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PAMPs and DAMPs as triggers for DIC
Takashi Ito1,2

Abstract

Thrombosis is generally considered harmful because it compromises the blood supply to organs. However, recent
studies have suggested that thrombosis under certain circumstances plays a major physiological role in early immune
defense against invading pathogens. This defensive role of thrombosis is now referred to as immunothrombosis.
Activated monocytes and neutrophils are two major inducers of immunothrombosis. Monocytes and neutrophils are
activated when they detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs). Detection of PAMPs and DAMPs triggers tissue factor expression on monocytes and neutrophil
extracellular trap (NET) release by neutrophils, promoting immunothrombosis. Although tissue factor-mediated
and NET-mediated immunothrombosis plays a role in early host defense against bacterial dissemination, uncontrolled
immunothrombosis may lead to disseminated intravascular coagulation.
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Introduction

Blood must be maintained in a fluid state under physiologic

conditions, but then change to a solid state after vascular

injury. This balancing act is accomplished by platelets, co-

agulation factors, anticoagulant factors, fibrinolytic factors,

endothelial cells, and possibly leukocytes, which all support

the dynamic equilibrium that provides proper blood

flow [1]. Disruption of this well-regulated balance leads

to pathologic conditions, such as thrombosis and bleeding.

Review

Basic mechanisms of hemostasis

Platelets and coagulation factors are two major players in

hemostasis. Platelets and coagulation factors circulate in

the blood and become activated at sites of vascular dam-

age. Platelets monitor vascular damage using cell-surface

sensors for subendothelial collagen and von Willebrand

factor bound to collagen. Engagement of the subendothe-

lial matrix by platelets results in a sequence of reactions

comprising platelet adhesion, activation, and aggregation,

leading to platelet thrombus formation [2]. Coagulation

factors, more specifically coagulation factor VII, search for

sites of vascular damage where subendothelial tissue factor

is exposed. Binding of coagulation factor VIIa to tissue fac-

tor results in a cascade of blood-clotting reactions, leading

to thrombin generation and subsequent fibrin deposition

at sites of vascular damage (Figure 1). Platelet thrombus

formation and fibrin deposition occur concomitantly as

thrombin activates platelets, and activated platelets expose

phosphatidylserine on their membrane surface to provide

a scaffold for blood-clotting enzyme complexes [3].

In the hemostatic system, thrombin generation is trig-

gered by the factor VIIa-tissue factor complex, an inducer

of the so-called extrinsic pathway. Once small amounts of

thrombin are generated in this pathway, thrombin plays a

crucial role in the amplification and propagation phases of

coagulation, the so-called intrinsic pathway, by activating

coagulation factors V, VIII, and XI (Figure 1) [1]. This

leads to a burst of additional thrombin generation, which

is essential for forming sufficient fibrin and sealing the

sites of vascular damage. Coagulation factor XIII then

crosslinks fibrin fibers, a fundamental process for sta-

bilizing fibrin clots. Contact activation of coagulation

factor XII, another important trigger of coagulation in la-

boratory tests, is not considered essential for hemostasis

because hereditary deficiencies in factor XII are not asso-

ciated with abnormal bleeding [4,5]. However, factor XII

might be involved in pathological thrombosis [6-8] and
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could be a unique drug target suitable for preventing

thrombosis without affecting normal hemostasis [5].

