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Quantitative PCR (qPCR) remains the most widely used technique for gene expression

evaluation. Obtaining reliable data using this method requires reference genes (RGs) with

stablemRNA level under experimental conditions. This issue is especially crucial in cancer

studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas

(TCGA) project provides RNA-Seq data for thousands of samples corresponding to

dozens of cancers and presents the basis for assessment of the suitability of genes as

reference ones for qPCR data normalization. Using TCGA RNA-Seq data and previously

developed CrossHub tool, we evaluated mRNA level of 32 traditionally used RGs in 12

cancer types, including those of lung, breast, prostate, kidney, and colon. We developed

an 11-component scoring system for the assessment of gene expression stability.

Among the 32 genes, PUM1 was one of the most stably expressed in the majority of

examined cancers, whereas GAPDH, which is widely used as a RG, showed significant

mRNA level alterations in more than a half of cases. For each of 12 cancer types,

we suggested a pair of genes that are the most suitable for use as reference ones.

These genes are characterized by high expression stability and absence of correlation

between their mRNA levels. Next, the scoring system was expanded with several

features of a gene: mutation rate, number of transcript isoforms and pseudogenes,

participation in cancer-related processes on the basis of Gene Ontology, and mentions

in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were

analyzed using the expanded scoring system that allowed us to reveal novel promising

RGs for each examined cancer type and identify several “universal” pan-cancer RG

candidates, including SF3A1, CIAO1, and SFRS4. The choice of RGs is the basis for

precise gene expression evaluation by qPCR. Here, we suggested optimal pairs of

traditionally used RGs for 12 cancer types and identified novel promising RGs that

demonstrate high expression stability and other features of reliable and convenient RGs

(high expression level, low mutation rate, non-involvement in cancer-related processes,

single transcript isoform, and absence of pseudogenes).
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INTRODUCTION

Quantitative PCR (qPCR) is the most widely used technique
for quantification of gene expression. qPCR is rapid, has a very
high dynamic range of mRNA level quantification and provides a
measurement of even small gene expression alterations in a large
number of samples. The most common and convenient approach
for qPCR data normalization assumes mRNA quantification of
a reference gene (RG) with stable expression level between the
samples under study (Huggett et al., 2005). It is a bottleneck of
qPCR, and the reliability of qPCR results strongly depends on
the selection of appropriate RGs. This issue becomes more acute
when it comes to assessing the moderate changes in the mRNA
level of target genes (<2-fold).

The problem of selecting appropriate RGs is especially crucial
in cancer studies because of the presence of several molecular
subtypes within a histological type and, moreover, a unique
molecular portrait of each tumor (Janssens et al., 2004). Despite
the fact that almost 30 years have passed since the moment
when the issue of picking appropriate RGs had arisen, there is
still no consensus (Janssens et al., 2004; Rubie et al., 2005; Gur-
Dedeoglu et al., 2009; Ibusuki et al., 2013; Zhao et al., 2018).
Many studies indicate that most frequently used RGs (GAPDH,
ACTB, B2M, etc.) have a wide but limited field of applicability:
they should not be illegibly used for a wide spectrum of diseases
or stress conditions (Barber et al., 2005; Rubie et al., 2005;
Kozera and Rapacz, 2013; Chapman and Waldenstrom, 2015).
To increase the reliability of qPCR data, one should use at
least two or more RGs that are not co-expressed with each
other (Chapman and Waldenstrom, 2015). The most rigorous
approach is to analyze a panel of 5–20 RGs and choose those
with the most stable expression for a current study. Several tools
have been developed for these purposes: geNorm (Vandesompele
et al., 2002), NormFinder (Andersen et al., 2004), BestKeeper
(Pfaffl et al., 2004). However, the vast part of researchers do not
perform the analysis of RG suitability and just rely on the existing
literature data concerning the object of study (Chapman and
Waldenstrom, 2015).

