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Abstract

We study the mutual regularity properties of Palm measures of point processes, and

establish that a key determining factor for these properties is the rigidity-tolerance

behaviour of the point process in question (for those processes that exhibit such

behaviour). Thereby, we extend the results of [23], [2], [20] to new ensembles,

particularly those that are devoid of any determinantal structure. These include the

zeroes of the standard planar Gaussian analytic function and several others.
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1 Introduction

Our aim in this article is to study the mutual singularity (and continuity) properties

of Palm measures of point processes. Roughly speaking, the Palm measure of a point

process Π (that lives on a space Ξ) with respect to a vector ζ ∈ Ξr is the law of Π

conditioned to contain the points in Ξ which are the co-ordinates of ζ. In subsequent

discussions in Section 3.1, we will provide a rigorous description of Palm measures.

Let Pζ denote the Palm measure of Π with respect to ζ. We are interested in

the mutual singularity (and continuity) of Pζ
1

and Pζ
2

for two diffrent vectors ζ
1
and

ζ
2
. According to the heurisitic description of the Palm measure (as also the rigorous

definition to follow in Section 3.1), a random point configuration ξ sampled from the

Palm measure necessarily includes the points corresponding to ζ, which makes the

above question somewhat trivial - roughly speaking, we can decide the identity of the

measure by examining whether it contains the points from ζ
1
or ζ

2
. However, it is often

customary to think of the Palm measure to be the law of
(

ξ \ the points of ζ
)

. Under

this identification, the question of mutual regularity becomes an interesting one, and

different answers can be obtained in different natural models.

For the Poisson process, which is the most commonly studied model of point processes,

the answer to the question of mutual regularity is trivial: any two Palm measures are

always mutually abosolutely continuous. This follows from the spatial independence

property of the Poisson process, and is valid under mild assumptions on the intensity

measure of the Poisson process (principally entailing that the intensity measure does not

contain atoms).

In [23], Osada and Shirai studied this question with respect to the Ginibre ensemble,

which is a determinantal point process arising out of the eigenvalues of non-Hermitian

random matrices. They found a very interesting behaviour: any two Palm measures of the
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Palm measures and rigidity phenomena in point processes

Ginibre ensemble are mutually absolutely continuous if the lengths of the conditioning

vectors are equal, and they are mutually singular otherwise. This indicates that the

study of point processes with strong spatial correlation can throw up surprising answers

to the question of comparing Palm measures.

Before moving ahead, we formally state their result (Theorem 1.1 in [23]) below,

where we denote by G the law of the Ginibre ensemble:

Theorem 1.1. Assume that x ∈ Cl and y ∈ Cn. If l = n, then Gx and Gy are mutually

absolutely continuous. In addition, if l 6= n, then Gx and Gy are singular to each other.

Results on the similar comparative behaviour of reduced Palm measures have been

established by Bufetov in [2] for a large class of determinantal point processes on R with

integrable projection kernels (including the sine, Airy and Bessel processes), by Bufetov

and Qiu for a large class of determinantal processes on C ([4]), and for the Gamma

process in 1D, a similar result goes back to the work of Olshanski ([20]).

A key feature of these results is that they depend crucially on the determinantal

structure of these models. In this work, we obtain results comparing Palm measures,

similar in spirit to (and extending) Theorem 1.1, for a wider class of point processes,

particularly those not having any determinantal structure. Key examples of this include

the zeroes of the standard planar Gaussian analytic function and its generalizations.

Our results also exhibit more delicate dependence on the vectors x and y for absolute

continuity (as contrasted with the simple dependence on dimension for the determinantal

processes discussed above).

The study of spatial conditioning in point processes with strong correlation structures

has attracted a fair amount of interest in recent years. Principal examples of models

studied in this regard include the Ginibre ensemble, the zeroes of the standard planar

Gaussian analytic function (henceforth abbreviated as GAF), the sine kernel process on

the real line, the Airy and Bessel processes, and so on. In [10], the authors showed that

in the Ginibre ensemble, the points outside a domain D determine exactly the number

of points in D. For the standard planar GAF zero process, they showed that the points

outside D determine the number as well as the sum of the points in D. Furthermore,

they showed that the point configuration outside D does not determine anything more

about the points inside D. To give an idea of the precise technical sense in which these

assertions hold, we will quote the relevant theorems for the Ginibre and the planar GAF

zero ensembles (denoted by G and Z respectively).

In order to do so, we need to introduce some notation, which will come in handy

for understanding our main results as well. A (simple) point process Π is a random

locally finite point configuration on some metric space Ξ that is equipped with a regular

Borel measure µ. A point process can equivalently be looked upon as a random counting

measure, with atoms corresponding to the points. For more details on point processes,

we refer the reader to [6] and [15]. In particular, we will be making use of the notion of

the r-point intensity measures of a point process, for a concrete definition of which we

direct the reader to [12] (Chapter 1, Section 1.2).

The space S of locally finite point configurations on Ξ is a Polish space, and a point

process Π on Ξ can be thought of as a probability measure on S. Let D ⊂ Ξ be a bounded

open set. The decomposition Ξ = D ∪D∁ induces a factorization S = Sin × Sout, where

Sin and Sout are respectively the spaces of finite point configurations on D and locally

finite point configurations on D∁. This immediately leads to the natural decomposition

Υ = (Υin,Υout) for any Υ ∈ S, and consequently a decomposition of the point process Π

as Π = (Πin,Πout).

We are now ready to state from [10] the results for the Ginibre and the planar GAF

zero ensembles; in what follows, D is a bounded open set in C.
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Theorem 1.2. For the Ginibre ensemble, there is a measurable function N : Sout →

N ∪ {0} such that a.s.