The propagation of a hemostatic plug can be termi-

nated when it reaches intact endothelium. Endothelial

cells express several anticoagulants, including thrombo-

modulin (TM), tissue factor pathway inhibitor (TFPI),

and heparan sulfate (Figure 2) [9,10]. Upon binding to

TM, thrombin loses its ability to activate platelets, fi-

brinogen, and coagulation factors V, VIII, XI, and XIII

[11]. Furthermore, the thrombin-TM complex activates

protein C, which in turn stops thrombin generation by

inactivating coagulation factors Va and VIIIa. Endothe-

lial cells also synthesize and display heparan sulfate

proteoglycans on their surface, which bind to TFPI and

antithrombin (AT), inhibiting the factor VIIa-tissue fac-

tor complex, factor Xa, and thrombin activity [10]. Thus,

endothelial cells play a role in regulating the spatial

localization of hemostatic plugs. Disruption of this well-

Figure 1 Basic mechanisms of coagulation. Coagulation factor VII searches for sites of vascular damage where subendothelial tissue factor is
exposed. Tissue factor is expressed on the surface of fibroblasts and pericytes in the subendothelial space. Binding of coagulation factor VIIa to
tissue factor results in a cascade of blood-clotting reactions, leading to thrombin generation (the initiation pathway). Once small amounts of
thrombin are generated in this pathway, thrombin plays a crucial role in the amplification and propagation phases of coagulation by activating
coagulation factors V, VIII, and XI (the amplification pathway). This leads to a burst of additional thrombin generation, which is essential for forming
sufficient fibrin and sealing the sites of vascular damage. Coagulation factor XIII then crosslinks fibrin fibers, a fundamental process for stabilizing fibrin
clots. Contact activation of coagulation factor XII, another important trigger of coagulation in laboratory tests, is not considered essential for hemostasis.

Figure 2 Anticoagulant properties of endothelial cells. Endothelial cells express several anticoagulants, including thrombomodulin (TM), tissue
factor pathway inhibitor (TFPI), and heparan sulfate. Upon binding to TM, thrombin loses its ability to activate platelets, fibrinogen, and coagulation
factors V, VIII, XI, and XIII. Furthermore, the thrombin-TM complex activates protein C, which in turn stops thrombin generation by inactivating
coagulation factors Va and VIIIa. Endothelial cells also synthesize and display heparan sulfate proteoglycans on their surface, which bind to TFPI
and antithrombin (AT), inhibiting the factor VIIa-tissue factor complex, factor Xa, and thrombin activity. IIa thrombin, PS protein S.
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regulated balance leads to thrombus formation inside

blood vessels (i.e., thrombosis) [1].

Immunothrombosis

Microvascular thrombosis is a frequent complication of

critical illness conditions, such as sepsis, trauma, and ma-

lignancy [12]. Thrombosis is generally considered harmful

because it compromises the blood supply to organs. How-

ever, recent studies have suggested that thrombosis under

certain circumstances plays a major physiological role in

immune defense [13,14]. This defensive role of thrombosis

is now referred to as immunothrombosis [13].

Thrombus formation and innate immunity are closely

linked [15]. Upon injury, multicellular organisms face two

major crises: bleeding and infection. To overcome these

crises, multicellular organisms have developed hemostatic

systems and immune systems. In horseshoe crabs, a single

hemocyte type circulates in their open circulatory system

and plays significant roles in both hemostasis and innate

immunity [16]. The hemocytes release procoagulant serine

protease zymogens when they detect lipopolysaccharide

(LPS) on their surface. The activation of these zymogens

triggers the coagulation cascade, which ultimately converts

coagulogen into insoluble coagulin gels [17]. Coagulin

clots are important not only for sealing injured sites but

also for trapping invading pathogens and supporting anti-

microbial defense. Thus, the hemocytes of horseshoe crabs

can detect and respond sensitively to LPS, maintaining

hemostasis and host defense against invading pathogens.

Horseshoe crab hemocytes are now used for laboratory

measurements of endotoxins.

Coagulation systems in mammals also play important

roles in immune defense. Fibrinogen-deficient mice display

impaired cytokine production, suppressed neutrophil re-

cruitment, increased bacterial burden, and increased mor-

tality after bacterial inoculation [18,19]. Furthermore, mice

pretreated with anticoagulants, such as coumadin or hiru-

din, also display increased bacterial burden and mortality

following bacterial inoculation [18,20]. These phenotypes

indicate protective roles of coagulation systems during

early host defense against bacterial dissemination. In

humans, coagulation systems are also activated during

infection [21]. However, it remains to be determined

whether anticoagulant therapy improves or worsens the

clinical outcomes of patients with infectious diseases.

Platelets have important roles in fighting infections.

