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PAMPC: Perception-Aware Model Predictive Control for Quadrotors

Davide Falanga∗, Philipp Foehn∗, Peng Lu, and Davide Scaramuzza

Abstract— We present the first perception-aware model pre-
dictive control framework for quadrotors that unifies control
and planning with respect to action and perception objectives.
Our framework leverages numerical optimization to compute
trajectories that satisfy the system dynamics and require control
inputs within the limits of the platform. Simultaneously, it
optimizes perception objectives for robust and reliable sens-
ing by maximizing the visibility of a point of interest and
minimizing its velocity in the image plane. Considering both
perception and action objectives for motion planning and
control is challenging due to the possible conflicts arising from
their respective requirements. For example, for a quadrotor
to track a reference trajectory, it needs to rotate to align its
thrust with the direction of the desired acceleration. However,
the perception objective might require to minimize such rotation
to maximize the visibility of a point of interest. A model-based
optimization framework, able to consider both perception and
action objectives and couple them through the system dynamics,
is therefore necessary. Our perception-aware model predictive
control framework works in a receding-horizon fashion by
iteratively solving a non-linear optimization problem. It is
capable of running in real-time, fully onboard our lightweight,
small-scale quadrotor using a low-power ARM computer, to-
gether with a visual-inertial odometry pipeline. We validate our
approach in experiments demonstrating (I) the conflict between
perception and action objectives, and (II) improved behavior
in extremely challenging lighting conditions.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/9vaj829vE18

Code: https://github.com/uzh-rpg/rpg_mpc

I. INTRODUCTION

Thanks to the progresses in perception algorithms, the

availability of low-cost cameras, and the increased computa-

tional power of small-scale computers, vision-based percep-

tion has recently emerged as the de facto standard in onboard

sensing for micro aerial vehicles. This made it possible

to replicate some of the impressive quadrotor maneuvers

seen in the last decade [1], [2], [3], [4], which relied on

motion-capture systems, using only onboard sensing, such

as cameras and IMUs [5], [6], [7].

Cameras have a number of advantages over other sensors

in terms of weight, cost, size, power consumption and

field of view. However, vision-based perception has severe

limitations: it can be intermittent and its accuracy is strongly

affected by both the environment (e.g., texture distribution,

light conditions) and motion of the robot (e.g., motion

blur, camera pointing direction, distance from the scene).
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FLA program. The authors are with the Robotics and Perception Group,
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University of Zurich and ETH Zurich, Switzerland—http://rpg.ifi.
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Fig. 1: An example application of our PAMPC, where a

quadrotor is asked to fly at 3m/s around a region of interest

while keeping it visible in the field of view of its camera.

This means that one cannot always replace motion-capture

systems with onboard vision, since the motion of a camera

can negatively affect the quality of the estimation, posing

hard bounds on the agility of the robot. On the other hand,

perception can benefit from the robot motion if it is planned

considering the necessities and the limitations of onboard

vision. For example, to pass through a narrow gap while

localizing with respect to it using an onboard camera, it is

necessary to guarantee that the gap is visible at all times.

Similarly, to navigate through an unknown environment, it is

necessary to guarantee that the camera always points towards

texture-rich regions.

To fully leverage the agility of autonomous quadrotors, it

is necessary to create synergy between perception and action

by considering them jointly as a single problem.

A. Contributions

Model Predictive Control (MPC) has become increasingly

popular for quadrotor control [8], [9], [10] thanks to its capa-

bility of simultaneously dealing with different constraints and

objectives through optimization. In this work, we present an

MPC algorithm for quadrotors able to optimize both action

and perception objectives.

Our framework satisfies the robot dynamics and computes

feasible trajectories with respect to the input saturations.

Such trajectories are not constrained to specific time or space

parametrization (e.g., polynomials in time or splines), and

tightly couple perception and action. To do so, perception

objectives aimed at rendering vision-based estimation more

robust are taken into account in the optimization problem.