Whole-transcriptomic data allow us to look at the problem
from the other side. RNA-Seq opens up great opportunities
for a complex expression analysis and identifying trends in
the mRNA level changes of groups of genes between the
samples. RNA-Seq data are free of bias that comes from the
instability of RG expression. The most common RNA-Seq data
normalization strategy is based on the assumption that the
mRNA level of the majority of genes is stable. This method is
implemented in popular RNA-Seq differential expression analysis
packages, including edgeR [trimmed mean of M-values method,
TMM; Robinson et al., 2010], DESeq2 (Love et al., 2014), and
others. There are other normalization strategies: by total read
count, by upper quartile or median values, FPKM/RPKM, TPM,
“remove unwanted variation” (RUV) (Risso et al., 2014); as
well as machine-learning approaches: RNA-Seq by Expectation-
Maximization (RSEM) (Li and Dewey, 2011) and Sailfish (Patro
et al., 2014). Despite the diversity of the methods, in most cases,
they give rather similar results, which differ by 20–30%, with the
exception of some cases when the expression of half or more of

genes is changed significantly (Dillies et al., 2013; Li et al., 2015;
Zyprych-Walczak et al., 2015; Evans et al., 2018).

Analysis of highly representative RNA-Seq and microarray
datasets is very attractive in terms of the identifying stably
expressed RGs for human (Popovici et al., 2009; Tilli et al., 2016;
Chen et al., 2017; Chim et al., 2017; Hoang et al., 2017) or
other organisms (Alexander et al., 2012; Carmona et al., 2017;
Zhou et al., 2017). This approach is valuable for the detection
of novel housekeeping gene candidates with constitutively stable
mRNA level.

In 2016, Tilli et al. suggested a strategy including the large-
scale screening of potential RGs from RNA-Seq data with further
validation by qPCR and applied it for breast cancer (Tilli et al.,
2016). The authors analyzed datasets of The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) and found
that several non-traditional RGs, CCSER2, SYMPK, ANKRD17,
as well as known RG PUM1 demonstrated the least expression
variability in breast cancer samples and normal tissues (Tilli
et al., 2016). The similar approach was realized by Chen et al.
for the identification of reference mRNA and miRNA suitable
for human esophageal squamous cell carcinoma studies (Chen
et al., 2017). It allowed authors to identify non-standard RG
candidates—DDX5, LAPTM4A, P4HB, and RHOA.

TCGA is the largest resource in the field of cancer biology
that is aimed at the discovery of the molecular features of
various cancer types (https://cancergenome.nih.gov/). TCGA
database includes genomic, transcriptomic, and epigenetic data
for 33 human cancer types represented with more than
11,000 individual samples. In the present work, we analyzed
TCGA transcriptome sequencing data in order to evaluate the
expression stability of widely used RGs and identify novel
RG candidates in 12 most common cancer types. The use of
representative TCGA sample sets allows us to pay extra attention
to the overall stability of mRNA level and presence of outliers,
the cases of dramatic expression “blow up” or falling down in
single samples. Besides the data on mRNA level, we took into
account if this is a well-studied gene or not (by evaluating the
number of mentions in PubMed-indexed titles/abstracts), if a
gene is involved in cancer-associated biological processes like
cell cycle, differentiation, and adhesion (using Gene Ontology).
Additionally, we evaluated if a gene is highly mutated (using
TCGA data on somatic mutations) that indicates its implication
in cancer. Also, we tried to minimize the number of pseudogenes
and alternatively spliced transcripts in order to improve usability:
the presence of pseudogenes makes it difficult to pick up cDNA-
specific primer pairs, and the presence of alternative transcripts
complicates the expression analysis and may lead to flawed
results. We integrated all the parameters listed above into a single
scoring system. Finally, we looked for genes that demonstrate
cross-tissue expression stability and may represent “universal”
pan-cancer RGs.

MATERIALS AND METHODS

In the present work, we focused on TCGA data for 12 cancer
types for which RNA-Seq data were available for representative
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sample sets: at least 100 tumor (T) and 20 normal (N) tissue
samples. The data were processed with a modified version of
CrossHub (Krasnov et al., 2016), a tool for the multi-way analysis
of TCGA transcriptomic and genomic data. Read counts data
were downloaded from the TCGA data portal (https://portal.gdc.
cancer.gov/) and normalized using the TMM method and then
recalculated for 1 million library size. The derived CPM (read
counts per million) values were used as a measure of mRNA level
of a gene for further expression stability analysis.

In order to assess gene expression stability, we developed
a scoring system, which included several components (Si)
responsible for T-N expression level difference, expression level
stability within pools of N and T samples, and correlations of
mRNA level with clinical and pathological characteristics [disease
stage, TNM (tumor, node, metastasis) classification, follow-up
status]. Each scoring component Si takes values from 0 to 100.
All Si are taken with different weights (Wi), which reflect the
importance of component. Overall expression scoring SExp is
calculated as follows:

SExp =

(

N
∏

i=1

(Si + CAi)
Wi

)1/
∑N

i=1 Wi

where:

- CAi is a constant summand, which is used to mitigate the
impact of zero values of Si;

- Wi is weight of a component Si (i= 1 . . . N);
- N is a number of components, N = 48.

