped fiber 
lasers are used as the pump source for testing the non-
linear optical properties of PdSe

2
 SA within 1 and 1.5 µm 

regions, respectively. A variable optical attenuator (VOA) 
is used for adjusting the pump intensity continuously. The 
pump intensity is divided into two parts through a 50:50 
output coupler (OC). One part is used for testing the SA 
and recorded by a power meter (PM2) and another part 
is recorded by PM1 directly as a comparison. Thus, the 
experimental transmission data can be calculated by the 
results recorded by PM1 and PM2. Calculated transmission 
results of the PdSe

2
 SA are shown in Figure 5A and B. Addi-

tionally, the experiment results can be fitted according to 
a simple two-level model as follows [1–3]:

ns
sat

( ) 1 exp
I

T I T T
I

∆
 

= − ⋅ − −  

where T(I), ∆T, I, I
sat

, and T
ns

 are the transmission, modu-
lation depth, input pulse energy, saturation intensity, 

Ultrasonic Centrifugation PVA

S1 S2 S3 S4 S5

Sapphire Glass PdSe
2

Process 1

Process 2

Figure 3: Preparation process of PdSe
2
 nanosheets and PdSe

2
-PVA SA.
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and non-saturable loss, respectively. Finally, the satu-
ration intensity, modulation depth, and the saturable 
loss of the PdSe

2
 SA at 1064 nm are 5.01 MW/cm2, 9.7%, 

and 36.2%, respectively. Meanwhile, at 1550 nm, the cor-
responding data are 15.63 MW/cm2, 22.1%, and 17.9%, 
respectively.

As a typical 2D material, the saturable absorption 
mechanism can be explained by the Pauli blocking prin-
ciple [70, 73]. The progress of the absorption is shown 
in Figure 6. First, under low excitation intensity, linear 

absorption will occur. As is shown, when the energy of 
the incident light is larger than the bandgap value of 
the PdSe

2
, electrons distributed in the valence band can 

absorb the energy of the incident light and be excited 
into the conduction band. After that, the hot electrons 
cooled almost immediately and led to the formation of 
a hot Fermi-Dirac distribution. Under this condition, the 
newly created electron-hole pairs will block the originally 
potential interband optical transitions around the Fermi 
energy (-E/2) and the absorption of photons. Finally, 
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electrons and holes recombine and reach to an equilib-
rium distribution state due to the intraband phonon scat-
tering. However, under a higher excitation intensity, the 
concentration of photocarriers increase instantaneously, 
and the energy states near the edge of the conduction 
and valence band will be filled. The absorption will be 
blocked due to the fact that no two electrons can reach 
the same state defined by the Pauli blocking principle. 
Thus, specific frequency photons transmit the material 
without absorption. As is described, the bandgap value 
is of great significance in designing ultra-fast photon-
ics devices. Combined with the characterized results 
shown in Figure 4F and the simulation results provided 
in Figure 2C, the thickness of the PdSe

2
 nanosheets used 

in our experiment is about 15–16 layers, corresponding 
to a narrow bandgap width of about 0.02 eV (6.2 * 104 
nm). Thus, by adjusting the layer numbers, PdSe

2
-based 

ultra-fast photonics devices with an expectant bandgap 
can be easily prepared. Besides, such a narrow bandgap 
value indicates that PdSe

2
is also an excellent candidate 

for developing wide-absorption band photonics devices 
covering almost the entire optical band.

4   Results and discussion

4.1   Mode-locked Er-doped operation

The absorption performance of the PdSe
2
-PVA SA was 

tested within an Er-doped fiber laser for the first time. The 
experimental setup of the PdSe

2
-PVA-based mode-locked 

Er-doped fiber laser is depicted in Figure 7A. A commonly 
used ring laser cavity consisting of a 980/1550  wave-
length division multiplexer (WDM), a 0.23-m-long high 

doping concentration Er-doped fiber (EDF; Liekki, Er-110, 
4/125), a polarization-independent isolator (PI-ISO), two 
polarization controllers (PCs), a 20/80 output coupler 
(OC), and the prepared PdSe