Such objectives are the visibility of a point of interest the

robot needs to maintain in the image, and the minimization

of the velocity of its projection onto the image plane. The

main challenge in this is to simultaneously cope with action

(e.g., dynamics, underactuation, saturations) and perception



objectives, due to the potential conflicts between them.

To solve this problem, we leverage numerical optimization

to compute trajectories that are optimal with respect to a

cost function considering both the dynamics of the robot

and the quality of perception. To fully exploit the agility

of a quadrotor, we incorporate perception objectives into

the optimization problem not as constraints, but rather as

components to be optimized. This results in a perception-

aware framework which is intrinsically tailored to agile nav-

igation, since the optimizer can trade off between perception

and action objectives (cf. Fig. 1, depicting fast circle flight

while adjusting the heading to look at a point of interest).

Furthermore, considering perception in the cost function

reduces the computation load of the model predictive control

pipeline, allowing it to run in real-time on a low-power

onboard computer. Our approach does not depend on the

task and can potentially provide benefits to a large variety

of applications, such as vision-based localization, target

tracking, visual servoing, and obstacle detection. We validate

our perception-aware model predictive control framework

in real-world experiments using a small-scale, lightweight

quadrotor platform.

B. Related Work

The aforementioned shift from offboard to onboard sens-

ing based on cameras resulted in an increased number of

works trying to connect perception and action.

In [11], the authors proposed a method to compute

minimum-time trajectories that take into account the limited

field of view of a camera to guarantee visibility of points

of interests. Such a method requires the trajectory to be

parametrized as a B-spline polynomial, constraining the kind

of motion the robot can perform. Also, perception is included

in the planning problem as hard constraint, posing an upper-

bound to the agility of the robot since such constraints

must be satisfied at all times. Furthermore, the velocity of

the projection of the points of interest in the image is not

taken into account. Finally, the algorithm was not suited

for real-time control of a quadrotor, and was only tested in

simulations..

In [12], the authors focused on combining visual servoing

with active Structure from Motion and proposed a solution

to modify the trajectory of a camera in order to increase the

quality of the reconstruction. In such a work, a trajectory for

the tracked features in the image plane was required, and the

null space of the visual servoing task was exploited in order

to render it possible for such feature to track the desired

trajectory. Furthermore, the authors did not consider the

underactuation of the robot, which can significantly lower the

performance of the overall task due to potentially conflicting

dynamics and perception objectives.

In [13] and [14], information gain was used to bridge

the gap between perception and action. In the first work,

the authors tackled the problem of selecting trajectories that

minimize the pose uncertainty by driving the robot toward

regions rich of texture. In the second work, a technique

to minimize the uncertainty of a dense 3D reconstruction

based on the scene appearance was proposed. In both works,

however, near-hover quadrotor flight was considered, and the

underactation of the platform was not taken into account.

In [15], a hybrid visual servoing technique for differen-

tially flat systems was presented. A polynomial parameteriza-

tion of the flat outputs of the system was required, and due to

the computational load required by the designed optimization

framework, an optimal trajectory was computed in advance

and never replanned. This did not allow coping with external

disturbances and unmodelled dynamics, which during the

execution of the trajectory can lead to behaviours different

from the expected one.

In [16] and [17], a real-time motion planning method for

aerial videography was presented. In these works, the main

goal was to optimize the viewpoint of a pan-tilt camera

carried by an aerial robot in order to improve the quality

of the video recordings. Both works were mainly targeted to

cinematography, therefore they considered objectives such as

the size of a target of interest and its visibility. Conversely,

we target robotic sensing and consider objectives aimed at

facilitating vision-based perception.

In [18], the authors proposed a two-step approach for

target-aware visual navigation. First, position-based visual

servoing was exploited to find a trajectory minimizing the

reprojection error of a landmark of interest. Then, a model

predictive control pipeline was used to track such a trajectory.

Conversely, we solve the trajectory optimization and tracking

within a single framework. Additionally, that work only

aimed at rendering the target visible, but did not take into

account that, due to the motion of the camera, it might not be

detectable because of motion blur. We cope with this problem

by considering in the optimization problem the velocity of

the projection of the point of interest in the image plane.