Values of these parameters are presented in Table 1.
Each individual component Si is calculated with a common

parametric formula:

Si =
100

1+ Sq×
(

max(x−IV;0)
IP−IV

)CS

This formula provides a (1-sigma)-like function with a
customizable inflection point, tilt, and region of maximal score
values. The function takes values from 0 to 100. Here:

- x is a variable to be scored (see Table 1).
- IV is an “ideal value.” All cases with x ≤ IV would produce
the maximum score (100). For example, SDP, the component
responsible for T-N expression level fold change (see Table 1)
would be equal to 100 for any log2FCP between −0.05 and
+0.05 since IV= 0.05.

- IP is an “inflection point.” In this point, there is the maximum
decrease rate of Si. When x is equal to IP and Sq = 1 (Sq takes
these value formost Si), the scoring component Si = 50. Ideally,
IP value should reflect the marginally acceptable value of x.
For example, the relative standard deviation of gene expression
(RelSD) values from 0 to 0.25 are appropriate, but RelSD
= 0.4 . . . 0.5 is almost unacceptable. For the corresponding
component (SEStD), we chose IV = 0.1 and IP = 0.3 (see
Table 1).

- CS is a “curve slope.” The greater CS value, the stronger Si
decrease rate. Higher CS values should be assigned to more
important scoring components.

- Sq is a “Squeeze,” this is an auxiliary parameter. For most
scoring components, it is equal to 1.

All scoring components Si and parameters (IV, IP, CS, Sq) are
presented in Table 1. The derived scoring functions are shown
in Figure 1.

Two components, SDP and SDL, are responsible for T-N
expression level difference. This is the major factor of RG
suitability. SDP is calculated for pooled, and SDL–for paired
samples. Hence, we applied the strongest scoring parameters (IV
= 0.05, IP = 0.25, CS = 2.5) and assigned high weight (W =

4) for these two components. SDP (or SDL) would be equal to 50
if the absolute value of average log2FCP (or log2FCL) is equal
to IP = 0.25, i.e., fold change between tumor and normal is
about 20%. We chose IV = 0.05–0.1 for all the components that
are responsible for expression level (SDP, SDL, SDoO, SDoU, SDLc,
SEStD, SEoH, SEoL). This means that 5–10% mRNA level changes
are ignored.

SDP and SDL are calculated using the trimmed means of
either CPM (pooled sample) or log2FCL (paired samples).
Only values from 10 to 90th percentiles are included. To
take into account T-N expression outliers, we added two
other scorings, SDoO and SDoU, that are responsible for the
upper and lower deciles of log2FCL. For these components, we
assigned increased IP value (IP = 0.7) since it is expected that
Abs[Average(log2FCL)90−100] calculated for 90–100th percentiles
of log2FCL will be much greater than such value calculated for
10–90th percentiles.

SEStD, SEoH, SEoL are responsible for evaluating expression
stability within pools of normal and tumor samples. SEStD
scores trimmed standard deviation of CPM values (10–90th
percentiles), and SEoH (or SEoL) is responsible for outliers with
high (or low) mRNA level (in terms of CPM). Additionally,
we included scoring for average expression level (SEA) and
set high weight (W = 6) for this component in order
to completely exclude genes with low mRNA level from
the analysis.

Finally, we added scorings for correlations between gene
expression and six clinical and pathological characteristics:
pathologic TNM classification (separately for T, N, and M
indexes), pathologic stage, follow-up person neoplasm cancer
status and follow-up treatment success status. SCr is the
component responsible for Spearman’s correlation coefficient,
and SCp–for correlation p-value. IV values were chosen in such
a way that cases with p > 0.25 and |rs| < 0.1 have score equals to
100. In total, each of these two components is taken 18 times: 6
clinical characteristics are analyzed for associations with CPM in
tumor samples, CPM in normal samples and T-N expression fold
change (paired samples). Hence, we assigned low weights—W =

0.2 and 0.3 for SCr and SCp, respectively.
Besides stable and high enough expression level, an

appropriate RG should also demonstrate a low mutation
rate, single transcript isoform, and absence of pseudogenes in
order to avoid problems with PCR priming and ensure the
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TABLE 1 | Components of the scoring function.

