
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

PalmNet: Gabor-PCA Convolutional Networks
for Touchless Palmprint Recognition

Angelo Genovese, Member, IEEE, Vincenzo Piuri, Fellow, IEEE,
Konstantinos N. Plataniotis, Fellow, IEEE, and Fabio Scotti, Senior Member, IEEE

Abstract—Touchless palmprint recognition systems enable
high-accuracy recognition of individuals through less-constrained
and highly usable procedures that do not require the con-
tact of the palm with a surface. To perform this recognition,
methods based on local texture descriptors and Convolutional
Neural Networks (CNNs) are currently used to extract highly
discriminative features while compensating for variations in scale,
rotation, and illumination in biometric samples. In particular,
the main advantage of CNN-based methods is their ability to
adapt to biometric samples captured with heterogeneous devices.
However, the current methods rely on either supervised training
algorithms, which require class labels (e.g., the identities of
the individuals) during the training phase, or filters pretrained
on general-purpose databases, which may not be specifically
suitable for palmprint data. To achieve a high recognition accu-
racy with touchless palmprint samples captured using different
devices while neither requiring class labels for training nor
using pretrained filters, we introduce PalmNet, which is a novel
CNN that uses a newly developed method to tune palmprint-
specific filters through an unsupervised procedure based on
Gabor responses and Principal Component Analysis (PCA), not
requiring class labels during training. PalmNet is a new method
of applying Gabor filters in a CNN and is designed to extract
highly discriminative palmprint-specific descriptors and to adapt
to heterogeneous databases. We validated the innovative PalmNet
on several palmprint databases captured using different touchless
acquisition procedures and heterogeneous devices, and in all
cases, a recognition accuracy greater than that of the current
methods in the literature was obtained.

Index Terms—Palmprint, Touchless Biometrics, Less-
constrained, CNN, Deep Learning, PCA, Gabor.

I. INTRODUCTION

B IOMETRIC systems recognize individuals based on their
physiological or behavioral traits. Physiological traits

include fingerprints, palmprints, and irises, whereas behav-
ioral traits include a person’s gait, voice, and signature [1].
In particular, palmprint-based biometric systems have been
increasingly researched in recent years due to their high
recognition accuracy, usability, and acceptability [2]–[4]. In
fact, several palmprint acquisition systems rely on touchless,
less-constrained, and highly usable acquisition procedures in
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which the position of the hand is not constrained and the
palm does not touch any surface [5]–[10]. However, touchless
palmprint images exhibit higher local differences in scale, rota-
tion, translation, and illumination than touch-based images do,
thereby increasing their intraclass variations and potentially
reducing the recognition accuracy [2], [11].

To achieve accurate recognition using touchless images, sev-
eral recent methods for biometric recognition have considered
local texture descriptors that are designed to be robust to local
changes in scale, rotation, translation, and illumination [12],
[13]. The most recent approaches for palmprint recognition
based on local texture descriptors generally involve computing
a biometric template by extracting the local information related
to the orientations of the lines on the palm [6], [14]–[16]. How-
ever, these approaches use handcrafted processing algorithms
for feature extraction, using parameters whose optimal values
may change for each database used based on the resolution
and quality of the images [17]. Currently, there is no standard
device for acquiring touchless palmprint samples, and the
publicly available databases exhibit high differences in the
resolution, quality, and dynamic range of the images [2].

Currently, numerous biometric approaches are being de-
veloped using techniques based on Deep Learning (DL) and
Convolutional Neural Networks (CNNs) due to their abil-
ity to extract knowledge from noisy data, adapt to biomet-
ric samples captured using different devices, and achieve
accurate recognition in less-constrained environments [17]–
[20]. In particular, several approaches perform touchless and
less-constrained palmprint recognition using CNNs [21]–[23].
However, the methods presented in the literature for palmprint
recognition based on CNNs exhibit at least one or more of
the following drawbacks. First, the majority of these methods
use supervised training procedures, which require training data
associated with corresponding class labels (e.g., the identities
of the individuals associated with the palm images). Second,
these methods use general-purpose filters that do not consider
palmprint-specific features (e.g., filters pretrained on general
image classification databases). Third, thorough experimental
evaluations on multiple touchless palmprint databases are
rarely performed, and hence, the ability of the CNNs to
adapt to images captured with heterogeneous devices is not
tested. Fourth, comparisons with recent methods based on
local texture descriptors are generally not reported.

In this paper, to overcome the limitations of current CNNs
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for palmprint recognition, we propose PalmNet1, which is an
innovative CNN that uses a novel method of applying Gabor
filters in a CNN. PalmNet uses an innovative unsupervised
training algorithm (i.e., an algorithm that does not require
information about user identities) that can tune filters based on
a limited quantity of data (e.g., images) using a new
method based on Gabor responses and Principal Component
Analysis (PCA). The proposed method has the following main
advantages. First, the CNN does not require class labels during
training; therefore, the model can be trained using privacy-
preserving palmprint images that are not associated with the
corresponding individuals. We use class labels only to evaluate
the accuracy of the proposed method for biometric recognition
and to compute the error metrics. Second, the CNN uses
filters designed to be specific to palmprint data and adaptable
to touchless palmprint databases captured with heterogeneous
devices. A trained PalmNet has also the advantageous ability
to extract a highly discriminative descriptor, which can be
matched using various distance measures, from any palmprint
sample. Because the model produces descriptors and not class
labels, it is not necessary to train the CNN again when new
individuals are added to the database.
The use of Gabor filters is motivated by their use in

several recent works on palmprint recognition [2]. However,
all previous palmprint recognition methods based on Gabor
filters use a fixed set of filters with orientations obtained via
constant sampling in the range and fixed values of scale,
frequency, and standard deviation [24]. In this work, motivated
by the fact that a finite set of Gabor filters with multiple
scales and orientations can be used to represent any image
[25], we propose a novel adaptive Gabor-based filter tuning
procedure in which the scales and orientations of the filters are
adapted to the considered samples to automatically obtain a
CNN that can adapt to different databases and achieve a higher
recognition accuracy than can be achieved with the current
methods available in the literature. Although the use of Gabor
filters in combination with CNNs has recently been proposed
for general-purpose image classification [26], our approach is a
novel method for the application of Gabor filters in a CNN that
has the advantages of employing adaptive filters, extracting
palmprint-specific features, and using an unsupervised CNN
training procedure.
To test the validity of the method, we applied two variants

of the proposed CNN to several public touchless palmprint
databases captured with different acquisition procedures and
devices, which contain images of different qualities, resolu-
tions, and dynamic ranges. We also performed comparisons
with several recent methods based on local texture descriptors
and CNNs.
The main contributions of this work are as follows: i) it

introduces PalmNet, a novel Gabor CNN for touchless palm-
print recognition that achieves superior accuracy compared to
other methods in the literature; ii) the proposed CNN is trained
with an unsupervised procedure, which does not require class
labels during training; iii) a new method of applying and

1The source code for PalmNet is available at
http://iebil.di.unimi.it/palmnet/index.htm.

tuning adaptive filters in a CNN is proposed, which is based
on Gabor responses and PCA and is designed to be specific to
palmprint data; iv) the first comprehensive comparison with
major methods in the literature is performed by applying
the proposed CNN to all major public touchless palmprint
databases captured with heterogeneous devices and comparing
its performance with the performance of recent methods in the
literature based on texture descriptors and CNNs.
The remainder of this paper is structured as follows. Sec-

tion II presents a detailed review of the related relevant
techniques for touchless palmprint recognition. Section III
introduces the proposed methodology based on PalmNet. Sec-
tion IV describes the experimental results. Finally, Section V
concludes the work.