C. Structure of the Paper

The remainder of this paper is organized as follows. In

Sec. II we provide the general formulation of the problem.

In Sec. III we derive the model for the dynamics of the

projection of a 3D point into the image plane for the case of

a quadrotor equipped with a camera. In Sec. IV we present

our perception-aware optimization framework, describing the

objectives and the constraints it takes into account. In Sec. V

we validate our approach in different real-world experiments

showcasing the capability of our framework. In Sec. VI we

discuss our approach and provide additional insights and in

Sec. VII we draw the conclusions.

II. PROBLEM FORMULATION

For truly autonomous robot navigation, two components

are essential: (I) perception, both of the ego-motion and

of the surrounding environment; (II) action, meant as the

combination of motion planning and control algorithms. A

very wide literature is available for both of them. However,

they are rarely considered as a joint problem.

The need for coupled perception and action can be easily

explained. To guarantee safety, accurate and robust percep-

tion is necessary. Nevertheless, the quality of vision-based



perception is strongly affected by the motion of the camera.

On the one hand, it can degrade its performance by not

making it possible to extract sufficiently accurate information

from images. For example, lack of texture or blur due to

camera motion can lead to algorithm failure. On the other, the

quality of vision-based perception can improve significantly

if its limitations and requirements are considered, e.g. by

rendering highly-textured areas visible in the image and by

reducing motion blur. Therefore it is necessary to create

synergy between perception and action.

Let x and u be the state and input vectors of a robot,

respectively. Assume its dynamics to be described by a

set of differential equations ẋ = f (x,u). Furthermore, let

z be the state vector of the perception system (e.g., 3D

points’ projection onto the image plane), and σ a vector

of parameters characterizing it (e.g., the focal length of the

camera or its field of view). The perception state and the

robot state are coupled through the robot dynamics, namely

z = fp (x,u, σ). Given certain action objectives, we can

define an action cost La (x,u). Similarly, we can define a

cost Lp (z) for the perception objectives.

We can then formulate the coupling of perception and

action as an optimization problem:

min
u

∫ tf

t0

La (x,u) + Lp (z) dt

subject to r(x,u, z) = 0

h(x,u, z) ≤ 0,

(1)

where r(x,u, z) and h(x,u, z) represent equality and in-

equality constraints that the solution should satisfy for per-

ception, action, or both of them simultaneously.

III. METHODOLOGY

Any computer vision algorithm aimed at providing a robot

with the information necessary for navigation (e.g., pose

estimation, obstacle detection, etc) has two fundamental re-

quirements. First, the points of interest used by the algorithm

to provide the aforementioned information must be visible in

the image. For example, such points can be the landmarks

used for pose estimation by visual odometry algorithms, or

the points belonging to an object for obstacle detection.

If such points are not visible while the robot is moving,

there is no way the algorithm can cope with the absence of

information. Second, such points of interest must be clearly

recognizable in the image. Depending on the motion of the

camera and the distance from the scene, the projection of a

3D point onto an image can suffer from motion blur, making

it very complicated, if not impossible, to extract meaningful

information. Therefore, the motion of the camera should be

thoroughly planned to guarantee robust visual perception.

Based on the considerations above, in this work we con-

sider two perception objectives in our framework: (I) visibil-

ity of points of interest, and (II) minimization of the velocity

of their projection onto the image plane. In the following,

we study the relation between the motion of a quadrotor

equipped with an onboard camera and the projection onto the

image plane of a point in space. Without loss of generality,
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yB

zB

B

TWB

zC
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yC

TBC C

v
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Fig. 2: A schematics representing the world frame W ,

the body frame B and the camera frame C. The position

and orientation of B with respect to W is provided by

TWB . The constant rigid body transformation TBC provides

the extrinsics of the camera. A feature located at Wpf is

projected into the image plane onto a point of coordinates s.

s0 represents the principal point.

we consider the case of a single 3D point of interest. Our

goal is to couple perception and action into an optimization

framework by expressing the dynamics of its projection onto

the image plane as a function of the state and input vectors

of a quadrotor.