Component Factor Variable (x = …)* IV IP CS Sq CA W Number of times applied

EXPRESSION SCORING

SDP T-N expression level difference

(pooled samples)

Abs (log2FCP) 10−90 0.05 0.25 2.5 1 0 4 1 (all samples)

SDL T-N expression level difference

(paired samples)

Abs (Average(log2FCL )10−90) 1 (paired samples)

SDoO T-N expression level difference:

outliers, overexpression

Abs (Average(log2FCL )90−100 ) 0.1 0.7 2.5 1 10 1 1 (paired samples)

SDoU T-N expression level difference:

outliers, underexpression

Abs (Average(log2FCL )0−10) 1 (paired samples)

SDLc Cumulative T-N expression

difference among paired samples

Average (Abs(log2FCL )10−90) 0.1 0.5 2.5 1 5 2 1 (paired samples)

SEStD Expression level stability:

standard deviation

StDev (CPM)10−90/Average

(CPM)10−90

0.1 0.3 2 1 5 1.5 2 (all samples: normal and

tumor)

SEoH Expression level stability: outliers

(high expression)

log2
(Average(CPM)90−100/Average

(CPM)10−90)

0.1 0.7 2.5 1 5 0.75 2 (all samples: normal and

tumor)

SEoL Expression level stability: outliers

(low expression)

log2
(Average(CPM)10−90/Average

(CPM)0−10)

2 (all samples: normal and

tumor)

SEA Average expression level 1/log2 (CPM)10−90 0.07 0.15 3 1 0 6 1 (all tumor samples)

SCp Correlations of expression with

clinical parameters (p-values)

-log2 (p-value) 2 4 3 0.3 5 0.3 18 (3 × 6; 3: CPM10−90 all

tumor samples, CPM10−90 all

normal samples,

(log2FCL )10−90; 6: pathologic

TNM classification, pathologic

stage, follow-up—person

neoplasm cancer status,

follow-up—treatment success)

SCr Correlations of expression with

clinical parameters (rs)

Abs (rs) 0.1 0.25 2.5 0.3 5 0.2 18 (the same as above)

“ANTI-SCORINGS”

SMut Percentile of mutation rate 75 95 4 1

SIsoforms Number of transcript isoforms 1 3 2 0.4

SPseudogenes Number of pseudogenes 0 2 2 0.4

*Percentiles, which were taken into calculation, are indicated as a subscript.

IV, ideal value; IP, inflection point; CS, curve slope; Sq, “squeeze”; CA, constant add; W, weight; Abs (…), absolute value; Average (…), mean value; CPM, counts per million, gene

expression level; FCP, ratio of the average CPM in a pool of tumor samples to the average CPM in a pool of normal samples; FCL, ratio of CPM values between tumor and matched

normal tissue (per each paired sample); StDev (…), standard deviation; rs, Spearman’s correlation coefficient.

rigorous evaluation of mRNA level. The mutation rate of a
gene was assessed using TCGA data on somatic mutations.
The number of transcript isoforms (per gene) was obtained
from the Ensembl human genome annotation (hg38, release
88). The number of pseudogenes (per gene) was derived from
psiCube (Sisu et al., 2014). Therefore, we extended the scoring
system with three additional components, “anti-scorings”
(Table 1 and Figure 1). The resulting score SFinal is calculated
as follows:

SFinal = SExp · SMut
· SIsoforms

· SPseudogenes

Next, we tried to find RGs that are stably expressed across
multiple tissues and cancer types. For this purpose, we calculated
the pan-cancer score as follows:

SFinalPan−cancer = S
Exp&Mut
Pan−cancer · S

Isoforms
· SPseudogenes

where:

S
Exp&Mut
Pan−cancer =







∑M
j=1

(

S
Exp
j · SMut

j + CA
)k

M







1/k

where M = 12 (a number of cancer types analyzed); k = −0.4
(negative k value implies that the pan-cancer score is a harmonic
mean of individual scores); CA= 12 (a constant add).

Finally, we assessed the involvement of a gene in cancer-
related processes on the basis of Gene Ontology (GO; The Gene
Ontology, 2017) data and mentions in the articles indexed by
PubMed (titles and abstracts).

