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Abstract

Palm vein feature extraction from near infrared images

is a challenging problem in hand pattern recognition. In

this paper, a promising new approach based on local tex-

ture patterns is proposed. First, operators and histograms

of multi-scale Local Binary Patterns (LBPs) are investi-

gated in order to identify new efficient descriptors for palm

vein patterns. Novel higher-order local pattern descrip-

tors based on Local Derivative Pattern (LDP) histograms

are then investigated for palm vein description. Both fea-

ture extraction methods are compared and evaluated in the

framework of verification and identification tasks. Exten-

sive experiments on CASIA Multi-Spectral Palmprint Image

Database V1.0 (CASIA database) identify the LBP and LDP

descriptors which are better adapted to palm vein texture.

Tests on the CASIA datasets also show that the best adapted

LDP descriptors consistently outperform their LBP coun-

terparts in both palm vein verification and identification.

1. Introduction

Intrinsic physiological patterns are naturally hard to ob-

serve and therefore offer a high degree of privacy and se-

curity for biometric recognition. In this context, the palm

veins have emerged as a promising new biometric modality

[16]. The palm vein imaging requires near-infra-red (NIR)

illumination for extracting the complex vascular structures

residing inside the palm.

A key issue in palm vein feature extraction from NIR

images is finding efficient descriptors for palm vein appear-

ance. Different methods such as Hessian phase, localized

Radon transform, ordinal code, Laplacianpalm based on

Principal Component Analysis, complex matched filtering,

repeated line tracking have been studied for palm vein, dor-

sal hand vein and finger vein recognition [18, 4]. Lately,

local texture descriptors have also gained attention in finger

vein and dorsal hand vein recognition.

A good texture descriptor is one of the key issues for a

well designed palm vein feature extraction method. Find-

ing good descriptors for the appearance of local palm vein

regions is an open issue. To the best of our knowledge,

no local texture pattern operators have been investigated for

palm vein representation.

The texture analysis researchers have developed a va-

riety of different descriptors for the appearance of image

patches, e.g., Local Binary Patterns (LBPs) and their vari-

ants such as multi-scale LBPs, multi-scale block LBPs,

rotation-invariant LBPs, etc., and Local Derivative Patterns

(LDPs) and their higher order variants. The LBP operator

has been proposed for face recognition [2, 3], finger vein

recognition [8], dorsal hand vein recognition [14, 15] and

palm-print recognition [10]. The LDP operator has been

proposed for face recognition [17] and finger vein recogni-

tion [7, 6]. However, palm vein recognition problem has not

been investigated from such point of view.

This paper investigates two new feature extraction ap-

proaches based on a variety of multi-scale Local Binary

Patterns (LBPs) and high-order Local Derivative Patterns

(LDPs), in order to identify the best descriptors for palm

veins.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce and discuss operators and histograms

of multi-scale LBPs to identify new efficient descriptors for

palm vein patterns. Novel high order local pattern descrip-

tors based on LDP histograms are then investigated for palm

vein representation in Section 3. In Section 4, the dataset

used for experiments, as well as the extraction of the region

of interest and pre-processing operations are established. In

Section 5 both feature extraction methods are compared and

evaluated in the framework of verification and identification

tasks. Finally, conclusions are drawn in Section 6 with some

discussions.

2. Local Binary Patterns

2.1. Original LBP

The Local binary pattern (LBP) operator is a texture de-

scriptor originally proposed in 1994 [11]. This operator is

based on the gray level comparison of a neighborhood of
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pixels. The original operator considers a 3×3 neighbor-

hood of 8 pixels around a center pixel. This neighborhood

is thresholded by the value of the center pixel and the result

is considered as a binary number or its decimal equivalent

(Equation 1).

LBPP,R(Ic) =
P
∑

p=1

s(Zp − Zc)2
p−1, (1)

where s(u) = 1 if u ≥ 0 and 0 otherwise. Each resulting

decimal number is considered as a type of micro-pattern.

These micro-patterns are often represented in histograms

whose bins each contain one type of pattern. The LBP op-

erator was later modified to be sensitive to certain types of

spatial patterns. In particular the “uniform” LBP places em-

phasis on patterns having at most two bitwise transitions.

Other modifications include rotation-invariance and gray-

level invariance [12]. The size of the operator is defined as

the number of neighboring pixels P at radius from center

point R (Figure 1).

P = 16, R = 7

P = 16, R = 2
P = 8, R = 1

0

Figure 1. LBP neighborhood sizes.

