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Abstract This article proposes a novel online portfolio selection strategy named “Passive

Aggressive Mean Reversion” (PAMR). Unlike traditional trend following approaches, the

proposed approach relies upon the mean reversion relation of financial markets. Equipped

with online passive aggressive learning technique from machine learning, the proposed port-

folio selection strategy can effectively exploit the mean reversion property of markets. By

analyzing PAMR’s update scheme, we find that it nicely trades off between portfolio return

and volatility risk and reflects the mean reversion trading principle. We also present several

variants of PAMR algorithm, including a mixture algorithm which mixes PAMR and other

strategies. We conduct extensive numerical experiments to evaluate the empirical perfor-

mance of the proposed algorithms on various real datasets. The encouraging results show

that in most cases the proposed PAMR strategy outperforms all benchmarks and almost all

state-of-the-art portfolio selection strategies under various performance metrics. In addi-

tion to its superior performance, the proposed PAMR runs extremely fast and thus is very

suitable for real-life online trading applications. The experimental testbed including source

codes and data sets is available at http://www.cais.ntu.edu.sg/~chhoi/PAMR/.
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1 Introduction

Portfolio Selection (PS) is a practical financial engineering problem that requires determin-

ing a strategy of investing wealth among a set of assets in order to achieve certain objectives,

such as maximizing cumulative wealth or risk-adjusted return, in the long run. In this article,

we investigate sequential portfolio selection (also termed online portfolio selection) strate-

gies, which sequentially determine portfolios based on publicly available information.

Traditionally in finance, portfolios are often selected according to mean-variance the-

ory (Markowitz 1952, 1959) or its variants, to trade off between return and risk. In recent

years, this problem has also been actively studied from a learning to select portfolio per-

spective, with roots in the fields of machine learning, data mining, information theory and

statistics. Rather than trading with a single stock using computational intelligence tech-

niques, learning to select portfolio approach focuses on a portfolio, which consists of mul-

tiple assets/stocks. Several approaches for online portfolio selection, often characterized by

machine learning formulations and effective optimization solutions, have been proposed in

literature (Kelly 1956; Breiman 1961; Cover 1991; Ordentlich and Cover 1996; Helmbold

et al. 1996; Borodin and El-Yaniv 1998; Borodin et al. 2000, 2004; Stoltz and Lugosi 2005;

Hazan 2006; Györfi et al. 2006; Blum and Mansour 2007; Levina and Shafer 2008;

Györfi et al. 2008). Despite being studied extensively, most approaches are limited in some

aspects or the other.

Our goal of this work is to investigate a new online portfolio selection strategy that

employs online learning techniques to exploit the financial markets. Some existing strate-

gies adopt the trend following approach, that is, they assume that price relative will follow

its historical trading days. However, this philosophy fails when price relatives do not go

in any particular direction, but rather actively move within a range. So in this study, we

exploit another well-known principle in finance, viz., mean reversion (Jegadeesh 1990),

through an online machine learning framework. To this end, we propose a novel portfo-

lio selection strategy named “Passive Aggressive Mean Reversion” (PAMR), which ex-

ploits the mean reversion property of financial markets by online passive aggressive learn-

ing (Crammer et al. 2006). PAMR’s key idea is to formulate a new loss function that can

effectively exploit the mean reversion property, and then adopt passive aggressive online

learning to search for optimal portfolio among the asset pool to maximize the cumulative

return.

Under different scenarios, the proposed PAMR strategy either passively keeps last port-

folio or aggressively approaches a new portfolio by following the mean reversion principle.

By solving three well formulated optimization problems, we arrive at three simple portfolio

update rules. It is interesting to find that the final portfolio update scheme reaches certain

trade-offs between portfolio return and volatility risk, and explicitly reflects the mean re-

version trading rule. Moreover, we propose a mixture algorithm, which mixes PAMR and

other strategies, and show that the mixture can be universal if one universal strategy is in-

cluded. The key advantages of PAMR are its highly competitive performance and fairly

attractive computation time efficiency. Our extensive numerical experiments on various real

datasets show that in most cases the proposed PAMR strategy is quite performance efficient

in comparison to a number of state-of-the-art portfolio selection strategies under a variety of

performance metrics. At the same time, the proposed strategy costs linear time with respect

to the product of the number of stocks and trading days, and its computational time in back

tests is orders of magnitude less than its competitors, showing its applicability to real-world

large scale online applications.
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As a summary, our contributions in this article include:

1. We propose a new algorithm for online portfolio selection, named “Passive Aggressive

Mean Reversion” (PAMR). To the best of our knowledge, it is the first portfolio selection

strategy that exploits both the mean reversion property in finance and the powerful online

passive aggressive learning technique in machine learning.

2. We propose a mixture algorithm to mix the proposed PAMR algorithms and other uni-

versal strategies, resulting in a theoretically guaranteed universal mixture strategy.

3. We analyze the final portfolio update scheme of PAMR and show that it is essentially

related to certain trade-offs between portfolio return and volatility risk.

4. We conduct an extensive set of numerical experiments on a number of up-to-date datasets

from various markets. The results show that in most cases the proposed PAMR strategy

not only outperforms the benchmarks (including market index, best stock and challeng-

ing best constant rebalanced portfolio (Cover 1991) in hindsight), but also outperforms

various state-of-the-art strategies under various performance metrics tested.

5. We also extend the proposed strategy to handle some practical issues for a real-life portfo-

lio selection task, viz., transaction cost and margin buying, and show its practical viability

through the extensive empirical study.

6. We show that the time complexity of the proposed algorithm is linear with respect to the

number of stocks per trading day, and its empirical computational time in the back tests

is quite competitive compared with the state of the arts, indicating the proposed strategy

is suitable for online large-scale real applications.

The rest of the article is organized as follows. Section 2 formally states online portfo-

lio selection problem. Section 3 reviews existing state-of-the-art approaches tackling this

problem, and highlights their limitations. Section 4 presents our proposed PAMR strategy

and analyzes the algorithm. Section 5 validates the effectiveness of PAMR by extensive em-

pirical studies on historical financial markets. Finally, Sect. 6 summarizes this article and

indicates future directions.

2 Problem setting

Let us consider a financial market with m assets, over which we wish to invest. The changes

of asset prices for n trading periods are represented by a sequence of non-negative, non-zero

price relative vectors x1, . . . ,xn ∈ R
m
+. Let us use xn to denote such a sequence of vectors.

The ith component of the t th vector xt i denotes the ratio of closing price to last closing price

of the ith asset on the t th trading day, thus an investment in asset i on the t th trading day

increases by a factor of xt i .

An investment in the market is specified by a portfolio vector bt = (bt1, . . . , btm), where

bt i represents the proportion of wealth invested in the ith asset. Typically, we assume portfo-

lio is self-financed and no margin/short is allowed, therefore each entry of a portfolio is non-

negative and adds up to one, that is, bt ∈ �m, where �m = {b : b ∈ R
m
+,

∑m

i=1 bi = 1}. The

investment procedure is represented by a portfolio strategy, that is, a sequence of mappings

b1 = ( 1
m
, . . . , 1

m
),bt : R

m(t−1)
+ → �m, t = 2,3, . . ., where bt = bt (x1, . . . ,xt−1) is the port-

folio used on the t th trading period given past market price relatives xt−1 = {x1, . . . ,xt−1}.
Let us denote by bn the portfolio strategy for n trading periods.

For the t th trading day, an investment according to portfolio bt results in a portfolio daily

return st , that is, the wealth increases by a factor of st = b⊤
t xt =

∑m

i=1 bt ixt i . Since we use

price relative, the investment results in multiplicative cumulative return. Thus, after n trading
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Initialize S0 = 1,b0 =
(

1
m
, . . . , 1

m

)

for each trading day t = 1,2, . . . , n do

(1) Portfolio manager learns the portfolio bt based on historical information

(bt−1,xt−1)

(2) Market reveals the market price relative xt

(3) Portfolio incurs a portfolio daily return st = b⊤
t xt

end for

Fig. 1 Portfolio selection as a sequential decision problem

days, the investment according to a portfolio strategy bn results in portfolio cumulative

wealth Sn, which is increased by a factor of
∏n

t=1 b⊤
t xt , that is,

Sn

(

bn,xn
)

= S0

n
∏

t=1

b⊤
t xt ,

where S0 denotes the initial wealth, and is set to $1 in this article for convenience.

Finally, we formulate the online portfolio selection problem as a sequential decision

problem. The portfolio manager is a decision maker whose goal is to make a portfolio

strategy on financial markets to satisfy certain requirements. In this study, his target is to

maximize the portfolio cumulative wealth. He computes his portfolios in a sequential fash-

ion. On each trading day t , the portfolio manager has access to all previous sequences of

price relative vectors xt−1 = {x1, . . . ,xt−1}, and previous sequences of portfolio vectors

bt−1 = {b1, . . . ,bt−1}. On the basis of these historical information, the portfolio manager

computes a new portfolio vector bt for coming price relative vector xt . Note that without

historical information, the initial portfolio is set to uniform. The resulting portfolio is eval-

uated by its portfolio daily return. This procedure is repeated until the end of the trading

periods, and the portfolio is finally evaluated according to the portfolio cumulative wealth

achieved. Figure 1 models the portfolio selection problem as a sequential decision problem.

In the above portfolio selection model, we make several general assumptions:

1. Transaction cost: we assume no transaction cost or taxes exists in this portfolio selection

model;

2. Market liquidity: we assume that one can buy and sell required quantities at last closing

price of any given trading period;

3. Impact cost: we assume that market behavior is not affected by a portfolio selection

strategy in our study.

3 Related work

In this section, we review some popular portfolio selection approaches, and some machine

learning and trading philosophies that inspire the proposed approach.

3.1 Benchmark approaches

The most common baseline is Buy-And-Hold (BAH) strategy, that is, one invests his/her

wealth among a pool of assets with an initial portfolio and holds the portfolio all the time.
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The BAH strategy with a uniform initial portfolio is referred to as uniform BAH strategy,

which is adopted as market strategy producing the market index in our study. Contrary to

the static BAH strategy, active trading strategies usually change portfolios regularly dur-

ing the entire trading periods. A classical active strategy is Constant Rebalanced Portfolios

(CRP) (Cover and Gluss 1986), which keeps a fixed fraction of a investor’s wealth in each

underlying asset every trading day. The best possible CRP strategy is often called Best CRP

(BCRP), which apparently is only a hindsight strategy. The CRP strategy can take advan-

tage of market fluctuations for active trading, and its underlying idea is based on the mean

reversion principle, or known as “Buy Low, Sell High”. To handle transaction cost issue for

CRP strategy, Blum and Kalai (1999) proposed semi-CRP that partially balances between

potential return and potential transaction cost and rebalances to initial portfolio at the end of

any subset of the trading periods rather than every trading day.

3.2 Online learning

In this section, we briefly introduce the related work on online machine learning (Rosen-

blatt 1958; Crammer and Singer 2003; Cesa-Bianchi et al. 2004; Crammer et al. 2006;

Fink et al. 2006) to have the learning inspiration for our work. Perceptron algorithm (Rosen-

blatt 1958; Freund and Schapire 1999) is one important online approach which updates

the learning function by adding a new example with a constant weight when it is mis-

classified. Recently a number of online learning algorithms have been proposed based on

the criterion of maximum margin (Li and Long 1999; Gentile 2001; Kivinen et al. 2001;

Crammer and Singer 2003; Crammer et al. 2006; Zhao et al. 2011). For example, Relaxed

Online Maximum Margin (ROMMA) (Li and Long 1999) algorithm repeatedly chooses the

hyper-planes that correctly classify the existing training examples with the maximum mar-

gin. Passive Aggressive (PA) (Crammer et al. 2006) algorithm updates the classification

function when a new example is misclassified or its classification score does not exceed

some predefined thresholds. As empirical studies show, the maximum margin based online

learning algorithms are generally more effectively than the Perceptron algorithm. In this ar-

ticle, we mainly adopt the idea of Passive Aggressive learning since it is suitable for our

motivations as further illustrated in Sect. 4.1.

3.3 Learning to select portfolio

Learning to select portfolio has been extensively studied in information theory and machine

learning. Generally, a strategy selects one optimal strategy (it can be market strategy, chal-

lenging BCRP strategy, or even Oracle strategy which chooses the best stock every trading

day) and tries to obtain the same cumulative return. The regret of a strategy is defined as the

gap between its logarithmic cumulative wealth achieved and that of the optimal strategy.

One important type of learning to select portfolio is regret minimization approach, which

chooses BCRP strategy as the optimal strategy. Cover (1991) proposed Universal Portfolios

(UP) strategy, where the portfolio is historical performance weighted average of all constant

rebalanced portfolio experts. The regret achieved by Cover’s UP is O(m logn), and its run

time complexity is O(nm), where m denotes the number of stocks and n denotes the num-

ber of trading days. The implementation is exponential in the number of stocks and thus

restricts the number of assets used in experiments and real applications. Kalai and Vempala

(2002) presented a time-efficient implementation of Cover’s UP based on non-uniform ran-

dom walks that are rapidly mixing, which requires poly running time O(m7n8). Following
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their work, Cover and Ordentlich (1996) developed universal procedures when side informa-

tion1 is taken into account as a finite number of values. Cross and Barron (2003) proposed

a new universal portfolio strategy tracking the best in-hindsight wealth achievable within

target classes of linearly parameterized portfolio sequences, which are more general than

the standard CRP class and permit the portfolio to display a continuous form of dependence

on past prices or other side information. Belentepe (2005) presented a statistical view of

Cover’s UP, showing that it is approximately equivalent to a constrained sequential portfolio

optimization, which connects Cover’s UP with traditional mean-variance portfolio theory.