A. Nomenclature

In this work, we make use of a world frame W with

orthonormal basis {xW ,yW , zW }. The quadrotor frame B,

also referred to as the body frame, has orthonormal basis

{xB ,yB , zB}. Finally, we assume the robot to be equipped

with a camera, whose reference frame C has orthonormal

basis {xC ,yC , zC}. Fig. 2 provides a clear overview about

the reference frames.

Throughout this manuscript, we represent vectors as bold

quantities having a prefix, representing the frame in which

they are expressed, and a suffix, indicating the origin and

the end of such a vector. For example, the quantity WpWB

represents the position of the body frame B with respect

to the world frame W , expressed in the world frame. To

simplify the notation, if a vector has no prefix, we assume it

to be expressed in the first frame reported in the suffix (i.e.,

the frame where the vectors origin is).

We use quaternions to represent the orientation of a

rigid body. The time derivative of a quaternion q =
(qw, qx, qy, qz)

⊺
is given by q̇ = 1

2
Λ (ω) · q, where the skew-

symmetric matrix Λ (ω) of a vector ω = (ωx, ωy, ωz)
⊺

is

defined as:

Λ (ω) =









0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0









. (2)

Finally, we use the operator ⊙ to denote the multiplication

between a quaternion and a vector. More specifically, multi-

plying a vector v with the quaternion q means rotating v by

the rotation induced by q. By doing so, we obtain a vector



v′ = v ⊙ q = Qv where:

Q =





1− 2q2y − 2q2z 2(qxqy + qwqz) 2(qxqz − qwqy)
2(qxqy − qwqz) 1− 2q2x − 2q2z 2(qyqz + qwqx)
2(qxqz + qwqy) 2(qyqz − qwqx) 1− 2q2x − 2q2y



 .

B. Quadrotor Dynamics

Let pWB = (px, py, pz)
⊺

and qWB = (qw, qx, qy, qz)
⊺

be the position and the orientation of the body frame

with respect to the world frame W , expressed in

world frame, respectively (cf. Fig. 2). Additionally, let

vWB = (vx, vy, vz)
⊺

be the linear velocity of the body,

expressed in world frame, and ΩB = (ωx, ωy, ωz)
⊺

its an-

gular velocity, expressed in the body frame. Finally, let

c = (0, 0, c)
⊺

be the mass-normalized thrust vector, where

c = (f1 + f2 + f3 + f4) /m, fi is the thrust produced by the

i-th motor, and m is the mass of the vehicle. In this work,

we use the dynamical model of a quadrotor proposed in [3]:

ṗWB = vWB

v̇WB =W g + qWB ⊙ c

q̇WB =
1

2
Λ (ΩB) · qWB

(3)

where Wg = (0, 0,−g)
⊺

is the gravity vector, with g =
9.81m/s2. The state and the input vectors of the system are

x = [pWB , vWB , qWB ]
⊺

and u = [c,Ω⊺

B ]
⊺

, respectively.

C. Perception Objectives

Let Wpf = (W pfx,W pfy,W pfz) be the 3D position of

a point of interest (landmark) in the world frame W (cf.

Fig. 2). We assume the body to be equipped with a camera

having extrinsic parameters described by a constant rigid

body transformation TBC = [pBC , qBC ], where pBC and

qBC are the position and the orientation of C with respect

to B. The coordinates Cpf = (Cpfx,C pfy,C pfz)
⊺

of Wpf

in the camera frame C are given by:

Cpf =(qWB qBC)
−1

⊙

(Wpf − (qWB ⊙ pBC + pWB)) .
(4)

The point Cpf in camera frame is projected into the image

plane coordinates s = (u, v)
⊺

according to classical pinhole

camera model [19]:

u = fx
Cpfx

Cpfz
, v = fy

Cpfy

Cpfz
(5)

where fx, fy are the focal lengths for pixel rows and

columns, respectively.