Number of points in Gin = N(Gout) .

Since a.s. the length of ζ equals N(Gout), we can assume that each measure ρ(Υout, ·)

is supported on DN(Υout).

Theorem 1.3. For the Ginibre ensemble, P-a.s. the measure ρ(Gout, ·) and the Lebesgue

measure L on DN(Gout) are mutually absolutely continuous.

In the case of the GAF zero process, we prove that the points outside D determine

the number as well as the centre of mass (or equivalently, the sum) of the points inside

D, and “nothing more”.

Theorem 1.4. For the GAF zero ensemble,

(i) There is a measurable function N : Sout → N ∪ {0} such that a.s.

Number of points in Zin = N(Zout).

(ii) There is a measurable function S : Sout → C such that a.s.

Sum of the points in Zin = S(Zout).

For a possible value Υout of Zout, define the set of admissible vectors of inside points

(obtained by considering all possible orderings of such inside point configurations)

ΣS(Υout) := {ζ ∈ DN(Υout) :

N(Υout)
∑

j=1

ζj = S(Υout)}

where ζ = (ζ1, · · · , ζN(Υout)).

Since a.s. the length of ζ equals N(Υout), we can assume that each measure ρ(Υout, ·)

gives us the distribution of a random vector in DN(Υout) supported on ΣS(Υout).

Theorem 1.5. For the GAF zero ensemble, P-a.s. the measure ρ(Zout, ·) and the

Lebesgue measure LΣ on ΣS(Zout) are mutually absolutely continuous.

We refer to as “rigidity” the phenomenon in which the point configuration outside D

exactly determines certain statistics of the points inside D. By “tolerance”, we refer to

the phenomenon in which, subject to the constraints imposed by the rigidity properties,

points inside D can be found in “almost any” possible configuration.

Formally, we define rigidity and tolerance as follows.

Definition 1.6. A measurable function fin : Sin → C is said to be rigid with respect to

the point process X on S if there is a measurable function fout : Sout → C such that a.s.

we have fin(Xin) = fout(Xout).

In order to give a rigorous definition of tolerance, we restrict our scope a little

bit, though the present definition still captures all the known examples, and is easily

amenable to generalization.

Definition 1.7. Let Π be a point proces on Ξ and ϕ : Ξ → C be a measurable function.

Then the linear statistics Λ(ϕ)[Π] is defined to be the random variable

Λ(ϕ)[Π] :=

∫

Ξ

ϕ(z)d[Π](z),

where d[Π] is the (random) counting measure naturally associated with Π.
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Definition 1.8. Let Π be a point process on a Riemannian manifold Ξ with volume

measure µ. Let D ⊂ Ξ be a bounded open set, and let {Λ(Φj)[Πin]}
t
j=0 be rigid linear

statistics, with Φ0 ≡ 1 and Φ1, · · · ,Φt : D → C smooth functions.

For an integer m ≥ 0 and s := (s1, · · · , st) ⊂ Ct, consider the submanifold of Dm

Σm,s := {ζ = (ζ1, · · · , ζm) ∈ Dm : Λ(Φj)[δζ ] = sj ; 1 ≤ j ≤ t},

where δζ ∈ S is the point configuration corresponding to the point set {ζi}
m
i=1.

Then Π is said to be tolerant subject to {Λ(Φj)[Πin]}
t
j=0 if the conditional distribution

(Πin|Πout = ω) is mutually absolutely continuous with the point process of Λ(Φ0)[Πin] =

N(ω) points sampled independently from the submanifold ΣN(ω),s (where si =

Λ(Φi)[Πin] = Si(ω), 1 ≤ i ≤ t) equipped with the restriction of the volume measure

µ⊗N(ω).

Remark 1.9. One can generalise the above notion of tolerance by demanding constraints

on more general functionals than linear statistics. For example, for a fixed positive

integer k, one can consider a smooth function Ψ : Dk → C and demand that the

functional Λk(Ψ)[Πin] :=
∫

. . .
∫

Ψd[Πin]
⊗k is rigid.

Finally, we define a regular collection of smooth functions:

Definition 1.10. Consider a collection of smooth functions {Φ1, · · · ,Φk}, each mapping

Ξ → C. We also consider the associated function

Ψr : Ξr → C
k

given by

Ψr(ζ) := (Λ(Φ1)[δζ ], · · · ,Λ(Φk)[δζ ]).

We call such a collection to be regular if, for each r ≥ k, the Jacobian of the function Ψr

is of full rank a.e.

The phenomena of rigidity and tolerance have been used to understand various

questions regarding point processes, particularly those with a stochastic geometric

flavour. In [7], the rigidity of the sine kernel process was used in order to settle a natural

completeness question regarding random exponential functions arising out of the sine

process. More generally (Theorem 1.3 therein), a positive resolution was obtained with

regard to a natural completeness question for determinantal point processes, under the

assumption that the point process in question exhibits rigidity with regard to the number

of points. In [9], the authors used rigidity and tolerance phenomena from [10] to study

continuum percolation on the Ginibre and the standard planar GAF zero ensembles, in

particular to establish the uniqueness of the infinite cluster in the supercritical regime.

In [21], Osada used a related quasi-Gibbs property in order to study dynamics on the

Ginibre ensemble. In [1] and [3], Bufetov et al. examine further interesting models of

point processes from the perspective of rigidity, and obtained proofs of the rigidity of

the number of points for the Airy and the Bessel processes, among others.