Another famous strategy is Exponential Gradient (EG) strategy (Helmbold et al. 1997,

1996) for online portfolio selection using multiplicative updates. In general, EG strategy

tries to maximize the expected logarithmic portfolio daily return (approximated using the

last price relative), and minimize the deviation between next portfolio and last portfolio.

The regret achieved by EG is O(
√

n logm) with O(mn) running time. While its regret is not

as tight as Cover’s UP, its linear time complexity is substantially less than the latter.

Recently, convex optimization has been applied to resolve the portfolio selection prob-

lem (Agarwal et al. 2006; Agarwal and Hazan 2005; Hazan 2006; Hazan et al. 2007). Ex-

amples include Online Newton Step (ONS) strategy (Agarwal et al. 2006), which aims to

maximize the expected logarithmic cumulative wealth (approximated using historical price

relatives) and to minimize the variation of the expected portfolio. ONS exploits the second

order information of the log wealth function and applies it to the online scenario. It theoreti-

cally achieves a regret of O(m logn) which is the same as Cover’s UP, and has running time

complexity of O(m3n). Following ONS, Hazan and Seshadhri (2009) recently proposed a

new adaptive-regret approach with more decent theoretical results, which essentially is an

ONS based strategy.

Another promising direction for portfolio selection is wealth maximization approach,

which is based on the notion of approaching the Oracle as the optimal strategy. This idea

was followed by Borodin et al. (2004) in their proposal of a non-universal portfolio strat-

egy named Anti-Correlation (Anticor). Unlike the regret minimization approaches, Anticor

strategy takes advantage of the statistical properties of financial market. The underlying

motivation is to bet on the consistency of positive lagged cross-correlation and negative au-

tocorrelation. It exploits the statistical information from the historical stock price relatives

and adopts the classical mean reversion trading idea to transfer the wealth in the portfolio.

Although it does not provide any theoretical guarantee, its empirical results (Borodin et al.

2004) showed that Anticor can outperform all existing strategies in most cases. Unlike the

greedy algorithm by the Anticor strategy, Li et al. (2011b) very recently proposed Confi-

dence Weighted Mean Reversion (CWMR) strategy to actively exploit the mean reversion

property and the second order information of a portfolio, which produces better performance

than Anticor.

In addition, Györfi et al. (2006) recently introduced a framework of Nonparametric

Kernel-based Moving Window (BK) learning strategies for portfolio selection based on non-

parametric prediction techniques (Györfi and Schäfer 2003). Their algorithm first identifies a

list of similar historical price relative sequences whose Euclidean distances with recent mar-

ket windows are smaller than a threshold, then optimizes the portfolio with respect to the

list of similar sequences. Under the same framework, Györfi et al. (2007) proposed another

variant called Nonparametric Kernel-based Semi-log-optimal strategy, which is actually an

approximation of the BK strategy, mainly to improve the computational efficiency. Replacing

1Side information includes interest rates, consumer confidence figures, etc.
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log utility function by Markowitz-type utility function, Ottucsák and Vajda (2007) proposed

Nonparametric Kernel-based Markowitz-type strategy, which connects return and risk (or

mean and variance) with the online portfolio selection strategy. Following the same frame-

work as BK strategy, Nonparametric Nearest Neighbor learning (BNN) strategy proposed

in Györfi et al. (2008) aims to search for the ℓ nearest neighbors in historical price relative

sequences rather than search price relatives within a specified Euclidean ball. This method

has been empirically shown to be a robust trading strategy. Along this direction, Li et al.

(2011a) recently proposed Correlation-driven Nonparametric learning (CORN) strategy to

search for similar price relatives via correlation coefficient and considerably boosted the

empirical performance of nonparametric learning approach.

Besides the main stream of learning to select portfolio, another type of trading strategy is

based on switching between various strategies, that is, maintaining a probability distribution

among the strategies. Singer (1997) proposed Switching Portfolios (SP), which aims to deal

with changing markets by taking into account the possibility that the market changes its

behavior after each trading day. It switches among a set of basic investment strategies and

assumes the a priori duration of using one basic strategy is geometrically distributed. Levina

and Shafer (2008) proposed Gaussian Random Walk (GRW) strategy, which is a Markov

switching strategy. GRW switches among the basic investment strategies as a Gaussian ran-

dom walk in the simplex of portfolios.

Last, we note that our work is very different from another great body of existing work

in literature (Kimoto et al. 1993; Tay and Cao 2001; Cao and Tay 2003; Tsang et al. 2004;

Lu et al. 2009), which attempted to make financial time series forecasting and stock price

predictions by applying machine learning techniques, such as neural networks (Kimoto et al.

1993), decision trees (Tsang et al. 2004), and support vector machines (SVM) (Tay and Cao

2001; Cao and Tay 2003; Lu et al. 2009), etc. The key difference between these work and

ours is that their learning goal is to make explicit predictions of future prices/trends while

our learning goal is to directly optimize portfolio without predicting prices explicitly.

3.4 Analysis of existing work

One popular trading idea in reality is trend following or momentum strategy, which assumes

that historically better-performing stocks would still perform better than others in future.

Some existing algorithms, such as EG and ONS, approximate the expected logarithmic

daily return and logarithmic cumulative return respectively using historical price relatives.

Though this idea is easy to understand and makes fortunes to many of the best traders and

investors in the world, trend following is very hard to implement effectively. In addition,

in the short-term, the stock price relatives may not follow previous trends as empirically

evidenced by Jegadeesh (1990) and Lo and MacKinlay (1990).

Besides the trend following approach, another widely adopted approach in the learning

community is mean reversion (Cover and Gluss 1986; Cover 1991; Borodin et al. 2004),

which is also termed as contrarian approach. This approach stems from the CRP strat-

egy (Cover and Gluss 1986), which rebalances to the initial portfolio every trading day. The

idea behind this approach is that if one stock performs worse than others, it tends to perform

better than others in the next trading day. As a result, the defining characteristic of a contrar-

ian strategy is the purchase of securities that have performed poorly in the past and the sale

of securities that have performed well, or quite simply, “Sell the Winner, Buy the Loser”. Ac-

cording to Lo and MacKinlay (1990), the effectiveness of mean reversion is a consequence

of positive cross-autocovariances across securities. Among existing algorithms, CRP, UP,

and Anticor adopt this trading idea. However, CRP and UP passively revert to the mean,
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while empirical evidence from Anticor algorithm (Borodin et al. 2004) shows that active

reversion to the mean may better exploit the fluctuation of financial markets and is likely

to obtain a much higher profit. On the other hand, although Anticor actively reverts to the

mean, it is a heuristic method based on statistical correlations to transfer the wealth within

the portfolio. In other words, it may not effectively exploit the mean reversion property.

In between, pattern matching based nonparametric learning algorithms (BK and BNN,

etc.) can identify many market conditions including both mean reversion and trend follow-

ing. However, when locating similar price relatives, the nonparametric learning approaches

may locate both mean reversion and trend following price relatives, whose patterns are es-

sentially opposite, thus weakening the maximization of the expected cumulative wealth.

In a word, both trend following and mean reversion can generate profit in the financial

markets, if appropriately used. In the following, we will propose an active mean reversion

based portfolio selection method. Though simple in update rules, it empirically outperforms

the above existing portfolio selection strategies in most cases. The success of the proposed

portfolio selection strategy indicates that it appropriately takes advantage of the mean rever-

sion trading idea and generates significantly high profits in the back tests with real market

data.

4 Passive aggressive mean reversion approach for portfolio selection

4.1 Intuition and overview

The proposed approach is motivated by Constant Rebalanced Portfolios (Cover and Gluss

1986), which adopts the mean reversion trading idea. A simple but convincing example

showing the mean reversion idea is illustrated in Table 1. Consider a fluctuating market with

two stocks (A, B), and the stock price relative sequence is ( 1
2
,2), (2, 1

2
), . . . , where each

stock is not going anywhere but actively moving within a range. Obviously, in a long-term

period, market strategy cannot achieve any abnormal return from this sequence since the

cumulative wealth of each stock remains the same after 2n trading days. However, Best CRP

in hindsight can achieve a growth rate of ( 5
4
)n for a n-trading period. Now let us analyze the

BCRP strategy on the stock price relative sequence to show the underlying mean reversion

trading idea. Suppose the initial portfolio is ( 1
2
, 1

2
) and at the end of the 1st trading day, the

closing price adjusted wealth distribution becomes ( 1
5
, 4

5
) with corresponding cumulative

wealth increasing by a factor of 5
4
. At the beginning of the 2nd trading day, portfolio manager

rebalances the portfolio to initial portfolio ( 1
2
, 1

2
) by transferring the wealth from better-

performing stock (B) to worse-performing stock (A) in the previous trading day. At the

beginning of the 3rd trading day, the wealth transfer with the mean reversion trading idea

Table 1 Motivating example of CRP to show the mean reversion trading idea

# Day Relative (A,B) BCRP BCRP return Wealth proportion Notes

1 ( 1
2 ,2) ( 1

2 , 1
2 ) 5

4 ( 1
5 , 4

5 ) B −→ A

2 (2, 1
2 ) ( 1

2 , 1
2 ) 5

4 ( 4
5 , 1

5 ) A −→ B

3 ( 1
2 ,2) ( 1

2 , 1
2 ) 5

4 ( 1
5 , 4

5 ) B −→ A

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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continues. Although the market strategy gains nothing, BCRP can achieve a growth rate of
5
4

per trading day using the mean reversion trading idea, which assumes that if one stock

price performs worse, it tends to perform better in the subsequent trading day.

Another motivation of the proposed PAMR algorithm is inspired by the fact that in finan-

cial crisis, all stocks drop synchronously or certain stocks drop significantly. Under these

situations, actively rebalancing may not be appropriate since it puts too much wealth on

“mine” stocks, such as Bear Stearns during the recent financial crisis. To avoid the potential

risk concerning such “mine” stocks, it is a good choice to stick to the previous portfolio,

which constitutes the CRP strategy. Here, the reason to choose the passive CRP strategy is

that identifying these “mine” stocks a priori is almost impossible, which are usually known

in hindsight. Thus, to avoid suffering too much from such situations, PAMR alternates the

strategy between “aggressive” and “passive” reversion depending on the market conditions.

The passive mean reversion strategy avoids the high risk of the aggressive approach that

would put almost all wealth on these “mine” stocks when they drop significantly.

In this article, we propose a novel trading strategy named “Passive Aggressive Mean

Reversion”, or PAMR for short. On the one hand, the underlying assumption of our approach

is that better-performing stocks would perform worse than others in the next trading day.

On the other hand, if the market drops too much, we would stop actively rebalancing the

portfolio to avoid certain “mine” stocks and their associated risk. In order to exploit these

intuitions, we suggest to adopt Passive Aggressive (PA) online learning (Crammer et al.

2006), which was originally proposed for classification tasks. Loosely speaking, the basic

idea of PA for classification is that it passively keeps previous solution if loss is zero, while

it aggressively updates the solution whenever the suffering loss is nonzero.

Let us now describe the basic idea of the proposed strategy in detail. Firstly, if the port-

folio daily return is below a certain threshold, we will try to keep the previous portfolio such

that it passively reverts to the mean to avoid the potential “mine” stocks. Secondly, if the

portfolio daily return is above the threshold, we will actively rebalance the portfolio to en-

sure that the expected portfolio daily return is below the threshold in the belief that the stock

price relatives will revert in the next trading day. This sounds a bit counter-intuitive, but it is

indeed reasonable, because if the stock price relative reverts, keeping the expected portfolio

daily return below the threshold is able to maintain a high portfolio daily return in the next

trading day. Here, the expected portfolio return is calculated with respect to the historical

price relatives, for example, in our study, the last price relative, which is consistent with EG

algorithm (Helmbold et al. 1997, 1996).

To further illustrate why aggressive reversion to the mean can be more effective than a

passive one, let us continue the example in Table 1 that has a market going to nowhere but

actively fluctuating. We show that in such markets, the proposed strategy is much more pow-

erful than BCRP in hindsight, a passive mean reversion trading strategy. Table 2 compares

the two trading strategies. As the motivating example shows, the growth rate of BCRP is

( 5
4
)n for a n-trading period, while at the same time, the growth rate of the proposed PAMR

strategy is 5
4

× ( 3
2
)n−1 (the details of the calculation/algorithm will be presented later). We

intuitively explain the success of PAMR below.

Assume the threshold for PAMR update is set to 1, that is, if portfolio daily return is

below 1, we do nothing but keep the existing portfolio. Our strategy begins with a portfolio

( 1
2
, 1

2
). For the 1st trading day, the return is 5

4
> 1. Then at the beginning of the 2nd trading

day, we rebalance the portfolio to satisfy the condition that approximate portfolio daily

return based on last price relatives is below the threshold 1, and the resulting portfolio is

( 2
3
, 1

3
). Although it seems that we build a portfolio such that the approximate portfolio return

is below the threshold, in practice, as the reversion to the mean suggests, we are maximizing
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Table 2 Motivating example of comparison between BCRP and PAMR strategy

# Day Relatives BCRP BCRP return PAMR PAMR return Notes

1 ( 1
2 ,2) ( 1

2 , 1
2 ) 5

4 ( 1
2 , 1

2 ) 5
4 rebalance to ( 2

3 , 1
3 )

2 (2, 1
2 ) ( 1

2 , 1
2 ) 5

4 ( 2
3 , 1

3 ) 3
2 rebalance to ( 1

3 , 2
3 )

3 ( 1
2 ,2) ( 1

2 , 1
2 ) 5

4 ( 1
3 , 2

3 ) 3
2 rebalance to ( 2

3 , 1
3 )

4 (2, 1
2 ) ( 1

2 , 1
2 ) 5

4 ( 2
3 , 1

3 ) 3
2 rebalance to ( 1

3 , 2
3 )

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

the portfolio return in the next trading day. As we can observe, the return for the 2nd trading

day is 3
2

> 1. Then following the same rule, we will rebalance the portfolio to ( 1
3
, 2

3
). As a

result, in such a market, the growth rate of the proposed strategy is 5
4
× ( 3

2
)n−1 for a n-trading

period, which is much more superior to that of BCRP, that is, ( 5
4
)n.

