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Abstract

In comparison with person re-identification (ReID),

which has been widely studied in the research community,

vehicle ReID has received less attention. Vehicle ReID is

challenging due to 1) high intra-class variability (caused

by the dependency of shape and appearance on viewpoint),

and 2) small inter-class variability (caused by the similarity

in shape and appearance between vehicles produced by dif-

ferent manufacturers). To address these challenges, we pro-

pose a Pose-Aware Multi-Task Re-Identification (PAMTRI)

framework. This approach includes two innovations com-

pared with previous methods. First, it overcomes viewpoint-

dependency by explicitly reasoning about vehicle pose and

shape via keypoints, heatmaps and segments from pose es-

timation. Second, it jointly classifies semantic vehicle at-

tributes (colors and types) while performing ReID, through

multi-task learning with the embedded pose representa-

tions. Since manually labeling images with detailed pose

and attribute information is prohibitive, we create a large-

scale highly randomized synthetic dataset with automati-

cally annotated vehicle attributes for training. Extensive ex-

periments validate the effectiveness of each proposed com-

ponent, showing that PAMTRI achieves significant improve-

ment over state-of-the-art on two mainstream vehicle ReID

benchmarks: VeRi and CityFlow-ReID.

1. Introduction

The wide deployment of traffic cameras presents an im-

mense opportunity for video analytics in a variety of appli-

cations such as logistics, transportation, and smart cities. A

particularly crucial problem in such analytics is the cross-

camera association of targets like pedestrians and vehicles,

i.e., re-identification (ReID), which is illustrated in Fig. 1.

Although both pedestrians and vehicles are common ob-

jects in smart city applications, in recent years most at-

tention has been paid to person ReID. This is mainly due

∗Work done as an intern at NVIDIA. Zheng is now with Amazon.

Figure 1. The problem of vehicle ReID involves identifying the

same vehicle across different viewing perspectives and cameras,

based solely on appearance in the images. Our approach uses

multi-task learning to leverage information about the vehicle’s

pose and semantic attributes (color and type). Synthetic data play

a key role in training, enabling highly detailed annotations to be

generated automatically and inexpensively. Best viewed in color.

to the abundance of well-annotated pedestrian data, along

with the historical focus of computer vision research on hu-

man faces and bodies. Furthermore, compared to pedes-

trians, vehicle ReID is arguably more challenging due to

high intra-class variability caused by the variety of shapes

from different viewing angles, coupled with small inter-

class variability since car models produced by various man-

ufacturers are limited in their shapes and colors. To verify

this intuition, we compared the feature distributions in both

person-based and vehicle-based ReID tasks. Specifically,

we used GoogLeNet [27] pre-trained on ImageNet [5] to

extract 1,024-dimensional features from Market1501 [42]

and CityFlow-ReID [30], respectively. For each dataset, the

ratio of the intra- to inter-class variability (based on Eu-

clidean feature distance) was calculated. The results are

as follows: 0.921 for pedestrians (Market1501) and 0.946

for vehicles (CityFlow-ReID), which support the notion

211



that vehicle-based ReID is more difficult. Although license

plates could potentially be useful to identify each vehicle,

they often cannot be read from traffic cameras due to occlu-

sion, oblique viewpoint, or low image resolution, and they

present privacy concerns.

Recent methods to vehicle ReID exploit feature learn-

ing [37, 45, 46] and/or distance metric learning [3, 10, 13] to

train deep neural networks (DNNs) to distinguish between

vehicle pairs, but the current state-of-the-art performance is

still far from its counterpart in person ReID [43]. More-

over, it has been shown [30] that directly using state-of-

the-art person ReID methods for vehicles does not close

this gap, indicating fundamental differences between the

two tasks. We believe the key to vehicle ReID is to ex-

ploit viewpoint-invariant information such as color, type,

and deformable shape models encoding pose. To jointly

learn these attributes along with pose information, we pro-

pose to use synthetic data to overcome the prohibitive cost

of manually labeling real training images with such detailed

information.

In this work, we propose a novel framework named

PAMTRI, for Pose-Aware Multi-Task Re-Identification.