2
-PVA SA is demonstrated. A 

400-mW/976-nm laser diode, acting as the pump source, 
is injected into the laser cavity through the WDM. The 
PCs, OC PI-ISO, and PdSe

2
-PVA are used for adjusting  

the polarization states, outputting the energy, ensuring the 
unidirectional transmission, and acting as a mode locker 
within the ring laser cavity, respectively. The total length 
of the laser cavity is 10.09 m including 0.23 m of EDF and 
9.86 m of single-mode fiber (SMF). The dispersion value 
of the EDF and SMF are −9 and 18 ps/nm/km [17], respec-
tively. Thus, the net dispersion value of the cavity is calcu-
lated to be about −0.22 ps2. The output characteristics of 
the mode-locked laser operation are tested by an optical 
spectrum analyzer (OSA; AQ6317B, Yokogawa, Tokyo, 
Japan), a 3-GHz photo-detector, a digital oscilloscope 
(DPO4054, Tektronix, Beaverton, OR, USA), a spectrum 
analyzer (R&S FPC1000, Jena, Germany), an auto-corre-
lator (FR-103XL, Femtochrome, Berkeley, CA, USA), and a 
power meter (PM100D-S122C, Thorlabs, Newton, NJ, USA).

In the experiment, when the pump power was higher 
than 89  mW, mode-locked operation can be recorded by 
adjusting the PCs carefully and maintained to be stable 
with the pump power increasing from 89 to 356 mW, the 
maximum average output power was 3.66 mW, correspond-
ing to an optical-to-optical conversion efficiency of 1.03%. 
The emission optical spectrum is provided in Figure  7B. 
Obvious Kelly sidebands are depicted in the spectrum, 
indicating that the mode-locked operation corresponds to 
the traditional soliton (TS) region. The central wavelength 
(λ

c
) and the spectral full width at half maximum (FWHM) 

are 1561.77 and 9.33  nm, respectively. The pulse train of 
the mode-locked operation is shown in Figure 7C. The 

hω hω hω

Linear absorption Saturable absorption

Increasing the incident intensity

∆E

+E/2 +E/2 +E/2

–E/2 –E/2–E/2

Conduction 

band

Valence

band

Figure 6: Saturable absorption mechanism of PdSe
2
.
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pulse-to-pulse time is 49.09 ns, corresponding to a pulse 
repetition rate of 20.37 MHz, which is in agreement with 
the cavity-length value (f  =  c/nl, where f, c, n, and l are the 
pulse repetition rate, velocity of light, refractive index, and 
the length of the cavity, respectively). Besides, it is obvious 
that the pulse trains are not uniform. In addition, no period 
doubling or periodicity phenomenon reported in previous 
works [93, 94] was recorded in the experiment, indicating 
that the fluctuation of the pulses can be further eliminated. 
The measured auto-correlation trace is provided in Figure 
7D. As is shown, the FWHM of the pulse is about 499.5 fs, 
assuming a sech2 temporal profile calculation for TS opera-
tion. The real pulse duration is about 323.7 fs (499.5 * 0.648 
fs). Thus, combined with the mentioned 9.33-nm spec-
trum width, the time-bandwidth product (TBP) is about 
0.37, which is slightly larger than the theoretical transform 
limit value (0.315) and indicates that the soliton pulse is a 
little chirped. For the mode-locked operation, its stability 
characteristics are tested by the spectrum analyzer. Radio 
frequency (RF) spectrum recorded within 30-MHz width is 
provided in Figure 7E, the central frequency is located at 
20.37 MHz, and the signal-to-noise ratio (SNR) is as high as 
58 dB, indicating that the mode-locked operation exhibits 
excellent stability characteristics. The RF spectrum within 
2-GHz width is also depicted in Figure 7F for further revela-
tion of its high stability characteristics.