4.2 Formulations

Now we shall formally devise the proposed Passive Aggressive Mean Reversion (PAMR)

strategy for portfolio selection problem. The PAMR strategy is based on the mean reversion

idea as described in Sect. 4.1, and is equipped with Passive Aggressive (PA) online learning

technique (Crammer et al. 2006).

First of all, given a portfolio vector b and a price relative vector xt , we define a ǫ-

insensitive loss function for the t th trading day as

ℓǫ(b;xt ) =
{

0 b · xt ≤ ǫ

b · xt − ǫ otherwise,
(1)

where ǫ ≥ 0 is the sensitivity parameter which controls the mean reversion threshold. Since

typically portfolio daily return fluctuates around 1, we often empirically choose ǫ ≤ 1 in

order to buy worse performing stocks. The ǫ-insensitive loss is zero when return is less than

the reversion threshold ǫ, and otherwise grows linearly with respect to the daily return. For

conciseness, let us use ℓt
ǫ to denote ℓǫ(b;xt ), that is, the ǫ-insensitive loss of the t th trading

day. By defining this loss function, we can distinguish the two motivating cases described in

Sect. 4.1.

In the following parts, we will formulate three variants of the proposed strategy, and

will propose specific algorithms to solve them in the subsequent section. Recalling that bt

denotes the portfolio vector on the t th trading day, the first proposed method for Passive

Aggressive Mean Reversion (PAMR) is formulated as the constrained optimization below:

Optimization Problem 1 (PAMR)

bt+1 = arg min
b∈�m

1

2
‖b − bt‖2 s.t. ℓǫ(b;xt ) = 0. (2)

The above formulation attempts to find an optimal portfolio by minimizing the deviation

from last portfolio bt under the condition of satisfying the constraint of zero loss. On the

one hand, the above approach passively keeps the last portfolio, that is, bt+1 = bt whenever
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ℓt
ǫ = 0 that means the portfolio daily return is below the threshold ǫ. On the other hand,

whenever the loss is nonzero, it aggressively updates the solution by forcing it to strictly

satisfy the constraint ℓǫ(bt+1;xt ) = 0. It is clear that this formulation is able to address the

two motivations.

Although the above formulation is reasonable to address our concerns, it may have some

undesirable properties in situations with noisy price relatives, which are common in real-

word financial markets. For example, a noisy price relative appearing in some trending

sequences may suddenly change the portfolio in a wrong direction due to the aggressive

update. To avoid such problems, we propose two variants of PAMR that are able to trade off

between aggressiveness and passiveness. The idea of formulating the two PAMR variants is

similar to soft margin support vector machines by introducing some non-negative slack vari-

ables into optimization. Specifically, for the first variant, we modify the objective function

by introducing a term that scales linearly with respect to ξ , which results in the following

optimization:

Optimization Problem 2 (PAMR-1)

bt+1 = arg min
b∈�m

1

2
‖b − bt‖2 + Cξ s.t. ℓǫ(b;xt ) ≤ ξ and ξ ≥ 0, (3)

where C is a positive parameter to control the influence of the slack variable term on the

objective function. We refer to this parameter as the aggressiveness parameter similar to PA

learning (Crammer et al. 2006) and call this variant “PAMR-1”.

Instead of using a linear term of slack variable, in the second variant, we modify the

objective function by introducing a slack variable term that scales quadratically with respect

to ξ , which results in the following optimization problem:

Optimization Problem 3 (PAMR-2)

bt+1 = arg min
b∈�m

1

2
‖b − bt‖2 + Cξ 2 s.t. ℓǫ(b;xt ) ≤ ξ. (4)

Note that in the above formulation we do not need to enforce the constraint ξ ≥ 0 as ξ 2 is

always non-negative. We refer to this variant as “PAMR-2”.

4.3 Algorithms

We now derive the approximate solutions for the above three PAMR formulations using

standard techniques from convex analysis (Boyd and Vandenberghe 2004), and present the

proposed PAMR algorithms for portfolio selection task. Specifically, the following three

propositions summarize the solutions to the PAMR methods.

Proposition 1 The solution to the Optimization Problem 1 (PAMR) without considering the

non-negativity constraint (b 	 0) is expressed as:

b = bt − τt (xt − x̄t1), (5)
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where x̄t = xt ·1
m

denotes the market return, and τt is computed as:

τt = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2

}

. (6)

Proof The proof can be found in Appendix A. �

Proposition 2 The solution to the Optimization Problem 2 (PAMR-1) without considering

the non-negativity constraint (b 	 0) is expressed as:

b = bt − τt (xt − x̄t1),

where x̄t = xt ·1
m

denotes the market return, and τt is computed as:

τt = max

{

0,min

{

C,
bt · xt − ǫ

‖xt − x̄t1‖2

}}

. (7)

Proof The proof can be found in Appendix B. �

Proposition 3 The solution to the Optimization Problem 3 (PAMR-2) without considering

the non-negativity constraint (b 	 0) is expressed as:

b = bt − τt (xt − x̄t1),

where x̄t = xt ·1
m

denotes the market return, and τt is computed as:

τt = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2 + 1
2C

}

. (8)

Proof The proof can be found in Appendix C. �

Figure 2 summarizes the details of the proposed PAMR algorithms. Firstly, with no his-

torical information, the initial portfolio is set to uniform portfolio b1 = ( 1
m
, . . . , 1

m
). At the

beginning of t th trading day, we rebalance according to the portfolio determined at the end

of last trading day. At the end of t th trading day, the market reveals a stock price relative

vector, which represents the stock price movements. Since both the portfolio and the stock

price relatives are already known, portfolio manager is able to measure the portfolio daily

return bt ·xt and the suffering loss ℓǫ(bt ;xt ) as defined in (1). Then, we calculate an optimal

step size τt based on last portfolio and stock price relatives. Given the optimal step size τt ,

we can update the portfolio for next trading day. Finally, we perform a normalization step to

obtain the final portfolio by projecting the updated portfolio into the simplex domain.

4.4 Analysis and interpretation

To reflect the mean reversion trading idea, we are interested in analyzing the resulting update

rules of the proposed PAMR algorithms, which mainly involve the portfolio bt+1 and the

step size τt . In particular, we want to examine how the update rules are related to return and

risk—the two most important concerns in a portfolio selection task.

First of all, we analyze the resulting portfolio update rule in (5) for the three PAMR algo-

rithms, that is, bt+1 = bt − τt (xt − x̄t1). In the update rule, the step size τt is non-negative,
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Algorithm 1: Passive Aggressive Mean Reversion (PAMR)

INPUT: ǫ: sensitivity parameter; C: aggressiveness parameter

PROCEDURE

1: Initialize b1 = ( 1
m
, . . . , 1

m
)

2: for t = 1,2, . . . , n do

3: Receive stock price relatives: xt = (xt1, . . . , xtm)

4: Suffer loss: ℓt
ǫ = max{0,bt · xt − ǫ}

5: Set parameters:

τt =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℓt
ǫ

‖xt−x̄t 1‖2 (PAMR)

min
{

C,
ℓt
ǫ

‖xt −x̄t 1‖2

}

(PAMR-1)

ℓt
ǫ

‖xt−x̄t 1‖2+ 1
2C

(PAMR-2)

6: Update portfolio:

bt+1 = bt − τt (xt − x̄t1)

7: Normalize portfolio:

bt+1 = arg min
b∈�m

‖b − bt+1‖2

8: end for

END

Fig. 2 The proposed Passive Aggressive Mean Reversion (PAMR) strategies

and x̄t is the mean return or market return. For term xt − x̄t1, we can see it represents stock

abnormal returns with respect to the market on the t th trading day. More precisely, we can

interpret it as the directional vector for the weight transfer. The negative sign before the

term indicates that the resulting update scheme is consistent with the motivation, that is, the

weights shall be transferred from better performing stocks (with positive abnormal returns)

to worse performing stocks (with negative abnormal returns) at the beginning of next day.

Besides, another important update is the step size τt calculated as (6), (7), and (8), for

three PAMR methods, respectively. The step size τt adaptively controls the weights to be

transferred by taking effect on the directional vector. One interesting term in common for

the three updates of τt is
ℓt
ǫ

‖xt−x̄t 1‖2 . The numerator of the term equals to the t th portfolio

daily return minus the mean reversion threshold. Assuming other variables are constant, if

the return is high (low), it leads to a large (small) value of τt , which would more (less)

aggressively transfer the wealth from better performing stocks to worse performing stocks.

The denominator is essentially the market quadratic variability, that is, the number of stocks

times the market variance of the t th trading day. In modern portfolio theory, variance of stock

return is typically regarded as a volatility risk term for a portfolio (Markowitz 1952). As

indicated by the denominator, if the risk is high (low), the step size τt would become small

(large). As a result of small (large) step size, the weight transfer made by the update scheme

will be weakened (strengthened), which is consistent with our intuition that prediction would

be not accurate in drastically dropping markets, and we opt to make relatively less transfer in

order to reduce risk. Moreover, PAMR-1 caps the step size by a constant C, while PAMR-

2 decreases the step size by adding a constant 1
2C

to its denominator. Both measures can
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prevent drastic weight transfer in case of noisy price relatives, which is consistent with their

motivations.

From the above analysis on the updates of direction and step size, we can conclude

that PAMR nicely balances between return and risk and clearly reflects the mean reversion

trading idea. To the best of our knowledge, this important trade-off between return and

risk has been considered by only one existing approach, that is, nonparametric kernel-based

Markowitz-type strategy (Ottucsák and Vajda 2007). While the kernel-based Markowitz-

type strategy trades off the return and risk with respect to similar historical price relatives, the

proposed PAMR explicitly trades off the return and risk with respect to last price relatives.

This nice property distinguishes the proposed approach from most existing approaches that

often cater to return, but ignore the risk concern, and are therefore undesirable according to

modern portfolio theory (Markowitz 1952).

Now let us briefly analyze the time complexity of the proposed PAMR algorithms.

From Fig. 2, we can see that besides the normalization step, PAMR strategy takes O(m)

per trading day, where m denotes the number of assets. Moreover, the normalization

or projection step (Step 7 in Fig. 2) can be efficiently implemented (Michelot 1986;

Duchi et al. 2008). In our implementation, we adopt the projection2 according to Duchi

et al. (2008), which takes linear time with respect to m. Thus, the total time complexity is

O(mn), where n is the total number of trading days. Such time complexity is the same as

that of EG algorithm and is much superior to other existing methods. Linear time complexity

enables the proposed algorithm to handle transactions in certain scenarios where low latency

is of crucial importance, such as high frequency trading (Aldridge 2009).

4.5 Discussions

4.5.1 Discussion on intuitions

Although the motivating example in Sect. 4.1 demonstrates the effectiveness of PAMR over

BCRP strategy, PAMR may not always outperform BCRP. In general, PAMR is an online

algorithm while BCRP is offline optimal for an i.i.d. market (see Cover and Thomas 1991,

Theorem 15.3.1). Next, we discuss some possible situations where PAMR may fail to out-

perform BCRP.

Consider a special case where one stock crashes and the other explodes, e.g., a market

sequence of two stocks as ( 1
2
,2), ( 1

2
,2), . . . . Assuming the same parameter settings as the

motivating example, BCRP will increase at an exponential rate 2n as it wholly invests in the

2nd asset, while PAMR will keep a fixed wealth on 5
4

over the trading period. Obviously,

in such a situation, PAMR performs much worse than BCRP does, i.e., PAMR produces

a cumulative wealth of 5
4

against 2n achieved by BCRP over a n trading period. Though

not shiny in such situations, PAMR still bounds its losses. Moreover, such a market, which

violates the mean reversion assumption, is occasional, at least from the view point of our

empirical studies.

4.5.2 Discussion on loss function

In our definition of loss function, that is, (1), we use the original portfolio expected re-

turn b · xt , while it is possible to use log utility (Latané 1959) on the return, that is,

2The precise matlab routine ProjectOntoSimplex can be found on http://www.cs.berkeley.edu/~jduchi/
projects/DuchiShSiCh08/.

http://www.cs.berkeley.edu/~jduchi/projects/DuchiShSiCh08/
http://www.cs.berkeley.edu/~jduchi/projects/DuchiShSiCh08/
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log(b ·xt ). With this log utility, the optimization problems (2), (3), and (4) are all non-convex

and nonlinear, and thus difficult to solve. One way to solve these non-convex optimization

problems is to use log’s first-order Taylor expansion at last portfolio and ignore the higher

order terms, that is, log(b · xt ) ≈ log(bt · xt ) + xt

bt ·xt
(b − bt ). After linear approximation,

the optimization problems can be solved using the same techniques used in our derivation.

However, such linear approximation of loss function may have some drawbacks. First of all,

linear approximation yields a upper bound on regret in terms of a log utility loss function.

There is no way to justify the goodness of the linear approximation. Moreover, if we use

log utility, then the loss function is flat, then sharply rises and finally flattens out. While

linear approximation is good in the two flat regimes, it is typically terrible at the point of

non-differentiability and sub-par in the sharply rising region.

On the other hand, for the loss function in form of (1) without log utility or with lin-

ear approximation of log utility, the best possible regret in a minimax sense is at most

O(
√

n) (Abernethy et al. 2009), while true log loss minimization algorithm can routinely

achieve O(logn). However, although our loss function is non-differentiable and it would

achieve a potential regret of O(
√

n), it is not a traditional loss function maximizing return

(like traditional loss function, − log(b · xt )), but only a tool to realize mean reversion. Thus

the regret achieved using our loss function does not represent a regret about return, which

may not be meaningful as traditional regret bound is.