Our major contribution is threefold:

1. PAMTRI embeds keypoints, heatmaps and segments

from pose estimation into the multi-task learning

pipeline for vehicle ReID, which guides the network

to pay attention to viewpoint-related information.

2. PAMTRI is trained with large-scale synthetic data that

include randomized vehicle models, color and orienta-

tion under different backgrounds, lighting conditions

and occlusion. Annotations of vehicle identity, color,

type and 2D pose are automatically generated for train-

ing.

3. Our proposed method achieves significant improve-

ment over the state-of-the-art on two mainstream

benchmarks: VeRi [14] and CityFlow-ReID [30]. Ad-

ditional experiments validate that our unique architec-

ture exploiting explicit pose information, along with

our use of randomized synthetic data for training, are

key to the method’s success.

2. Related work

Vehicle ReID. Among the earliest attempts for vehicle

ReID that involve deep learning, Liu et al. [14, 15] propose

a progressive framework that employs a Siamese neural net-

work with contrastive loss for training, and they also intro-

duced VeRi [14] as the first large-scale benchmark specifi-

cally for vehicle ReID. Bai et al. [3] and Kumar et al. [10]

also take advantage of distance metric learning by extend-

ing the success of triplet embedding in person ReID [6]

to the vehicle-based task. Especially, the batch-sampling

variant from Kumar et al. is the current state-of-the-art on

both VeRi and CityFlow-ReID [30], the latter being a sub-

set of a recent multi-target multi-camera vehicle tracking

benchmark. On the other hand, some methods focus on

exploiting viewpoint-invariant features, e.g., the approach

by Wang et al. [37] that embeds local region features from

extracted vehicle keypoints for training with cross-entropy

loss. Similarly, Zhou et al. [45, 46] use a generative ad-

versarial network (GAN) to generate multi-view features to

be selected by a viewpoint-aware attention model, in which

attribute classification is also trained through the discrim-

inative net. In addition, Yan et al. [41] apply multi-task

learning to address multi-grain ranking and attribute classi-

fication simultaneously, but the search for visually similar

vehicles is different from our goal of ReID. To our knowl-

edge, none of the methods jointly embody pose information

and multi-task learning to address vehicle ReID.

Vehicle pose estimation. Vehicle pose estimation via

deformable (i.e., keypoint-based) modeling is a promising

approach to deal with viewpoint information. In [31], Tang

et al. propose to use a 16-keypoint-based car model gener-

ated from evolutionary optimization to build multiple ker-

nels for 3D tracking. Ansari et al. [2] designed a more

complex vehicle model with 36 keypoints for 3D localiza-

tion and shape estimation from a dash camera. The ReID

method by Wang et al. [37] also employs a 20-keypoint

model to extract orientation-based features for region pro-

posal. However, instead of explicitly locating keypoint co-

ordinates, their network is trained for estimating response

maps only, and semantic attributes are not exploited in their

framework. Other methods can directly regress to the car

pose with 6 degrees of freedom (DoF) [11, 16, 18, 39], but

they are limited for our purposes as detailed vehicle shape

modeling via keypoints is not provided.

Synthetic data. To generate sufficiently detailed labels

on training images, our approach leverages synthetic data.

Our method is trained on a mix of rendered and real im-

ages. This places our work in the context of other research

on using simulated data to train DNNs. A popular approach

to overcome the so-called reality gap is domain random-

ization [34, 35], in which a model is trained with extreme

visual variety so that when presented with a real-world im-

age the model treats it as just another variation. Synthetic

data have been successfully applied to a variety of prob-

lems, such as optical flow [17], car detection [22], object

pose estimation [26, 36], vision-based robotic manipulation

[8, 34], and robotic control [4, 29]. We extend this research

to ReID and semantic attribute understanding.

3. Methodology

In this section, we describe the algorithmic design of our

proposed PAMTRI framework. An overview flow diagram

of the proposed system is presented in Fig. 2.
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Figure 2. Overview of the proposed method. Each training batch includes both real and synthesized images. To embed pose information

for multi-task learning, the heatmaps or segments output by a pre-trained network are stacked with the original RGB channels as input.