A RG should not be involved in cellular processes that
are frequently altered in cancer. A penalty system based on
GO data was developed. We evaluated the involvement of
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FIGURE 1 | Scoring functions used for evaluation of gene suitability for qPCR data normalization. Percentiles, which were taken into calculation, are indicated as a

subscript. Abs(…), absolute value; Avg(…), mean value; CPM, counts per million, gene expression level; FCP, ratio of the average CPM in a pool of tumor samples to

the average CPM in a pool of normal samples; FCL, ratio of CPM values between tumor and matched normal tissue (per each paired sample); StDev(…), standard

deviation; rs, Spearman’s correlation coefficient.

a gene in 6 cancer-associated biological processes: cell cycle,
differentiation, stress response, immune response, angiogenesis,
adhesion, and cell communication. The relation of a gene
to each of these processes was followed by the assignment
of penalty points (from 2 to 5). Finally, these points were
summed up. According to this system, a gene is penalized
(1) with 5 points if its GO annotation contains at least one
keyword related to cell cycle process: cell cycle, cell division,
cell growth, cell proliferation, apoptosis, apoptotic process, cell
death, MAPK cascade, tumor, oncogenic, apoptotic; (2) with 4
points if GO annotation contains a keyword related to cell
differentiation: cell differentiation, epithelial to mesenchymal
transition, mesenchymal to epithelial transition, stem cell, fetal,

embryonic, embryonal, embryo, gastrulation, tissue development,
cellular developmental process, organ development; (3) with 3
points for stress response related processes: response to stress,
DNA damage, DNA repair; (4) with 2 points for inflammation
and immune response: inflammation, inflammatory, immune
response, T cell activation, macrophage activation, antigen; (5)
with 2 points for angiogenesis: angiogenesis; (6) with 2 points for
intercellular interactions: cell communication, cell-cell signaling,
cell adhesion, cell motility, cell migration. Thus, a gene may
have a maximum of 5 + 4 + 3 + 2 + 2 + 2 = 18
penalty points.

The more accurately the gene is annotated, the more likely it
is to find one of the keywords in its annotation. Therefore, GO
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penalty should be normalized taking into account the number of
assigned GO terms for the gene. On the other hand, the better
the gene is annotated, the more extensively it is studied, and such
genes represent more attractive candidates. In order to keep a
balance between these two factors, we introduced normalization
coefficient evaluated as the total number of GO terms (assigned
for the gene) to the power of 0.3. If a gene lacked sufficient GO
annotation (<3 GO terms), we assigned it 10 penalty points.

The number of PubMed-indexed articles with the mention
of a gene name or its aliases was evaluated to assesses how
well a gene is studied. Next, within this pool of gene-related
publications, the number of cancer-related articles was also
evaluated. One of the following words should be present in
an article title to be treated as cancer-related: cancer, tumor,
∗carcinoma, sarcoma, glioma, glioblastoma, and other keywords.

The described components (GO and Pubmed) were not
included in the main scoring and were only used for
manual exclusion of cancer-associated genes. Besides, functional
annotations from RefSeqGene (https://www.ncbi.nlm.nih.gov/
refseq/rsg/) were added to each gene.

When revealing optimal RG pairs for each of examined
cancer types, we paid special attention to the co-expression
of RG candidates to avoid genes with a pronounced
correlation between their mRNA levels. To implement
the scoring system, we modified our previously developed
CrossHub tool (the updated version can be downloaded at
https://sourceforge.net/projects/crosshub/).

RESULTS

We performed the analysis of 12 cancer types from the TCGA
project that have RNA-Seq data for representative sample sets:
285-1095 tumor and 19-113 matched normal tissues. These
are: breast invasive carcinoma (BRCA), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), kidney renal cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
prostate adenocarcinoma (PRAD), colon adenocarcinoma
(COAD), head and neck squamous cell carcinoma (HNSC), liver
hepatocellular carcinoma (LIHC), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), and bladder urothelial
carcinoma (BLCA). For the remaining TCGA cancer types,
RNA-Seq data were available only for a few normal tissue
samples, and this makes it impossible to use such datasets for the
discovery of reliable RGs.

First, we assessed the expression stability of a set of 32
frequently used RGs in 12 selected cancer types: ACTB, ALAS1,
B2M, CDKN1A, G6PD, GAPDH, GUSB, HBB, HMBS, HPRT1,
HSP90AB1, IPO8, LDHA, NONO, PGK1, POP4, PPIA, PPIH,
PSMC4, PUM1, RPL13A, RPL30, RPLP0, RPS17, RPS18, SDHA,
TBP, TFRC, UBC, YWHAZ, TUBB, RPN1. This set of 32 RGs was
composed of commercially available RG panels: Roche “Human
Reference Gene Panel, 384” (Switzerland), TATAA “Reference
Gene Panel Human” (Sweden), and Bio-Rad “Reference Genes
H384” (USA). In total, 31 unique genes are included in the
panels, plus we added the RPN1 gene, which was identified by us
earlier as a reliable RG for lung, kidney, and colorectal cancers