Anyway, the potential worse bound may have unknown weaknesses, which may not be

elicited by the following empirical evaluations. Though on our experiments PAMR works

well, anyone who cares about its theoretical aspects should be notified about the possible

worse bound.

4.5.3 Discussion on formulation

Although our formulations mainly focus on the portfolio daily return without explicitly deal-

ing with risk (e.g., volatility of daily returns), the final derived algorithms can be nicely

interpreted as certain trade-offs between risk and return, as discussed in Sect. 4.4. Such in-

teresting observation is further verified by our empirical evaluation in Sect. 5.4.2, which

shows that the proposed PAMR algorithms achieve good risk-adjusted return in terms of

two risk-related metrics (i.e., volatility risk and drawdown risk, respectively).

Similar to previous studies, we avoid incorporating transaction cost in the original formu-

lations, which simplifies the formulations and clearly highlights PAMR’s key ingredients. To

further show the impact of transaction costs, it is not difficult to evaluate the effect of trans-

action costs, as shown in Sect. 5.2.2. In the following empirical study, we present results on

both cases: with and without transaction costs. From the empirical results in Sect. 5.4.5, we

find that in most markets, the proposed PAMR algorithms work well without or even with

moderate transaction costs.

Besides, it is important to note that there are two key parameters in the proposed PAMR

algorithm and its variants, viz., the sensitivity parameter ǫ and the aggressiveness parame-

ter C. In practice, the choice of these parameters could affect the performance of the pro-

posed algorithms. To achieve a good performance in a specific market, these parameters

have to be finely tuned. We will thoroughly examine the effects of the two parameters on

real-life datasets in Sect. 5.4.4, and make suggestions for the empirical selection of their

values.

4.5.4 Discussion on PAMR variants

In this section, we will show an example to illustrate different behaviors of the three update

rules, viz., PAMR, PAMR-1, and PAMR-2. As discussed in Sect. 4.2, one objective for
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PAMR-1 and PAMR-2 is to prevent the portfolio being affected too much from noisy price

relatives, which might drastically change the portfolio. Let us assume the environments and

parameter settings as follows. Let the t th price relative xt = (1.00,0.01), which represents

the situations that the 2nd price relative is a noise, and the t th portfolio bt = (1,0). Setting

the parameters ǫ = 0.30 and C = 1.00, let us calculate next portfolio bt+1. This market

environment describes the situations where certain price relatives drop significantly, which

is similar to some stocks during recent financial crisis. Without tuning, the original PAMR

algorithm would transfer a large proportion of wealth to the 2nd asset in the next trading day.

This can be verified by examining the portfolio calculated by PAMR, viz., PAMR calculates

the update step size τt = 1.43 and obtains the subsequent portfolio bt+1 = (0.29,0.71).

However, a natural choice of avoiding such noisy price relatives is to put less proportion

of wealth to the second asset. Now, when calculating the next portfolios by PAMR-1 and

PAMR-2, we obtain the update step size τt = 1.00 and τt = 0.71, respectively, which are

smaller than the update step size of the original PAMR, that is, τt = 1.43. Accordingly,

we obtain the next portfolios bt+1 = (0.50,0.50) and bt+1 = (0.65,0.35) for PAMR-1 and

PAMR-2, respectively. Clearly, PAMR-1 and PAMR-2 transfer less wealth to the 2nd asset

than the original PAMR does. Thus, PAMR-1 and PAMR-2 in general suffer relatively less

from noisy price relatives, though we cannot completely avoid such suffering situation.

4.6 Mixture algorithm

One theoretical result desired by existing online portfolio selection algorithms is universal

property (Cover 1991). Since mean reversion trading idea is counter-intuitive (Borodin et al.

2004), we find it is hard to prove the universality of PAMR. Alternatively, we present a

general mixture algorithm, which guarantees worst-case performance, not for PAMR itself

but for the mixture algorithm.

Briefly speaking, the proposed mixture algorithm frames PAMR as one “expert” in a

mixture-of-experts setting, while at least one universal algorithm serves as other “experts”.

Then, the proposed mixture adopts no-regret expert learning (Cesa-Bianchi and Lugosi

2006) to bound the regret of the overall system with respect to the best of these experts. If

the mixture algorithm contains at least one universal algorithm,3 then the universality of the

mixture algorithm can be straightforwardly proved according to Cesa-Bianchi and Lugosi

(2006) (see Example 10.3 and Theorem 10.3 for rigorous proofs). In our implementation,

we adopt uniform buy and hold (BAH) mixture strategy, that is, we give equal proportion

of portfolio wealth to each expert, let them run, and finally pool them again. We denote

the BAH mixture algorithm as “MIX”. Other expert learning methods, such as exponential

weighted, can also replace the buy and hold strategy, and they can also provide provable

guarantees and get potentially stronger empirical performance. Though MIX seems trivial

since it has a more involved mixing rule, one can make it nontrivial by extending the setting

in a more general setting, such as the framework proposed by Akcoglu et al. (2002) and Das

and Banerjee (2011). Obviously, such a mixture algorithm can be applied to any portfolio

selection algorithm, either universal or not.

Though it is convenient to propose a mixture model consisting of PAMR such that the

mixture model can achieve universality, PAMR’s universal consistency is still an open ques-

tion and deserves further exploration.

3Such statement also appeared in footnote 1 of Borodin et al. (2004).
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5 Numerical experiments

To examine the empirical efficacy of the proposed PAMR strategy, we conduct an extensive

set of numerical experiments on a variety of real datasets. In our experiments, we adopt six

real datasets, which were collected from several diverse financial markets. The performance

metrics include cumulative wealth and risk-adjusted returns (volatility risk and drawdown

risk). We also compare the proposed PAMR algorithms with all existing algorithms stated

in the related work section.

5.1 Experimental testbed on real data

In this study, we focus on historical daily prices in stock markets which are easy to obtain

from public domains (such as Yahoo Finance and Google Finance), and thus publicly avail-

able to other researchers. Data from other types of markets, such as high frequency intra-day

quotes and Forex markets, are either too expensive or hard to obtain and process, and thus

may reduce the experimental reproducibility. In general, we employ six real and diverse

datasets from several types of financial markets,4 which are summarized in Table 3.

The first one is NYSE dataset, one “standard” dataset pioneered by Cover (1991) and

followed by several other researchers (Singer 1997; Helmbold et al. 1996; Borodin et al.

2004; Agarwal et al. 2006; Györfi et al. 2006, 2008). This dataset contains 5651 daily price

relatives of 36 stocks5 in New York Stock Exchange (NYSE) for a 22-year period from Jul.

3rd 1962 to Dec. 31st 1984. We denote this dataset by “NYSE (O)” for short.

The second dataset is the extended version of the above NYSE dataset. For consistency,

we collected the latest data in New York Stock Exchange (NYSE) from Jan. 1st 1985 to Jun.

30th 2010, which consists of 6431 trading days. We denote this new dataset as “NYSE (N)”.6

It is worth noting that this new dataset consists of 23 stocks rather than the previous 36 stocks

owing to amalgamations and bankruptcies. All self-collected price relatives are adjusted for

splits and dividends, which is consistent with the previous “NYSE (O)” dataset.

The third dataset “TSE” is collected by Borodin et al. (2004), which consists of 88 stocks

from Toronto Stock Exchange (TSE) containing price relatives of 1259 trading days, ranging

Table 3 Summary of the six real datasets in our numerical experiments

Dataset Market Region Time frame # Trading days # Assets

NYSE (O) Stock US Jul. 3rd 1962–Dec. 31st 1984 5651 36

NYSE (N) Stock US Jan. 1st 1985–Jun. 30th 2010 6431 23

TSE Stock CA Jan. 4th 1994–Dec. 31st 1998 1259 88

SP500 Stocks US Jan. 2nd 1998–Jan. 31st 2003 1276 25

MSCI Index Global Apr. 1st 2006–Mar. 31st 2010 1043 24

DJIA Stocks US Jan. 14th 2001–Jan. 14th 2003 507 30

4All the datasets and their compositions can be downloaded from http://www.cais.ntu.edu.sg/~libin/
portfolios. Borodin et al. (2004)’s datasets can also be downloaded from http://www.cs.technion.ac.il/~rani/
portfolios/.

5According to Helmbold et al. (1996), the dataset was originally collected by Hal Stern. The stocks are mainly
large cap stocks in NYSE, however, we do no know the criteria of choosing these 36 stocks.

6The dataset before 2007 was collected by Gábor Gelencsér (http://www.cs.bme.hu/~oti/portfolio), we col-
lected the remaining data from 2007 to 2010 via Yahoo Finance.

http://www.cais.ntu.edu.sg/~libin/portfolios
http://www.cais.ntu.edu.sg/~libin/portfolios
http://www.cs.technion.ac.il/~rani/portfolios/
http://www.cs.technion.ac.il/~rani/portfolios/
http://www.cs.bme.hu/~oti/portfolio
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from Jan. 4th 1994 to Dec. 31st 1998. The fourth dataset “SP500” is collected by Borodin

et al. (2004), which consists of 25 stocks with the largest market capitalizations in the 500

SP500 components. It ranges from Jan. 2nd, 1998 to Jan. 31st 2003, containing 1276 trading

days.

The fifth dataset is “MSCI”, a collection of global equity indices which are the con-

stituents of MSCI World Index.7 It contains 24 indices which represent the equity markets

of 24 countries around the world, and consists of a total of 1043 trading days, ranging from

Apr. 1st 2006 to Mar. 31st 2010. The final dataset is the “DJIA” dataset collected by Borodin

et al. (2004), which consists of Dow Jones 30 composite stocks. DJIA contains 507 trading

days, ranging from Jan. 14th 2001 to Jan. 14th 2003.

Besides the above six real market data, in the experiments, we also ran each dataset in

their reverses (Borodin et al. 2004). For each dataset, we created a reversed dataset, which

reverses the original order and inverts the price relatives. We denote these reverse datasets

using a ‘−1’ superscript on the original dataset names. In nature, these reverse datasets

are quite different from the original datasets, and we are interested in the behaviors of the

proposed algorithm on these artificial datasets.

Unlike the previous studies, the above testbed covers much longer trading periods from

1962 to 2010 and much more diversified markets, which enables us to examine how the

proposed PAMR strategy performs under different events and crises. For example, it cov-

ers several well-known events in the stock markets, such as dot-com bubble from 1995 to

2000 and subprime mortgage crisis from 2007 to 2009. The five stocks datasets are mainly

chosen to test the capability of the proposed PAMR on regional stock markets, while the

“MSCI” dataset aims to test PAMR’s capability on global indices, which may be potentially

applicable to “Fund on Fund” (FOF).8 As a remark, although we numerically test the PAMR

algorithm on stock markets, we note that the proposed strategy could be generally applied

to any type of financial markets.

5.2 Experimental setup and metrics

Regarding the parameter settings, there are two key parameters in the proposed PAMR al-

gorithms. One is the sensitivity parameter ǫ and the other is the aggressiveness parameter

C. Roughly speaking, the best values for these parameters are often dataset dependent. In

the experiments, we simply set these parameters empirically without tuning for each dataset

separately. Specifically, for all datasets and experiments, we set the sensitivity parameter ǫ to

0.5 in the three algorithms, and set the aggressiveness parameter C to 500 in both PAMR-1

and PAMR-2, with which the cumulative wealth achieved tends to be stable for the proposed

PAMR on most datasets. It is worth noting that these choices for parameters are not always

the best. Our experiments on the parameter sensitivity in Sect. 5.4.4 show that the proposed

PAMR algorithms are quite robust with respect to different parameter settings.

For the proposed mixture algorithm (MIX), we set the expert pool9 as initial uniform

combination of PAMR, ONS, Anticor, and BNN, and individual experts are set according to

their respective studies.

7The constituents of MSCI World Index can be found from MSCI Barra (http://www.mscibarra.com), ac-
cessed on 28 May 2010.

8It is worth noting that not every index is tradable through exchange traded funds (ETFs).

9One can arbitrarily select experts, however, at least one universal algorithm should be included in order to
guarantee the worst-case performance of the mixture algorithm.

http://www.mscibarra.com
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We adopt the most common metric, cumulative wealth, to primarily compare different

trading strategies. In addition to the cumulative wealth, we also adopt annualized Sharpe Ra-

tio (SR) to compare the performance of different trading algorithms. In general, the higher

the values of the cumulative wealth, and the annualized Sharpe Ratio, the better the per-

formance of the compared algorithm. Besides, we also adopt Maximum Drawdown (MDD)

and Calmar Ratio (CR) for analyzing the downside risk of the PAMR strategy. The lower

the MDD value, the more preferable the trading algorithm concerning the downside risk.

The higher the CR value, the more performance efficient the trading algorithm concerning

the downside risk. The performance criteria are detailed in the following section.

5.2.1 Performance criteria

One of the standard criteria to evaluate the performance of a strategy is portfolio cumulative

wealth achieved by the strategy until the end of the whole trading period. In our study, we

simply set the initial wealth S0 = 1 and thus the notation Sn also denotes portfolio cumula-

tive return at the end of the nth trading day, which is the ratio of the portfolio cumulative

wealth divided by the initial wealth. Another equivalent criterion is annualized percentage

yield (APY) which takes the compounding effect into account, that is, APY = y
√

Sn − 1,

where y is the number of years corresponding to n trading days. APY measures the aver-

age wealth increment that one strategy could achieve compounded in a year. Typically, the

higher the value of portfolio cumulative wealth or annualized percentage yield, the more

performance preferable the trading strategy is.