Upon bacterial infection, platelets rapidly accumulate on

the surface of bacteria caught by Kupffer cells [22]. The

platelet-mediated encasement of bacteria restricts their

escape from Kupffer cells. This event precedes leukocyte

recruitment and contributes to early host defense against

infection in mice. Platelets are able to release antimicrobial

molecules and proinflammatory mediators, which may

further support host defense against infection [23]. In

humans, thrombocytopenia is increasingly recognized as

an independent risk factor for serious infections [23].

Furthermore, antiplatelet therapy may be associated with

increased incidence of community-acquired pneumonia

[24], although it may also be associated with better out-

comes in patients with severe infections [25,26]. These

observations suggest that platelets may be important in

early host defense against invading pathogens before in-

fectious diseases develop but may be deleterious if in-

fections progress to severe forms with organ failure.

To date, four mechanistic models have been proposed for

how immunothrombosis provides protection against invad-

ing pathogens (Figure 3) [13]. First, immunothrombosis

limits microbial dissemination by retaining microbes within

thrombi. In this regard, coagulation factor XIII crosslinks

bacteria to fibrin fibers, leading to immobilization and kill-

ing of bacteria inside the clot [27]. Second, thrombi form

protective barricades inside and/or around blood vessels

that limit microbial movement in and out of the vessels

[20]. Third, fibrin, fibrinogen, and fibrin/fibrinogen deg-

radation products promote recruitment and activation of

leukocytes, such as neutrophils and macrophages, coord-

inating cellular immune responses to pathogens at sites of

infection [28]. Fourth, intravascular thrombi yield a dis-

tinct compartment where antimicrobial peptides are con-

centrated and have increased opportunities to come into

contact with pathogens. Antimicrobial peptides can be

released not only by leukocytes but also by platelets

and coagulation systems during the process of immu-

nothrombosis [23,29].

Triggers for immunothrombosis

What are the triggers for immunothrombosis? During

the course of infections, platelets and coagulation factors

can become activated even in the absence of contact with

subendothelial collagen and tissue factor. It is now widely

believed that instead of subendothelial collagen and tissue

factor, neutrophils and monocytes could serve as the trig-

gers for immunothrombosis (Figure 4) [13].

Monocytes are a potential source of tissue factor in

circulating blood [30]. In contrast to subendothelial tissue

factor constitutively expressed on fibroblasts and pericytes,

monocyte-associated tissue factor expression is normally

very low and increases in response to pathogen stimuli

[31]. Genetic reduction of tissue factor expression on

leukocytes reduces LPS-induced thrombin generation

[32,33], suggesting that tissue factor on leukocytes acti-

vates coagulation in response to pathogen stimuli. Fur-

thermore, low tissue factor expression results in bacterial

dissemination and poor outcomes following bacterial

inoculation [18]. These findings indicate that monocyte-

associated tissue factor is an important inducer of

immunothrombosis.
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Neutrophils and neutrophil extracellular traps (NETs)

are other inducers of immunothrombosis [13]. In response

to pathogen stimuli, neutrophils initiate a program involv-

ing rearrangement of the nuclear and granular architecture,

leading to extracellular release of NETs. NETs are com-

posed of web-like structures of DNA and antimicrobial

proteins such as histones, neutrophil elastase, and myelo-

peroxidase, and have the ability to entrap and kill microbes

[34,35]. NETs are also able to activate coagulation fac-

tor XII [8], inactivate anticoagulant TFPI [20], and pro-

vide a scaffold for platelet binding and aggregation [36],

all of which promote thrombus formation [37]. Block-

ade of NET activity by DNase or antibodies against

DNA-histone complexes results in decreased thrombus

formation [20,38,39] and increased microbial dissemination

[20,40-42], indicating that NETs play a critical role in

immunothrombosis.

PAMPs and DAMPs

As mentioned above, activated monocytes and neutro-

phils are two major inducers of immunothrombosis.

Therefore, the next question is what activates monocytes

and neutrophils to induce immunothrombosis?

Pathogen-associated molecular patterns (PAMPs) and

damage-associated molecular patterns (DAMPs) might

be responsible.