2 Statement of main results

In this article, we explore the connections between rigidity phenomena and results

of the nature of Theorem 1.1. More specifically, we extend the results of [23] to point

processes exhibiting rigidity and tolerance phenomena of a given nature. In heuristic

terms, we show that for a point process exhibiting rigidity behaviour with respect to the

statistics {mi}
k
i=0 (and “nothing more”), the Palm measures Pζ

1

and Pζ
2

are mutually

absolutely continuous if mi(ζ1) = mi(ζ2), 0 ≤ i ≤ k, and they are mutually singular

otherwise. This fits in nicely with Theorem 1.1, given the fact that Theorems 1.2 and 1.3
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show that the Ginibre ensemble exhibits rigidity in the number of points (and “nothing

more”).

However, it also enables us to obtain similar theorems about the mutual regularity of

different Palm measures with respect to many other models, which often exhibit a much

more complicated correlation behaviour than the Ginibre (already discernible in the joint

density structure of the finite particle approximations). E.g., the zeroes of the standard

planar GAF exhibit interactions of all orders (as opposed to pairwise interactions like in

the Ginibre ensemble).

We formally state our main theorem as follows:

Theorem 2.1. Let Π be a point process on a Riemannian manifold Ξ (without boundary)

with volume measure µ, and having r-point intensity measures ρr mutually absolutely

continuous w.r.t. µ⊗r for all r. Let Φ0 ≡ 1, and let Φ1, · · · ,Φk be a regular collection of

smooth functions mapping Ξ → C such that, for any bounded open set D ⊂ Ξ, the linear

statistics {Λ(Φi)[Πin]}
k
i=0 are rigid, and Π is tolerant subject to {Λ(Φi)[Πin]}

k
i=0. Then,

for a.e. pair of vectors (ζ
1
, ζ

2
) ∈ Ξm × Ξn, the reduced Palm measures Pζ

1

and Pζ
2

of Π

(at ζ
1
, ζ

2
respectively) are mutually singular if

(

Λ(Φi)[δζ
1

]
)k

i=0
6=
(

Λ(Φi)[δζ
2

]
)k

i=0
.

Conversely, for every r ≥ k and a.e. a ∈ Ck, Pζ
1

and Pζ
2

are mutually absolutely

continuous for a.e. pair (ζ
1
, ζ

2
) ∈ Ξr such that Λ(Φ0)[δζ

1

] = Λ(Φi)[δζ
1

] = r and

(

Λ(Φi)[δζ
1

]
)k

i=1
=
(

Λ(Φi)[δζ
2

]
)k

i=1
.

Remark 2.2. For the singularity statement in Theorem 2.1, the pair (ζ
1
, ζ

2
) are a.e. with

respect to the measure ρm × ρn (equivalently, µ⊗m × µ⊗n) on Ξm × Ξn. Recall the map Ψ

from Definition 1.10. For the absolute continuity statement, a ∈ Ck is a.e. with respect

to the push-forward of ρr (equivalently, µ
⊗r) under Ψ and (ζ

1
, ζ

2
) are a.e. with respect to

the induced measure (from Ξr) on the submanifold

Ma = {ζ :
(

Λ(Φi)[δζ ]
)k

i=1
= a} ⊂ Ξr.

Remark 2.3. Theorem 2.1 goes through verbatim (with the same proof) if each Φi maps

into R instead of C. We use C in the present article because many of our interesting

examples, including the zeroes of Gaussian analytic functions, are naturally covered in

that setting.

One of the foremost instances where Theorem 2.1 extends the state of the art is the

case of the standard planar GAF zero process. In [8], the authors introduce a family of

point processes, which are zeroes of Gaussian analytic functions indexed by a parameter

α. These ensembles are called α-GAFs, and they establish that for α ∈ ( 1
k
, 1
k−1 ], the

α-GAF zero process exhibits rigidity at level k. That is, the configuration outside a

domain determines the number and the first k − 1 moments of the inside points, and

“nothing more”. Consequently, our result implies that for a.e. ζ
1
and ζ

2
, the measures Pζ

1

and Pζ
2

are mutually absolutely continuous if the first k moments of (the co-ordinates

of) ζ
1
and ζ

2
are the same, and they are mutually singular otherwise. This shows, in

particular, that the mutual regularity properties of the different Palm measures of a point

process can depend on the conditioning vector in an arbitrarily complicated manner (the

complexity of the dependence being measured by the number of statistics that need to

be matched in order to ensure absolute continuity).

In [13] and [22], a quasi Gibbs property is established for sine, Airy (β = 1, 2, 4) and

Bessel (β = 2) point processes. Rigidity of the number of points for these processes
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was established in [1], and tolerance of these point processes (subject to the number of

points) can be deduced from this quasi Gibbs property. Consequently, we can invoke our

Theorem 2.1 to obtain a new proof of the analogue of Theorem 1.1 for these processes.

We formally state these results as follows (we denote by ζ(i) the i-th co-ordinate of

the vector ζ):

Theorem 2.4. Let Π be a point process on a Riemannian manifold Ξ with volume

measure µ, and let ζ
1
∈ Ξm, ζ

2
∈ Ξn. Then the following statements are true about the

reduced Palm measures Pζ
1

and Pζ
2

:

• When Π the standard planar GAF zero process on C,

– For Lebesgue-a.e. s ∈ C and a.e. ζ
1
, ζ

2
such that |ζ

1
| = |ζ

2
| and

∑|ζ
1
|

i=1 ζ1(i) =
∑|ζ

2
|

i=1 ζ2(i) = s, Pζ
1

and Pζ
2

are mutually absolutely continuous.