For some process-dependent investors (Moody et al. 1998), it is important to evaluate risk

and risk-adjusted return of portfolios (Sharpe 1963, 1994). One common way to achieve

this is to use annualized standard deviation of daily returns to measure the volatility risk

and annualized Sharpe Ratio (SR) to evaluate the risk-adjusted return. For portfolio risk,

we calculate the standard deviation of daily returns, and multiply by
√

252 (here 252 is the

average number of annual trading days) to obtain annualized standard deviation. For risk-

adjusted return, we calculate annualized Sharpe Ratio according to, SR = APY−Rf

σp
, where

Rf is the risk-free return (typically the return of Treasury bills, fixed at 4% in this work), and

σp is the annualized standard deviation of daily returns. Basically, higher annualized Sharpe

Ratios indicate better performance of a trading strategy concerning the volatility risk.

The investment community often analyzes DrawDown (DD) (Magdon-Ismail and Atiya

2004) to measure the decline from a historical peak in the cumulative wealth achieved by a fi-

nancial trading strategy. Formally, let S(·) denote the process of cumulative wealth achieved

by a trading strategy, that is, {S1, . . . ,St , . . . ,Sn}. The DrawDown at any time t , is defined as

DD(t) = max[0,maxi∈(0,t) S(i)−S(t)]. The Maximum DrawDown for a horizon n, MDD(n)

is defined as, MDD(n) = maxt∈(0,n)[DD(t)], which is an excellent way to measure the down-

side risk of different strategies. Moreover, we also adopt Calmar Ratio (CR) to measure the

return relative of the drawdown risk of a portfolio, calculated as CR = APY
MDD

. Generally

speaking, the smaller the Maximum DrawDown, the more downside risk tolerable the finan-

cial trading strategy. Higher Calmar Ratios indicate better performance of a trading strategy

concerning the drawdown risk.

To test whether simple luck can generate the return of the proposed strategy, we can also

conduct a statistical test to measure the probability of this situation, as is popularly done

in the fund management industry (Grinold and Kahn 1999). First, we separate the portfolio

daily returns into two components: one benchmark-related and the other non-benchmark-
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related by regressing the portfolio excess returns10 against the benchmark excess returns.

Formally, st − st (F) = α +β(st (B)− st (F))+ ǫ(t), where st stands for the portfolio daily re-

turns, st (B) denotes the daily returns of the benchmark (market index) and st (F) is the daily

returns of the risk-free assets (here we simply choose Treasury bill and set it to 1.000156,

or equivalently, annual interest of 4%). This regression estimates the portfolio’s alpha (α),

which indicates the performance of the investment after accounting for the involved risk.

Then we conduct a statistical t-test to evaluate whether alpha is significantly different from

zero, by using the t statistic α
SE(α)

, where SE(α) is the standard error for the estimated al-

pha. Thus, by assuming the alpha is normally distributed, we can obtain the probability that

the returns of the proposed strategy are generated by simple luck. Generally speaking, the

smaller the probability, the higher confidence the trading strategy.

5.2.2 Practical issues

While our model described in Sect. 2 is concise and not complicate to understand, it omits

some practical issues in the portfolio management industry. We shall now relax some con-

straints in our model to address these issues.

In reality, an important and unavoidable issue is transaction cost. Generally, there are

two ways to handle the transaction costs. The first, commonly adopted by learning to se-

lect portfolio strategies, is that the portfolio selection process doesn’t take into account the

transaction cost while the following rebalancing incurs transaction costs. The second is that

the transaction cost is directly involved in the portfolio selection process (Györfi and Va-

jda 2008). In this work, we take the first way and adopt proportional transaction cost model

proposed in Blum and Kalai (1999) and Borodin et al. (2004). To be specific, rebalancing the

portfolio incurs a transaction cost on every buy and sell operation, based upon a transaction

cost rate γ ∈ (0,1). At the beginning of the t th trading day, the portfolio manager rebalances

the portfolio from the previous closing price adjusted portfolio b̂t−1 to a new portfolio bt ,

incurring a transaction cost of γ

2
×

∑

i |b(t,i) − b̂(t−1,i)|, where the initial portfolio is set to

(0, . . . ,0). Thus, the cumulative wealth achieved by the end of the nth trading day can be

expressed as:

Sc(γ )
n = S0

n
∏

t=1

[

(bt · xt ) ×
(

1 − γ

2
×

∑

i

∣

∣b(t,i) − b̂(t−1,i)

∣

∣

)]

.

Another practical issue in portfolio selection is margin buying, which allows the portfolio

managers to buy securities with cash borrowed from security brokers. Following previous

studies (Cover 1991; Helmbold et al. 1996; Agarwal et al. 2006), we relax this constraint

in the model and evaluate it empirically in Sect. 5.4.5. In this study, the margin setting is

assumed to be 50% down and 50% loan, at an annual interest rate of 6%, so the interest rate

of the borrowed money, c is set to 0.000238. Thus, for each security in the asset pool, a new

asset named “Margin Component” is generated. Following the down and loan percentage,

the price relative for the “Margin Component” of asset i would be 2 ∗ xt i − 1 − c, where

xt i is the price relative of the ith asset for the t th trading day. In cases of xt i ≤ 1+c
2

, that is,

certain stocks drop more than half, we simply set “Margin Component” to 0. By adding this

“Margin Component”, we magnify both the potential profit and loss of the trading strategy

on the ith asset.

10Excess return is daily return less risk-free return.
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5.3 Comparison approaches

In our experiments, we implement the proposed PAMR strategy and its two variants, viz.,

PAMR-1 and PAMR-2. We compare them with a number of benchmarks and existing strate-

gies as described in Sect. 3. Below we summarize the list of compared algorithms, whose

parameters are set according to the recommendations from their respective studies.

1. Market: Market strategy, that is, uniform Buy-And-Hold (BAH) strategy;

2. Best-Stock: Best stock in the market, which is a strategy in hindsight;

3. BCRP: Best Constant Rebalanced Portfolios strategy in hindsight;

4. UP: Cover’s Universal Portfolios implemented according to Kalai and Vempala (2002),

where the parameters are set as δ0 = 0.004, δ = 0.005, m = 100, and S = 500;

5. EG: Exponential Gradient (EG) algorithm with the best parameter η = 0.05 as sug-

gested by Helmbold et al. (1996);

6. ONS: Online Newton Step (ONS) with the parameters suggested by Agarwal et al.

(2006), that is, η = 0, β = 1, γ = 1
8
;

7. SP: Switching Portfolios with parameter γ = 1
4

as suggested by Singer (1997);

8. GRW: Gaussian Random Walk strategy with parameter σ = 0.00005 recommended

by Levina and Shafer (2008);

9. M0: Prediction based algorithm M0 with parameter β = 0.5 as suggested by Borodin

et al. (2000);

10. Anticor: BAH30(Anticor(Anticor)) as a variant of Anticor to smooth the performance,

which achieves the best performance among the three solutions proposed by Borodin

et al. (2004);

11. BK: Nonparametric kernel-based moving window (BK) strategy with W = 5, L = 10

and threshold c = 1.0 which has the best empirical performance according to Györfi

et al. (2006);

12. BNN: Nonparametric nearest neighbor based strategy (BNN) with parameters W = 5,

L = 10 and pℓ = 0.02 + 0.5 ℓ−1
L−1

as the authors suggested (Györfi et al. 2008).

5.4 Experimental results

5.4.1 Experiment 1: evaluation of cumulative wealth

We first compare the performance of the competing approaches based on their cumulative

wealth. From the experimental results shown in Table 4, we can draw several observations

below.

First of all, we observe that learning to select portfolio strategies generally perform bet-

ter than three common benchmarks, which shows that it is promising to investigate learn-

ing algorithms for portfolio selection. Second, we find that although the cumulative wealth

achieved by the regret minimization approaches (UP, EG and ONS) is higher than market

strategy, their performance is significantly lower than that achieved by the wealth maximiza-

tion approaches (Anticor, BK and BNN). This shows that to achieve better investment return,

it is more powerful and promising to exploit the wealth maximization approaches for port-

folio selection. Third, from the top two results indicated on each original dataset, it is clear

that the proposed PAMR strategy (PAMR, PAMR-1, and PAMR-2) significantly outper-

forms most (except DJIA datasets) competitors including Anticor, BK and BNN, which are

the state of the arts. The encouraging results in cumulative wealth validate the importance of

exploiting the mean reversion property in the financial markets by an effective online learn-

ing strategy. On the other hand, though MIX beats the benchmarks on the DJIA dataset,
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Table 4 Cumulative wealth achieved by various trading strategies on the six datasets and their reversed
datasets. The top two best results in each dataset are highlighted in bold font

Methods NYSE (O) NYSE (N) TSE SP500 MSCI DJIA

Market 14.50 18.06 1.61 1.34 0.91 0.76

Best-stock 54.14 83.51 6.28 3.78 1.50 1.19

BCRP 250.60 120.32 6.78 4.07 1.51 1.24

UP 26.68 31.49 1.60 1.62 0.92 0.81

EG 27.09 31.00 1.59 1.63 0.93 0.81

ONS 109.19 21.59 1.62 3.34 0.86 1.53

SP 27.08 31.55 1.60 1.65 0.93 0.81

GRW 27.73 30.45 1.61 1.64 0.93 0.81

M0 113.50 40.94 1.26 1.74 0.92 0.77

Anticor 2.41E+08 6.21E+06 39.36 5.89 3.22 2.29

BK 1.08E+09 4.64E+03 1.62 2.24 2.64 0.68

BNN 3.35E+11 6.80E+04 2.27 3.07 13.47 0.88

PAMR 5.14E+15 1.25E+06 264.86 5.09 15.23 0.68

PAMR-1 5.13E+15 1.26E+06 260.26 5.08 15.51 0.69

PAMR-2 4.88E+15 1.36E+06 249.95 5.00 16.87 0.71

MIX 1.28E+15 1.84E+06 78.58 4.36 8.16 1.35

Methods NYSE (O)−1 NYSE (N)−1 TSE−1 SP500−1 MSCI−1 DJIA−1

Market 0.12 1.27 1.67 0.88 1.26 1.44

Best-stock 0.33 24.59 37.65 1.65 3.45 2.77

BCRP 2.86 56.60 58.61 1.91 3.45 2.98

UP 0.23 0.3 1.18 1.10 1.26 1.54

EG 0.22 0.38 1.21 1.08 1.27 1.53

ONS 0.84 1.01 1.62 2.97 1.73 2.35

SP 0.23 0.35 1.19 1.10 1.27 1.54

GRW 0.24 0.34 1.18 1.09 1.26 1.55

M0 0.88 2.16 4.80 1.17 1.56 1.83

Anticor 1.38E+03 4.26E+04 7.24 9.64 6.31 4.58

BK 2.77E+07 162.74 8.81 1.01 4.47 1.43

BNN 4.60E+09 3.57E+04 66.09 1.89 30.06 1.85

PAMR 2.03E+04 3.07E+04 2.67 7.42 40.33 6.61

PAMR-1 2.02E+04 3.09E+04 2.68 7.43 39.82 6.62

PAMR-2 2.11E+04 3.21E+04 2.75 7.32 39.83 6.65

MIX 1.18E+09 2.70E+04 19.40 5.50 19.62 3.85

PAMR algorithms perform bad on the DJIA dataset. This may be attributed to the reason

that the motivating mean reversion does not exist in this dataset. This raises an important

question, “How to select the portfolio pool such that the motivating mean reversion exists

on target portfolio?” Sect. 5.5.2 provides some discussions on this question.
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Fig. 3 Trends of cumulative wealth achieved by various strategies during the entire trading periods on the
stock datasets

Further examining the details, we find that the most impressive performance is achieved

by PAMR on the standard NYSE (O) dataset, where its initial wealth grows by a factor

of more than 5 quadrillion at the end of the 22-year period. We note that the main reason

PAMR achieved such exceptional results is that it is powerful to exploit highly volatile

price relatives. To verify this, we examine the detailed performance of PAMR in Table 4 by

looking into individual stocks, and we find that it relies considerably on one single stock

(“Kin Ark”) which has the highest volatility in terms of standard deviation. After removing

this stock from the portfolio, we find that the cumulative wealth significantly reduces to

1.27E+08. We will investigate the volatility issue in more details by another experiment on

dataset sensitivity in Sect. 5.4.3.

On the reverse datasets, though not performing as shiny as the original datasets, PAMR

also performs well. Though some algorithms fail badly, in all cases, PAMR beats the bench-

marks, including the market and BCRP strategies. In certain cases, it beats all competitors.

It is worth noting these reverse datasets are artificial datasets, which never exist in real mar-

kets. PAMR’s performance on these datasets provides strong evidences that mean reversion

does exist in even reverse market datasets and PAMR can successfully exploit it.

In addition to the final cumulative wealth, we are also interested in examining how the

cumulative wealth changes over different trading periods. Figure 3 shows the trends of the

cumulative wealth by the proposed PAMR algorithm and four algorithms (two benchmarks

and two state-of-the-art algorithms). From the results, we can see that the proposed PAMR

strategy consistently surpasses the benchmarks and the competing strategies over the entire

trading period on most datasets (except DJIA dataset), which again validates the efficacy of

the proposed technique.