The adaptive immune system composed of T and B

lymphocytes monitors non-self antigens using antigen-

specific receptors. Self-reactive lymphocytes are deleted

early in life, and residual lymphocytes establish a surveil-

lance system for non-self antigens. Although this system

is highly specific and effective for non-self antigen elimin-

ation, it is not perfect because immune responses against

harmless non-self components, such as fetuses or food-

stuffs, can be deleterious and should be avoided [43]. Innate

immune cells, including monocytes and neutrophils, em-

ploy a different surveillance system. They monitor common

molecular patterns of microbes (PAMPs) and/or molecules

from damaged cells of host origin (DAMPs) using pattern

recognition receptors (PRRs) and only activate the adaptive

immune system if they detect PAMPs and/or DAMPs.

Thus, the innate and adaptive immune systems develop a

mutually complementary relationship, and the overall im-

mune system constructs a surveillance system for infec-

tious non-self and/or damaging non-self antigens [43,44].

PAMPs, comprising molecular structures unique to

microbes, are subject to innate immune monitoring by

the host. For example, cell wall components, such as

LPS and β-glucan, or flagellar components, such as

flagellin, are recognized as PAMPs, and PAMP detec-

tion by PRRs triggers proinflammatory and antimicrobial

responses in innate immune cells [45]. PAMP detection

Figure 3 Four mechanistic models explaining how immunothrombosis provides protection against invading pathogens. (1) Immunothrombosis
limits microbial dissemination by containing microbes within thrombi. (2) Thrombi form protective barricades inside and/or around blood vessels that limit
microbial movement in and out of the vessels. (3) Fibrin, fibrinogen, and fibrin/fibrinogen degradation products promote recruitment and activation of
leukocytes, such as neutrophils and macrophages, coordinating cellular immune responses to pathogens at sites of infection. (4) Intravascular thrombi yield
a distinct compartment where antimicrobial peptides are concentrated and have increased opportunities to come into contact with pathogens.
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also triggers tissue factor expression on monocytes

[30,33] and NET release by neutrophils [38], promoting

immunothrombosis.

DAMPs are endogenous molecules that are normally

found inside cells, unless released by damage. Under nor-

mal conditions, DAMPs are hidden from recognition by

innate immune cells. However, under conditions of cellular

stress or injury, DAMPs can be released into the extracel-

lular space from damaged cells, activating innate immune

cells [46]. Prototypical DAMPs include nuclear proteins

such as high mobility group box 1 (HMGB1) [47,48] and

histones [49], purine metabolites such as ATP [50,51] and

uric acid [52,53], and mitochondrial components such as

formyl peptides and mitochondrial DNA [54]. Detection

of these DAMPs by PRRs, such as Toll-like receptors and

inflammasomes, triggers inflammation, which is important

for eradication of invading pathogens, clearance of dead

cells, and regeneration of damaged tissue [55]. DAMPs

also trigger intravascular thrombus formation [50], pos-

sibly by inducing tissue factor expression on monocytes

[56], elevating tissue factor procoagulant activity [57,58],

and promoting platelet aggregation [59].

Immunothrombosis beyond control

Although immunothrombosis might be important in early

host defense against bacterial dissemination, uncontrolled

immunothrombosis might be detrimental to the host.

Disseminated intravascular coagulation (DIC) occurs in

25%–50% of patients with sepsis and is associated with

poor outcomes [12,60]. DIC is characterized by widespread

microvascular thrombosis with exhaustion of coagulation

factors and platelets [61]. Monocyte-associated tissue

factor and neutrophil-derived NETs are predisposing

factors for DIC [20,32,38,40,62], indicating that DIC

might be an advanced stage of immunothrombosis wherein

the immune system is no longer able to restrict PAMP/

DAMP spreading and immunothrombosis becomes over-

whelmed [13].

As mentioned above, tissue factor-induced coagulation

is important for preventing bacterial dissemination [18].