2.2. Palm Vein Description with LBP

Palm veins are line structures with changing width,

whose gray-level values differ from the background. The

LBP operator is based on gray-level differences in local

neighborhoods. Therefore it has the potential to extract dis-

criminative features from palm vein images. The size of

the operator must be adapted to the size of the information

to be extracted. In the case of a neighborhood containing

a vein region, the vein will either cross the local neighbor-

hood or end inside. Thus, the resulting patterns of interest

will not present many discriminative bitwise transitions in-

dicating gray-level changes. It is therefore logical to con-

sider “uniform” patterns. The direction of veins presents a

discriminative feature, therefore it is not necessary to con-

sider rotation-invariant patterns. In order to preserve local

spatial information, the LBP operator is applied on parti-

tions of an image and not to the whole image (Figure 3).

The histograms resulting from individual portions are con-

catenated to create a descriptor over the whole image. The

size of neighborhoods (P,R) and the number of sub-images

are the prime parameters to be determined to best extract

discriminative vein information. In this study, the most ef-

ficient operator for palm vein images of the size 236×236,

with vein width of about 2-10 pixels is the uniform LBP

with parameters P = 16, R = 7 applied on 16 sub-images

of size 59×59. A smaller number of neighboring points

is beneficial in reducing noise feature extraction. Where

the neighbors specified by P and R do not correspond to a

single image pixel, the concerned pixels are averaged with

weights depending on their position with respect to the cir-

cle of radius R. This LBP operator is applied on overlap-

ping 15×15 blocks (Figure 2) whose center pixels are sub-

image pixels from rows 8-52 and columns 8-52 (to avoid

border effects). Given the neighbors considered in Figure 2
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Figure 2. (16,7) LBP neighborhood.

around a center pixel Z0, the LBP code for one neighbor-

hood is obtained by Equation 2.

code =
16
∑

i=1

s(Zi − Z0)2
i−1 (2)

The obtained code is saved by incrementing the corre-

sponding histogram bin. The code corresponding to the

application of LBP on a sub-image results in a histogram

with 240 bins (uniform LBP length = P (P − 1). The cor-

responding mapping table is used to asign bins to decimal

codes). The 16 histograms (each for one sub-image) are

concatenated to create a descriptor of length 3840 over a

whole image (Figure 3).

3. Local Derivative Patterns

3.1. Original LDP

The Local derivative pattern (LDP) operator [17] is a

high-order texture descriptor. It was proposed as an en-

coding scheme for local patterns, initially for face recog-

nition in comparison with the LBP method, and was shown

to be more efficient. The LBP operator extracts first order
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Figure 3. LBP histograms over sub-images.

non-directional patterns. On the other hand the LDP op-

erator extracts the derivative direction variation information

which is regarded as second order pattern information. Each

neighboring pixel contributes to the pattern code with the

direction of its derivative with respect to the derivative of

the center point. The derivatives are considered in different

directions, in the original case, the directions 0, 45, 90 and

135 degrees were considered. The image derivatives in each

direction are obtained by subtracting neighboring pixels ac-

cording to the direction (Equation 3) for the case of the first

image derivatives). In an n-order LDP, the (n − 1)th order

derivative is considered.

I
′

0◦(Z0) = I(Z0)− I(Z4)

I
′

45◦(Z0) = I(Z0)− I(Z3)

I
′

90◦(Z0) = I(Z0)− I(Z2)

I
′

135◦(Z0) = I(Z0)− I(Z1)

(3)

The neighbors Z1, ..., Z8 are considered according to Figure

4 around a center pixel Z0. The direction compliance with

Z1 Z2 Z3

Z8 Z0 Z4

Z7 Z6 Z5

Figure 4. 8-neighborhood considered in LDP.

the derivative value at the center point is encoded for every

neighbor (Equation 6). This operation is repeated for each

considered derivative direction as follows:

f(I ′α(Z0), I
′

α(Zi)) =

{

0 if I ′α(Z0) · I
′

α(Zi) > 0

1 if I ′α(Z0) · I
′

α(Zi) ≤ 0,
(4)

where i = 1, 2, ..., 8 are the indices of the neighbors. The

LDP pattern code for a given direction is the concatenation

of the bits corresponding to each neighbor (Equation 5).

LDP 2
α(Z0) = {f(I

′

α(Z0), I
′

α(Z1)), ...,

f(I ′α(Z0), I
′

α(Z8))} (5)

As with the case of the LBP descriptors, the patterns ex-

tracted with the LDP operator are stored in histograms with

their decimal values (Equation 6) over the image or portions

of the image. Each bin of a histogram contains the occur-

rence of a given micro-pattern.

3.2. Palm Vein Description with LDP

As in the case of fitting the LBP operator to best extract

veins, the LDP operator needs to be applied with parame-

ters best suitable for the vein extraction task. The order of

the operator n, the derivative directions, the scale (radius

from center point) applied to the neighborhood size and the

number and size of sub-image blocks on which the LDP op-

erator is directly applied, are varied. In this study, the best

operator on images of size 236×236 with veins of 2-10 pix-

els thick is the third order LDP at a radius of 6 pixels from

the center point (Figure 5). It is applied in directions 0, 45,

90 and 135 degrees on 16 sub-images.