– For a.e. ζ
1
, ζ

2
such that |ζ

1
| 6= |ζ

2
| or

∑|ζ
1
|

i=1 ζ1(i) 6=
∑|ζ

2
|

i=1 ζ2(i), Pζ
1

and Pζ
2

are

mutually singular.

• When Π the α-GAF zero process on C,

– For Lebesgue-a.e. m ∈ C⌊ 1

α
⌋ and a.e. ζ

1
, ζ

2
such that |ζ

1
| = |ζ

2
| and

∑|ζ
1
|

i=1 ζ1(i)
j =

∑|ζ
2
|

i=1 ζ2(i)
j = m(j) for all 1 ≤ j ≤ ⌊ 1

α
⌋, Pζ

1

and Pζ
2

are mutually

absolutely continuous.

– For a.e. ζ
1
, ζ

2
such that |ζ

1
| 6= |ζ

2
| or

∑|ζ
1
|

i=1 ζ1(i)
j 6=

∑|ζ
2
|

i=1 ζ2(i)
j for some

1 ≤ j ≤ ⌊ 1
α
⌋, Pζ

1

and Pζ
2

are mutually singular.

• For Π the i.i.d. perturbation of Z2 (resp., Z) with random variables having a

non-vanishing density on R2 (resp. R) with a finite second (resp., first) moment,

we have, for Lebesgue-a.e. (ζ
1
, ζ

2
) ∈ Cm × Cn (resp., Rm ×Rn),

– Pζ
1

and Pζ
2

are mutually singular if m 6= n
– Pζ

1

and Pζ
2

are mutually absolutely continuous if m = n

Remark 2.5. For i.i.d. perturbations of Zd by d-dimensional Gaussians having small

enough variance, a similar conclusion as the 1 or 2D lattice perturbations above holds.

This theorem follows from our main Theorem 2.1, coupled with the results on the

rigidity and tolerance properties of these ensembles, as in [10] (Theorem 1.1 - Theorem

1.4) and [8] (Theorem 2.1). Rigidity of the number of points for i.i.d. lattice perturbations

satisfying the conditions in the statement of Theorem 2.4 has been established in [24]; the

tolerance (in our terminology) is a simple consequence of the fact that the perturbations

are independent and have a positive density a.e. with respect to the Lebesgue measure.

The remark about Gaussian perturbations also follows from rigidity established in [24]

and a tolerance statement that follows from independence considerations.

Here we illustrate the details in the case of the standard planar GAF zero process;

the details in the other cases are on similar lines. Our goal is to verify that the standard

planar GAF zero process satisfies the conditions of Theorem 2.1. For this, we will make

use of the rigidity-tolerance behaviour of this point process, which was established in

[10]; for convenience the relevant results have been quoted here as Theorems 1.4 and

1.5. In terms of the conditions laid out in Theorem 2.1, clearly Ξ = C in this case, with µ

the Lebesgue measure on C. It is well known (also easy to see from the definition of the

GAF) that the r-point intensity measures of the GAF zeros have densities with respect

to the Lebesgue measure on Cr (for a specific reference, see [12]). We put k = 1 and
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Φ1(z) = z. Clearly, the function Φ1 is a regular as per Definition 1.10, as can be seen

from the fact that the Jacobian of the map

Ψr : (z1, · · · , zr) 7→
r
∑

i=1

zi

is [1, 1, · · · , 1], which is always of full rank. Theorem 1.4 and 1.5 are equivalent to

the statement that for any bounded open set D ⊂ C, the statistics (Λ(Φi)[Πin])
1
i=0 =

(N(Πin), S(Πin)) are rigid, and the GAF zero process is tolerant subject to

(N(Πin), S(Πin)) (recall the Definitions 1.6 and 1.8 of rigidity and tolerance respectively).

This verifies the conditions of Theorem 2.1 for the GAF zero process.

We now interpret the conclusions of Theorem 2.1 for the GAF zero process. For a

vector ζ ∈ Cr, denote by |ζ| the dimension and by S(ζ) the sum of the co-ordinates of ζ.

Then Theorem 2.1 implies that for a.e.-pair (ζ
1
, ζ

2
) ∈ Cm × Cn such that (|ζ

1
|, S(ζ

1
)) 6=

(|ζ
2
|, S(ζ

2
)), the reduced Palm measures Pζ

1

and Pζ
2

are mutually singular. In particular,

this implies that if m 6= n, then Pζ
1

and Pζ
2

are mutually singular for Lebesgue a.e.-

(ζ
1
, ζ

2
) ∈ Cm × Cn.This brings us to the situation m = n. In this scenario, there are

two possibilities: S(ζ
1
) 6= S(ζ

2
) and S(ζ

1
) = S(ζ

2
). Regarding the former possibility,

for Lebesgue a.e.(ζ
1
, ζ

2
) ∈ Cm × Cm, Theorem 2.1 states that Pζ

1

and Pζ
2

are mutually

singular. A particularly interesting case of this is when m = n = 1, which we state as a

separate corollary:

Corollary 2.6. For the standard planar GAF zero process, the reduced Palm measures

Pz and Pw are mutually singular for Lebesgue a.e. pair (z, w) ∈ C× C.

This contrasts markedly with the analogous comparison of Palm measures in most

determinantal processes, including the Ginibre process (Theorem 1.1).

This leaves us with the final case: m = n and S(ζ
1
) = S(ζ

2
). Denoting S(ζ

1
) =

S(ζ
2
) = s ∈ C, we consider the manifold

Ms := {ζ ∈ C
m : S(ζ) = s}.