II. RELATED WORKS

The current methods for touchless palmprint recognition can
be divided into two-dimensional (2-D) and three-dimensional
(3-D) methods based on the dimensionality of the processed
samples. Although there are several methods that use 3-D
palmprint models [5], [8], there are only a few publicly avail-
able databases for testing such methods. By contrast, there are
many publicly available databases of 2-D palmprint images.
Therefore, we focus on 2-D images in this work. It is pos-
sible to further divide 2-D palmprint recognition approaches
into line-based, texture-based, subspace-based, coding-based,
local-texture-descriptor-based, and DL-based approaches [7].
At present, approaches based on coding, local texture descrip-
tors, and DL are most commonly studied in the literature
and demonstrate the best recognition accuracies for palmprint
recognition [2]. For this reason, we will focus on these three
categories.

A. Coding-Based Approaches
Coding-based methods typically involve the application of

a set of filters to an image, the quantization of the magnitudes
or phases of the filter responses, and the encoding of the
results to compute a biometric template. Then, global match-
ing procedures based on the Hamming distance are used to
compare the resulting templates [7]. Coding-based approaches
can be divided into two classes: i) methods based on a single
orientation and ii) methods based on multiple orientations.
Table I presents a summary of coding-based methods for
palmprint recognition.
The methods in class i) consider only the most relevant

orientation for each region of the image. One such method is
the PalmCode method described in [27], in which an image
is processed using a single Gabor filter and the filter response
is encoded for every pixel in the image. The Competitive
Code method proposed in [30] improves upon PalmCode by
considering multiple Gabor filters with different orientations
and then encoding the index of the filter with the minimum
response for each pixel, thus enabling the determination of
the principal orientation of the palmprint lines at each point.
Similarly, several other methods in the literature also use
multiple filters and encode the most relevant responses, such as
the Double-Orientation Code [32] and Robust Line Orientation
Code [29] methods.
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TABLE I
SUMMARY OF CODING-BASED APPROACHES FOR PALMPRINT RECOGNITION

Ref. Year Method Class Approach
Databases

Accuracy
Name N. ind N. samp.

[27] 2003 PalmCode i) Single
orientation

Filters an image using a single Gabor filter
and encodes the magnitude response for
every pixel in the image.

PolyU [28] EER

[29] 2008
Robust Line
Orientation

Code

i) Single
orientation

Filters an image using the Modified Finite
Radon Transform (MFRAT) and encodes
the most relevant response for each pixel.
Performs matching based on pixel-to-area
comparisons.

PolyU [28] EER

[30] 2010 Competitive
Code

i) Single
orientation

Filters an image using multiple Gabor
filters with different orientations and en-
codes the index of the filter with the min-
imum response for each pixel. Performs
matching based on angular distance.

PolyU [28]
CASIA [31]

EER (PolyU)
EER (CASIA)

[32] 2016
Double-

Orientation
Code

i) Single
orientation

Filters an image using multiple Gabor
filters with different orientations and en-
codes the indexes of the filters with the
two most relevant responses for each
pixel. Performs matching based on non-
linear angular distance.

PolyU [28]
IITD [33]

EER (PolyU)
EER (IITD)

[34] 2009
Binary

Orientation
Co-occurrence

Vector

ii) Multiple
orientations

Filters an image using multiple Gabor
filters with different orientations and en-
codes the responses of all Gabor filters for
each pixel.

PolyU [28] EER

[35] 2016
Neighboring
Direction
Indicator

ii) Multiple
orientations

Filters an image using multiple Gabor
filters with different orientations and, for
each pixel, extracts the principal orienta-
tion and its relations to the orientations of
the neighboring regions.

PolyU [28]
IITD [33]

EER (PolyU)
EER (IITD)

[36] 2018
Robust

Competitive
Code

ii) Multiple
orientations

Filters an image using multiple Gabor
filters with different orientations and, for
each pixel, encodes the most relevant re-
sponse along with the weighted responses
for the neighboring orientations. Performs
matching based on angular distance.

PolyU [28]
IITD [33]

EER = (PolyU)
EER (IITD)

N. ind. = Number of individuals; N. samp. = Number of samples; EER = Equal Error Rate; = As reported in the corresponding paper.

The methods in class ii) not only consider the principal
orientation of the palmprint in each local zone but also extract
a biometric template describing multiple orientations for each
local region of the image. In the Binary Orientation Co-
Occurrence Vector method described in [34], the responses
of all Gabor filters are encoded for each pixel, while the
Neighboring Direction Indicator (NDI) method proposed in
[35] extracts the principal orientation for each pixel along with
its relations to the orientations of the neighboring regions in
the image. The Robust Competitive Code method described
in [36] combines the Competitive Code approach with the
NDI approach by encoding the most relevant response for each
pixel along with the weighted responses for the neighboring
orientations.

The main drawback of coding-based methods is that they
involve comparing biometric templates using global matching
methods based on the Hamming distance. Such global methods
do not account for local variations in rotation and translation;
therefore, they exhibit high recognition accuracies only on
databases captured under partially constrained conditions, for
example, using touch-based procedures. With the increasing
popularity of touchless and less-constrained palmprint recog-

nition systems [37], [38], several recent methods have been
developed with a focus on local texture descriptors, which are
more robust to local changes in rotation and illumination and
therefore achieve higher recognition accuracies on touchless
palmprint databases than coding-based methods do [2].

B. Local-Texture-Descriptor-Based Approaches

Methods based on local texture descriptors generally in-
volve encoding the intensity value of each pixel, computing
the histograms of the encoded representation (blockwise his-
tograms) for each local region of the image, concatenating
these blockwise histograms to obtain a one-dimensional fea-
ture vector representing the corresponding biometric template,
and then using different distance measures (e.g., the Euclidean
or chi-squared distance) to compare the resulting templates
[47]. Local-texture-descriptor-based approaches can be divided
into three classes: i) general-purpose descriptors applied to
palmprint images, ii) texture descriptors encoding the main
orientation for each pixel, and iii) texture descriptors encoding
multiple orientations for each pixel. Table II presents a sum-
mary of local-texture-descriptor-based methods for palmprint
recognition.
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TABLE II
SUMMARY OF LOCAL-TEXTURE-DESCRIPTOR-BASED APPROACHES FOR PALMPRINT RECOGNITION

Ref. Year Method Class Approach
Databases

Accuracy
Name N. ind N. samp.

[39] 2014 SIFT i) General
purpose

Combines the scale-invariant feature trans-
form (SIFT) descriptor with random sample
consensus (RANSAC) for outlier filtering.

IITD [33]
CASIA [31]

EER (IITD, left)
EER (IITD, right)
EER (CASIA, left)
EER (CASIA, right)

[40] 2006 LBP i) General
purpose

Uses the local binary patterns (LBP) de-
scriptor for palmprint images. Performs
matching based on an AdaBoost classifier.

UST [41] EER

[42] 2014 HOG i) General
purpose

Uses the histograms of oriented gradients
(HOG) descriptor for palmprint images. PolyU [28] R-1 rate

[43] 2016 LDP i) General
purpose

Uses the local directional patterns (LDP)
descriptor for palmprint images. Performs
matching based on chi-square distance.

