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Pan-cancer diagnostic consensus through searching archival

histopathology images using artificial intelligence
Shivam Kalra 1,2, H. R. Tizhoosh 2,3✉, Sultaan Shah1, Charles Choi1, Savvas Damaskinos1, Amir Safarpoor 2, Sobhan Shafiei 2,

Morteza Babaie2, Phedias Diamandis 4, Clinton J. V. Campbell 5,6 and Liron Pantanowitz7

The emergence of digital pathology has opened new horizons for histopathology. Artificial intelligence (AI) algorithms are able to

operate on digitized slides to assist pathologists with different tasks. Whereas AI-involving classification and segmentation methods

have obvious benefits for image analysis, image search represents a fundamental shift in computational pathology. Matching the

pathology of new patients with already diagnosed and curated cases offers pathologists a new approach to improve diagnostic

accuracy through visual inspection of similar cases and computational majority vote for consensus building. In this study, we report

the results from searching the largest public repository (The Cancer Genome Atlas, TCGA) of whole-slide images from almost 11,000

patients. We successfully indexed and searched almost 30,000 high-resolution digitized slides constituting 16 terabytes of data

comprised of 20 million 1000 × 1000 pixels image patches. The TCGA image database covers 25 anatomic sites and contains 32

cancer subtypes. High-performance storage and GPU power were employed for experimentation. The results were assessed with

conservative “majority voting” to build consensus for subtype diagnosis through vertical search and demonstrated high accuracy

values for both frozen section slides (e.g., bladder urothelial carcinoma 93%, kidney renal clear cell carcinoma 97%, and ovarian

serous cystadenocarcinoma 99%) and permanent histopathology slides (e.g., prostate adenocarcinoma 98%, skin cutaneous

melanoma 99%, and thymoma 100%). The key finding of this validation study was that computational consensus appears to be

possible for rendering diagnoses if a sufficiently large number of searchable cases are available for each cancer subtype.
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INTRODUCTION

Digital pathology is the virtual version of conventional microscopy
utilized for the examination of glass pathology slides. In recent
years, there has been accelerated adoption of digital pathology,
whereby pathology laboratories around the world are slowly
beginning to trade in their light microscopes for digital scanners,
computers, and monitors. As a result, the pathology community
has begun to scan many slides resulting in the creation of large
databases of whole-slide images (WSIs). The emergence of deep
learning and other artificial intelligence (AI) methods and their
impressive pattern-recognition capabilities when applied to these
digital databases has immensely added to the value proposition of
digital pathology1–3. Computerized operations, such as segmenta-
tion of tissue fragments and cell nuclei, and classification of
diseases and their grades become possible after pathology slides
are digitized. These operations could assist with many diagnostic
and research tasks with expert-like accuracy when trained with the
proper level of labeled data4. The majority of recent studies in
digital pathology have reported the success of supervised AI
algorithms for classification and segmentation4–7. This over-
representation compared with other AI algorithms is related to
the ease of design and in-lab validation to generate highly
accurate results. However, compared with other methods of
computer-vision algorithms, AI-based image search and retrieval
offers a new approach to computational pathology.
Content-based image search8–11 implies that the input for

search software is not text (e.g., disease description in a pathology
report), but rather the input is an image such that the search and
retrieval can be performed based on image pixels (visual content).

Content-based image search is inherently unsupervised, which
means that its design and implementation may not need manual
delineation of a region of interest in the images12–14. More
importantly, image search does not make any direct diagnostic
decision on behalf of the pathologist; instead, it searches for
similar images and retrieves them along with the corresponding
metadata (i.e., pathology reports), and displays them to the
pathologist as decision support.
Variability in the visual inspection of medical images is a well-