To guarantee robust vision-based perception, the projec-

tion s of a point of interest Wpf should be as close as

possible to the center of the image for two reasons. First,

keeping its projection in the center of the image results

in the highest safety margins against external disturbances.

The second reason comes from the fact that the periphery

of the image is typically characterized by a non-negligible

distortion, especially for large field of view cameras. A

number of models for such distortion are available in the

literature, as well as techniques to estimate their parameters

to compensate the effects of the distortion. However, such

a compensation is never perfect and this can degrade the

accuracy of the estimates.

As previously mentioned, in addition to rendering the

point of interest visible in the image, we are interested in

reducing the velocity of its projection onto the image plane.

We assume the point of interest to be static, but similar

considerations apply to the case where such a point of

interest moves with respect to the world frame. To express

the projection velocity as a function of the quadrotor state

and input vectors, we can differentiate (5) with respect to

time:

u̇ = fx
C ṗfx Cpfz − Cpfx C ṗfz

Cp2fz
,

v̇ = fy
C ṗfy Cpfz − Cpfy C ṗfz

Cp2fz
.

(6)

Eq. (6) can be written in a compact form as:

ṡ =





u̇
v̇
0



 =







0 − fx

Cp2

fz

0
fy

Cp2

fz

0 0

0 0 0






(Cpf ×C ṗf ) . (7)

To compute the term C ṗf , we can differentiate (4) with

respect to time:

C ṗf = −
1

2
Λ (ΩC) Cpf −C vWC , (8)

where:

CvWC =(qWB qBC)
−1

⊙
(

1

2
Λ (ΩB) qWB ⊙ pBC + vWB

)

,

ΩC = q−1

BC ⊙ ΩB .

(9)

D. Action Objectives

For a quadrotor to execute a desired task (e.g., reach

a target position in space), a suitable trajectory has to be

planned. In this regard, for a quadrotor two objectives should

be considered.

The first comes from the bounded inputs available to the

system. The thrust each motor can produce has both an

upper and a lower bound, leading to a limited input vector

u. Therefore, denoting the subset of the allowed inputs as

U , the planned trajectory should be such that the condition

u(t) ∈ U ∀t can be satisfied.

The second objective to be considered comes from the

underactuated nature of a quadrotor. In the most common

configuration, all the rotors point in the same direction,

typically along the axis zB of the body. This means that

the robot can accelerate only in this direction. Therefore, to

move in the 3D space, it is necessary to exploit the system

dynamics (3) by coupling the translational and the rotational

motions of the robot to follow the desired trajectory.

E. Challenges

The perception (Sec. III-C) and the action (Sec. III-D)

objectives previously described are both necessary for vision-

based quadrotor navigation. Considering them simultane-

ously is challenging due to the possible conflict among them.



Indeed, for a quadrotor to track a reference trajectory, it

needs to rotate to align its thrust with the direction of the

desired acceleration. However, the perception objective might

require to minimize such rotation to maximize the visibility

of a point of interest. A model-based optimization frame-

work able to consider both perception and action objectives

and couple them through the system dynamics is therefore

necessary.

IV. MODEL PREDICTIVE CONTROL

Formulating coupled perception and action as an optimiza-

tion problem has the advantages of being able to satisfy the

underactuated system dynamics and actuator constraints (i.e.,

input boundaries) and to minimize the predicted costs along

a time horizon. In contrast, classical control schemes are

incapable of predicting costs and the corresponding trajectory

(e.g., PID controllers) and guaranteeing input boundaries

(PID, LQR).