Ms carries a natural Lebesgue measure, induced from the Lebesgue measure on Cm,

denote this measure by ls. Then Theorem 2.1 says that for Lebesgue a.e.-s, we have

that for ls-a.e. pair (ζ1, ζ2) ∈ Ms, the reduced Palm measures Pζ
1

and Pζ
2

are mutually

absolutely continuous.

3 Proof of Theorem 2.1

In this section, we prove our main Theorem 2.1. We will first analyze the support

properties of Palm measures, and then connect it with rigidity properties of point

processes, in two subsections.

3.1 Palm measures and their support

Let, as before, S denote the Polish space of all locally finite point configurations on

Ξ, and B(Ξ) denote the Borel sigma field on S. We begin with the 1-point Campbell

measure and a rigorous definition of the 1-point Palm measure of point processes, we

refer the reader to [15] Chapter 10 for a more detailed treatment than we present here.

The 1-point Campbell measure µ(1) of a point process Π (whose law we denote by P) is

the measure defined on Ξ× S given by
∫

f(s, ξ)dµ(1)(s, ξ) :=

∫
(
∫

f(s, ξ)d[ξ](s)

)

dP(ξ).

In the above equation, the measure [ξ] is the counting measure that naturally corresponds

to ξ ∈ S. The 1-point Palm measures {Ps : s ∈ S} (that include the points in the
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conditioning vector) are defined by a decomposition of the measure µ(1) into a regular

conditional measure with respect to the first co-ordinate:

dµ(1)(s, ξ) = dρ1(s)× dPs(ξ).

In other words, we define the 1-point Palm measure by the integral formulation

∫

f(s, ξ)dµ(1)(s, ξ) =

∫
(
∫

f(s, ξ)dPs(ξ)

)

dρ1(s).

Here ρ1 is the 1-point intensity measure of Π.

For any simple locally finite point configuration ξ ∈ S and an integer r ≥ 1, let us

denote by [ξ]∧r the counting measure on all possible ordered r-tuples of distinct points

of ξ. Then, for any integer r ≥ 1, the r-point Campbell measure µ(r) can be defined as a

measure on Ξr × S given by

∫

f(s, ξ)dµ(r)(s, ξ) :=

∫
(
∫

f(s, ξ)d[ξ]∧r(s)

)

dP(ξ).

Consequently, one can define Ps, the r-point Palm measure at s (that includes the points

in s) by

dµ(r)(s, ξ) = dρr(s)× dPs(ξ),

or equivalently,

∫

f(s, ξ)dµ(r)(s, ξ) =

∫
(
∫

f(s, ξ)dPs(ξ)

)

dρr(s),

where ρr is the r-point intensity measure of Π.

Since π(ζ) ⊂ ξ for each ξ ∈ Supp(Pζ), therefore, we can equivalently consider the

law of ξ \ ζ. We call this measure the reduced Palm measure of Π at ζ. We will denote

this measure by Pζ .

Let Q be a countable dense subset of Ξ. We will call a subset G of Ξ to be good if G

is the union of finitely many disjoint open balls with distinct centres in Q and identical

rational radius. We will say that a nested sequence {Gn} of good subsets of Ξ (having a

fixed number m of constituent balls) converge to p ∈ Ξm if Gn+1 ⊂ Gn and the centres

of the constituent balls of Gn converge to p (in some ordering of the co-ordinates). In

such a situation, we will say that p ∈ Ξm is a limit of {Gn}. Finally, we will say that

ζ ∈ Ξr, r ≤ m (with distinct co-ordinates) belongs to the limit p of such a sequence Gn of

good sets (equivalently, we say that p contains ζ) if the co-ordinates of ζ are a subset of

those of p.

Recall, from Section 2, the notation that m(ζ) denotes the vector (m1(ζ), · · · ,mk(ζ)),

where mi(ζ) = Λ(Φi)[δζ ]. For any bounded open set D ⊂ Ξ, the number of points of our

process Π that lie in D will be denoted by N(D). This quantity is a measurable function

of the point configuration θ in D∁ because of the rigidity of the number of points (which

corresponds to the functional Ψ0 ≡ 1), and we will denote this function by m0(θ;D).

Similarly, m(Πin) (where Πin denotes the points of Π inside D in uniform random order)

is a measurable function of θ, and we denote this by M(θ;D).

Let r ≤ p be positive integers. For a good set G ⊂ Ξ having p constituent balls, we

define the event A(G, r) ∈ B(Ξ), which entails that ξ ∈ A(G, r) if

• ξ is supported on G∁

• m0(ξ;G) = r.

For every ζ ∈ Gr, we define the event A(G, ζ) ∈ B(Ξ), which entails that ξ ∈ A(G, ζ)

if
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• ξ is supported on G∁

• m0(ξ;G) = |ζ| = r

• M(ξ;G) = m(ζ).

Finally, we say that a sequence of sets {Bn} exhausts the support of a measure γ if

γ(B∁
n) → 0 as n → ∞.

With these definitions, we are ready to state the following technical result:

Lemma 3.1. For ρr-a.e. η, it holds that, for any nested sequence {Gn} of good sets

(having p ≥ r constituent balls for each n) with a limit that contains η:

• (i) The events A(Gn, r) exhaust the support of Pη.

• (ii) The events A(Gn, η) exhaust the support of Pη.

Remark 3.2. Since we assume that the sequence of good sets Gn is nested, therefore η

is contained in the limit of {Gn} implies that η ⊂ Gn for each n.

Proof. Observe that we trivially have the inclusion of events A(Gn, ζ) ⊂ A(Gn, r). There-

fore, it suffices to establish part (ii) of the Lemma, from which part (i) will follow.