known problem15–17. Both inter- and intra-observer variability may
affect image assessment and subsequently the ensuing diagno-
sis18–21. A large body of work have reported high rates of
diagnostic inaccuracy as a result of major discordance among
participating physicians with respect to case target diagnoses, and
propose a combination of “routine second opinions” and “directed
retrospective peer review”22–24. As most proposed AI-driven
solutions for digital pathology mainly focus on the concept of
classification, it appears that algorithmic decision-making may not
necessarily contribute to supporting concordance by providing a
framework for consensus building. Most capable classification
schemes trained with immense effort are supposed to be used for
triaging cases in the pathology laboratory, and not for direct
assistance in the pathologist’s office4. In contrast, instantly
retrieving multiple diagnosed cases with histopathologic similarity
to the patient’s biopsy about to be diagnosed offers a new
generation of decision support that may even enable “virtual”
peer review.
Content-based image retrieval (CBIR) systems have been under

investigation for more than two decades25–27. Recently, deep
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learning has gained a lot of attention for image search28–30. While

CBIR systems of medical images have been well researched11,31–33,

only with the emergence of digital pathology34,35 and deep

learning3,36,37 has research begun to focus on image search and

analysis in histopathology2,38–40. In the past 3 years, an image

search engine called Yottixel has been designed and developed

for application in pathology32,41–43. Yottixel is a portmanteau for

one yotta pixel alluding to the big-data nature of pathology

images. The underlying technology behind Yottixel consists of a

series of AI algorithms, including clustering techniques, deep

networks, and gradient barcoding. By generating a “bunch of

barcodes” (BoB) for each WSI, digitized pathology slides can be

indexed for real-time search. In other words, the tissue patterns of

a WSI are converted into barcodes, a process that is both storage-

friendly and computationally efficient. In this paper, we report the

outcome of a comprehensive validation of the Yottixel search

engine. We used WSI data from The Cancer Genome Atlas (TCGA)

repository provided by the National Cancer Institute (NCI)/National

Institutes of Health (NIH). Almost 30,000 WSI files of 25 primary

anatomic sites and 32 cancer subtypes were processed by

dismantling these large slides into almost 20,000,000 image

patches (also called tiles) that were then individually indexed

Fig. 1 Horizontal search for frozen sections (top) and permanent diagnostic slides (bottom). Details are demonstrated in Tables 1 and 2 in
the Appendix.
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employing ~3,000,000 barcodes. We employ the largest publicly
available archive of WSIs to verify the performance of an image
search engine for digital pathology.

RESULTS

Performance measurement of search engine

In two major series of experiments, we calculated the
“accuracy” of image search through “leave-one-patient-out”

samplings. Whereas the literature of computer vision focuses
on top-n accuracy (if any one of the n search results is correct,
then the search is considered be to be successful), we
calculated the majority-n accuracy (only if the majority among

n search results were correct, the search was considered
correct). Specifically, “correct” means that the tumor type
(horizontal search) or tumor subtype within a specific

diagnostic category (vertical search) was recognized correctly

and matched by the majority of identified and retrieved cases.
In order to avoid falsification of results through anatomic
duplicates, we excluded all WSIs of the patient when one of the
WSIs was the query.

Horizontal search: cancer-type recognition. The first series of
experiments undertaken for all anatomic sites was horizontal
search. The query WSI is compared against all other cases in the
repository, regardless of anatomic site categorization. Of
course, the primary anatomic site is generally known, and, in
many cases, the cancer type may also be known to the
pathologist. Thus, the purpose of the horizontal search (which is
for either organ or cancer-type recognition) is principally a
fundamental algorithmic validation that may also have applica-
tions like searching for origin of malignancy in case of
metastatic cancer.
The results of the horizontal search are depicted in Fig. 1

(see Appendix for details with Table 1 showing results for frozen

Table 1. Results for cancer-type recognition (horizontal search) among frozen slides.