PolyU [28]
IITD [33]
GPDS [44]

EER (PolyU)
EER (IITD)
EER (GPDS)

[15] 2017 LTrP i) General
purpose

Uses the local tetra patterns (LTrP) descrip-
tor for palmprint images.

IITD [33]
BERC

EER (IITD)
EER (BERC)

[42] 2014 HOL

ii) Texture
descriptors
encoding the

main
orientation

Modifies the HOG texture descriptor to use
either a bank of Gabor filters with different
orientations or the MFRAT.

PolyU [28] R-1 rate

[6] 2017 CR-
CompCode

ii) Texture
descriptors
encoding the

main
orientation

Combines Competitive Code with block-
wise histograms. Performs matching based
on a sparse representation classifier.

Tongji [45] R-1 rate

[16] 2016 LLDP

iii) Texture
descriptors
encoding
multiple

orientations

Uses either a bank of Gabor filters with
different orientations or the MFRAT to com-
pute the line responses for different ori-
entations for each pixel, then encodes the
maximum and minimum filtering responses
for each pixel. Performs matching based on
Manhattan and chi-square distances.

PolyU [28]
Cross-Sensor [46]
IITD [33]

EER (PolyU)
EER (Cross-Sensor)
EER (IITD)

[43] 2016 LMDP

iii) Texture
descriptors
encoding
multiple

orientations

Encodes multiple dominant directions for
each pixel, considering the confidence of
each dominant direction and the relations to
the directions of neighboring regions.

PolyU [28]
IITD [33]
GPDS [44]

EER (PolyU)
EER (IITD)
EER (GPDS)

[15] 2017 LMTrP

iii) Texture
descriptors
encoding
multiple

orientations

Uses either a bank of Gabor filters or the
MFRAT to determine the principal orien-
tation for each pixel, then computes the
horizontal and vertical derivatives at each
pixel, considering a set of adjacent pixels for
each derivative to account for the thickness
of the palmprint lines.

IITD [33]
BERC

EER (IITD)
EER (BERC)

Notes: N. ind. = Number of individuals; N. samp. = Number of samples; EER = Equal Error Rate; R-1 rate = Rank-1 identification rate, presented only
when the paper does not report the EER; = As reported in the corresponding paper.

In the methods of class i), local texture descriptors designed
for general-purpose applications are applied for palmprint
recognition. Examples of general-purpose texture descriptors
include the Scale-Invariant Feature Transform (SIFT) [7], [39],
Local Binary Patterns (LBP) [40], Histograms of Oriented
Gradients (HOG) [42], Local Directional Patterns (LDP) [43],
and Local Tetra Patterns (LTrP) [15] descriptors. However,
local texture descriptors designed specifically for palmprint
recognition have recently been proposed that currently outper-
form general-purpose texture descriptors in most cases [16].
The methods of class ii) include the work described in

[6], which introduces the Collaborative Representation Com-
petitive Code (CR-CompCode) for palmprint recognition, a
combination of a coding-based method and a local texture

descriptor. In this method, the Competitive Code [30] approach
is first applied, and blockwise histograms are then computed.
Finally, a sparse representation classifier [48] is used for
palmprint identification. However, this method has been tested
only on high-quality images from a single palmprint dataset.
A modification of an existing approach is proposed in [42],

which introduces the Histogram of Oriented Lines (HOL)
descriptor, a modified version of the HOG texture descriptor
[49] that uses either a bank of Gabor filters with different ori-
entations or the Modified Finite Radon Transform (MFRAT).
For each pixel, the magnitude and orientation of the minimum
response are computed to extract the principal orientation;
then, blockwise histograms are computed by dividing the
magnitude responses into bins according to their orientations,
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and these histograms are compared using the Euclidean dis-
tance. However, the drawback of the HOL descriptor is that it
encodes only the principal orientation for each pixel, whereas
more recent methods typically consider multiple orientations.
The Local Line Directional Patterns (LLDP) descriptor

proposed in [16] considers multiple orientations and belongs to
class iii). This method is based on the LDP texture descriptor
[50] and uses either a bank of Gabor filters with different
orientations or the MFRAT to compute the line responses for
different orientations for each pixel. Then, the maximum and
minimum filtering responses are encoded for each pixel, cor-
responding blockwise histograms are computed, and various
distance measures are used to compare the resulting templates.
Similarly, [43] introduces the Local Multiple Directional Pat-
terns (LMDP) descriptor, which is an extension of the LLDP
descriptor that, for each pixel, considers multiple dominant
directions, the confidence of each dominant direction, and the
relations to the directions of neighboring regions.
In addition to considering multiple orientations for each

pixel, the method described in [15] considers the different
thicknesses of the palmprint lines. In this method, the LTrP
texture descriptor [51] is extended to the Local Microstructure
Tetra Patterns (LMTrP) descriptor, which uses either a bank
of Gabor filters or the MFRAT to determine the principal
orientation for each pixel. Then, the horizontal and vertical
derivatives are computed at each pixel; for each derivative,
a set of adjacent pixels is considered to account for the
thickness of the palmprint lines. In this approach, the results
of the two derivatives are encoded into a 2-bit number for
each pixel; these numbers are then processed using the LBP
descriptor, corresponding blockwise histograms are computed,
and the resulting histograms are compared using the Euclidean
distance.
The LLDP, LMDP, and LMTrP descriptors are currently the

most accurate local texture descriptors for touchless palmprint
recognition. However, their calculation requires handcrafted
feature extraction procedures that involve manually tuning a
large number of parameters. To overcome the drawbacks of
local texture descriptors, several palmprint recognition systems
have recently been proposed based on the use of DL and CNN
techniques due to their ability to natively process input images
and adapt to samples captured with heterogeneous devices.

C. Deep-Learning-Based Approaches
In DL-based approaches for palmprint recognition, a CNN

is generally used to extract features from the images, and a
distance measure or a trained classifier is then used to compare
the resulting biometric templates. DL-based approaches can be
divided into three classes: i) methods using pretrained CNNs,
ii) methods using CNNs trained on palmprint images, and iii)
methods using CNNs with fixed filters. Table III presents a
summary of DL-based methods for palmprint recognition.
One of the methods of class i) is the work presented in