The estimated keypoint coordinates and confidence scores are also concatenated with deep learning features for ReID and attribute (color

and type) classification. The pose estimation network (top, blue) is based on HRNet [25], while the multi-task learning network (bottom,

orange) is based on DenseNet121 [7]. Best viewed in color.

3.1. Randomized synthetic dataset

Besides vehicle identities, our approach requires addi-

tional labels of vehicle attributes and locations of keypoints.

These values, particularly the keypoints, would require con-

siderable, even prohibitive effort, if annotated manually. To

overcome this problem, we generated a large-scale synthetic

dataset by employing our deep learning dataset synthesizer

(NDDS) [33] to create a randomized environment in Unreal

Engine 4 (UE4), into which 3D vehicle meshes from [22]

were imported. We added to NDDS the ability to label

and export specific 3D locations, i.e., keypoints (denoted

as sockets in UE4), on a CAD model. As such we manually

annotated each vehicle model with the 36 3D keypoints de-

fined by Ansari et al. [2]; the projected 2D locations were

then output with the synthesized images. For randomiza-

tion we used 42 vehicle 3D CAD models with 10 body col-

ors. To train the data for ReID, we define a unique iden-

tity for each combination of vehicle model with a particular

color. The final generated dataset consists of 41,000 unique

images with 402 identities,1 including the following anno-

tations: keypoints, orientation, and vehicle attributes (color

and type). When generating the dataset, background images

were sampled from CityFlow [30], and we also randomized

the vehicle position and intensity of light. Additionally, dur-

ing training we perform randomized post-processing such

as scaling, cropping, horizontal flipping, and adding occlu-

sion. Some examples are shown in Fig. 3.

1The concrete mixer truck and the school bus did not get color variation

and as such we exported 500 unique images for each of them. 100 images

were generated for each of the remaining identities.

3.2. Vehicle pose estimation

To leverage viewpoint-aware information for multi-task

learning, we train a robust DNN for extracting pose-related

representations. Similar to Tremblay et al. [35] we mix real

and synthetic data to bridge the reality gap. More specifi-

cally, in each dataset, we utilize the pre-trained model [2] to

process sampled images and manually select about 10,000

successful samples as real training data.

Instead of using the stacked hourglass network [21] as

the backbone like previous approaches [2, 37], we mod-

ify the state-of-the-art DNN for human pose estimation,

HRNet [25], for our purposes. Compared to the stacked

hourglass architecture and other methods that recover high-

resolution representations from low-resolution representa-

tions, HRNet maintains high-resolution representations and

gradually add high-to-low resolution sub-networks with

multi-scale fusion. As a result, the predicted keypoints

and heatmaps are more accurate and spatially more precise,

which benefit our embedding for multi-task learning.

We propose two ways to embed the vehicle pose in-

formation as additional channels at the input layer of the

multi-task network, based on heatmaps and segments, re-

spectively. In one approach, after the final deconvolutional

layer, we extract the 36 heatmaps for each of the keypoints

used to capture the vehicle shape and pose. In the other

approach, the predicted keypoint coordinates from the final

fully-connected (FC) layer are used to segment the vehicle

body. For example, in Fig. 3 the keypoints #16, #17, #35

and #34 from the deformable model form a segment that

represents the car hood. Accordingly, we define 13 seg-

mentation masks for each vehicle (see Fig. 3 TOP-LEFT),

where those formed by keypoint(s) with low confidence are
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Figure 3. TOP-LEFT: The 36-keypoint model from Ansari et al. [2]

with 13 segments defined by us. TOP-RIGHT: 3D keypoints se-

lected in UE4. BOTTOM: Example images from our randomized

synthetic dataset for training, with automatically annotated poses

overlaid. Best viewed in color.

set to be blank. The feedback of heatmaps or segments from

the pose estimation network is then scaled and appended to

the original RGB channels for further processing. We also

send the explicit keypoint coordinates and confidence to the

multi-task network for further embedding.

3.3. Multi­task learning for vehicle ReID

Pose-aware representations are beneficial to both ReID

and attribute classification tasks. First, vehicle pose de-

scribes the 3D shape model that is invariant to the camera

viewpoint, and thus the ReID sub-branch can learn to relate

features from different views. Second, the vehicle shape

is directly connected with the car type to which the target

belongs. Third, the segments by 2D keypoints enable the

color classification sub-branch to extract the main vehicle

color while neglecting the non-painted areas such as wind-

shields and wheels.