The basic formulation of such an optimization is given

in (1), which in our case results in a non-linear program

with quadratic costs. This can then be approximated by

a sequential quadratic program (SQP) where the solution

of the non-linear program is iteratively approximated and

used as a model predictive control (MPC). To this regard,

for the MPC to be effective, the optimization scheme has

to run in real-time, at the desired control frequency. To

achieve this, we first discretize the system dynamics with

a time step dt for a time horizon th into xi ∀i ∈ [1, N ] and

ui ∀i ∈ [1, N − 1]. We define the time-varying state cost

matrix as Qx,i ∀i ∈ [1, N ]. Furthermore, the time-varying

perception and input cost matrices are defined as Qp,i and

Ri, ∀i ∈ [1, N − 1], respectively. Finally, let z = [s, ṡ] be

the perception function. It is important to recall that z is

a function of the quadrotor’s state and input variables, as

remarked in Eq. (4) to (9). The resulting cost function we

consider is:

L = x̄
⊺

NQx,N x̄N +

+

N−1
∑

i=1

(x̄⊺

i Qx,ix̄i + z̄
⊺

i Qp,iz̄i + ū
⊺

i Riūi) ,
(10)

where the values x̄, z̄, ū refer to the difference with respect to

the reference of each value. In our case, the reference value

for z is the null vector (i.e., center of the image and zero

velocity) and the reference for the states and inputs are given

by a target pose or a precomputed trajectory (that neglects

the perception objectives).

The inputs u, consisting of c and ΩB , as well as the

velocity vWB are limited by the constraints:

cmin ≤ c ≤ cmax, (11)

−Ωmax ≤ ΩB ≤ Ωmax, (12)

−vmax ≤ vWB ≤ vmax, (13)

where cmin, cmax,Ωmax, vmax ∈ R+.

To include the dynamics as in (3), we use multiple shoot-

ing as transcription method and a Runge-Kutta integration

Fig. 3: The quadrotor used for the experiments.

scheme. We refer the reader to [20] and [21] for more details

on the transcription of the dynamics for optimization.

We approximate the solution of the optimization problem

by executing one iteration at each control loop and use as

initial state the most recent available estimate xest provided

by a Visual-Inertial Odometry pipeline running onboard the

vehicle (see Sec. V-A). To achieve good approximations, it is

important to run these iterations significantly faster than the

discretization time of the problem and to keep the previous

solution as initialization trajectory of the next optimization.

Such a SQP scheme leads to a fast convergence towards the

exact solution, since the system is always close to the last

linearization, and the deviation of each state xi between two

iterations is very small.

V. EXPERIMENTS

In order to show the potential of our perception-aware

model predictive control, we ran our approach onboard a

small, vision-based, autonomous quadrotor. We refer the

reader to the attached video showcasing the experiments.

A. Experimental Setup

We used a small and lightweight quadrotor platform to

achieve high agility through high torque-to-inertia and thrust-

to-weight ratios, and improve simplicity and safety for the

user (cf. Fig 3). The quadrotor had a take-off weight of

420 g, a thrust-to-weight ratio of ∼ 2, and a motor-to-motor

diagonal of 220mm. We used a Qualcomm Snapdragon

Flight board with a quad-core ARM processor at up to

2.26GHz and 2GB of RAM, paired with a Qualcomm

Snapdragon Flight ESC. The board was equipped with an

Inertial Measurement Unit and a forward-looking, wide field-

of-view global-shutter camera tilted down by 45◦ for visual-

inertial odometry (VIO) using the Qualcomm mvSDK. It

ran ROS on Linux and our self-developed flight stack. We

setup the optimization with ACADO and used qpOASES

as solver. As discretization step, we chose dt = 0.1 s with

a time horizon of th = 2 s and ran one iteration step in

each control loop with a frequency of 100Hz. Therefore, the

iteration ran roughly 10× faster than the discretization time,

resulting in small deviations of the predicted state vector

between iterations and facilitating convergence. The code

developed in this work is publicly available as open-source

software.



Fig. 4: A sequence of the visibility experiment for the hover-to-hover flight experiment, with time progressing from left to

right. The quadrotor performs a maneuver to fly to a new reference pose, exploiting additional height to pitch less and keep

the point of interest (centroid of the vision features, marked as cyan circle) in the center of the image. The corresponding

footage is available in the accompanying video.
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(c) Reprojection for the darkness experiment.