[52], which is based on a comparison among several pretrained
CNNs. Feature extraction from touchless palmprint images
is performed using pretrained AlexNet, VGG-16, and VGG-
19 networks; subsequently, classification is performed using
a support vector machine (SVM). The results show that the

deeper networks, VGG-16 and VGG-19, obtain better results
than those of AlexNet. However, classification is performed
using an SVM trained with a supervised procedure, and no
comparisons with other methods in the literature are presented.
Similarly, the method described in [21] combines a pretrained
AlexNet with an SVM to identify the palmprints of newborns
captured using a touchless procedure. Although the method
performs better than coding-based methods do, it also relies
on an SVM trained with a supervised procedure, and no
comparisons with techniques based on texture descriptors are
presented.
The approach described in [23] belongs to class ii) and

uses a CNN based on the AlexNet model [58] and trained
on palmprint images by optimizing a loss function describing
the separation of the genuine and impostor distributions. The
method demonstrates superior performance compared with re-
cent coding-based methods; however, it relies on a supervised
training procedure, and no comparisons with local-texture-
descriptor-based methods are presented, although testing was
performed on touchless palmprint databases.
A method based on PCANet [59], a CNN trained using

an unsupervised PCA-based procedure, is proposed in [22].
In this approach, PCANet is applied to extract features from
palmprint images, and a trained classifier (e.g., an SVM)
is then used for classification. The method achieves results
similar to those of most recent methods in the literature;
however, although it is suitable for use with various classifiers,
all of them are trained using supervised procedures, and
only applications based on multispectral databases have been
proposed.
The methods of class iii) include the deep scattering network

presented in [56], which processes input images using a bank
of fixed filters based on the scattering transform [60]; then,
an SVM is used to classify the palmprint images. However,
this method also uses a supervised training procedure, and
again, no comparisons with recent works based on local texture
descriptors are presented.
The main drawbacks of DL-based methods for palmprint

recognition are as follows. The CNNs are often combined with
classifiers trained using supervised training procedures (e.g.,
SVMs) for classification. The models used have often been
trained for general-purpose applications (e.g., AlexNet or a
deep scattering network), or the training procedures are not
designed to extract palmprint-specific features (e.g., PCANet).
Moreover, extensive comparisons with recent methods in the
literature, either coding-based or local-texture-descriptor-based
methods, are rarely performed.

III. METHODOLOGY

In the proposed approach, touchless palmprint images are
recognized by using PalmNet, which is a novel Gabor CNN
based on both fixed and adaptive filters. The CNN is trained
using a novel unsupervised procedure for filter tuning based on
Gabor responses and PCA, without requiring class labels (e.g.,
the identities of the users). We use class labels only to evaluate
the accuracy of the proposed method for biometric recognition
and to compute the error metrics. The network is capable of
adapting to different databases captured using heterogeneous
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TABLE III
SUMMARY OF DL-BASED APPROACHES FOR PALMPRINT RECOGNITION

Ref. Year Method Class Approach
Databases

Accuracy
Name N. ind N. samp.

[52] 2018
AlexNet,
VGG-16,
VGG-19

i) Pretrained
CNNs

Performs feature extraction using pre-
trained CNNs. Performs classification
based on a support vector machine
(SVM).

MOHI [53]
COEP [54]

R-1 rate
(MOHI, COEP)

[21] 2018 AlexNet i) Pretrained
CNNs

Performs feature extraction using a pre-
trained CNN and then classifies samples
using an SVM.

CPNB [21] EER

[23] 2016
AlexNet,

Discriminative
Index

Learning

ii) CNNs
trained on
palmprint
images

Uses a CNN based on the AlexNet
model and trained by optimizing a loss
function describing the separation of the
genuine and impostor distributions.

IITD [33]
CASIA [31]

EER (IITD)
EER (CASIA)

[22] 2017 PCANet

ii) CNNs
trained on
palmprint
images

Uses a CNN with filters learned from
input images via an unsupervised PCA-
based procedure.

CASIA [55] EER

[56] 2017
Deep

Scattering
Network

iii) CNNs
with fixed
filters

Uses a newly proposed deep scattering
network based on the scattering trans-
form to process input images using fixed
filters. Performs classification based on
an SVM.

PolyU [57] R-1 rate

Notes: N. ind. = Number of individuals; N. samp. = Number of samples; EER = Equal error rate; R-1 rate = Rank-1 identification rate, considered only
when the paper does not report the EER; = As reported in the corresponding paper.

devices and extracting highly accurate palmprint-specific fea-
tures, thereby achieving a greater recognition accuracy than
can be achieved using the methods available in the literature.
PalmNet can be applied to any segmented palmprint image and
outputs a biometric template consisting of a 1-D feature vector.
It is then possible to use any classifier or distance measure
to compare the resulting biometric templates. In this work,
to demonstrate the validity of PalmNet for extracting highly
discriminative features, we classify the generated templates
using a k-Nearest-Neighbors (k-NN) classifier with
based on the Euclidean distance, which has no parameters and
does not require a training procedure [61].
The method consists of the following steps: A) prepro-

cessing, B) CNN training, C) feature extraction, and D)
classification and matching. Fig. 1 presents the outline of the
proposed method.

A. Preprocessing
In the preprocessing step, the Region Of Interest (ROI) is

extracted from a grayscale palmprint image. This step can
be divided into three individual tasks: i) hand segmentation,
ii) valley point extraction, and iii) ROI computation. Fig. 2
presents an example of an ROI extracted from a touchless
palmprint image.
First, we convert the input color image to grayscale, remove

the background, and extract the contour of the hand using a
procedure based on Otsu thresholding and the Kirsch edge de-
tector [62]. Several works in the literature on palmprint recog-
nition have proposed skin-color-based segmentation methods
for samples captured with an unconstrained background using
touchless acquisition systems [63]–[65] or mobile devices
[66], [67]. However, in this work, we consider grayscale palm-
print samples captured with a uniform background; therefore,

it is not necessary to use color-based techniques to segment
the samples. Instead, we focus on hand segmentation methods
based on gray-level thresholding and edge detection.
Second, from the hand contour, we extract the valley points

corresponding to the intersections between the index, middle,
ring, and little fingers by analyzing the local minima of the
contour following a combination of the procedures described
in [64], [68], [69].
Third, we compute the ROI by establishing a reference sys-

tem based on the extracted valley points using the procedure
proposed in [5]. We resize the ROI to dimensions of
pixels and normalize it by subtracting the mean value.

B. CNN Training
In this section, we describe the procedure for the unsuper-

vised training of the proposed PalmNet. First, we introduce
the network topology, and then we describe the procedures
used to tune the filters based on Gabor responses and PCA.
Finally, we define the parameters of the proposed CNN.

1) Network Topology: The proposed PalmNet is a 3-layer
CNN with 2 convolutional layers ( and ) and 1 binariza-
tion layer ( ). Fig. 3 shows the topology of the CNN. The
layers are configured as follows:

: Input layer with dimensions of , corresponding
to the size of the palmprint ROI.
: First convolutional layer, composed of filters. Each

filter is used to process the input image; thus, the output
of this layer consists of images with dimensions of

.
: Second convolutional layer, composed of filters.

Each filter is used to process each of the images output
by layer . Thus, the output of this layer consists of
images with dimensions of .
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Fig. 1. Outline of the proposed palmprint recognition method based on PalmNet, a CNN trained using an unsupervised procedure to tune the filters based
on Gabor responses and PCA.

Fig. 2. Example of a reference system based on extracted valley points and
the corresponding computed ROI.

: Binarization layer that applies the function
bin to every pixel of the images output

by layer , where bin is defined by the following
equation:

bin if
otherwise (1)

The output of this layer consists of binary images
with dimensions of . The purpose of the binarization
layer is to allow the size of the output to be reduced by
combining several outputs into single decimal numbers
[16], [59]. By using the binarization layer output,
outputs can be thresholded to binary digits and combined
into a single decimal number, as described in Section III-
C.