(Krasnov et al., 2011; Fedorova et al., 2015). Expression stability
scores were calculated for each gene in each examined cancer
type. The results for the top 5 genes are presented in Table 2

and full data—in Supplementary Table 1. In almost each cancer
type, there were 1–10 genes with expression score about 70
or more (with a theoretical maximum of 100), which can be
considered as moderately high score value. PRAD and THCA
demonstrated the highest number of genes with stable mRNA
level-10 and 7, respectively. Only in BCLA, all the genes had
scores below 70, possibly because of potential bias due to a small
number of matched normal tissues (19—the smallest number
among the cancer types examined). The cross-tissue analysis of
12 cancer types revealed that the most stably expressed genes
were: PUM1 (SExp = 70), IPO8 (SExp = 61), UBC (SExp = 60),
ACTB (SExp = 55), and RPN1 (SExp = 54). GAPDH, one of the
most frequently used RGs, showed one of the least stability of
mRNA level—position 25 out of 32 (SExp = 32). According to the
obtained results, GAPDH can be reasonably applied as a RG only
in prostate and stomach adenocarcinomas. RPN1 gene suggested
by us demonstrated high expression stability score in lung, renal,
colon, liver, thyroid, and prostate cancers.

Next, for each of 12 cancer types, we searched for a pair of
the most suitable RGs focusing on SExp values and correlation
between mRNA levels of genes in a pair. As a result, we revealed
12 optimal pairs of RGs with SExp above 65 for each gene and
absence of co-expression (Table 2 and Supplementary Table 1).
PUM1 came into the pair of RGs for 9 out of 12 cancer types.

It should be noted that genes with high SExp values may be
inconvenient in practice because of the presence of numerous
pseudogenes, alternatively spliced transcripts or a high mutation
rate. Among the traditionally used RGs with high expression
scores, only 3 genes met the requirements—PUM1, IPO8, and
RPN1. These genes have no pseudogenes, one (RPN1), or
two (PUM1 and IPO8) transcript isoforms, and relatively low
mutation rate in examined cancer types.

Using the expanded scoring system (Figure 2), in which 3
“anti-scorings” counting mutation rate, number of transcript
isoforms and pseudogenes were included, we analyzed a complete
list of human genes in order to reveal the most prominent pan-
cancer RG candidates (Supplementary Table 2). Top 10 pan-
cancer RG candidates included MBTPS1, HNRNPA0, SF3A1,
SF3B2, GGNBP2, HNRNPUL2, SFRS3, RTF1, CIAO1, TM9SF3.
All these genes had stable and high enough mRNA level
and low mutation rate in most of 12 cancer types, only
one annotated transcript isoform and no pseudogenes. Taking
into account PubMed article search, GO annotations, and
RefSeqGene information, we selected three most promising RG
candidates—SF3A1, CIAO1, and SFRS4.

DISCUSSION

The use of inappropriate RGs leads to unreliable data and nullifies
potentially high accuracy of a qPCR technique in the evaluation
of differential gene expression. The search for a RG with a stable
mRNA level under experimental conditions represents a separate
object of research and is rarely performed during the original
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TABLE 2 | Top 5 traditionally used reference genes with the highest expression scores in 12 cancer types.