We proceed as follows. First of all, for a good set G (with p constituent balls) and

ζ ∈ Gr, consider the event F(G, ζ) such that a point configuration ξ ∈ F(G, ζ) entails

that

• ξ is supported on G∁

• (m0(ξ;G),M(ξ;G)) 6= (m0(ζ),m(ζ)).

We assert that for ρr-a.e. ζ ∈ Gr, we have Pζ [F(G, ζ)] = 0. To this end, we observe that

∫

Gr

Pζ [F(G, ζ)]ρr(ζ)dV (ζ)

=P[ζ ∪ ξ is a realisation of Π for some ζ ∈ Gr and some ξ ∈ F(G, ζ)]

=0,

where, in the last step we have used the fact that

P[ζ ∪ ξ is a realisation of Π for some ζ ∈ Gr and some ξ ∈ F(G, ζ)] = 0

because of the rigidity properties of Π with respect to the set G. More precisely, since

{ζ ∪ ξ}∩G = ζ and {ζ ∪ ξ}∩G∁ = ξ (as point sets), therefore by the rigidity of Π we have

(m0(ξ;G),M(ξ;G)) must equal (m0(ζ),m(ζ)) (for P-a.e. realisation ω = ζ ∪ ξ of the point

process such that ω ∩G = ζ and ω ∩G∁ = ξ). This proves the assertion.

Since there are only countably many good sets, we can deduce from the above that

for ρr-a.e. ζ, we have Pζ [F(G, ζ)] = 0 for any good set G such that ζ ∈ Gr.

Now let us consider a ζ satisfying the above assertion, and a nested sequence of good

sets {Gn} (with p constituent balls each) having a limit that contains ζ (and, consequently,

ζ ⊂ Gn for each n). Consider the event A(Gn, ζ)
∁, under the reduced Palm measure

Pζ . This event can occur only in two ways (respectively corresponding to the defining

conditions of the event A(Gn, ζ)):

• There is at least one point of the Palm process Pζ inside Gn.

• F(Gn, ζ) occurs

By choice of ζ, we already have Pζ [F(Gn, ζ)] = 0. Thus, recalling that N(U) denotes the

number of points of a configuration that lie in the set U , we have

Pζ [A(Gn, ζ)
∁] ≤ Pζ [N(Gn) ≥ 1] ≤ Eζ [N(Gn))] ↓ 0

as n → ∞, by the Dominated Convergence Theorem. �
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3.2 Palm measures and rigidity phenomena

3.2.1 Singularity

For ζ ∈ Ξp, p ≥ 1, recall the notation mi(ζ) = Λ(Φi)[δζ ], 0 ≤ i ≤ k, and m(ζ) =

(m1(ζ), · · · ,mk(ζ)). Also recall that m0(ζ) = |ζ|.

Consider ζ
1
∈ Cr and ζ

2
∈ Cs such that (m0(ζ1),m(ζ

1
)) 6= (m0(ζ2),m(ζ

2
)), both

satisfying the conclusions of Lemma 3.1 part (ii) (this happens a.e.-ρr × ρs). We also

assume that ζ
1
and ζ

2
have distinct co-ordinates (both within and between themselves),

since this also happens a.e.-ρr × ρs. Let {Gn} be a nested sequence of good sets, each

having r + s constituent balls (and each ball containing exactly one co-ordinate of either

ζ
1
or ζ

2
), such that {Gn} has the limit (ζ

1
, ζ

2
) (in the sense of the definitions in the

previous subsection).

By Lemma 3.1 part (ii), the support of Pζ
1

is exhausted by A(Gn, ζ1) and the support

of Pζ
2

is exhausted by A(Gn, ζ2). But since (m0(ζ1),m(ζ
1
)) 6= (m0(ζ2),m(ζ

2
)), therefore

A(Gn, ζ1) ∩ A(Gn, ζ2) = φ. In other words, A(Gn, ζ1) ⊂ A(Gn, ζ2)
∁ and A(Gn, ζ2) ⊂

A(Gn, ζ1)
∁.

We make the following claim: for two probability measures µ1 and µ2 on the same

space, suppose there is a sequence of events Bn such that for any ε > 0, µ1(Bn) > 1− ε

for large enough n, and µ2(Bn) < ε for large enough n. Then µ1 and µ2 are mutually

singular.

Before proving this claim, we note that this suffices to complete the proof of singular-

ity. To see this, set µ1 = Pζ
1

, µ2 = Pζ
2

and Bn = A(Gn, ζ1). For any ε > 0 we note that

Pζ
1

(A(Gn, ζ1)) > 1− ε for all large enough n because these sets exhaust the support of

Pζ
1

. But A(Gn, ζ1) ⊂ A(Gn, ζ2)
∁, so Pζ

2

(A(Gn, ζ1)) < ε for all large enough n, because

A(Gn, ζ2)-s exhaust the support of Pζ
2

. Then, from the above claim, it follows that Pζ
1

and Pζ
2

are mutually singular.

It remains to prove the claim. Let µ1, µ2, {Bn} be as in the claim. Passing to a

sub-sequence if necessary, we may assume that
∑

n µ2(Bn) < ∞. Consider the event

B := limBn := ∩∞
N=1 ∪n≥N Bn.

Let CN denote ∪n≥NBn. For ε > 0 and N large enough, µ1(CN ) ≥ µ1(BN ) > 1− ε. But

the CN -s are decreasing in N , and hence µ1(B) = limN→∞ µ1(CN ) = 1. On the other

hand,

µ2(CN ) ≤
∑

n≥N

µ2(Bn).

Since
∑

n µ2(Bn) < ∞, therefore the right hand side can be made arbitrarily small by

choosing N large enough. Hence we have µ2(B) = limN→∞ µ2(CN ) = 0.