Fig. 5: Reprojection of the point of interest in image plane, colored according to the depth with respect to the camera frame.

B. Experiment Description and Results

To prove the functionality and importance of our PAMPC,

we ran three experiments. In the first experiment, the con-

troller modified a circular trajectory to improve the visibility

of a point of interest. In the second experiment, the controller

handled hover-to-hover flight by deviating from a straight

line trajectory to keep the point of interest visible. In the third

experiment, it enabled vision-based flight in an extremely

challenging scenario. All the experiments were conducted

with onboard VIO and onboard computation of the PAMPC,

without any offline computation and without any motion-

capture system.

1) Circular Flight: We setup a small pile of boxes in the

middle of a room otherwise poor of texture. We did this

to force the VIO pipeline to use such boxes as features for

state estimation. The centroid of these features was set as

our point of interest. We provided the robot with a circular

reference trajectory around the aforementioned boxes and

asked it to fly along such a trajectory while maintaining the

boxes visible in the center of the image (cf. Fig. 1). We

evaluated the performance of our framework for speeds along

the circle from 1m/s to 3m/s.
The results of one run of the circular flight experiments

at 3m/s are depicted in Fig. 6. Despite the agility of the

maneuver, which requires large deviations from the hover

conditions, the robot is able to keep the point of interest

visible in the onboard image. Fig. 5a reports the reprojection

in the image plane for such point of interest.

2) Hover-To-Hover Flight: In this experiment within the

same scenario as in Sec. V-B.1, we showed the capabilities of

our framework for hover-to-hover flight. More specifically,

we requested a pose jump from a position p1 to p2 at

equal height (cf. Fig. 4). During that maneuver, the quadrotor

had to pitch down to reach the desired acceleration, but

controversially should pitch as little as possible to keep the

point of interest visible. A sequence of this experiment is

visible in Fig. 4.

One can easily see that, despite the start and end positions

are at the same height, the quadrotor not only pitches to go

towards the new reference in an horizontal motion, but also

accelerates upward (i.e., in positive z, cf. Fig. 7). This results

in a smaller pitch angle and a higher thrust to reach the

same y-acceleration, which is helpful for perception since it

brings the features towards the center of the frame due to the

higher altitude. If perception objectives were not considered,

the resulting trajectory would have not required any height

change, potentially leading to a poor visibility of the point

of interest. The full motion of the quadrotor is depicted

in Fig. 7, where the exploitation of the added height and

the orientation of the camera frame can be seen. Finally, in

Fig. 5b we show the reprojection in the image plane for the

point of interest.



Fig. 6: Executed trajectory with quadrotor heading while the

arrow points toward the point of interest (blue).

Fig. 7: Quadrotor path in hover-to-hover, looking towards the

centroid of tracked features (blue), with the camera frame

indicated by {xC , yC , zC}.

3) Darkness Scenario: This experiment was targeted to-

wards extremely challenging scenarios, such as flight in a

very dark environment, or otherwise difficult illumination

conditions (cf. Fig. 8). To demonstrate the performance in

such a scenario, we flew the vehicle several times in a dark

room with two illuminated spots. If the illuminated spots left

the field of view for a moment, the VIO pipeline would drift

quickly or even completely loose track, potentially leading

to a crash. Therefore, in such scenarios it was of immense

importance to keep the few available features always visible.

The flown path was given by a trajectory passing through

four waypoints forming a rectangle, but without any heading

reference. The quadrotor correctly adjusts its heading to

keep the illuminated spot in its field of view, because this is

the only source of trackable features. Fig. 9 visualizes a setup

with two spotlights and a cardboard wall in between, where

the quadrotor first focuses on the upper right illuminated

spot, and further down the track switches to the second

illuminated spot behind the wall. The reprojection of the

point of interest in the image plane is shown in Fig. 5c.

Fig. 8: A sequence of the darkness experiment with time

progressing from left to right. The quadrotor, highlighted by

a red circle in the figures in the first row, tracks a trajectory

and adjusts its heading to keep the point of interest (centroid

of the vision features) in field of view.