Cancer type 1 2 3 4 5

Gene SExp Gene SExp Gene SExp Gene SExp Gene SExp

BRCA UBC 82.1 PUM1 75.7 IPO8 71.8 RPLP0 69.8 RPS18 66.2

LUAD UBC 79.8 ACTB 76.4 PUM1 69.6 RPN1 67.9 RPL13A 65.5

LUSC UBC 81.4 IPO8 72.9 ACTB 71.4 PUM1 70.7 RPL13A 66.3

KIRC NONO 82.6 HSP90AB1 73.2 RPN1 69.7 YWHAZ 68.7 PSMC4 64.7

KIRP PUM1 70.3 PSMC4 66.0 PGK1 63.2 ALAS1 61.7 IPO8 61.1

PRAD SDHA 80.8 YWHAZ 78.4 PSMC4 76.2 PUM1 76.1 UBC 75.8

COAD PUM1 76.9 GUSB 73.4 UBC 72.8 ACTB 72.0 IPO8 71.6

HNSC RPL30 73.4 PUM1 72.7 IPO8 68.1 ACTB 64.2 PSMC4 63.1

LIHC RPN1 82.3 ACTB 80.9 UBC 78.4 PUM1 65.7 RPS17 56.4

STAD IPO8 71.7 RPL30 71.0 GAPDH 69.7 RPLP0 68.7 PUM1 68.1

THCA RPN1 84.4 HSP90AB1 84.3 PUM1 80.0 TUBB 79.2 YWHAZ 76.0

BLCA SDHA 66.3 PUM1 65.9 HSP90AB1 63.3 RPL30 62.2 RPS17 61.2

Cross-tissue PUM1 70.1 IPO8 60.8 UBC 59.8 ACTB 54.7 RPN1 54.3

Optimal pairs of reference genes for each cancer type are shown in bold.

studies. RNA-Seq data of TCGA project offer a great opportunity
for evaluating gene expression stability. Using our CrossHub
tool, we developed a complex scoring system that allowed us to
assess the suitability of 32 traditionally used RGs for qPCR data
normalization in 12 cancer types characterized by high morbidity
and mortality rates. The alterations of mRNA level were shown
for a number of these genes, including the most frequently used
GAPDH, in examined cancer types. The analysis across 12 cancer
types revealed that PUM1 and IPO8 genes demonstrate the most
stable expression among the 32 genes.

PUM1 (Pumilio RNA Binding Family Member 1) serves
as a translational regulator of specific mRNAs by binding to
their 3’-UTRs. It may be involved in translational regulation
of embryogenesis, cell development, and differentiation. There
are several functions that call into question its applicability as
a RG. After growth factor stimulation, PUM1 binds to 3’-UTR
of CDKN1B/p27 tumor suppressor, inhibits its expression and
promotes a rapid entry to the cell cycle (Kedde et al., 2010).
PUM1 is capable of repressing many mitotic, DNA repair,
and DNA replication factors (Lee et al., 2016). Moreover,
some authors reported that PUM1 promotes ovarian cancer
proliferation, migration, and invasion (Guan et al., 2018).
However, PUM1 is identified as one of the most stably expressed
genes in uterine cervical cancer (Tan et al., 2017), endometrial
carcinoma (Ayakannu et al., 2015), gallbladder (Yu et al.,
2015), leiomyoma (Almeida et al., 2014), breast (Ibusuki et al.,
2013; Kilic et al., 2014), and non-small cell lung (Soes et al.,
2013) cancers. This gene has only 2 transcript isoforms and
no pseudogenes that makes it even more attractive for use as a
reference one.

Recently, Tilli et al. performed a screening of breast
cancer RNA-Seq datasets from the International Cancer
Genome Consortium (ICGC), GEO, and TCGA repositories.
Authors found that PUM1, along with “novel” RGs -
CCSER2, SYMPK, and ANKRD17, had the most stable

mRNA level (Tilli et al., 2016). This agrees with previous
qPCR analyses of RG expression stability in breast
carcinomas (Ibusuki et al., 2013; Kilic et al., 2014).

IPO8 (importin 8), which has 2 transcript isoforms and no
pseudogenes, is the second in the cross-tissue stability list, but
its mRNA level is much less stable than that of PUM1 according
to TCGA data. IPO8 mediates nuclear import of proteins with a
classical nuclear localization signal. Previously, IPO8 was found
to be suitable for data normalization in endometrial (Ayakannu
et al., 2015) and ovarian carcinomas (Kolkova et al., 2013), colon
adenocarcinoma cell lines (Krzystek-Korpacka et al., 2016), non-
small cell lung cancer (Soes et al., 2013), and other tissues and
diseases: brain edema (Du et al., 2017), heart cavities (Molina
et al., 2018), T cells, and neutrophils (Ledderose et al., 2011).

The RPN1 gene (0 pseudogenes, 1 transcript isoform), which
was previously suggested by us for normalization of qPCR data
in LUAD, LUSC, KIRC, KIRP, and COAD (Krasnov et al., 2011;
Fedorova et al., 2015), demonstrate stable expression in these
cancer types as well as in PRAD, LIHC, and THCA.

The majority of the remaining genes from the set of 32
genes, even if they demonstrate stable mRNA level in certain
cancer types, have many pseudogenes or high mutation rate
(for example, UBC is above the 99th percentile in BRCA). The
presence of pseudogenes is a weakness of such widely used RGs
as GAPDH and ACTB (67 and 64, respectively) (Sun et al., 2012),
or genes encoding ribosomal proteins, including RPL13A and
RPS17 (Tonner et al., 2012).