Finally, to measure whether the excess return can be simply obtained by luck, we conduct

a statistical t-test as described in Sect. 5.2.1. Table 5 shows the statistical results, which

clearly show that the observed excess return is impossible to obtain by simple luck in most

datasets. To be specific, the probabilities for achieving the excess returns by luck are almost

0 on datasets except DJIA. However, the statistics on DJIA dataset show that in this dataset,
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Table 5 Statistical t-test of the performance of the PAMR on the stock datasets

Statistics NYSE (O) NYSE (N) TSE SP500 MSCI DJIA

Size 5651 6431 1259 1276 1043 507

Mean excess return (PAMR) 0.0069 0.0026 0.0054 0.0017 0.0029 −0.0003

Mean excess return (Market) 0.0005 0.0005 0.0004 0.0003 0.0000 −0.0004

Winning ratio 0.5587 0.5175 0.5687 0.5337 0.5925 0.5187

α 0.0063 0.0021 0.0049 0.0013 0.0029 0.0002

β 1.2095 1.1241 1.4982 1.2375 1.1177 1.2393

t-statistics 15.7829 5.9979 3.9241 2.0020 6.1358 0.2195

p-value 0.0000 0.0000 0.0000 0.0227 0.0000 0.4132

Fig. 4 Risk and risk-adjusted performance of various strategies on the six different datasets. In each diagram,
the rightmost bars represent the results achieved by PAMR

the assumption of mean reversion may not exist. Nevertheless, the results show that the

PAMR strategy is a promising and reliable portfolio selection technique to achieve high

return with high confidence.

5.4.2 Experiment 2: evaluation of risk and risk-adjusted return

We now evaluate the risk in terms of volatility risk and drawdown risk, and the risk-adjusted

return in terms of annualized Sharpe ratio and Calmar ratio. Figure 4 shows the evaluation
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results on the six datasets. In addition to the proposed PAMR, we also plot two benchmarks

(Market and BCRP) and two state-of-the-art algorithms (Anticor and BNN) for comparison.

As shown in Fig. 4, Figs. 4(a) and 4(b) depict the volatility risk (standard deviation of daily

returns) and the drawdown risk (maximum drawdown) on the six stock datasets. Figures 4(c)

and 4(d) compare the corresponding Sharpe ratio and Calmar ratio.

In previous cumulative wealth results, we find that PAMR achieved the highest cumu-

lative return on most original datasets. Of course, high return is associated with high risk,

which is commonly acceptable in finance, as no real financial instrument can guarantee a

high return without risk. The volatility risk in Fig. 4(a) shows that PAMR almost achieves

the highest risk in terms of volatility risk. On the other hand, the drawdown risk in Fig. 4(b)

shows that PAMR achieves modest drawdown risk in most datasets. These results validate

the above notion that high return is often associated with high risk.

To further evaluate the return and risk, we examine the risk-adjusted return in terms of

annualized Sharpe ratio and Calmar ratio. The results shown in Figs. 4(c) and 4(d) clearly

show that PAMR achieves excellent performance in most cases, except DJIA dataset. These

encouraging results show that PAMR is able to reach a good trade-off between return and

risk, even though we do not explicitly consider risk in our problem formulation.

5.4.3 Experiment 3: dataset sensitivity

As observed in Sect. 5.4.1, it is interesting that PAMR gained the excess return from the

stock markets. In this section, we aim to examine how the dataset sensitivity affects the

proposed PAMR strategy by evaluating performance on datasets of different volatilities.

To examine the effect of the dataset volatility, we create two datasets each consisting of 5

stocks, chosen from NYSE (N) dataset according to their volatility values. To be specific, we

ranked the 23 stocks based on their daily volatility values measured by standard deviation

of the logarithm of the price relatives (Hull 2008). Then we created two datasets of different

volatility: NYSE (H) and NYSE (L), each consisting of 5 stocks of the highest and lowest

volatility values, respectively. Table 6 shows the results achieved by various strategies on

these two datasets.

From the results, we find that different strategies perform diversely on these two datasets.

The regret minimization approaches (UP, EG and ONS), perform well regardless of the mar-

ket volatilities as the theoretical universal property shows, while the wealth maximization

approaches (Anticor, BK and BNN) and the proposed PAMR strategy achieved significantly

higher cumulative wealth on NYSE (H), the high-volatility dataset. These results show that

the volatility of datasets does considerably affect some algorithms, including the wealth

maximization approaches and the proposed PAMR strategy. Specifically, we find that the

proposed PAMR strategy could benefit much from a high-volatility dataset. For example,

on the NYSE (L) dataset, the cumulative wealth achieved by PAMR algorithm is about 132,

which is significantly boosted to 1.35E+05 on the NYSE (H) dataset. To further examine

which algorithm can benefit most from high-volatility dataset, we calculate the “H/L ratio”

value, which is the ratio of cumulative wealth achieved on the high-volatility dataset over

that achieved on the low-volatility dataset. From the ratios, we can observe that the PAMR

strategy obtained the highest H/L ratio, indicating that PAMR can benefit most from the

high-volatility dataset among all the competing methods.

5.4.4 Experiment 4: parameter sensitivity

We now evaluate how different choices of parameters affect the performance of the proposed

PAMR strategy. All three PAMR algorithms require to set sensitivity parameter ǫ, while

aggressiveness parameter C is needed for PAMR-1 and PAMR-2.
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Table 6 Cumulative wealth achieved by various strategies on portfolios of extreme volatilities. The “H/L

ratio” column shows the ratio between the cumulative wealth achieved on the high-volatility dataset and that
achieved on the low-volatility dataset

Portfolio NYSE (L) NYSE (H) H/L ratio

Market 24.69 9.15 0.37

Best-stock 43.87 17.46 0.40

BCRP 48.16 62.52 1.30

UP 32.89 26.12 0.79

EG 32.33 25.84 0.80

ONS 38.96 30.67 0.53

Anticor 1.79E+03 1.43E+05 79.89

BK 19.49 3.82E+03 196.00

BNN 180.85 1.99E+05 1.10E+03

PAMR 132.25 1.39E+05 1.05E+03

PAMR-1 132.23 1.66E+05 1.26E+03

PAMR-2 142.53 2.05E+05 1.44E+03

First, we examine the effect of the sensitivity parameter ǫ on the cumulative wealth

achieved by PAMR. As ǫ becomes greater than 1, PAMR degrades to uniform CRP strategy

and the wealth stabilizes at the wealth achieved by uniform CRP. Thus, we evaluate the ef-

fect of ǫ in the range of [0,1.5]. Figure 5 shows the cumulative wealth achieved by PAMR

with varying ǫ and those of the two benchmarks, that is, Market and BCRP strategies. Most

results, besides DJIA dataset, show that the cumulative wealth achieved by PAMR grows

as ǫ approaches 0, that is, the more sensitive the higher the wealth, which validates that the

motivating mean reversion does exist on the stock markets. Moreover, in most cases, the cu-

mulative wealth achieved by PAMR tends to stabilize as ǫ crosses certain dataset dependent

thresholds. As stated before, we choose ǫ = 0.5 in the experiments, with which the cumu-

lative wealth becomes stabilized in most cases. We also note that on some datasets PAMR

with ǫ = 0 achieves the best. Though ǫ = 0 means moving more weights to the worse per-

forming stocks, it may not mean moving everything to the worst stock. On the one hand, the

objectives in the formulations would prevent next portfolio far from last portfolio. On the

other hand, PAMR-1 and PAMR-2 are designed to alleviate the huge changes. In a word, this

experimental results clearly show that the proposed algorithm is robust with respect to the

mean reversion sensitivity parameter. On the other side, for the failing case, DJIA, the mean

reversion effect is different. As ǫ approaches 0, the cumulative wealth achieved by PAMR

drops. This phenomena can be interpreted as that the motivating mean reversion does not

exist in the DJIA dataset, at least in the sense of our motivation.

Second, we evaluate the other important parameter for both PAMR-1 and PAMR-2 algo-

rithms, that is, aggressiveness parameter C. Figures 6 and 7 show the effects on the cumula-

tive wealth with varying sensitivity parameter ǫ from 0 to 1.5 and aggressiveness parameter

C from 50 to 5000, on PAMR-1 and PAMR-2, respectively. Each heat map indicates the

cumulative wealth achieved by PAMR with different C and ǫ combination. The indication

bar on the right side of each heat map illustrates that each color represents a level of cu-

mulative wealth achieved. It is clear that in most cases, except DJIA, we observe that as ǫ

decreases and C increases, the cumulative wealth increases and then stabilizes as ǫ and C

cross certain data-dependent thresholds. Moreover, we find C does not have a significant
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Fig. 5 Parameter sensitivity of the cumulative wealth achieved by PAMR with respect to sensitivity param-
eter ǫ

Fig. 6 Parameter sensitivity of the cumulative wealth achieved by PAMR-1 with respect to sensitivity pa-
rameter ǫ and aggressiveness parameter C

effect on the cumulative wealth achieved. We also find that the proposed PAMR algorithms

are not so parameter sensitive, since a wide range of values correspond to the highest cumu-

lative wealth. This again exhibits that the proposed PAMR strategy is robust with respect to

its parameters. Similarly, the heat map on DJIA again shows that the mean reversion effect

does not exist on the dataset, in the sense of our motivation.

5.4.5 Experiment 5: evaluation of practical issues

For a real-world application, there are some important practical issues for portfolio selection,

including the issues of transaction cost and margin buying. This experiment aims to examine

how these practical issues affect the proposed PAMR strategy.
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Fig. 7 Parameter sensitivity of the cumulative wealth achieved by PAMR-2 with respect to sensitivity pa-
rameter ǫ and aggressiveness parameter C

Fig. 8 Scalability of the cumulative wealth achieved by PAMR with respect to transaction cost rate (γ ). The
break-even transaction cost rates to the market index are about 0.7%, 0.4%, 0.1%, 0.3% and 0% on the six
datasets, respectively

First, transaction cost is an important and unavoidable issue that should be addressed

in practice. In our experiment, we adopt proportional transaction cost model stated in

Sect. 5.2.2 to test the effect of the transaction cost on the proposed PAMR strategy. Fig-

ure 8 depicts the effect of proportional transaction cost when PAMR is applied on the six

datasets, where the transaction cost rate γ varies from 0 to 1%. We only present the re-

sults achieved by PAMR since the effect of its variants, that is, PAMR-1 and PAMR-2, is

quite similar to that of PAMR. For comparison, we also plot the results achieved by two

state-of-the-art strategies (Anticor and BNN) and the cumulative wealth achieved by the two

benchmarks (BCRP and Market). Since BCRP is the target strategy for regret minimization
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approaches (UP, EG and ONS) and for consistency, we do not plot the results achieved by

these approaches.

From the results shown in the figure, we can observe that PAMR can withstand reason-

able transaction cost rates. For example, with a transaction cost rate of 0.2%, PAMR can

beat the BCRP strategy on the four datasets. The break-even transaction cost rates with re-

spect to the market index ranges from 0.1% to 0.7% on the datasets, except DJIA. Since

PAMR more actively reverts to the mean and thus results in more drastic portfolio changes,

it surpasses Anticor with low or medium transaction costs while it underperforms Anticor

with high transaction costs, On the other hand, it outperforms BNN in most cases. Note that

the transaction cost rate in real market is low.11 This experiment clearly shows the practical

applicability of the proposed PAMR strategy when we take transaction cost into considera-

tion.

Second, margin buying is another practical concern for a real-world portfolio selection

task. In the following, we evaluate the performance of the approaches when margin buying

is allowed with the model described in Sect. 5.2.2. Table 7 presents the cumulative wealth

achieved by the competing approaches without/with margin loans on the six stock datasets.

As we can observe, when margin buying is allowed, the profitability of PAMR increases,

and in most cases, it achieves higher cumulative wealth than other competing approaches.

These results clearly demonstrate that the proposed PAMR strategy can be extended to han-

dle margin buying issue and benefit from margin buying, and thus has a better practical

applicability.

5.4.6 Experiment 6: evaluation of computational time cost

Our last experiment is to evaluate the computational time costs of different approaches,

which is also an important issue in developing a practical online trading strategy. As stated in

Sect. 4.3, the proposed PAMR algorithm enjoys linear time complexity per iteration, which

is comparable to EG algorithm. Table 8 presents the computational time cost (in seconds)

of the performance comparable approaches (Anticor, BK and BNN) on the six stock datasets.

All the experiments were conducted on an Intel Core 2 Quad 2.66 GHz processor with 4 GB

RAM, using Matlab 2009b on Windows XP.

From the results, we can clearly see that in all cases the proposed PAMR takes significant

less computational time than the three performance comparable strategies. Even though the

computational time in the back tests, especially per trading day, is small, it is important in

certain scenarios such as high frequency trading (Aldridge 2009), where transactions may

occur in a fraction of a second. Nevertheless, the results clearly demonstrate the compu-

tational efficiency of the proposed PAMR strategy, which is also an important concern for

real-world large-scale applications.