Hence, we embed the predicted keypoints and heatmaps

(or segments) into our multi-task network to help guide

the attention to viewpoint-related representations. First,

all the feedback heatmaps/segments from pose estimation

are stacked with the RGB channels of the original input

to form a new image. Accordingly, we modified the first

layer of our backbone convolutional neural network (CNN)

based on DenseNet121 [7] to allow additional input chan-

nels. While we use the pre-trained weights for the RGB

channels, the new channels are initialized with Gaussian

random weights. The stacked image provides the DNN with

extra information about vehicle shape, and thus helps the

feature extraction to concentrate on viewpoint-aware repre-

sentations. Both synthesized and real identities are batched

together and sent to the backbone CNN.

To the deep learning feature vector extracted from the fi-

nal pooling layer, we append the keypoint coordinates and

confidence scores from pose prediction, which are normal-

ized between -0.5 and 0.5. Since the keypoints are explicitly

represented and ordered, they enable the neural network to

learn a more reliable shape description in the final FC lay-

ers for multi-task learning. Finally, the concatenated fea-

ture vector is fed to three separate branches for multi-task

learning, including a branch for vehicle ReID and two other

branches for color and type classification.

The final loss function of our network is the combined

loss of the three tasks. For vehicle ReID, the hard-mining

triplet loss is combined with cross-entropy loss to jointly

exploit distance metric learning and identity classification,

described as follows:

LID = λhtriLhtri (a, p, n) + λxentLxent (y, ŷ) , (1)

where Lhtri (a, p, n) is the hard triplet loss with a, p and n

as anchor, positive and negative samples, respectively:

Lhtri (a, p, n) = [α+max (Dap)−min (Dan)]+ , (2)

in which α is the distance margin, Dap and Dan are the dis-

tance metrics between the anchor and all positive/negative

samples in feature space, and [·]+ indicates max(·, 0); and

Lxent (y, ŷ) is the cross entropy loss:

Lxent (y, ŷ) = −
1

N

N∑

i=1

yi log (ŷi), (3)

where y is the ground-truth vector, ŷ is the estimation, and

N is the number of classes (in our case IDs). In Eq. (1), λhtri

and λxent are the regularization factors, both set to 1.

For the other two sub-tasks of attribute classification, we

again employ the cross-entropy loss as follows:

Lcolor = Lxent (ycolor, ŷcolor) , (4)

Ltype = Lxent (ytype, ŷtype) . (5)

The final loss is the weighted combination of all tasks:

L (θ,X ) = LID + λcolorLcolor + λtypeLtype, (6)

where X = {(xi, yi)} represents the input training set and

θ is the set of network parameters. Following the practice of

other researchers [12, 23], we set the regularization param-

eters of both λcolor and λtype to be much lower than 1, in our

case 0.125. This is because, in some circumstances, vehicle

ReID and attribute classification are conflicting tasks, i.e.,

two vehicles of the same color and/or type may not share

the same identity.

At the testing stage, the final ReID classification layer is

removed. For each vehicle image a 1024-dimensional fea-

ture vector is extracted from the last FC layer. The features

from each pair of query and test images are compared using

Euclidean distance to determine their similarity.
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Dataset # total # train # test # query # total

IDs IDs IDs images images

VeRi 776 576 200 1,678 51,038

CityFlow-ReID 666 333 333 1,052 56,277

Synthetic 402 402 – – 41,000

Table 1. Statistics of the datasets used for training and evaluation.

4. Evaluation

In this section, we present the datasets used for evalu-

ating our proposed approach, the implementation details,

experimental results showing state-of-the-art performance,

and a detailed analysis of the effects of various components

of PAMTRI.

4.1. Datasets and evaluation protocol

Our PAMTRI system was evaluated on two mainstream

large-scale vehicle ReID benchmarks, namely, VeRi [14]

and CityFlow-ReID [30], whose statistics are summarized

in Tab. 1 together with the details of the synthetic data we

generated for training.