However, excessive coagulopathy can be detrimental [63],

and pharmacological inhibition of tissue factor or genetic

reduction of tissue factor expression often rescues animals

from sepsis-associated lethal coagulopathy [32,33,62]. Simi-

larly, elimination of NETs can decrease organ damage

[38,40], although NETs are important for preventing

bacterial dissemination [40-42]. These findings support

the concept that immunothrombosis can be detrimental

if it becomes overwhelmed.

The same is true for DAMPs. Although DAMPs have

beneficial roles in immunity and tissue repair [44,64], ex-

cessive DAMPs can be detrimental. Serum and plasma

HMGB1 levels are elevated in patients with sepsis and/or

DIC [65,66] and are correlated with DIC scores.

Figure 4 Triggers for immunothrombosis. Detection of PAMPs and DAMPs triggers NET release by neutrophils and tissue factor expression on
monocytes, promoting immunothrombosis. NETs are able to activate coagulation factor XII, inactivate anticoagulant TFPI, and provide a scaffold
for platelet binding and aggregation, all of which promote thrombus formation. A part of monocyte-associated tissue factor is released in the
form of microparticles and delivered into developing thrombi.
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Extracellular HMGB1 stimulates tissue factor expres-

sion on monocytes, inhibits protein C activation, and

promotes microvascular thrombosis development [56].

Antibodies or antagonists capable of neutralizing HMGB1

reduce organ damage and improve survival of septic mice

[65,67,68], indicating that excessive HMGB1 circulating in

the blood is detrimental. Plasma histone levels are also ele-

vated in patients with sepsis and DIC [69,70]. Extracellular

histones trigger platelet aggregation, fibrin deposition,

thrombotic occlusion of microvessels, and exhaustion of

coagulation factors and platelets [70]. Extracellular

cell-free DNA (cfDNA) also acts as a DAMP [71]. Plasma

cfDNA levels are elevated in patients with severe sepsis, es-

pecially in non-survivors and have better prognostic utility

than Acute Physiology and Chronic Health Evaluation

(APACHE) II scores, Multiple Organ Failure Assessment

(SOFA) scores, and other biomarkers [72]. The majority of

plasma cfDNA is derived from the host [72,73], although

some originates from bacteria, fungi, and viruses. cfDNA is

the major structural component of NETs, and cfDNA/

NETs can promote thrombin generation, in part, through

activation of coagulation factor XII [39,74]. Depletion of

cfDNA/NETs by DNase treatment impedes early immune

responses [75], suggesting that cfDNA-mediated immuno-

thrombosis might be important in early host defense

against bacterial dissemination.

In septic conditions, the procoagulant-anticoagulant

balance becomes disturbed. While tissue factor- and NET-

associated procoagulant activity is increased during sepsis,

anticoagulant proteins, such as TM, protein C, and AT,

can be severely compromised [60,76-78]. Furthermore,

fibrinolysis is attenuated in septic conditions, in part

through increased plasminogen activator inhibitor type-1

(PAI-1) release from endothelial cells [60]. Thus, disturb-

ance of the procoagulant-anticoagulant balance, with

increases in procoagulant tissue factor and NETs and

decreases in anticoagulants and fibrinolytic capacity, is

the key feature of sepsis-associated DIC.

Therapeutic options for DIC

The cornerstone for managing DIC remains the manage-

ment of the underlying causes, such as sepsis, in most

Western countries [61]. Accordingly, there is no mention

of DIC in the Surviving Sepsis Campaign guidelines, com-

prising international guidelines for management of severe

sepsis and septic shock [79]. Consequently, anticoagulant

drugs might be used for the treatment of sepsis, but not

for DIC itself in those countries.