The filters in layers and have variable sizes and
are configured using unsupervised training procedures. In the
proposed method, we consider two kinds of adaptive filters.
First, we consider Gabor filters, which are currently used

Fig. 3. Topology of the proposed PalmNet.

in several state-of-the art palmprint recognition methods due
to their ability to enhance palmprint lines, thus ensuring
that only significant biometric details are extracted [6], [15],
[16]. Second, we consider PCA-based filters, which have
been successfully used in several fields, including biometric
recognition based on faces and palmprints [22], [59], [70],
[71]. The main difference between the PCA-based and Gabor
filters is that the PCA-based filters do not rely on any shape
assumption and are trained entirely via the proposed PCA-
based tuning procedure, whereas the Gabor filters are specific
to palmprint characteristics and assume a shape defined by the
product of a sinusoidal wave with a Gaussian function [15],
[16].
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In this work, we propose two Gabor CNNs, PalmNet-
Gabor and PalmNet-GaborPCA, in order to separately evaluate
the contributions of the Gabor and PCA-based filter tuning
procedures. The two Gabor CNNs are structured as follows.

PalmNet-Gabor: The filters of layer and the
filters of layer are configured using the Gabor-based
tuning procedure described in Section III-B2.
PalmNet-GaborPCA: The filters of layer are con-
figured using the PCA-based tuning procedure described
in Section III-B3, and the filters of layer are con-
figured using the Gabor-based tuning procedure described
in Section III-B2.

2) Gabor-Based Filter Tuning: Fig. 4 shows the outline
of the proposed Gabor-based filter tuning procedure. Specif-
ically, the tuning procedure configures two types of filters:
i) fixed-scale Gabor filters and ii) adaptive multiscale Gabor
filters.

a) Fixed-Scale Gabor Filters: We create a set of fixed-
scale 2-D Gabor filters, denoted by , as products of a
sinusoidal wave with a Gaussian function, based on the
filters used in recent local texture descriptors for palmprint
recognition [15], [16]. These filters have the following fixed-
scale form:

(2)

where , represents the frequency of the sinusoidal
wave, is the standard deviation of the Gaussian function, and

is the orientation of the filter. We use fixed values for
and , and for the orientation , we use values sampled from
the set , which is computed using the following equation:

, (3)

Thus, we obtain a set of fixed-scale 2-D Gabor filters
with dimensions of . Fig. 5a shows the bank of fixed-
scale Gabor filters computed using the proposed approach.

b) Adaptive Multiscale Gabor Filters: To compute the
set of adaptive multiscale Gabor filters, we use a training
subset of palmprint ROIs. First, we compute a set of adaptive
orientations from the palmprint ROIs. Second, we compute
a bank of multiscale Gabor filters with the computed orien-
tations. Third, we select the filters that obtain the greatest
magnitude responses.

Computation of adaptive orientations: We perform low-
pass filtering on each ROI and apply a gradient-based
operator to determine the image that describes
the local directions of the texture pattern. Then, we
compute the histogram of , take the average of
the histograms thus computed for all training ROIs, and
extract the most frequent orientations . A set of
adaptive orientations, , is obtained as ,
where is computed using Eq. 3 and , with

denoting the cardinality of the set.
Computation of multiscale Gabor filters: We define two
sets of even-symmetric and odd-symmetric multiscale 2-

D Gabor filters, and , respectively, using
the following equations [25]:

(4)

where and denote the real and imaginary
parts of the argument, which are used to obtain the even-
and odd-symmetric filters, respectively; is a scaling
factor; defines the aspect ratio of the filter; and
represents the frequency. The value controls the scale
of the filter and is computed as follows:

, (5)

where is the horizontal size of the ROI. Then, we define
and using the following equations:

(6)

with . In total, we obtain a set con-
taining even-symmetric multiscale filters
and another set containing odd-
symmetric multiscale filters. The filter size is computed
as . Fig. 5b,c show the bank of multiscale
Gabor filters computed using the proposed approach.
Selection of the filters with the greatest magnitude re-
sponses: We adapt the multiscale Gabor filters to the
training data by selecting the most relevant filters based
on their magnitude responses. First, we filter the ROI
image with each filter in the sets and ,
thus obtaining two sets of filtered images and

, and for each corresponding pair of filtered
images, we compute the combined magnitude response
as , thus obtaining a set of images

. Second, we sort the magnitude responses for all
pixels in to obtain a 1-D vector of size ,
which contains the magnitude responses in decreasing
order. Then, for each filter in , we count the number of
corresponding responses in , considering each filter at
most once for each position in the ROI. Third, we
count the number of occurrences for each filter among all
ROIs, and we extract the filters and
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Fig. 4. Outline of the proposed Gabor-based filter training procedure. Two types of filters can be distinguished: A) fixed-scale Gabor filters and B) adaptive
multiscale Gabor filters.

(a) (b) (c)

Fig. 5. Complete set of Gabor filters used in the proposed PalmNet: (a) fixed-
scale Gabor filters, (b) even-symmetric multiscale Gabor filters, and (c) odd-
symmetric multiscale Gabor filters. Each row of images in (b,c) contains filters
computed with the same scale . For each scale, we sampled 5 orientations
for visualization purposes. The Gabor-based filter tuning procedure then
adapts the multiscale Gabor filters to the training data by selecting the most
representative filters for each database.

with the most occurrences from and ,
respectively.

The output of the Gabor-based filter tuning procedure con-
sists of filters, corresponding to fixed-scale 2-D
Gabor filters and adaptive multiscale 2-D Gabor filters.
The numbers of fixed and adaptive Gabor filters can be chosen
based on the CNN topology and the number of filters chosen
for each layer of the network, i.e., and .

3) PCA-Based Filter Tuning: The unsupervised PCA-based
filter tuning procedure consists of the following two steps [59]:
i) collection of local regions of the ROIs to construct the
unsupervised dataset and ii) PCA computation and extraction
of the filters of the CNN as the PCA eigenvectors.
First, we extract local regions with dimensions of
centered on each pixel of the ROI, with and

, where and are the vertical and horizontal
sizes, respectively, of the ROI. A local region is extracted for
each pixel, thus covering every part of the ROI. We transform
these local regions into vector form, thus obtaining vectors

, and from each vector, we subtract
its mean value. Then, we compute a matrix
by concatenating the vectors for each of the ROIs.
Second, we perform the PCA computation for by com-

puting and extracting the principal eigenvectors of
, denoted by , with . We extract the

corresponding filters of the CNN by transforming each

TABLE IV
SUMMARY OF THE PARAMETERS OF THE PROPOSED CNNS

Network Parameter(s) Value(s) Description

PalmNet-Gabor

, Horizontal and vertical sizes
of the palmprint ROI

, Dimensions of the fixed-
scale Gabor filters
Wavelength of the fixed Ga-
bor filters
Standard deviation of the
fixed Gabor filters
Number of filters in
Number of filters in
Number of fixed-scale Ga-
bor filters
Number of adaptive multi-
scale Gabor filters
Number of most frequent
orientations
Scaling factor of the adap-
tive multiscale Gabor filters
Aspect ratio of the adaptive
multiscale Gabor filters
Frequency of the adaptive
multiscale Gabor filters

PalmNet-GaborPCA

Dimensions of the PCA-
based filters
Number of filters in
Number of filters in
Number of principal eigen-
vectors from PCA

eigenvector into a matrix . The number of
filters can be chosen based on the CNN topology and the
number of filters chosen for each layer of the network, i.e.,
and .