Fig. 9: Path of the quadrotor, looking towards light spots

(yellow), with camera direction (red triangle) and point-of-

interest direction (blue arrow).

VI. DISCUSSION

A. Choice of the optimizer

To implement the optimization problem, we chose to use

ACADO because of two main reasons: (I) it is capable

of transcribing system dynamics with single- and multiple-

shooting and integration schemes, as well as provide an

interface to a solver; (II) it generates c++ code, which then is

compiled directly on the executing platform, which allows it

to use accelerators and optimizations tailored to the platform.

B. Convexity of the problem

Our state and input space is a convex domain, hence also

any quadratic cost in those is convex. The perception costs

could be argued to be non-convex due to the division by

Cpfz in the projection (5). However, on examination of

the projection one will notice that the denominator Cpfz is

always positive, since the pinhole camera projection model

does not allow negative or zero depths. We can therefore

constrain Cpfz to be positive, rendering all possible solutions

in the positive halfplane R+ and therefore recover convexity.



C. Choice of point of interest

In our experiments, we used the centroid of detected

features as our point of interest. Assuming that all the

features are equally important, instead of optimizing for each

individually, we can summarize them as their centroid, which

results in the same optimal solution.

D. PAMPC Parameters

We chose a discretization of dt = 0.1 s and a time horizon

of th = 2 s. One could always argue that a longer time

horizon and a shorter discretization step are beneficial, but

they also increase the computation time by roughly O(N2)
with the number of discretization nodes N = th

dt
. In our

experience, we could not identify any significant gain from

smaller discretization steps nor from a longer time horizon.

E. Computation Time

Since the computation time must be low enough to execute

the optimization in a real time scheme, we show that it is

significantly lower than the one required by the controller

frequency of 100Hz. Indeed, our PAMPC requires on av-

erage 3.53ms. It is interesting to note that this is the case

for both an idle CPU and while running the full pipeline

with VIO and our full control pipeline. This is due to the

quad-core ARM CPU and the fact that our full pipeline

without the PAMPC takes up only 3 cores leaving one free

for the PAMPC. However, the standard deviation increases

significantly if the CPU is under load (from 0.155ms to

0.354ms), even though the maximal execution time always

stays below 5ms.

F. Drawbacks of a Two-Step Approach

An alternative approach to the problem tackled in this

work is to use the differential flatness as in [2] to plan a

translational trajectory connecting the start and end positions,

and subsequentially plan the yaw angle to point the camera

towards the point of interest. After planning, a suitable

controller could be used to track the desired reference

trajectory. Although possible, such a solution would lead

to sub-optimal results because of the following reasons: (I)

the roll and pitch angles of the quadrotor would be planned

without considering the visibility objective, therefore might

render the point of interest not visible in the image despite

the yaw control; (II) because of the split between planning

and control, even if the first would provide guarantees about

visibility, these could not be preserved during the control

stage due to deviations from the nominal trajectory; (III) it

would be challenging to provide guarantees about the respect

of the input saturations. Therefore, our proposed approach

considering perception, planning and control as a single

problem leads to superior results.

VII. CONCLUSIONS

In this work, we presented a perception-aware model

predictive control (PAMPC) algorithm for quadrotors able to

optimize both action and perception objectives. Our frame-

work computes trajectories that satisfy the system dynamics

and inputs limits of the platform. Additionally, it optimizes

perception objectives by maximizing the visibility of a point

of interest in the image and minimizing the velocity of

its projection into the image plane for robust and reliable

sensing. To fully exploit the agility of a quadrotor, we incor-

porated perception objectives into the optimization problem

not as constraints, but rather as components in the cost

function to be optimized. Our algorithm is able to run in

real-time on an onboard ARM processor, in parallel with

a VIO pipeline, and is used to directly control the robot.

We validated our approach in real-world experiments using

a small-scale, lightweight quadrotor platform.
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[16] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,

“Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization,” IEEE Robot. Autom.

Lett., vol. 2, no. 3, 2017.
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