Activated protein C (APC) is a natural anticoagulant that

can dampen thrombin generation by inactivating coagula-

tion factors Va and VIIIa (Figure 2). APC also exerts cyto-

protective effects, in part through activation of endothelial

cell protease-activated receptor 1 [80]. Drotrecogin alfa

(activated), a recombinant human APC (rhAPC), used to

be the only approved drug associated with significantly im-

proved survival of patients with severe sepsis, based on a

large-scale, randomized, double-blind, placebo-controlled,

multicenter trial (PROWESS study) [81]. However, the ini-

tial success was not replicated in subsequent trials of dro-

trecogin alfa (activated) in patients with severe sepsis and

low risk of death [82], children with severe sepsis [83], and

patients with septic shock [84], and this drug has now been

withdrawn from the market [85]. Possible reasons for this

failure include the increased risk of serious bleeding in the

rhAPC group and lower placebo mortality rates compared

with the original PROWESS study, making it difficult to

demonstrate beneficial effects of rhAPC.

TM is an anticoagulant cofactor that converts throm-

bin into an APC generator (Figure 2). Because TM is es-

sential for preventing intravascular coagulation [86] and

its expression is compromised during sepsis [76], substi-

tution with recombinant human soluble TM (rhsTM) is

a promising treatment for patients with sepsis and DIC.

Although the anticoagulant action of TM is mainly medi-

ated by APC, rhsTM treatment may have some advantages

over rhAPC. First, rhsTM may have less risk of bleeding

complications than rhAPC because it is a cofactor and

does not act as an anticoagulant when no thrombin exists

[87]. Second, the APC-independent actions of rhsTM

might confer a benefit. These actions include sequestra-

tion of PAMPs [88], DAMPs [68,70,89], and comple-

ments [90] through the lectin-like domain of rhsTM [91].

In a randomized, double-blind, parallel-group trial to evalu-

ate DIC resolution rates, rhsTM was significantly superior

to heparin for DIC improvement [92]. The 28-day mortality

rates were assessed as a secondary endpoint in the study

and were 28.0% for the rhsTM group and 34.6% for the

heparin group (difference: −6.6%; 95% CI: −24.6 to 11.3) in

patients with DIC and infection. Thus, rhsTM has been

approved in Japan for treatment of DIC, although fur-

ther studies are needed to confirm that rhsTM improves

clinical outcomes in patients with sepsis-associated DIC.

Post-marketing retrospective observational studies sug-

gested that rhsTM therapy might be associated with better

outcomes [93-95], and an international, multicenter, ran-

domized, double-blind, placebo-controlled, phase 3 clinical

trial for rhsTM is now in progress. Severe sepsis patients

with coagulopathy are scheduled to be evaluated in this

trial, on the grounds that mortality rates of sepsis patients

without organ dysfunction are relatively low and it is thus

difficult to evaluate treatment benefits on mortality in these

patients, and that patients with coagulopathy might gain

greater benefits from anticoagulant therapy [96].

AT is the most abundant anticoagulant protein circu-

lating in the blood. AT is rapidly depleted in the early

phases of sepsis through decreased synthesis, increased de-

struction, and enhanced clearance by thrombin-AT com-

plex (TAT) formation [77,78]. AT has anti-inflammatory
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and anticoagulant properties. Heparin enhances the

anticoagulant activity of AT but may diminish anti-

inflammatory effects of AT [97]. The effects of high-dose

AT treatment in patients with severe sepsis were inves-

tigated in the KyberSept trial, a large-scale, randomized,

double-blind, placebo-controlled, phase 3 clinical trial

[98]. However, it showed that high-dose AT had no effect

on 28-day all-cause mortality and was associated with in-

creased risk of hemorrhage when administered with

heparin. There is some evidence to suggest treatment ben-

efits of AT in subgroups of patients not receiving con-

comitant heparin and complicated with DIC [98-100]. The

efficacy and safety of AT need to be confirmed in further

studies.

Conclusions

Immunothrombosis plays an important role in early im-

mune defense against invading pathogens. DIC is consid-

ered to be an advanced stage of immunothrombosis, where

the immune system is no longer able to restrict PAMP/

DAMP spreading and immunothrombosis becomes over-

whelmed. In this stage, thrombosis is detrimental because

it causes multiple organ failure. Although anticoagulant

drugs, such as APC, TM, and AT, are promising options

for treatment of sepsis-associated DIC, none of them have

been shown to improve the outcomes of patients with

sepsis. The key to success may be the selection of proper

patients, proper timing, and proper dosages.
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