4) Network Parameters: We experimentally tuned some of
the network parameters to achieve the best possible recognition
accuracy on the considered datasets while respecting the
memory requirements of the proposed algorithms, and we
selected the other parameters by considering the optimal values
found in the literature, following the procedure described in
Section IV-C. We summarize the parameters of the CNNs used
in this work in Table IV.
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C. Feature Extraction
The feature extraction step can be divided into the following

three individual tasks: i) applying the trained CNN, ii) encod-
ing the binary images, and iii) computing the feature vector
based on the histogram.
First, we apply the trained CNN (either PalmNet-Gabor or

PalmNet-GaborPCA, depending on the chosen topology) to
a palmprint ROI. Thus, we obtain binary images, as
described in Section III-B1. Specifically, each group of
binary images in the output of layer corresponds to one of
the images in the output of layer , as shown in Fig. 3.
Thus, there are groups in total, each containing images.
Second, we consider one group of binary images, de-

noted by , with . Each of the images in
the group has the same dimensions of . For each position

, we construct a binary vector by concatenating the
binary values of all images using the following equation:

. We then encode
the binary vector into a decimal number as follows:

. We repeat this encoding process for
each position to obtain a decimal matrix that
describes the entire group of binary output images. In the
same way, we compute the decimal matrices for all
groups of binary images, with .
Third, we divide each image into nonoverlapping

blocks with dimensions of and compute a correspond-
ing histogram for each block, where each histogram consists
of bins. Finally, we construct a feature vector by
concatenating the histograms for all blocks of all images ,
where . We experimentally tuned the values
of and to achieve the best possible recognition accuracy
on the considered datasets following the procedure described
in Section IV-C.

D. Classification and matching
The proposed method can be applied in both identification

and verification modes [1]. In the identification mode, a
classification step is performed, in which the set of feature
vectors extracted from the palmprint ROIs is taken as
the input to compute the class (identity) associated with each
feature vector. In the literature, several types of classifiers have
been considered, including classifiers based on SVMs, neural
networks, pretrained CNNs, and sparse representations [20]. In
this work, to evaluate the ability of PalmNet to extract highly
discriminative feature vectors, we use a simple k-NN classifier
based on the Euclidean distance, with (denoted by 1-
NN in the following), which does not need to be trained and
has no parameters to tune [61].
In the verification mode, a matching step is performed, in

which two biometric templates represented by feature vectors
and are compared to compute a corresponding distance

, where is the Euclidean
distance.

IV. EXPERIMENTAL RESULTS

This section presents the touchless palmprint databases
considered in our study, introduces the evaluation procedure

TABLE V
SUMMARY OF THE DATABASES USED IN THIS STUDY

Ref. Name Methodology N. ind. N. samp.

[31] CASIA
Users place their hands inside a box
with controlled illumination and place
the back of the hand on a fixed surface.

[33] IITD
Users place their hands inside a box
with controlled illumination and place
the back of the hand on a fixed surface.

[73] REST
Users place the back of the hand on
a fixed surface with no enclosure; the
only illumination is provided by envi-
ronmental indoor lighting.

[6] Tongji

Users place their hands inside an en-
closure; the hand does not touch any
surface, the illumination is controlled,
and the position of the hand can vary
within a small space.

Notes: N. ind. = Number of individuals; N. samp. = Number of samples.

and the error metrics used to compare the recognition accuracy,
describes the procedure used to tune the network parameters,
provides a visual examination of the filter tuning procedure,
and then reviews the recognition accuracy of the proposed
CNNs. Specifically, we performed a technology evaluation
[72] to compare the recognition accuracy of the proposed
method with the accuracies of the most recent methods in the
literature. Finally, this section presents the computation time
and feature size of the proposed approach.

A. Databases Used
To evaluate the recognition accuracy of the proposed

method, we considered touchless palmprint databases cap-
tured under different conditions with heterogeneous devices.
All of the databases are publicly available. For every database,
we considered the left and right palms of the same person
as belonging to different individuals. We computed the ROIs
by applying the preprocessing step described in Section III-A
and discarded only a small fraction of images for which the
preprocessing algorithm could not extract the valley points.
Table V presents an overview of the databases used in this
study.

1) CASIA Palmprint Database V1: The CASIA Palmprint
Database V1 (referred to as CASIA in the remainder of this
section), collected by the Institute of Automation of the Chi-
nese Academy of Sciences, contains palmprint samples
captured from individuals, both male and female. The im-
ages were captured using the proprietary touchless acquisition
device described in [31]. They are in 8-bit grayscale and have
dimensions of . Each user was required to place
his or her hand inside a box with controlled illumination and
place the back of the hand on a fixed surface. Consequently,
the hand is oriented in approximately the same direction in
all samples. After the preprocessing step, only of the
samples were discarded. A total of ROIs were considered
in our experiments.

2) IIT Delhi Touchless Palmprint Database (Version 1.0):
The IIT Delhi Touchless Palmprint Database (Version 1.0)
(referred to as IITD), collected by the Indian Institute of
Technology Delhi, contains palmprint samples captured
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from individuals recruited from among the students and
staff of IITD, with ages ranging from 12 to 57 years. The im-
ages were captured using the proprietary touchless acquisition
device described in [33]. They are in 8-bit grayscale and have
dimensions of . Each user was required to place
his or her hand inside a box with controlled illumination and
place the back of the hand on a fixed surface. Consequently,
the hand is oriented in approximately the same direction in
all samples. After the preprocessing step, only of the
samples were discarded. A total of ROIs were considered
in our experiments.

3) REgim Sfax Tunisia (REST) hand database 2016: The
REgim Sfax Tunisia (REST) hand database 2016 (referred to
as REST), collected by the Research Groups in Intelligent
Machines of Sfax University, contains palmprint samples
captured from individuals with ages ranging from 6 to
70 years. The images were captured using a low-cost digital
camera following the procedure described in [73]. They are
in 24-bit color and have dimensions of . The
position of the hand is less constrained than in the CASIA and
IITD databases since no enclosure was provided in which the
users were required to place their hands, and illumination was
provided only by environmental indoor lighting. Consequently,
the samples exhibit variations in hand orientation. However,
each user was still required to place the back of his or her
hand on a fixed surface. After the preprocessing step, only

of the samples were discarded. A total of ROIs
were considered in our experiments.

4) Tongji Contactless Palmprint Dataset: The Tongji Con-
tactless Palmprint Dataset (referred to as Tongji), collected by
Tongji University, contains palmprint samples captured
from individuals with ages ranging from 20 to 50 years.
The images were captured using the proprietary touchless
acquisition device described in [45]. They are in 24-bit color
and have dimensions of . Although the acquisition
procedure required each user to place his or her hand inside
an enclosure, the acquisition conditions were less constrained
than those used to construct the CASIA and IITD databases
since the hand was not touching any surface at the moment
of acquisition. However, the illumination was controlled, and
the position of the hand could vary only within a relatively
small space. Consequently, all samples exhibit approximately
the same hand orientation and similar illumination conditions.
After the preprocessing step, of the samples were
discarded. This is because the valleys between the fingers are
not entirely visible in all images. A total of ROIs were
considered in our experiments.

B. Evaluation Procedure and Error Metrics
To evaluate the accuracy of the proposed palmprint recogni-

tion method, we applied an -fold cross-validation procedure,
which is widely used for evaluating pattern recognition al-
gorithms [74]. Specifically, we selected cross-validation with

and repetitions [75], with one partition of the ROIs
used for the training of the CNNs and one partition used for
testing. The training and testing subsets each contained
of the individuals in the database, selected randomly. The
individuals in the training and testing subsets were disjoint.