VeRi [14] has been widely used by most recent research

in vehicle ReID, as it provides multiple views of vehicles

captured from 20 cameras. CityFlow-ReID [30] is a sub-

set of the recent multi-target multi-camera vehicle tracking

benchmark, CityFlow, which has been adopted for the AI

City Challenge [20] at CVPR 2019. The latter is signif-

icantly more challenging, as the footage is captured with

more cameras (40) in more diverse environments (residen-

tial areas and highways). Unlike VeRi, the original videos

are available in CityFlow, which enable us to extract back-

ground images for randomization to generate realistic syn-

thetic data. Whereas the color and type information is avail-

able with the VeRi dataset, such attribute annotation is not

provided by CityFlow. Hence, another contribution of this

work is that we manually labeled vehicle attributes (color

and type) for all the 666 identities in CityFlow-ReID.

In our experiments, we strictly follow the evaluation pro-

tocol proposed in Market1501 [42] measuring the mean Av-

erage Precision (mAP) and the rank-K hit rates. For mAP,

we compute the mean of all queries’ average precision, i.e.,

the area under the Precision-Recall curve. The rank-K hit

rate denotes the possibility that at least one true positive

is ranked within the top K positions. When all the rank-

K hit rates are plotted against K, we have the Cumulative

Matching Characteristic (CMC). In addition, rank-K mAP

is introduced in [30] that measures the mean of average pre-

cision for each query considering only the top K matches.

4.2. Implementation details

Training for multi-task learning. Leveraging the off-

the-shelf implementation in [44], we use DenseNet121 [7]

Method mAP Rank-1 Rank-5 Rank-20

FACT [13] 18.73 51.85 67.16 79.56

PROVID* [15] 48.47 76.76 91.40 -

OIFE [37] 48.00 65.92 87.66 96.63

PathLSTM* [24] 58.27 83.49 90.04 97.16

GSTE [3] 59.47 96.24 98.97 -

VAMI [45] 50.13 77.03 90.82 97.16

VAMI* [45] 61.32 85.92 91.84 97.70

ABLN [46] 24.92 60.49 77.33 88.27

BA [10] 66.91 90.11 96.01 98.27

BS [10] 67.55 90.23 96.42 98.63

RS 63.76 90.70 94.40 97.47

RS+MT 66.18 91.90 96.90 98.99

RS+MT+K 68.64 91.60 96.78 98.75

RS+MT+K+H 71.16 92.74 96.68 98.40

RS+MT+K+S 71.88 92.86 96.97 98.23

RS w/ Xent only 56.52 83.41 92.07 97.02

RS w/ Htri only 47.50 73.54 87.25 96.01

RS+MT w/ DN201 64.42 90.58 96.36 98.81

R+MT+K 65.44 90.94 96.72 99.11

Table 2. Experimental comparison of state-of-the-art in vehicle

ReID on VeRi [13]. All values are shown as percentages. For

our proposed method, MT, K, H, S, RS and R respectively denote

multi-task learning, explicit keypoints embedded, heatmaps em-

bedded, segments embedded, training with both real and synthetic

data, and training with real data only. Xent, Htri and DN201 stand

for cross-entropy loss, hard triplet loss and DenseNet201, respec-

tively. (*) indicates the usage of spatio-temporal information.

as our backbone CNN for multi-task learning, whose initial

weights are from the model pre-trained on ImageNet [5].

The input images are resized to 256 × 256 and the training

batch size is set as 32. We utilize the Adam optimizer [9]

to train the base model for 60 maximum epochs. The ini-

tial learning rate was set to 3e-4, which decays to 3e-5 and

3e-6 at the 20th and 40th epochs, respectively. For multi-

task learning the dimension of the last FC layer for ReID is

1,024, whereas the two FC layers for attribute classification

share the size of 512 each. For all the final FC layers, we

adopt the leaky rectified linear unit (Leaky ReLU) [40] as

the activation function.