Tumor type WSI count Patient count Hit rate (%) Majority-5 Majority-10

Top-10 Top-5 Top-3 Accuracy Recall Accuracy Recall

Brain 1797 1083 97.44 95.21 92.76 82.24 86.37 83.86 86.42

Gynecological 2216 1450 97.60 93.50 88.22 67.96 77.03 68.86 78.97

Pulmonary 1634 1068 95.34 90.75 83.90 58.01 65.61 59.30 67.99

Gastrointestinal tract 1947 1212 95.12 87.98 81.86 61.32 68.16 62.86 68.98

Breast 1495 1075 93.44 88.56 83.87 65.61 74.45 66.35 77.46

Prostate/testis 755 634 91.92 87.28 84.63 66.22 74.30 68.07 73.77

Urinary tract 1980 1300 90.25 83.48 79.89 62.67 68.89 64.59 67.83

Endocrine 769 729 84.78 71.39 61.89 30.68 44.08 35.37 43.56

Melanocytic malignancies 532 529 83.83 68.79 57.51 25.93 39.85 29.13 39.85

Liver, pancreaticobiliary 659 602 81.48 73.29 63.73 30.34 44.61 35.35 43.55

Hematopoietic 181 169 78.45 73.48 69.06 44.19 55.25 45.85 49.17

Head and neck 663 465 70.88 57.16 48.11 22.32 29.56 26.24 27.75

Mesenchymal 259 255 56.37 42.85 33.59 06.17 16.22 11.19 15.44

Every whole-slide image was compared with all other slides in the repository regardless of the primary site. The table is sorted based on Top-10 hit rates. The

accuracy and recall (sensitivity) for majority-5 and majority-10 among search results are provided as well.

Table 2. Results for cancer-type recognition (horizontal search) among diagnostic slides.

Tumor Type WSI count Patient count Hit rate (%) Majority-5 Majority-10

Top-10 Top-5 Top-3 Accuracy Recall Accuracy blackRecall

Brain 1692 870 98.99 97.81 96.69 91.37 94.33 91.60 94.80

Pulmonary 1109 1011 98.46 96.12 91.70 75.83 84.58 76.19 86.29

Prostate/testis 701 550 97.43 94.86 92.15 80.31 86.73 82.88 85.31

Breast 1116 1049 95.96 91.57 87.09 70.87 78.79 71.50 78.61

Gastrointestinal tract 1144 1108 95.54 90.73 85.83 65.12 74.25 67.91 74.59

Urinary tract 1374 1275 95.41 90.82 85.51 66.01 74.56 69.21 73.84

Gynecological 1039 933 95.28 90.37 84.50 63.71 73.40 66.89 74.88

Endocrine 936 732 94.55 91.88 88.67 73.93 81.45 77.13 81.34

Liver, pancreaticobiliary 618 585 93.85 87.37 82.20 63.75 70.32 64.72 70.81

Head and neck 466 446 90.55 82.40 75.96 49.14 60.94 54.50 57.94

Melanocytic malignancies 551 509 88.20 79.31 70.41 37.20 51.91 43.73 52.09

Mesenchymal 594 253 87.37 80.63 73.73 50.84 61.78 53.70 64.14

Hematopoietic 221 163 84.61 81.44 76.47 52.03 64.25 56.56 61.09

Every whole-slide image was compared with all other slides in the repository regardless of the primary site. The table is sorted based on Top-10 hit rates. The

accuracy and recall (sensitivity) for majority-5 and majority-10 among search results are provided as well.
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section and Table 2 for permanent diagnostic slides). All
experiments were conducted via “leave-one-patient-out” validation.
The following observations can be made from the results:

● Provided there are sufficient number of patients, we observed
that the more we retrieve the more likely it was to achieve the
right diagnosis: top-10 is better than top-5, and top-5 is better
than top-3.

● General top-n accuracy that is common in the computer-
vision literature (top-3, top-5 and top-10 column in Tables 1
and 2) show high values, but may not be suitable in the
medical domain as it considers the search to be a success if at
least one of the search results has the same cancer type as the
query image.

● The majority vote among top-n search results appears to be
much more conservative and perhaps more appropriate, as it
only considers a search task as successful if the majority of
top-n search results show the same cancer type as the query

image (majority-5 and majority-10 columns in Tables 1 and 2).
● With some exceptions, a general trend is observable that the

more images/patients are available the higher the search-
based consensus accuracy. The number of cases positively
correlated with the majority-vote accuracy for both frozen
sections and permanent diagnostic slides.