5.5 Discussions and threads to validity

5.5.1 Discussion on model assumption

Any statement about such encouraging empirical results would be incomplete without ac-

knowledging the simplified assumptions made in Sect. 2. To recall, we had made several

11For example, without consideration taxes and bid-ask, Interactive Broker charges 0.005$ per share traded.
Considering the average price of Dow Jones Composite is around 50$ (accessed on June 2011), the percentage
is about 0.01%.
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Table 7 Cumulative wealth achieved by various strategies on the stock datasets with/without margin loans
(ML). Top two achievements on each dataset are highlighted

Algorithm NYSE (O) NYSE (N) TSE

No ML With ML No ML With ML No ML With ML

Market 14.5 15.75 18.06 17.68 1.61 1.71

Best-stock 54.14 54.14 83.51 173.18 6.28 10.53

BCRP 250.6 3755.09 120.32 893.63 6.78 21.23

UP 27.41 62.99 31.49 57.03 1.60 1.69

EG 27.09 63.28 31.00 55.55 1.59 1.68

ONS 109.19 517.21 21.59 228.37 1.62 0.88

Anticor 2.41E+08 1.05E+15 6.21E+06 5.41E+09 39.36 18.69

BK 1.08E+09 6.29E+15 4.64E+03 3.72E+06 1.62 1.53

BNN 3.35E+11 3.17E+20 6.80E+04 5.58E+07 2.27 2.17

PAMR 5.14E+15 5.57E+25 1.25E+06 1.12E+09 264.86 720.42

PAMR-1 5.13E+15 5.55E+25 1.26E+06 1.13E+09 260.26 720.96

PAMR-2 4.88E+15 5.10E+25 1.36E+06 1.27E+09 249.95 711.90

Algorithm SP500 MSCI DJA

No ML With ML No ML With ML No ML With ML

Market 1.34 1.03 0.91 0.69 0.76 0.59

Best-stock 3.78 3.78 1.50 1.50 1.19 1.19

BCRP 4.07 6.48 1.51 1.54 1.24 1.24

UP 1.62 1.75 0.92 0.71 0.81 0.66

EG 1.63 1.70 0.93 0.72 0.81 0.65

ONS 3.34 7.76 0.86 0.33 1.53 2.21

Anticor 5.89 10.73 3.22 3.40 2.29 2.89

BK 2.24 1.88 2.64 6.56 0.68 0.56

BNN 3.07 3.29 14.47 150.49 0.88 0.67

PAMR 5.09 15.91 15.23 68.83 0.68 0.84

PAMR-1 5.08 15.90 15.51 68.62 0.69 0.83

PAMR-2 5.00 16.26 16.87 70.08 0.71 0.86

Table 8 Computational time cost on the real datasets (in seconds)

Methods NYSE (O) NYSE (N) TSE SP500 MSCI DJIA

Anticor 2.57E+03 1.93E+03 2.15E+03 387 306 175

BK 7.89E+04 5.78E+04 6.35E+03 1.95E+03 2.60E+03 802

BNN 4.93E+04 3.39E+04 1.32E+03 2.91E+03 2.55E+03 1.28E+03

PAMR 8 7 2 1 1 0.3

assumptions regarding transaction cost, market liquidity and market impact, which would

affect the practical deployment of the proposed algorithm.

The first assumption is that no transaction cost exists. In Sect. 5.4.5 we have already

examined the effect of varying transaction costs, and the results show that the proposed al-

gorithm can withstand moderate transaction costs. Currently, with the wide-spread adoption
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of electronic communication networks (ECNs) and multilateral trading facilities (MTFs) on

financial markets, various online trading brokers charge very small transaction cost rates,

especially for large institutional investors. They also use a flat-rate,12 based on the volume

threshold one reaches. Such measures can facilitate the portfolio managers to lower their

transaction cost rates.

The second assumption is that the market is liquid and one can buy and sell any quantity

at the quoted price. In practice, low market liquidity results in a large bid-ask spread—the

gap between prices quoted for an immediate bid and an immediate ask. As a result, the

execution of orders may incur a discrepancy between the prices sent by the algorithm and

the prices actually executed. Moreover, stocks are often traded in multiples of lot, which

is the standard trading unit containing certain number of stock shares. In this situation,

the quantity of the stocks may not be arbitrary divisible. In the experiments, we have tried

to minimize the effect of market liquidity by choosing the stocks that have large market

capitalization, which usually have small bid-ask spreads and discrepancy, and thus have a

high market liquidity.

The other assumption is that the portfolio strategy would have no impact on the market,

that is, the stock market will not be affected by the trading algorithm. In practice, the impact

can be neglected if the market capitalization of the portfolio is not too large. However, as

the experimental results show, the portfolio wealth generated by PAMR increases astronom-

ically, which would inevitably impact the market. One simple way to handle this issue is to

scale down the portfolio, as done by many quantitative funds. Moreover, the development

of algorithmic trading, which slices a big order into multiple smaller orders and schedules

these orders to minimize the market impact, can significantly decrease the potential market

impact of the proposed algorithm.

Here, we emphasize again that this study assumes a “perfect market”, which is consistent

with previous studies in literature. It is important to note that even in such a perfect financial

market, no algorithm has ever claimed such high performance, especially on the standard

NYSE (O) dataset. Though it is common investment knowledge that past performance may

not be reliable indicator of future performance, such high performance does provide us

confidence that the proposed PAMR algorithm may work well in future unseen markets.

5.5.2 Discussion on PAMR assumption

Though the proposed algorithm performs well on most datasets, we can not claim that

PAMR can perform well on arbitrary portfolio pools. It is worth noting that PAMR relies on

the assumption that mean reversion exists in a portfolio pool, that is, buying worse perform-

ing stocks is profitable. Preceding experiments seem to show that in most cases mean rever-

sion does exist in the market. However, it is still possible that this assumption fails to exist in

certain cases, especially when portfolio components are wrongly selected. PAMR’s perfor-

mance on DJIA dataset indicates that mean reversion may not exist in its portfolio compo-

nents. Though both based on mean reversion, PAMR and Anticor are formulated with differ-

ent time periods of mean reversion, which may interpret why Anticor achieves a good per-

formance on DJIA. Thus before investing in real market, it is of crucial importance to ensure

that the motivating mean reversion does exist among the portfolio pools. In academic, mean

reversion property in single stock has been extensively studied (Poterba and Summers 1988;

12For example, for US equities and options, E∗Trade (https://global.etrade.com/gl/home, accessed on 16
March 2011) charges only $9.99 for $50000+ or 30+ stocks per quarter.

https://global.etrade.com/gl/home
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Table 9 Average daily return and standard deviation of the test strategy

Statistics NYSE (O) NYSE (N) TSE SP500 MSCI DJIA

Mean 1.000940 1.000835 1.000431 1.000544 1.000819 0.999848

Std. dev. 0.008920 0.013162 0.008562 0.014879 0.016423 0.016682

Hillebrand 2003; Exley et al. 2004), one natural way is to calculate the sign of auto-

correlation (Poterba and Summers 1988). On the contrary, the mean reversion property

among a portfolio lacks academic attention. Compared with mean reversion in single stock,

for a portfolio, not only the mean reversion of single stock matters, but rather the interaction

among stocks matters.

On the other hand, the mixture algorithm, that is, MIX, performs well on the DJIA

dataset, beating three benchmarks. As we discussed in Sect. 4.6, the mixture algorithm can

provide a worst-case guarantee, which is lacked for the original PAMR algorithms. This

can somehow solve the problem that PAMR itself does not have a worst-case guarantee.

Moreover, it is worth noting that even with worst-case guarantee, some existing universal

algorithms also perform poorly on the dataset.

Now let us briefly analyze the reason that PAMR failed on DJIA. To test whether mean re-

version exists in the DJIA dataset, we propose a naïve trading strategy to test our motivating

mean reversion in the dataset. The test strategy sets the weights proportional to differences

between assets’ returns and that of last best stock, that is, last best stock will be given zero

weight, while the worst performing stock will be given a maximum weight. We are inter-

ested in whether this simple algorithm produces positive return among existing datasets. If it

produces positive daily return, then the assumption that buying worse stocks may work well.

Otherwise, our motivating assumption fails. The test is conducted on all six datasets. We cal-

culated their arithmetic average daily returns and their standard deviations of daily returns.

Since we are interested in absolution return, we compare their average values with 1. From

the statistics in Table 9, we can find that the five successful datasets release average profit

(> 1.0), while DJIA releases average loss (< 1.0). Thus, on DJIA dataset, it is expected to

produce losses by purchasing worse performing stocks in the portfolio. Though expected

daily loss is small, it would produce huge cumulative loss with a long trading period.

It is interesting to observe above results, however, we cannot claim that this method

can definitely identify successful portfolio pools. Analyzing the mean reversion property in

portfolio scenario and selecting portfolio components such that the portfolio satisfies mean

reversion deserve further attention.

5.5.3 Discussion on back tests

Back tests in historical markets may suffer from “data-snooping bias” issue. One common

“data-snooping bias” is dataset selection issue. On the one hand, we selected four datasets,

that is, NYSE (O), TSE, SP500, and DJIA datasets, based on previous studies without con-

sideration to the proposed approach. On the other hand, we developed the PAMR algorithm

based solely on NYSE (O) dataset, while other five datasets (NYSE (N), TSE, SP500, MSCI

and DJIA datasets) were obtained after the algorithm was fully developed. However, even

we are cautious about the dataset selection issue, it may still appear in the experiments, es-

pecially for the datasets with relatively long history, that is, NYSE (O) and NYSE (N). The

NYSE (O) dataset, pioneered by Cover (1991) and followed by other researchers, becomes

one “standard” dataset in the learning community. Since it contains 36 large cap NYSE
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stocks that survived in hindsight for 22 years, thus it suffers from extreme survival bias.

Nevertheless, it still has the merit to compare the performance among algorithms as done

in all previous work. The NYSE (N) dataset, as a continuation of NYSE (O), contains 23

assets survived from previous 36 stocks for another 25 years. Therefore, it becomes even

worse than the previous NYSE (O) dataset in terms of survival bias. In a word, even the

experiment results on these datasets clearly show the effectiveness of the proposed PAMR

algorithm, one can not make claims without noticing the deficiencies of these datasets.

Another common bias is asset selection issue. Four of the six datasets (NYSE (O), TSE,

SP500, and DJIA) are collected by others, and to the best of our knowledge, their assets

are mainly the largest blue chip stocks in their respective markets. As a continuation of

NYSE (O) dataset, we self-collected NYSE (N) , which again contains several largest sur-

vival stocks in NYSE (O). The remaining dataset (MSCI) is chosen according to the world

indices. In a word, we try to avoid the asset selection bias via arbitrarily choosing the rep-

resentative stocks in their respective markets, which usually have large capitalization and

thus high liquidity. Moreover, investing in these largest assets may reduce the market im-

pact caused by the proposed portfolio strategy. Finally, following existing model assumption

and experimental setting, we do not consider the assets of low quality, such as the bankrupt

stocks and penny stocks. On the one hand, the bankrupt stock data is difficult to acquire,

thus we cannot observe their behaviors and predict the behaviors of PAMR on datasets with

bankrupt stocks. In reality, the bankruptcy situation happens rarely for the blue chip stocks

as typically a bankrupt stock would be removed from the list of blue chip stocks before it

actually goes bankruptcy. On the other hand, the penny stocks lack the required liquidity

to support the trading frequency in current research. Besides, one could also explore many

practical strategies to exclude the low quality stocks from the asset pool at some early stage,

such as some financial methods via either technical or fundamental analysis.

6 Conclusion

In this article, we proposed a novel portfolio selection strategy, “Passive Aggressive Mean

Reversion” (PAMR). Motivated by the idea of mean reversion and passive aggressive learn-

ing, PAMR outperforms all benchmarks and various existing strategies on a number of real

datasets from different markets. PAMR can also be easily extended to handle certain prac-

tical issues, e.g., transaction cost and margin buying. At the same time, PAMR executes

in much less time than existing approaches, making it suitable for online applications. We

also find that the update scheme of PAMR is based on the trade-off between the return and

volatility risk, which is ignored by most existing learning strategies. This interesting prop-

erty connects the PAMR strategy with modern portfolio theory, which may provide further

explanation from the aspect of finance.

Although in most cases the proposed PAMR strategy achieves encouraging empirical

results, it is still far from perfect for a real investment task, and may be improved in the

following aspects. First of all, though universality may not be required in real investment,

PAMR’s universality is still an open question. Second, none of existing algorithms considers

the bankrupt assets, which may happen in real investment. It is thus interesting to study the

behaviors of the bankrupt assets and design strategies to exploit them. Besides, we note that

PAMR sometimes fails when the mean reversion property does not exist in the portfolio

components. Then it is crucial to propose efficient methods to test mean reversion. Finally,

though PAMR handles the issue of transaction costs well, it is not formally addressed in our

problem formulation. It would be interesting to incorporate the transaction cost issue when
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formulating the problem in order to improve the performance in case of high transaction

costs and gain higher break-even ratios with respect to the market index.
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Appendix A: Proof of Proposition 1

Proof First, if ℓt
ǫ = 0 then bt satisfies the constraint in (2) and is clearly the optimal solution.

Now let us focus on the case where ℓt
ǫ �= 0. To solve the problem, we define the La-

grangian of the optimization problem in (2) to be,

L(b, τ, λ) = 1

2
‖b − bt‖2 + τ(xt · b − ǫ) + λ(1 · b − 1), (9)

where τ ≥ 0 is a Lagrange multiplier related to the loss function, λ is the Lagrange multiplier

associated with the simplex constraint, and 1 denotes the column vector of m 1s. Note that

the non-negativity of portfolio b is not considered here since introducing this term causes

too much complexity, and alternatively we project the resulting portfolio into a simplex to

enforce the non-negativity constraint.

Setting the partial derivatives of L with respect to the elements of b to zero gives,

0 = ∂L

∂b
= (b − bt ) + τxt + λ1.

Multiplying both sides with 1⊤, and b⊤1 = 1, we can get λ = − τ
m

xt · 1. Moreover, since

x̄t = xt ·1
m

, where x̄t is the mean of the t th asset price relative, or the market return, we can

rewrite λ in the following form,

λ = −τ x̄t . (10)

And the solution for L is,

b = bt − τ(xt − x̄t1). (11)

Plugging (10) and (11) to (9), we get,

L(τ ) = 1

2
τ 2‖xt − x̄t1‖2 − τ 2xt · (xt − x̄t1) + τ(bt · xt − ǫ)

= −1

2
τ 2‖xt − x̄t1‖2 + τ(bt · xt − ǫ).

Note that in the derivation of the above formula, we used the following formula, that is,

‖xt − x̄t1‖2 = xt · xt − 2x̄t (xt · 1) + x̄2
t (1 · 1) = xt · xt − x̄t (xt · 1) = xt · (xt − x̄t1).

Setting the derivative of L(τ ) with respect to τ to 0, we get,

0 = ∂L

∂τ
= −τ‖xt − x̄t1‖2 + bt · xt − ǫ.
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Then τ can be set to the following formula,

τ = bt · xt − ǫ

‖xt − x̄t1‖2
.