The upshot of this is that µ1(B) = 1, whereas µ2(B) = 0. Since µ1, µ2 are probability

measures, this implies that µ1(B
∁) = 0 and µ2(B

∁) = 1. This completes the proof that the

measures µ1 and µ2 are mutually singular.

This completes the proof that of mutual singularity of Pζ
1

and Pζ
2

.

3.2.2 Absolute continuity

For a ∈ Cr, denote by Ma the set ζ ∈ Ξr such that m(ζ) = a. Consider the r-point

intensity measure ρrdV on Ξr (where dV is the canonical volume measure on Ξr, and

ρr is the r-point intensity function). Consider the map Ψr : Ξr 7→ Ck given by ζ → m(ζ),

which is of full rank. This implies that we can decompose ρrdV (going to local co-

ordinates if necessary) as µ(a)da× ν(a, ζ)dla(ζ), where da is Lebesgue measure on Ck,

µ(a)da is the push forward of ρrdV to Ck under Ψr, dla is the induced measure on Ma
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from dV , and ν(a, ζ) is a density (see, e.g., smooth co-area formula, [5], Chap. III).

Roughly speaking, this corresponds to a foliation of Ξr by the level sets of m. Since Ξ

is covered by a countable union of such charts (i.e., local neighbourhoods), therefore it

suffices to work on each such chart.

Since ρr > 0 a.e. with respect to the canonical volume measure of Ξr, therefore for

µ(a)da-a.e. a, we have ν(a, ζ) > 0 for dla-a.e. ζ. Consequently, we deduce the following

Claim 3.3. For µ(a)da-a.e. a, it is true that for dla × dla-a.e. pair (ζ
1
, ζ

2
) (so that

m(ζ
1
) = m(ζ

2
) = a), we have ν(a, ζ

1
),ν(a, ζ

2
) > 0.

In light of Lemma 3.1, we deduce that for µ(a)da-a.e. a, we have that dla-a.e. ζ

satisfies the support properties as in the conclusion of Lemma 3.1.

Let ζ
1
and ζ

2
be two configurations such that m(ζ

1
) = m(ζ

2
) and they satisfy the

properties laid out in Claim 3.3 and Lemma 3.1. Let {D(ε)}ε↓0 ⊂ Ξ be a nested sequence

of good sets (heuristically speaking, they approximate the ε neighbourhood of the co-

ordinates of ζ
1
and ζ

2
) such that their limit is the 2r dimensional configuration (ζ

1
, ζ

2
).

For brevity, in what follows, we will denote by Aε the event A(D(ε), r) (as defined

in Section 3.1). Recall that, by definition, each point configuration ξ ∈ Aε satisfies the

following conditions:

• ξ is supported on D(ε)∁

• m0(ξ;D(ε)) = r.

We consider the joint law (Πin,Πout) of the points in D(ε) and in D(ε)∁ respectively.

We denote by Er the event that there are r points in D(ε); equivalently |Πin| = r. By the

rigidity of the number of points in D(ε), the event Er is measurable with respect to Πout.

We consider the law of (Πin,Πout) conditioned on the event Er. The rigidity properties of

Π imply that, on the event Er, the random variable m(Πin) is measurable with respect

to Πout. This implies that there is a regular conditional probability Qε(m(Πin), dξ) that

pertains to the random variable Πout given m(Πin) and given that Er occurs.

For a given vector a ∈ Ck, let Σa denote the subset of D(ε)r such that m(ζ) = a for all

ζ ∈ Σa; clearly Σa = D(ε)r ∩Ma. From the rigidity properties of our point process, we

know that the random variable m(Πin) is a measurable function of Πout. Moreover, we

also know that on the event Er (measurable with respect to Πout), the conditional law of

Πin given Πout, denoted dP(ζ|Πout = ξ), has a density f(ζ, ξ) with respect to the measure

dlm(ζ) on Σm(ζ) (note here that Σm(ζ) is determined by ξ because m(Πin) is measurable

with respect to Πout).

We now consider the reduced Palm measure with respect to configurations in D(ε)r

(on the event Aε). In other words, we consider the measures Pζ(· ∩Aε), where ζ ∈ D(ε)r.

To introduce our candidate for Pζ(· ∩ Aε), we need to first introduce another quantity.

We can consider the measure κ on Dr which is the marginal distribution of the points

of Π inside D on the event Er (with the points being taken in uniform random order). In

other words, this is the measure P[Er]d(Πin|Er), where (Πin|Er) is the law of Πin given

Er occurs. Clearly, this measure is absolutely continuous with respect to the measure

ρrdV . Consequently, the push forward (m)∗κ is absolutely continuous with respect to the

push forward (m)∗[ρrdV ]. The latter measure, as we may recall is µ(a)da, which means

that there exists a density ̺ such that

[(m)∗dκ](a) = ̺(a)µ(a)da. (3.1)

Also, it follows from the above discussion that

P[Er][(m)∗d(Πin|Er)](a) = [(m)∗dκ](a). (3.2)
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Our candidate for Pζ(· ∩ Aε) (for ζ ∈ D(ε)r) is the following:

βζ(dξ) = ̺(m(ζ))f(ζ, ξ)Q(m(ζ), dξ)/ν(m(ζ), ζ), (3.3)

and for ζ such that ν(m(ζ), ζ) = 0 we simply define βζ(dξ) to be 0. In other words, we

claim that Pζ(· ∩ Aε) = βζ(· ∩ Aε) for a.e. ζ ∈ D(ε)r.