Training for pose estimation. The state-of-the-art HR-

Net [25] for human pose estimation is used as our back-

bone for vehicle pose estimation, which is built upon the

original implementation by Sun et al. Again we adopt the

pre-trained weights on ImageNet [5] for initialization. Each

input image is also resized to 256 × 256 and the size of

the heatmap/segment output is 64× 64. We set the training

batch size to be 32, and the maximum number of epochs

is 210 with learning rate of 1e-3. The final FC layer is ad-

justed to output a 108-dimensional vector, as our vehicle

model consists of 36 keypoints in 2D whose visibility (in-

dicated by confidence scores) is also computed.

215



Method mAP (r100) Rank-1 Rank-5 Rank-20

FVS [32] 6.33 (5.08) 20.82 24.52 31.27

Xent [44] 23.18 (18.62) 39.92 52.66 66.06

Htri [44] 30.46 (24.04) 45.75 61.24 75.94

Cent [44] 10.73 (9.49) 27.92 39.77 52.83

Xent+Htri [44] 31.02 (25.06) 51.69 62.84 74.91

BA [10] 31.30 (25.61) 49.62 65.02 80.04

BS [10] 31.34 (25.57) 49.05 63.12 78.80

RS 31.41 (25.66) 50.37 61.48 74.26

RS+MT 32.80 (27.09) 50.93 66.09 79.46

RS+MT+K 37.18 (31.03) 55.80 67.49 81.08

RS+MT+K+H 40.39 (33.81) 59.70 70.91 80.13

RS+MT+K+S 38.64 (32.67) 57.32 68.44 79.37

RS w/ Xent only 29.59 (23.74) 41.91 56.77 73.95

RS w/ Htri only 28.09 (21.95) 40.02 56.94 74.05

RS+MT w/ DN201 33.18 (27.10) 51.80 65.49 79.08

R+MT+K 36.67 (30.57) 54.56 66.54 80.89

Table 3. Experimental comparison of state-of-the-art in vehicle

ReID on CityFlow-ReID [30]. All values are shown as percent-

ages, with r100 indicating the rank-100 mAP. For our proposed

method, MT, K, H, S, RS and R respectively denote multi-task

learning, explicit keypoints embedded, heatmaps embedded, seg-

ments embedded, training with both real and synthetic data, and

training with real data only. Xent, Htri and DN201 stand for cross-

entropy loss, hard triplet loss and DenseNet201, respectively.

4.3. Comparison of ReID with the state­of­the­art

Tab. 2 compares PAMTRI’s performance with state-of-

the-art in vehicle ReID. Notice that our method outper-

forms all the others in terms of the mAP metric. Although

GSTE [3] achieves higher rank-K hit rates, its mAP score

is lower than ours by about 10%, which demonstrates our

robust performance at all ranks. Note also that GSTE ex-

ploits additional group information, i.e., signatures of the

same identity from the same camera are grouped together,

which is not required in our proposed scheme. More-

over, VeRi also provides spatio-temporal information that

enables association in time and space rather than purely

using appearance information. Surprisingly our proposed

method achieves better performance over several methods

that leverage this additional spatio-temporal information,

which further validates the reliability of our extracted fea-

tures based on pose-aware multi-task learning.

We also conducted an ablation study while comparing

with state-of-the-art. It can be seen from the results that all

the proposed algorithmic components, including multi-task

learning and embedded pose representations, contribute to

our performance gain. Though not all the components of

our system contribute equally to the improved results, they

all deliver viewpoint-aware information to aid feature learn-

ing. The combination of both triplet loss and cross-entropy

loss outperforms the individual loss functions, because the

metric in feature space and identity classification are jointly

learned. The classification loss in ReID itself is generally

Figure 4. The CMC curves of state-of-the-art methods on

CityFlow-ReID [30]. Note that variants of our proposed method

improve the state-of-the-art performance. Best viewed in color.

too “lazy” to capture the useful but subtle attribute cues be-

sides global appearance. Moreover, we experimented with

DenseNet201, which has almost twice as many parameters

compared to DenseNet121, but the results did not improve

and even decreased due to overfitting. Therefore, the impor-

tance of the specific structure of HRNet for pose estimation

is validated. Finally, we find that the additional synthetic

data can significantly improve the ReID performance.