Since τ ≥ 0, we project τ to [0,∞), thus,

τ = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2

}

= ℓt
ǫ

‖xt − x̄t1‖2
.

Note that in case of zero market volatility, that is, ‖xt − x̄t1‖2 = 0, we just set τ = 0. And we

can state the update scheme for the case where ℓt
ǫ = 0 and the case where ℓt

ǫ > 0 by setting τ .

Thus, we simplify the notation according to (1) and show the unified update scheme. �

Appendix B: Proof of Proposition 2

Proof We derive the solution of PAMR-1 following the same procedure as the derivation of

PAMR. Let us consider the situation when the loss is not 0 and we get the Lagrangian,

L(b, ξ, τ,μ,λ) = 1

2
‖b − bt‖2 + τ(xt · b − ǫ) + ξ(C − τ − μ) + λ(1 · b − 1).

Setting the partial derivatives of L with respect to the elements of b to zero gives,

0 = ∂L

∂b
= (b − bt ) + τxt + λ1.

Multiply both side with 1⊤, and b⊤1 = 1, we can get, λ = −τ xt ·1
m

= −τ x̄t . And the approx-

imation solution is

b = bt − τ(xt − x̄t1).

Next, note that the minimum of the term ξ(C − τ − μ) with respect to ξ is zero whenever

C − τ −μ = 0. If C − τ −μ �= 0 then the minimum can be made to approach −∞. Since we

need to maximize the dual we can rule out the latter case and pose the following constraint

on the dual variables, C − τ − μ = 0. The KKT conditions confine μ to be non-negative so

we conclude that τ ≤ C. We can project τ to the interval [0,C] and get,

τ = max

{

0,min

{

C,
bt · xt − ǫ

‖xt − x̄t1‖2

}}

= min

{

C,
ℓt

ǫ

‖xt − x̄t1‖2

}

.

Also note that we simplify the notation according to (1) and show the unified update

scheme. �

Appendix C: Proof of Proposition 3

Proof We derive the solution following the derivations of the PAMR and PAMR-1. Let us

focus on the situation when the loss is not 0 and we can get the Lagrangian,

L(b, ξ, τ,μ,λ) = 1

2
‖b − bt‖2 + τ(b · xt − ǫ) + Cξ 2 − τξ + λ(1 · b − 1).
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Setting the partial derivatives of L with respect to the elements of b to zero gives,

0 = ∂L

∂b
= (b − bt ) + τxt + λ1.

Multiply both side with 1⊤, and b⊤1 = 1, we can get, λ = −τ xt ·1
m

= −τ x̄. And the approxi-

mation solution is,

b = bt − τ(xt − x̄1).

Setting the partial derivatives of L with respect to the elements of ξ to zero gives,

0 = ∂L

∂ξ
= 2Cξ − τ =⇒ ξ = τ

2C
.

Expressing ξ as above and replacing b, we rewrite the Lagrangian as

L̃(τ ) = −τ 2

2

(

‖xt − x̄t1‖2 + 1

2C

)

+ τ(bt · xt − ǫ).

Take the derivative with respect to τ and set it to zero, we can get,

0 = ∂L̃

∂τ
= −τ

(

‖xt − x̄t1‖2 + 1

2C

)

+ (bt · xt − ǫ).

Then we get the update scheme of τ , and project it to [0,∞)

τ = max

{

0,
bt · xt − ǫ

‖xt − x̄t1‖2 + 1
2C

}

= ℓt
ǫ

‖xt − x̄t1‖2 + 1
2C

.
�

References

Abernethy, J., Agarwal, A., Barlett, P. L., & Rakhlin, A. (2009). A stochastic view of optimal regret through
minimax duality. In Proceedings of annual conference on learning theory.

Agarwal, A., & Hazan, E. (2005). New algorithms for repeated play and universal portfolio management.
Technical report, Princeton University.

Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006). Algorithms for portfolio management based on
the newton method. In Proceedings of the international conference on machine learning (pp. 9–16).

Akcoglu, K., Drineas, P., & Kao, M.-Y. (2002). Fast universalization of investment strategies with provably
good relative returns. In Automata, languages and programming (Vol. 2380, p. 782).

Aldridge, I. (2009). High-frequency trading: a practical guide to algorithmic strategies and trading systems.
Hoboken: Wiley.

Belentepe, C. Y. (2005). A statistical view of universal portfolios. PhD thesis, University of Pennsylvania.
Blum, A., & Kalai, A. (1999). Universal portfolios with and without transaction costs. Machine Learning,

35(3), 193–205.
Blum, A., & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8,

1307–1324.
Borodin, A., & El-Yaniv, R. (1998). Online computation and competitive analysis. Cambridge: Cambridge

University Press.
Borodin, A., El-Yaniv, R., & Gogan, V. (2000). On the competitive theory and practice of portfolio selec-

tion (extended abstract). In Proceedings of the Latin American symposium on theoretical informatics

(pp. 173–196).
Borodin, A., El-Yaniv, R., & Gogan, V. (2004). Can we learn to beat the best stock. The Journal of Artificial

Intelligence Research, 21, 579–594.



Mach Learn (2012) 87:221–258 257

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.
Breiman, L. (1961). Optimal gambling systems for favorable games. In Proceedings of the Berkeley sympo-

sium on mathematical statistics and probability (Vol. 1, pp. 65–78).

Cao, L. J., & Tay, F. E. H. (2003). Support vector machine with adaptive parameters in financial time series
forecasting. IEEE Transactions on Neural Networks, 14(6), 1506–1518.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. New York: Cambridge University
Press.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the generalization ability of on-line learning algo-
rithms. IEEE Transactions on Information Theory, 50(9), 2050–2057.

Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1(1), 1–29.
Cover, T. M., & Gluss, D. H. (1986). Empirical bayes stock market portfolios. Advances in Applied Mathe-

matics, 7(2), 170–181.

Cover, T. M., & Ordentlich, E. (1996). Universal portfolios with side information. IEEE Transactions on

Information Theory, 42(2), 348–363.
Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley-Interscience.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algorithms for multiclass problems. Journal of

Machine Learning Research, 3, 951–991.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-aggressive al-
gorithms. Journal of Machine Learning Research, 7, 551–585.

Cross, J. E., & Barron, A. R. (2003). Efficient universal portfolios for past-dependent target classes. Mathe-

matical Finance, 13(2), 245–276.

Das, P., & Banerjee, A. (2011). Meta optimization and its application to portfolio selection. In Proceedings

of international conference on knowledge discovery and data mining.
Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008). Efficient projections onto the l1-ball for learn-

ing in high dimensions. In Proceedings of the international conference on machine learning (pp. 272–
279).

Exley, J., Mehta, S., & Smith, A. (2004). Mean reversion. Technical report, Faculty & Institute of Actuaries,
Finance and Investment Conference, Brussels.

Fink, M., Shalev-Shwartz, S., Singer, Y., & Ullman, S. (2006). Online multiclass learning by interclass hy-
pothesis sharing. In Proceedings of the international conference on machine learning (pp. 313–320).

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine

Learning, 37(3), 277–296.
Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine Learn-

ing Research, 2, 213–242.

Grinold, R., & Kahn, R. (1999). Active portfolio management: a quantitative approach for producing superior

returns and controlling risk. New York: McGraw-Hill.
Györfi, L., & Schäfer, D. (2003). Nonparametric prediction. In J. A. K. Suykens, G. Horváth, S. Basu, C. Mic-

chelli, & J. Vandevalle (Eds.), Advances in learning theory: methods, models and applications (pp. 339–
354). Amsterdam: IOS Press.

Györfi, L., & Vajda, I. (2008). Growth optimal investment with transaction costs. In Proceedings of the

international conference on algorithmic learning theory (pp. 108–122).

Györfi, L., Lugosi, G., & Udina, F. (2006). Nonparametric kernel-based sequential investment strategies.
Mathematical Finance, 16(2), 337–357.

Györfi, L., Urbán, A., & Vajda, I. (2007). Kernel-based semi-log-optimal empirical portfolio selection strate-
gies. International Journal of Theoretical and Applied Finance, 10(3), 505–516.

Györfi, L., Udina, F., & Walk, H. (2008). Nonparametric nearest neighbor based empirical portfolio selection
strategies. Statistics & Decisions, 26(2), 145–157.

Hazan, E. (2006). Efficient algorithms for online convex optimization and their applications. PhD thesis,
Princeton University.

Hazan, E., & Seshadhri, C. (2009). Efficient learning algorithms for changing environments. In Proceedings

of the international conference on machine learning (pp. 393–400).

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2–3), 169–192.

Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1996). On-line portfolio selection using
multiplicative updates. In Proceedings of the international conference on machine learning (pp. 243–
251).

Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). A comparison of new and old
algorithms for a mixture estimation problem. Machine Learning, 27(1), 97–119.

Hillebrand, E. (2003). Mean reversion models of financial markets. PhD thesis, University of Bremen.
Hull, J. C. (2008). Options, futures, and other derivatives. Upper Saddle River: Prentice Hall.



258 Mach Learn (2012) 87:221–258

Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. The Journal of Finance, 45(3),
881–898.

Kalai, A., & Vempala, S. (2002). Efficient algorithms for universal portfolios. Journal of Machine Learning

Research, 3, 423–440.
Kelly, J. (1956). A new interpretation of information rate. Bell Systems Technical Journal, 35, 917–926.
Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1993). Stock market prediction system with modular

neural networks. In Neural networks in finance and investing (p. 343–357).
Kivinen, J., Smola, A. J., & Williamson, R. C. (2001). Online learning with kernels. In Proceedings of the

annual conference on neural information processing systems.
Latané, H. A. (1959). Criteria for choice among risky ventures. Journal of Political Economy, 67(2), 144–

155.
Levina, T., & Shafer, G. (2008). Portfolio selection and online learning. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 16(4), 437–473.
Li, Y., & Long, P. M. (1999). The relaxed online maximum margin algorithm. In Proceedings of the annual

conference on neural information processing systems.
Li, B., Hoi, S. C. H., & Gopalkrishnan, V. (2011a). Corn: correlation-driven nonparametric learning ap-

proach for portfolio selection. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–29.
doi:10.1145/1961189.1961193

Li, B., Hoi, S. C. H., Zhao, P., & Gopalkrishnan, V. (2011b). Confidence weighted mean reversion strategy
for on-line portfolio selection. In Proceedings of the international conference on artificial intelligence

and statistics (pp. 434–442).
Lo, A. W., & MacKinlay, A. C. (1990). When are contrarian profits due to stock market overreaction? The

Review of Financial Studies, 3(2), 175–205.
Lu, C.-J., Lee, T.-S., & Chiu, C.-C. (2009). Financial time series forecasting using independent component

analysis and support vector regression. Decision Support Systems, 47, 115–125.
Magdon-Ismail, M., & Atiya, A. (2004). Maximum drawdown. Risk Magazine, 10, 99–102.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. New York: Wiley.
Michelot, C. (1986). A finite algorithm for finding the projection of a point onto the canonical simplex of R

n.
Journal of Optimization Theory and Applications, 50, 195–200.

Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and reinforcement learning for
trading systems and portfolios. Journal of Forecasting, 17, 441–471.

Ordentlich, E., & Cover, T. M. (1996). On-line portfolio selection. In Proceedings of the annual conference

on learning theory.
Ottucsák, G., & Vajda, I. (2007). An asymptotic analysis of the mean-variance portfolio selection. Statistics

& Decisions, 25, 63–88.
Poterba, J. M., & Summers, L. H. (1988). Mean reversion in stock prices: evidence and implications. Journal

of Financial Economics, 22(1), 27–59.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the

brain. Psychological Review, 65, 386–407.
Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management Science, 9, 277–293.
Sharpe, W. F. (1994). The sharpe ratio. Journal of Portfolio Management, 21(1), 49–58.
Singer, Y. (1997). Switching portfolios. International Journal of Neural Systems, 8(4), 488–495.
Stoltz, G., & Lugosi, G. (2005). Internal regret in on-line portfolio selection. Machine Learning, 59(1–2),

125–159.
Tay, F. E. H., & Cao, L. (2001). Application of support vector machines in financial time series forecasting.

Omega, 29(4), 309–317.
Tsang, E., Yung, P., & Li, J. (2004). Eddie-automation, a decision support tool for financial forecasting.

Decision Support Systems, 37, 559–565.
Zhao, P., Hoi, S. C. H., & Jin, R. (2011). Double updating online learning. Journal of Machine Learning

Research, 12, 1587–1615.

http://dx.doi.org/10.1145/1961189.1961193

	PAMR: Passive aggressive mean reversion strategy for portfolio selection
	Abstract
	Introduction
	Problem setting
	Related work
	Benchmark approaches
	Online learning
	Learning to select portfolio
	Analysis of existing work

	Passive aggressive mean reversion approach for portfolio selection
	Intuition and overview
	Formulations
	Algorithms
	Analysis and interpretation
	Discussions
	Discussion on intuitions
	Discussion on loss function
	Discussion on formulation
	Discussion on PAMR variants

	Mixture algorithm

	Numerical experiments
	Experimental testbed on real data
	Experimental setup and metrics
	Performance criteria
	Practical issues

	Comparison approaches
	Experimental results
	Experiment 1: evaluation of cumulative wealth
	Experiment 2: evaluation of risk and risk-adjusted return
	Experiment 3: dataset sensitivity
	Experiment 4: parameter sensitivity
	Experiment 5: evaluation of practical issues
	Experiment 6: evaluation of computational time cost

	Discussions and threads to validity
	Discussion on model assumption
	Discussion on PAMR assumption
	Discussion on back tests


	Conclusion
	Acknowledgements
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Proposition 3
	References