Z1 Z2 Z3

Z8 Z0 Z4

Z7 Z6 Z5

Figure 5. Neighborhood considered in third-order LDP at scale 6.

Given the neighbors considered in Figure 5, the LDP

code for one neighborhood for a given scale is obtained by

Equation 6, where Z0 and Zi, i = 1, ..., 8 are the considered

neighbors.

code =
8

∑

i=1

f(I ′α(Z0), I
′

α(Zi))2
8−i (6)

The extracted codes for all overlapping neighborhoods in

a sub-image are binned in a histogram and the histograms

concatenated over the image to produce an image descriptor

(Figure 6). The number of histogram bins is computed as

numberof scales ·numberof directions ·28 which yields

1024 bins for four directions. For an image divided into 16

sub-images, the image descriptor is of length 16384.
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Figure 6. LDP histogram over image blocks.

4. Data

4.1. Dataset

The dataset used in this work for training and testing

the algorithms is the CASIA multi-spectral Palmprint Image

Database V1.0 (CASIA database) [1]. This dataset consists

of palm print images of 100 individuals (six samples per

individual), captured under six different NIR illuminators.

Palm veins are most visible under the illuminator at 940

nm wavelength. The sub-set used here contains all samples

from all individuals left hands under 940 nm illuminator.

4.2. Region of Interest

A region of interest (ROI) is extracted from every NIR

palm image, on which pre-processing and feature extraction

will be performed. Selecting a rectangular shape region is

most practical given the LBP and LDP neighborhood re-

quirements, and contains the most interesting region of the

palm veins. In this study, the ROI is defined geometrically

with respect to the four fingers. The hand contour is first

found, then convex points complying geometrically to the

position of in-between-finger points are kept as reference

points. These reference points and the segments linking

them are used to define a square ROI (Figure 7). In such

a ROI, two different images of the veins of a same person

are aligned. For the LBP and LDP operators to be efficient,

it is important the veins are aligned in two different images

of a same person.

4.3. Pre-processing

The ROI is defined with respect to reference points

whose position is unique for every hand. Therefore its size

will vary for different individuals and even different cap-

tures of the same individual if the hand is placed at different
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Figure 7. ROI extraction.

distances from the sensor during the acquisitions. In or-

der to cope with the size difference, all ROIs are re-scaled

with bicubic interpolation to a fixed size (the average size

of ROIs extracted from the data-set). Descriptors are ex-

tracted from the re-scaled version of the ROI (236×236).

This re-scaling ensures that veins are aligned in images of

a same person at different distances from the sensor. The

re-scaling ratio is a quality indicator, since images whose

scales are very different have a greater chance of inducing

an error in the comparison process. The LBP and LDP oper-

ators are based on gray-level difference of neighboring pix-

els, therefore they do not require further pre-processing and

enhancement of vein patterns. For LBP however, simple

pre-processing with adaptive histogram equalization shows

systematic improvement in the performance of this opera-

tor.

5. Experiments and Results

In palm vein recognition, the extracted descriptor of a

person is compared to one or several descriptors. In veri-

fication, False Non-Match Rate (FNMR) and False Match

Rate (FMR) are evaluation metrics which are represented in

Receiver Operating Characteristic (ROC) curves. In identi-

fication, the Correct Identification Rate (CIR) is the evalua-

tion metric. It describes overall performance in the Cumu-

lative Match Characteristic (CMC) curve [9]. In this study,

the verification and closed-set identification tasks are con-

sidered. Leave-one-out technique is used in verification and

the nearest neighbor search method is used in identification.

Different measures are used to provide a similarity measure

for two descriptors, such as χ2 measure, Bhattacharyya co-

efficient [5] and histogram intersection [13]. It was found

that histogram intersection (Equation 7) performs slightly

better than other metrics in the palm vein recognition task,

therefore only the results obtained with this measure are



presented in this section.

H(p, q) =

∑

i min(pi, qi)
∑

i qi
(7)

In Equation 7, p and q are the two histograms being com-

pared, of i bins each.

5.1. LBP Operator Choices

The LBP operators1 are tested with different sizes, the

highest CIR obtained for the images of the dataset is the

LBP(16,7) (Table 1). Different sub-image sizes were con-

sidered, 16 square sub-images results in the best perfor-

mance (Table 2).

P
P

P
P
P

P

R
1 4 5 6 7 8 9

8 70 % 87.4% 88.8% 88.6% 89.4% 89.8% 90.6%

16 69.4% 88.4% 91.2% 91.2% 93% 92.8% 92%

Table 1. CIR for LBP operators with uniform mapping tested for

different neighborhood sizes in the closed-set identification task.