Tab. 3, compares PAMTRI with state-of-the-art on the

CityFlow-ReID [30] benchmark. Notice the drop in accu-

racy of state-of-the-art compared to VeRi, which validates

that this dataset is more challenging. BA and BS [10],

which rely on triplet embeddings, are the same methods

shown in the previous table for VeRi. Besides, we also com-

pare with state-of-the-art metric learning methods in person

ReID [44] using cross-entropy loss (Xent) [6], hard triplet

loss (Htri) [28], center loss (Cent) [38], and the combination

of both cross-entropy loss and hard triplet loss (Xent+Htri).

Like ours, they all share DenseNet121 [7] as the backbone

CNN. Finally, FVS [32] is the winner of the vehicle ReID

track at the AI City Challenge 2018 [19]. This method di-

rectly extracts features from a pre-trained network and com-

putes their distance with Bhattacharyya norm.

As shown in the experimental results, PAMTRI signifi-

cantly improves upon state-of-the-art performance by incor-

porating pose information with multi-task learning. Again,

all the proposed algorithmic components contribute to the

performance gain. The experimental results of other abla-

tion study align with the trends in Tab. 2.

In Fig. 4, the CMC curves of the methods from Tab. 3 are

plotted to better view the quantitative experimental compar-

ison. We also show in Fig. 5 some examples of successful

and failure cases using our proposed method. As shown in

the examples, most failures are caused by high inter-class

similarity for common vehicles like taxi and strong occlu-

sion by objects in the scene, (e.g., signs and poles).
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Figure 5. Qualitative visualization of PAMTRI’s performance on public benchmarks: VeRi (top rows, using RS+MT+K+S) and CityFlow-

ReID (bottom rows, using RS+MT+K+H). For each dataset, 5 successful cases and 1 failure case are presented. For each row, the top 30

matched gallery images are shown for each query image (first column, blue). Green and red boxes represent the same identity (true) and

different identities (false), respectively. Best viewed in color.

Method
VeRi CityFlow-ReID

Color acc. Type acc. Color acc. Type acc.

RS+MT 93.42 93.27 80.16 78.97

RS+MT+K 93.86 93.53 83.06 79.17

RS+MT+K+H 94.06 92.77 84.80 80.04

RS+MT+K+S 94.66 92.80 83.47 79.41

R+MT+K 74.99 90.38 79.56 76.84

Table 4. Experimental results of different variants of PAMTRI on

color and type classification. The percentage of accuracy is shown.

MT, K, H, S, RS and R respectively denote multi-task learning,

explicit keypoints embedded, heatmaps embedded, segments em-

bedded, training with both real and synthetic data, and training

with real data only.

4.4. Comparison of attribute classification

Experimental results of color and type classification are

given in Tab. 4. The evaluation metric is the accuracy in

correctly identifying attributes. Again, these results confirm

that CityFlow-ReID exhibits higher difficulty compared to

VeRi, due to the diversity of viewpoints and environments.

We also observe that the accuracy of type prediction is usu-

ally lower than that of color prediction, because some ve-

hicle types look similar from the same viewpoint, e.g., a

hatchback and a sedan from the same car model are likely

to look the same from the front.

It is worth noting that the pose embeddings significantly

improve the classification performance. As explained in

Sec. 3.3, pose information is directly linked with the defini-

tion of vehicle type, and the shape deformation by segments

enables color estimation on the main body only.

In general, the accuracy of attribute classification is

much higher than that of identity recovery, which could be

used to filter out vehicle pairs with low matching likelihood,

and thus improve the computational efficiency of target as-

sociation across cameras. We leave this as future work.

4.5. Comparison of vehicle pose estimation

To evaluate vehicle pose estimation in 2D, we follow

similar evaluation protocol as human pose estimation [1],

in which the threshold of errors is adaptively determined by

the object’s size. The standard in human-based evaluation

is to use 50% of the head length which corresponds to 60%

of the diagonal length of the ground-truth head bounding

box. Unlike humans, all the lengths between vehicle key-

points may change abruptly corresponding to viewing per-

spectives. Therefore, we use 25% of the diagonal length of

the entire vehicle bounding box as the reference, whereas

the threshold is set the same as human-based evaluation.

For convenience, we divide the 36 keypoints into 6 body

parts for individual accuracy measurements, and the mean

accuracy of all the estimated keypoints is also presented.