The feature extraction, classification, and matching steps were
performed on the testing subset, and the results were averaged
over the iterations.
To comprehensively evaluate the accuracy of the proposed

biometric system, we considered its performance in both
the identification and verification modes. In the identification
mode, the accuracy of a 1-NN classifier based on the Euclidean
distance was evaluated using a leave-one-out procedure [74]
on the feature vectors computed from the ROIs in the testing
subset. This procedure enables the evaluation of how each
sample compares against all remaining samples. As error met-
rics, we considered the classification accuracy, expressed as
the percentage of correctly classified samples among the total
number of samples, and the Cumulative Match Characteristic
(CMC) curve. We chose these two error metrics because they
are the most commonly used metrics for reporting the accuracy
of a biometric system in the identification mode [1]. In
the verification mode, we performed a technology evaluation
[72] using a matching algorithm based on the Euclidean
distance. For each individual, we considered samples for
enrollment and used the remaining samples for testing. Each
round of matching was performed between a test sample and
the corresponding enrollment samples, and the minimum
distance was taken as the final match score. This procedure is
commonly applied for biometric acquisitions featuring signifi-
cant intraclass variability (e.g., touchless and less-constrained
acquisitions) since for each round of matching, it allows the
most similar enrolled biometric sample to be selected [16]. As
error metrics, we considered the equal error rate (EER) and the
Receiver Operating Characteristic (ROC) curve [76] because
they are the most commonly used metrics for reporting the
accuracy of biometric systems in the verification mode [1].
A similar evaluation procedure was used for the methods in

the literature that do not require a training phase. In these
cases, we split the database using the same -fold cross-
validation procedure, applied the method to the test subset, and
evaluated the accuracy based on the resulting feature vectors.

C. Parameter Tuning and Sensitivity Analysis
We experimentally tuned the values of the parameter , ,
, and by varying them in the range , where the upper

bound was chosen to avoid memory demands exceeding the
capabilities of the applied processing architecture, to select the
parameter values resulting in the best classification accuracy.
Specifically, we chose , , and .
For PalmNet-Gabor, the chosen values of the parameters
and were , and for PalmNet-GaborPCA,
values of and were chosen.
However, we believe that an experimental investigation with
an optimized (e.g., C/CUDA-based) implementation of the
approach could yield further insight.
We selected the values of the parameters , , , , , ,

and by considering the optimal values found in the literature.
Specifically, we chose since this is a commonly
used palmprint ROI size [27]; we selected ,

, and because these represent the optimal
values for a bank of fixed-scale Gabor filters [24]; and we
considered , , and based on the
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optimal values for adaptive multiscale Gabor filters [25]. We
experimentally tuned the values of and in the range
and chose the values that resulted in the greatest recognition
accuracy, namely, . Similarly, we tuned the values
of and and chose the best values of .
The experimental procedure also included a sensitivity anal-

ysis of the parameters, which was performed by introducing
variations of in the used values. In the worst case,
we observed a decrease of in the recognition accuracy,
demonstrating that the proposed approach can still be expected
to outperform the other methods in the literature. We also
tested variants of PalmNet-Gabor and PalmNet-GaborPCA in
which only fixed-scale Gabor filters are considered in the
Gabor-based filter tuning procedure, resulting in a decrease
of at most in the recognition accuracy. Finally, we
tested a variant of PalmNet-Gabor with convolutional layer
and binarization layer, resulting in a decrease of at most

in the recognition accuracy.

D. Filter Tuning
We visually examined the results of tuning the filters with

the proposed method by training the proposed PalmNet on the
considered databases. Fig. 6 shows the filters tuned using the
Gabor-based tuning procedure described in Section III-B2 and
the PCA-based tuning procedure described in Section III-B3.
From this figure, it is evident that the proposed method tunes
the filters differently for each database by adapting the scale
and orientation of the filters to the characteristics of the
training data.

E. Recognition Accuracy
We compared the recognition accuracies of the proposed

PalmNet-Gabor and PalmNet-GaborPCA against those of the
most recently reported methods in the literature. For the
comparisons with local-texture-descriptor-based methods, we
considered the CR-CompCode [6], LLDP [16], HOL [42],
LDP [50], and LBP [40] methods. For the comparisons with
DL-based methods, we considered PCANet [59] and the pre-
trained AlexNet, VGG-16, and VGG-19 CNNs [52]. We used
the pretrained CNNs as feature extractors. We configured the
methods using the parameters provided by their authors, when
available. When both Gabor-based and MFRAT preprocessing
were considered, we selected the Gabor-based version since it
was the more accurate version in the vast majority of cases.
Table VI lists the recognition accuracies of the two

CNNs designed based on the proposed method and those
of the other considered methods in the literature for the
identification mode, expressed in terms of the classification
accuracy. As shown, the proposed CNNs PalmNet-Gabor
and PalmNet-GaborPCA achieved the best accuracies on
all considered touchless palmprint databases. In particular,
PalmNet-GaborPCA achieved the highest classification accu-
racies among the considered methods.
Figure 7 shows the CMC curves, describing the identifica-

tion rate as a function of rank, for all considered databases.
The CMC curves confirm the superior accuracy of the pro-
posed PalmNet-Gabor and PalmNet-GaborPCA compared to
the methods in the literature.

TABLE VI
CLASSIFICATION ACCURACIES (%) OF THE PROPOSED CNNS COMPARED

WITH THOSE OF OTHER METHODS IN THE LITERATURE

Ref. Method Type Classification accuracy (%)
CASIA IITD REST Tongji

[40] LBP Text. descr.
[50] LDP Text. descr.
[42] HOL Text. descr.

[16]
LLDP Text. descr.
LLDP Text. descr.
LLDP Text. descr.

[6] CR-CompCode Text. descr.
[59] PCANet DL (CNN)

[52]
AlexNet DL (CNN)
VGG-16 DL (CNN)
VGG-19 DL (CNN)

- PalmNet-Gabor DL (CNN)
- PalmNet-GaborPCA DL (CNN)

Notes: Text. descr.: Local texture descriptor; DL: Deep learning;
CNN: Convolutional neural network.

TABLE VII
EER VALUES (%) OF THE PROPOSED CNNS COMPARED WITH THOSE OF

OTHER METHODS IN THE LITERATURE

Ref. Method Type EER (%)
CASIA IITD REST Tongji

[40] LBP Text. descr.
[50] LDP Text. descr.
[42] HOL Text. descr.

[16]
LLDP Text. descr.
LLDP Text. descr.
LLDP Text. descr.

[6] CR-CompCode Text. descr.
[59] PCANet DL (CNN)

[52]
AlexNet DL (CNN)
VGG-16 DL (CNN)
VGG-19 DL (CNN)

- PalmNet-Gabor DL (CNN)
- PalmNet-GaborPCA DL (CNN)

Notes: Text. descr.: Local texture descriptor; DL: Deep learning;
CNN: Convolutional neural network.