❤❤❤❤❤❤❤❤❤❤
row partitions

col partitions
2 4 8

2 80.4% 85.2% 79%

4 88.4% 91% 84.2%

8 81.8% 84.6% 80.2%

Table 2. CIR for LBP operators with uniform mapping tested for

different sub-image sizes in the closed-set identification task.

Custom mapping: To compress the uniform mapping, a

custom mapping learned from the training dataset can be ap-

plied in order to reduce the number of descriptor elements.

A mapping table was created based on the mean and stan-

dard deviation of bins, over descriptors from 10 persons.

A CIR of 86% is obtained with a descriptor of length 42

extracted by the LBP(16,7) over a sub-image (the image is

divided into 16 square sub-images).

5.2. LDP Operator Choices

The LDP operator2 is tested for different orders, scales

and directions, the highest CIR obtained for the images of

the dataset is the third order LDP at scale 6 in directions 0,

45, 90 and 135 degrees (Tables 3, 4 and 5). Different sub-

images sizes were considered, 16 square sub-images results

in the best performance (Table 6).

Order 2 3 4

CIR 94.8% 97% 93.2%

Table 3. CIR for LDP operators tested for different orders at scale

6 in directions 0, 45, 90 and 135 degrees in the closed-set identifi-

cation task.

1MATLAB code in part by M. Heikkila and T. Ahonen.
2MATLAB code in part by S. Paris.

Scales 5 6 7 8

CIR 95.4% 97% 96.6% 95%

Table 4. CIR for third-order LDP operators tested for different

scales in the directions 0, 45, 90 and 135 degrees in the closed-

set identification task.

Directions 0 0, 45 0,

45,

90

0,

45,

90,

135

CIR 88.8% 95% 96.2% 97%

Directions 0,

45,...,

315

180,

225,

270,

315

0,

90,

180,

270

45,

135,

225,

315

CIR 96.8% 96.6% 95.8% 95.6%

Table 5. CIR for third-order LDP operators tested for combinations

of different orientations at scale 6 in the closed-set identification

task.

It is observed that the third-order LDP operator performs

best when applied at a scale 6. With respect to the derivative

direction choice, the best performance is obtained when one

representative of each direction axis is present (0 or 180, 45

or 225, 90 or 270, 135 or 315 degrees), in particular, the

option 0, 45, 90, 135 degrees performs most successfully.

❤❤❤❤❤❤❤❤❤❤
row partitions

col partitions
2 4 8

2 92.6% 95% 87%

4 96.6% 97% 88.6%

8 87.8% 89.6% 76.8%

Table 6. CIR for third-order LDP operators tested for different sub-

image sizes at scale 6 in directions 0, 45, 90 and 135 degrees in

the closed-set identification task.

Clearly, 16 sub-images yields in the best performance

compared to other partitioning schemes.

5.3. Verification

In the verification task, the histogram extracted from the

query image is compared to the stored histogram of the

claimed identity. The overall verification system is assessed

with the ROC curve, generated by varying the threshold on

the histogram intersection measure (Figure 8). The Equal

Error Rate (EER) point (where FNMR = FMR) is 0.004 for

the LBP operator and 0.0009 for the LDP operator.

5.4. Identification

In the identification task, the histogram extracted from

the query image is compared to all the stored histograms to

determine which one it is most similar to. A nearest neigh-

bor search with the histogram intersection distance metric

is applied to determine identity among enrolled individuals.

The overall identification system performance is assessed

with the CMC curve over the dataset (Figure 9).
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Figure 8. ROC curve for the verification task over the database of

left hands. LBP(16,7) and third-order LDP at scale 6 in directions
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Figure 9. CMC curves for the identification task using LBP
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and third order LDP in scale 6 and directions 0, 45, 90 and 135

degrees.

5.5. Throughput

The MATLAB implementations used in this study ex-

tracts a descriptor in 10-40 ms on a machine with a Intel(R)

Core(TM) i7 CPU @ 2.67 GHz with 4.00 GB RAM.

6. Conclusions and Future Work

In this study, palm vein recognition with two local tex-

ture description methods was performed. The two feature

extraction operators Local Binary Patterns (LBPs) and Lo-

cal Derivative Patterns (LDPs) were investigated in terms

of their ability to adapt to palm vein description. They were

adjusted based on discriminative features identified in vein

texture to be used as image descriptors in the context of

recognition with palm veins. These operators present com-

putational simplicity and efficiency and proved to be well

adapted to description for palm vein recognition. The LDP

operator was found to perform better than the LBP operator

in verification and identification tasks.

The use of a custom mapping table to reduce the size of

image descriptors also proved promising. Future work will

include investigating techniques to choose the bins repre-

senting the most discriminative information in the palm vein

image set and create a custom mapping to reduce the size of

image descriptors.
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