Let us check that this indeed true for a.e. ζ ∈ Dr. Consider an event U × (A ∩ Aε)

such that U ⊂ D(ε)r and A is a measurable set in B(Ξ). We set A′ = A ∩ Aε, and denote

by Mε ⊂ Ck the image of D(ε)r under the map m.

We have,

∫

U

ρr(ζ)

(
∫

A′

βζ(dξ)

)

dV (ζ)

=

∫

Mε

µ(a)

(

∫

Σa∩U

ν(a, ζ)

(
∫

A′

βζ(dξ)

)

dla(ζ)

)

da

=

∫

Mε

µ(a)

(

∫

Σa∩U

(
∫

A′

ν(a, ζ)βζ(dξ)

)

dla(ζ)

)

da

=

∫

Mε

µ(a)

(

∫

Σa∩U

(
∫

A′

ν(a, ζ)̺(a)f(ζ, ξ)Qε(a, dξ)/ν(a, ζ)

)

dla(ζ)

)

da

=

∫

Mε

̺(a)µ(a)

(

∫

Σa∩U

(
∫

A′

f(ζ, ξ)Qε(a, dξ)

)

dla(ζ)

)

da

=

∫

Mε

̺(a)µ(a)

(

∫

A′

(

∫

Σa∩U

f(ζ, ξ)dla(ζ)

)

Qε(a, dξ)

)

da {by Fubini’s Theorem }

=

∫

Mε

̺(a)µ(a)

(
∫

A′

P[Πin ∈ U |Πout = ξ]Qε(a, dξ)

)

da {by definition of f}

=

∫

Mε

̺(a)µ(a)P[Πin ∈ U,Πout ∈ A′|m(Πin) = a ∩ Er]da {by definition of Qε}

=

∫

Mε

P[Πin ∈ U,Πout ∈ A′|m(Πin) = a ∩ Er][(m)∗dκ](a) {by (3.1)}

=

∫

Mε

P[Πin ∈ U,Πout ∈ A′|m(Πin) = a ∩ Er]P[Er][(m)∗d(Πin|Er)](a) {by (3.2) }

=P[Er]P[Πin ∈ U,Πout ∈ A′|Er] {by definition of d(Πin|Er)}

=P[Πin ∈ U,Πout ∈ A′] { since P[Πin ∈ U,Πout ∈ A′|E∁
r ] = 0}

=

∫

U

ρr(ζ)

(
∫

A′

Pζ(dξ)

)

dV (ζ) {by definition of Pζ}.

This shows that, for a.e. ζ ∈ D(ε)r, Pζ(· ∩ Aε) = βζ(· ∩ Aε). The definition (3.3) of βζ

implies that, for dla-a.e. ζ, ζ
′ ∈ Σa, we have βζ ≡ βζ′ . Since ζ

1
and ζ

2
belong to Σa for

the same a, we deduce that

Pζ
1

(· ∩ Aε) ≡ Pζ
2

(· ∩ Aε). (3.4)

For any event B ∈ B(Ξ) such that Pζ
1

(B) = 0, we have Pζ
1

(B ∩ Aε) = 0. This implies

that Pζ
2

(B ∩ Aε) = 0, by the mutual absolute continuity of the measures in (3.4). But, as

ε → 0, we have Aε exhausts the support of both Pζ
1

and Pζ
2

(because ζ
1
and ζ

2
were

both chosen to satisfy Lemma 3.1). Letting ε ↓ 0, we deduce that Pζ
2

(B) = 0. This shows

that Pζ
1

≡ Pζ
2

.
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4 Extensions

Theorem 2.1 can be extended in several directions. One immediate direction is the

case when Ξ is a countable discrete set, e.g. Z,Zd or a subset thereof. In many ways,

this situation is technically simpler than the continuum setting in which Theorem 2.1 is

stated and proved. The volume measure on Ξ (and its subsets) will be naturally replaced

by the counting measure on those sets, and there would be no regularity assumptions on

the functions Φ. The proof would be the same as the proof of Theorem 2.1.

Another pertinent question to ask is about the situation when |ζ
1
| = |ζ

2
|,m(ζ

1
) 6=

m(ζ
2
), but some subsets of coordinates of these two vectors match. This set will be

of zero ρr measure, and hence is not covered by Theorem 2.1 as is. However, under

a mild regularity assumption on (Φ1, · · · ,Φk), we can deal with this sceanrio as well.

Recall that the assumption in Theorem 2.1 is that the functions (Φ1, · · · ,Φk) constitute

a regular collection of functions (in particular, recall Definition 1.10). To address the

finer question, we make the additional assumption that (Φi)i∈S is a regular collection

of functions for each subset S ⊂ {1, · · · , k}. Consider, for ζ ∈ Ξr, the vector s(ζ) given

by the co-ordinates of m(ζ) whose indices are in S. Also consider, for a ∈ C|S|, the

sub-manifold M
[S]
a formed by ζ ∈ Ξr such that s(ζ) = a. The fact that (Φi)i∈S is a regular

collection of functions allows us to (locally) make a decomposition of the ρr in terms of

da × dla (where la is the induced volume measure on M
[S]
a ). This would enable us to

refine the statement of Lemma 3.1 to the assertion that for µ(a)da a.e.-a, it is true that

for dla-a.e. η ∈ M
[S]
a , the events A(Gn, η) exhaust the support of Pη. We can then run

the same argument as in Section 3.2.1, and conclude that for a.e. sub-manifold M
[S]
a

with identical values of the statistics corresponding to (Φi)i∈S , the Palm measures Pη1

and Pη2
are mutually singular for a.e. pair (η1, η2) ∈ M

[S]
a ×M

[S]
a .
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