Next, we tried to find out novel reliable and convenient RGs
suitable for most cancer types. As it was described above, for
this purpose, we evaluated expression and mutation scorings for
each examined cancer type, calculated pan-cancer scoring values
given the “anti-scorings” for the number of transcript isoforms
and pseudogenes, and selected the promising candidates taking
into account information on functions of the genes and their
involvement in carcinogenesis.
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FIGURE 2 | The pipeline for identification of promising reference genes for qPCR data normalization in cancer studies. SIso − SIsoforms, SPse − SPseudogenes.

Along with SFRS4 (number 13 in the top list of “universal”
reference genes), three genes that participate in pre-mRNA
splicing and processing pathways (SF3A1, SF3B2, and SFRS3)
are present in the top 10 of promising pan-cancer RGs. The
splicing machinery (namely spliceosome) is the largest molecular
machine so far described. It is composed of five small nuclear
ribonucleoproteins (snRNPs U1, U2, U4, U5, and U6) and more
than 100 different polypeptides (Ghigna et al., 2008). Aberrant
splicing in cancer provides a way to generate alternatively spliced
transcripts encoding proteins with distinct functions (Ghigna
et al., 2008). There are at least two ways resulting in splicing
aberrations in cancer: mutations in the affected genes, e.g., in
their splice sites (cis-effect), and altered expression and/or activity
of the elements of splicing machinery (trans-effect). Some of
the splicing factors are known to be deregulated in cancer, by
means of mRNA level alterations, mutations or posttranslational
modifications (Stickeler et al., 1999; Blaustein et al., 2005; Ghigna

et al., 2008). On the other hand, some of the splicing factors
are considered as potential RGs. This may be explained by the
complexity of the splicing machinery and various roles of its
elements (David and Manley, 2010).

SF3A1 and SF3B2 encode the subunits of splicing factors 3a
and 3b. These two splicing factors together with 12S RNA unit
form the U2 small nuclear ribonucleoproteins complex, which
binds pre-mRNA upstream of the intron’s branch site and may
anchor the U2 snRNP to the pre-mRNA (Will et al., 2002). SF3A1
is considered as a RG in sarcoma (Aggerholm-Pedersen et al.,
2014), its expression was found to be stable in breast cancer
(Maltseva et al., 2013), colorectal adenocarcinoma Caco-2 cells
under exposure to food products (Vreeburg et al., 2011), white
blood cells under treatment with growth hormone (Castigliego
et al., 2010), bovine blastocysts produced by different methods
(Luchsinger et al., 2014), bovine granulosa cells of dominant
follicles during follicular growth and aging (Khan et al., 2016).
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Considering the other splicing machinery gene, SFRS4 (serine
and arginine rich splicing factor 4), some authors earlier
demonstrated that its mRNA level is stable in hepatocellular
carcinoma (HCC) cell lines (Liu et al., 2017) and patients with
alcoholic liver disease (Boujedidi et al., 2012). SFRS4 remains
stably expressed in hepatitis C virus-induced HCC, whereas
ACTB and GAPDH are significantly deregulated (Waxman and
Wurmbach, 2007).

CIAO1 (number 9 in the top list) is a key component of the
cytosolic iron-sulfur protein assembly (CIA) complex. This is a
multiprotein complex that mediates the incorporation of iron-
sulfur cluster into extramitochondrial Fe/S proteins (provided
by GeneCards; Stelzer et al., 2016). CIAO1 was not previously
described as a RG. Till now, there is only one article describing
the possible role of the encoded protein in cancer development,
namely interacting with the tumor suppressor protein WD40
(Johnstone et al., 1998). Besides this, there is almost no data on
the association of this gene with cancer.

CONCLUSIONS

To reveal reliable RGs for qPCR data normalization, a
comprehensive analysis of TCGA data was performed. We took
into account expression stability, averagemRNA level, expression
correlation with clinical and pathological characteristics, number
of pseudogenes and transcript isoforms, mutation rate, GO
terms, and mentions of a gene in titles/abstracts of articles
from PubMed. The most reliable pairs of traditionally used RGs
were suggested for each of 12 examined cancer types, as well

as unsuitability of some frequently used RGs was shown. Pan-
cancer analysis revealed promising RG candidates with stable and
sufficiently high expression level and low mutation rate across 12

cancer types. Besides, these genes have only one known transcript
isoform and no pseudogenes.
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