We randomly withhold 10% of the real annotated identi-

ties to form the test set. The training set consists of synthetic

data and the remaining real data. Our experimental results

are displayed in Tab. 5. It is important to note that though

the domain gap still exists in pose estimation, the combina-

tion with synthetic data can help mitigate the inconsistency

across real datasets. In all the scenarios compared, when

the network trained on one dataset is tested on the other,

the keypoint accuracy increases as synthetic data are added

during training. On the other hand, when the network model
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Test set Train set Wheel acc. Fender acc. Rear acc. Front acc. Rear win. acc. Front win. acc. Mean

VeRi

VeRi 85.10 81.14 69.20 77.44 85.67 89.92 82.15

CityFlow 58.62 54.99 45.32 54.86 65.74 74.38 60.14

VeRi+Synthetic 84.93 82.66 71.73 77.72 86.41 89.86 83.16

CityFlow+Synthetic 64.03 59.73 45.10 54.73 63.93 76.14 62.13

CityFlow

VeRi 70.89 60.68 46.66 48.34 56.77 63.51 58.27

CityFlow 83.75 79.89 65.87 71.48 75.38 80.80 77.07

VeRi+Synthetic 69.77 61.68 52.40 52.07 63.00 65.92 61.03

CityFlow+Synthetic 84.19 80.91 70.18 72.37 78.35 82.12 78.70

Table 5. Experimental results of pose estimation using HRNet [25] as backbone network. The 36 keypoints are grouped into 6 categories

for individual evaluation. Shown are the percentage of keypoints located within the threshold; see text for details.

Figure 6. Qualitative visualization of the performance of pose estimation (only high-confidence keypoints shown). The top 4 rows show

results on VeRi, whereas the bottom 4 show results on CityFlow-ReID. For each, the rows represent the output from a different training

set: VeRi, CityFlow-ReID, VeRi+synthetic, and CityFlow-ReID+synthetic, respectively. Best viewed in color.

is trained and tested on the same dataset, the performance

gain is more obvious on CityFlow-ReID, because the syn-

thetic data look visually similar. Even with VeRi, improved

precision can be seen in most of the individual parts, as well

as the mean.

From these results, we learn that the keypoints around

the wheels, fenders, and windshield areas are more easily

located, because of the strong edges around them. On the

contrary, the frontal and rear boundaries are harder to pre-

dict, as they usually vary across different car models.

Some qualitative results are demonstrated in Fig. 6. Most

failure cases are from cross-domain learning, and it is no-

ticeable that incorporating synthetic data improves robust-

ness against unseen vehicle models and environments in the

training set. Moreover, as randomized lighting and occlu-

sion are enforced in the generation of our synthetic data,

they also lead to more reliable performance against such

noise in the real world.

5. Conclusion

In this work, we propose a pose-aware multi-task learn-

ing network called PAMTRI for joint vehicle ReID and at-

tribute classification. Previous works either focus on one

aspect or exploit metric learning and spatio-temporal in-

formation to match vehicle identities. However, we note

that vehicle attributes such as color and type are highly re-

lated to the deformable vehicle shape expressed through

pose representations. Therefore, in our designed frame-

work, estimated heatmaps or segments are embedded with

input batch images for training, and the predicted keypoint

coordinates and confidence are concatenated with the deep

learning features for multi-task learning. This proposal

relies on heavily annotated vehicle information on large-

scale datasets, which has not yet been available. Hence,

we also generate a highly randomized synthetic dataset,

in which a large variety of viewing angles and random

noise such as strong shadow, occlusion, and cropped im-

ages are simulated. Finally, extensive experiments are con-

ducted on VeRi [14] and CityFlow-ReID [30] to evalu-

ate PAMTRI against state-of-the-art in vehicle ReID. Our

proposed framework achieves the top performance in both

benchmarks, and an ablation study shows that each pro-

posed component helps enhance robustness. Furthermore,

experiments show that our schemes also benefit the sub-

tasks on attribute classification and vehicle pose estima-

tion. In the future, we plan to study how to more effectively

bridge the domain gap between real and synthetic data.
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