4.2   Mode-locked Yb-doped operation

For future testing of the broadband absorption per-
formance of the PdSe

2
 SA, a mode-locked Yb-doped 

fiber (YDF) laser was also demonstrated in our work. 
An almost identical experimental setup as provided in 
Figure 7A is employed and shown in Figure 8A. Under 
this condition, the laser gain medium is a 0.36-m YDF 
(Liekki, Yb-1200, 4/125). The total length is about 60.97 m 
including 0.36  m YDF and 60.61  m SMF (Hi-1060) used 
for adjusting the dispersion value of the laser cavity. The 
dispersion value of the YDF and SMF are −43 and −42 ps/
nm km, respectively. Thus, the net dispersion value of 
the cavity is calculated to be about 1.54 ps2. Mode-locked 
pulses are delivered out the cavity through a 10% port of 
a 10/90 OC.

Stable mode-locked pulses were recorded when the 
pump power is higher than 135 mW by adjusting the polar-
ization state carefully. In the experiment, the mode-locked 
state was maintained to be stable with the pump power 
increasing from 135 to 338  mW. The maximum average 
output power was as high as 15.6  mW, corresponding to 
an optical-to-optical conversion efficiency of 4.6%. The 
output characteristics of the PdSe

2
-based mode-locked 

YDF laser are provided in Figure 8. The emission spec-
trum locates at the central wavelength of 1067.37  nm 
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Figure 7: Experimental setup and output characteristics of the PdSe
2
-based mode-locked Er-doped fiber laser.

(A) Experimental setup. (B) Emission optical spectrum. (C) The recorded pulse train. (D) The measured auto-correlation trace. (E) RF spectrum 

located at 20.37 MHz. (F) RF spectrum recorded under 2 GHz bandwidth.
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with an FWHM of 5.22 nm (Figure 8B). Figure 8C gives the 
typical pulse train of the mode-locked laser. The pulse-to-
pulse time is 265.25 ns, corresponding to a pulse repeti-
tion rate of 3.77  MHz, which also matches well with the 
cavity length. Fluctuation of the mode-locked pulses is 
also recorded as described in the mode-locked Er-doped 
laser. The single-pulse shape is provided in Figure 8D, the 
pulse width is about 767.7 ps. However, due to lack of a 
higher speed oscilloscope with shorter rise time, the real 
width of the pulse is not recorded. In addition, the pulse 
width characteristics were also checked by the auto-cor-
relator; however, no pulse peaks were tested, indicating 
that the pulse width is wider than 90 ps. As mentioned, 
the spectrum width was 5.22 nm, corresponding to a theo-
retical pulse width of ∼0.33 ps. All the results prove that 
the mode-locked pulses are highly chirped due to the 
large dispersion value. The RF spectra are also recorded 
for examining the stability characteristics of the mode-
locked operations. The results are described in Figure 
8E and F. As is shown in Figure 8E, the central frequency 
locates at 3.77 MHz, and the SNR is as high as 61 dB. The 
wideband RF spectrum (Figure 8F) also proves that the 
mode-locked operations exhibit excellent stability prop-
erties. Additionally, it needs to be emphasized that, in 
our experiment, it takes about 1 month from the prepara-
tion and nonlinear characterization of the PdSe

2
 SA to its 

ultrafast laser applications. During the long-period inves-
tigation, PdSe

2
 SA is preserved at normal temperature. As 

described above, it still exhibited good saturable absorp-
tion performance, proving that the PdSe

2
 SA has excellent 

air stability.
In conclusion, the electronic band structures and 

bandgap characteristics of PdSe
2
 are calculated theoreti-

cally. The bandgap value of PdSe
2
 is calculated to be 0–1.3 

eV, indicating that PdSe
2
 was a promising material for 

designing broadband optical devices. In the experiment, 
PdSe

2
 nanosheets were prepared with the LPE method and 

used for designing a new structure SA. Its broadband non-
linear absorption performance was characterized within 
Er- and Yb-doped fiber laser, respectively. The experiment 
results present PdSe

2
 as exhibiting good performance in 

demonstrating ultra-fast pulsed lasers and great signifi-
cance in designing broadband ultra-fast optical devices, 
which provide meaningful reference for designing air-sta-
ble broadband ultra-fast photonic devices.
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