The proposed CNNs also exhibit uniform accuracy over all
the considered databases, whereas traditional methods based
on local texture descriptors show performance variations on
different databases. For example, methods based on texture
descriptors, while achieving high recognition accuracy on
most databases, perform poorly on the REST database, which
exhibits the greatest variations in hand position and orienta-
tion. By contrast, PalmNet-Gabor and PalmNet-GaborPCA are
able to adapt to the specific characteristics of all databases,
achieving a classification accuracy of in all cases.
Table VII lists the recognition accuracies of the proposed

CNNs and those of the other methods in the literature for
the verification mode, expressed in terms of the EER. As
shown, the proposed PalmNet-Gabor and PalmNet-GaborPCA
also achieved the best accuracies on the considered databases
in this case.
Figure 8 shows the ROC curves for all considered databases.

The curves illustrate the superior accuracies of the proposed
PalmNet-Gabor and PalmNet-GaborPCA on all considered
databases and for the majority of the false non-match rate
(FNMR) and false match rate (FMR) values.
In all experiments, the proposed CNNs PalmNet-Gabor

and PalmNet-GaborPCA achieved the best recognition accu-



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Examples of filters tuned with the proposed PalmNet method. First row: results of the Gabor-based tuning procedure for the (a) CASIA, (b) IITD,
(c) REST, and (d) Tongji databases (with both even- and odd-symmetric filters). Second row: results of the PCA-based tuning procedure for the (e) CASIA,
(f) IITD, (g) REST, and (h) Tongji databases. It is evident that the proposed method tunes the filters differently for each database.

(a) (b)

(c) (d)

Fig. 7. CMC curves for the considered databases: (a) CASIA, (b) IITD, (c) REST, and (d) Tongji. It is evident that the proposed PalmNet-Gabor and PalmNet-
GaborPCA outperform the other considered methods. In particular, PalmNet-Gabor and PalmNet-GaborPCA achieve the greatest performance improvements
on databases captured with less-constrained acquisition procedures and exhibiting large variations in hand position (e.g., the REST database).

racies among the considered methods. In particular, PalmNet-
GaborPCA demonstrated the best performance in the majority
of cases. However, PalmNet-Gabor showed only slightly lower
performance compared with PalmNet-GaborPCA, demonstrat-
ing the validity of the proposed Gabor-based filter tuning
procedure.
Regarding the accuracy of the proposed PalmNet, it has

been stated in the literature that high accuracy of a CNN often
comes at the price of limited explainability [77]. However, in
this work, we have attempted to propose a highly accurate yet
simple CNN that is intrinsically interpretable. The proposed
CNN has only two layers, it has no parameters learned through

backpropagation or gradient descent, and it uses Gabor filters
with a constrained shape. Its simplicity results in increased
interpretability with respect to other CNNs in the literature.
In fact, we believe that the higher accuracy of PalmNet
can be attributed to two main factors: i) the integration of
prior knowledge of the problem into the CNN and ii) the
combination of the advantages of CNNs and local texture
descriptors.
First, by integrating prior knowledge of the problem into the

CNN, our method achieves a high recognition accuracy with a
simple network with limited degrees of freedom, which can be
trained with a limited quantity of data. Indeed, Gabor filters



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

(a) (b)

(c) (d)

Fig. 8. ROC curves for the considered databases: (a) CASIA, (b) IITD, (c) REST, and (d) Tongji. It is evident that the proposed PalmNet-Gabor and PalmNet-
GaborPCA outperform the other considered methods. In particular, PalmNet-Gabor and PalmNet-GaborPCA achieve the greatest performance improvements
on databases captured with less-constrained acquisition procedures and exhibiting large variations in hand position (e.g., the REST database).

are currently used in state-of-the-art methods for palmprint
recognition due to their ability to enhance the distinctive line
patterns typical of palmprint samples. However, whereas the
current methods in the literature consider only fixed-scale
Gabor filters, whose parameters may not be optimal for each
database, in our method, we extend the use of Gabor filters to
consider the adaptively optimal set of multiscale filters that
best enhances the features of each database. This optimal
set is directly related to the orientation and thickness of the
palmprint lines in the considered database.
Second, by combining the advantages of CNNs and local

texture descriptors, the proposed method is endowed with
adaptability and a multilayer structure, which are advantages
typical of neural networks. In addition, the proposed method
outputs a feature vector computed for each local region of
an image, thus achieving robustness to local changes in
illumination and scale, which is a typical advantage of methods
based on local texture descriptors. The resulting feature vector
represents the extent to which each image region contains
palmprint lines with orientations and thicknesses matching the
optimal set of Gabor filters tuned to a specific database.

F. Computation Time and Feature Size
We implemented all of the methods using the MATLAB

R2018a prototyping environment and performed the tests
on a personal computer with an Intel Core i7-7800X CPU
@3.50 GHz, an NVIDIA Titan X Pascal GPU, 32 GB of
RAM, and 64-bit Windows 10. The implementations were not

TABLE VIII
AVERAGE COMPUTATION TIMES (IN SECONDS) FOR THE DIFFERENT STEPS

OF THE PROPOSED PALMNET-GABORPCA

Step Database
CASIA IITD REST Tongji

CNN training
Feature extraction
(all samples)
Classification and matching
(all samples)

Feature extraction (1 sample)
Matching (1 comparison)

optimized in terms of computational complexity. To evaluate
the computation times, we did not use parallel computing
strategies. To test the methods based on pretrained CNNs, we
used the publicly available CUDA-based implementations for
MATLAB.
The feature vector size for PalmNet-Gabor and PalmNet-

GaborPCA is computed as follows, similarly to other methods
in the literature using PCA-based filters [22], [59]:

(7)

where the value is obtained as the number of
nonoverlapping blocks with size that fit in
the input ROI image with size .
Table VIII shows the average computation times for the

different steps of the proposed PalmNet-GaborPCA as well
as the times needed to perform feature extraction for one
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sample and the matching of two samples (1 comparison),
averaged over all databases. From the table, it is evident that
with the considered architecture, the feature extraction and
matching steps for a single comparison require a total time
of for the proposed method.
Thus, with high probability, it should be possible to use a
trained PalmNet for the real-time recognition of individuals
in a biometric system working in the verification mode, even
when using a processing architecture with limited processing
power.
Moreover, we believe that the use of optimized (e.g.,

C/CUDA-based) implementations could enable significant re-
ductions in training time.

V. CONCLUSIONS

In this paper, we have proposed a novel method based on
two newly developed CNNs for touchless palmprint recogni-
tion. The proposed method uses a novel approach for applying
filters in a CNN based on Gabor responses and PCA and is
trained using an innovative unsupervised procedure that does
not require class labels, thus enabling the use of privacy-
preserving palmprint images not associated with the identities
of the corresponding individuals. The proposed CNNs are
designed to extract highly discriminative features specific to
palmprint samples and to adapt to databases captured using
different devices.
In all cases, the application of the proposed CNNs on

several touchless palmprint databases resulted in recognition
accuracies higher than those achieved with other methods in
the literature, demonstrating the validity of our approach for
high-accuracy palmprint recognition. Moreover, the proposed
CNNs exhibited more uniform accuracy results on hetero-
geneous databases compared with methods based on local
texture descriptors, which may perform poorly on databases
for which they were not designed. Specifically, we achieved a
classification accuracy of on all considered databases,
thus demonstrating the feasibility of also using the proposed
method on future databases captured using different devices
and acquisition procedures.
In this work, to demonstrate the validity of the proposed

method for extracting high-accuracy features, we evaluated
the accuracy achieved using simple classifiers and matching
algorithms based on the Euclidean distance, which do not
require training or have parameters to be tuned. However,
future works should consider different classifiers and other
distance measures.
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