Vertical search: correctly subtyping cancer. In the second series of
experiments, we performed vertical search. Given the primary site
of the query slide we confined the search only to WSIs from that
organ. Hence, the goal of the vertical search was to recognize the
cancer subtype. For this purpose, only those primary anatomic
sites in the data set with at least two possible subtypes were
selected. Sample retrievals are illustrated in Appendix Fig. 2. The
results for “leave-one-patient-out” validation are depicted in Figs 3
and 4 (details in Appendix, Table 3 for frozen sections and Table 4
for diagnostic slides).

Fig. 2 Sample retrievals for cancer subtype categorization through majority votes. The top four slides are of permanent diagnostic slides
whereas the bottom three slides are of frozen section slides. The misclassified and successful queries are marked with red and green
boundaries, respectively (for abbreviations, see Table 5).
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Looking at the results of Figs. 3 and 4 (Tables 3 and 4), we can
observe the following:

● For both frozen sections and permanent diagnostic slides, we
continue to see a general trend whereby “the more patients
the better” with both positive exceptions (KICH with 196
patients, and PCPG with 179 patients in Table 3) and negative
exceptions (LUAD with 520 patients in Table 4).

● With majority-vote accuracy values for frozen sections (Table
3) in excess of 90% (KIRC, GBM, COAD, UCEC, PCPG), a search-
based computational consensus appear to be possible when a
large number of evidently diagnosed patients are available.

● With majority-vote accuracy values for diagnostic slides (Table
4) in excess of 90% (GBM, LGG, UCEC, KIRC, COAD, ACC, PCPG),
a search-based computational consensus appear to be
possible when a large number of evidently diagnosed patients
are available.

● In most cases, it appeared that taking the majority of the top-7
search results provided the highest accuracy in most cases.
However, the accuracy dropped drastically for subtypes with a
small number of patients as we retrieved more and more
images beyond six slides, as the majority in such cases were
taken from incorrect cases (we do not filter any result; no
threshold is used; hence, all search results are considered as
valid results).

● Based on all observations, it seems that there is a direct
relationship between the number of diagnosed WSIs in the
data set and achievable consensus accuracy. For vertical
search, we calculated positive correlations of 0:5456 for frozen
sections (Table 3) and 0:5974 for permanent diagnostic slides

(Table 4). This trend was more pronounced for horizontal
search with positive correlation of 0:7780 for frozen sections
slides (Table 1), and 0:7201 for permanent diagnostic slides
(Table 2).

● In addition, the Cox-Stuart trend test44 was used to check the
upward monotonic trend of accuracy with respect to patients
number. Having an increasing trend is considered as the null
hypothesis for this test. The p-values for the horizontal
(vertical) search are 1 (0.9991) and 0.9844 (0.9713) for frozen
and diagnostic slides, respectively. Since the p-values are
greater than the significance level (0.05), the null hypothesis is
accepted. Consequently, there is a strong evidence of an
upward monotonic trend.

Visualization of search results. Examining best, average, and
worst cases for diagnostic slides, we randomly selected
3000 slides and visualized them using the T-distributed
Stochastic Neighbor Embedding (t-SNE) method45 (see Fig. 5).
From this visualization, we can observe that several subtype
groups have been correctly extracted through search (see
groups a to f). We can also observe the presence of outliers
(e.g., DLBC in groups a and b). The outliers may be a product of
the resolution of these scans, at least in part. At 20×
magnification, for example, recognizing a diffuse large B-cell
lymphoma (DLBC) from other large cell, undifferentiated non-
hematopoietic tumors may not always be immediately possible
for pathologists. This typically requires serial sections examined
at multiple magnifications with ancillary studies such as
immunohistochemistry.

Fig. 3 Accuracy of vertical search for frozen sections. Vertical search in frozen sections slides from different anatomic sites (a–j) with at least
two cancer subtypes.
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The challenge of validating histologic similarity

One of the major benefits of using classification methods is that
they can easily be validated; every image belongs to a class or not,
a binary concept that can be conveniently quantified by counting
the number of correctly/incorrectly categorized cases. It should be
noted that through treating the image search as a classifier, we
have not only used the primary diagnosis for “objective”
evaluation of search results but also we are most likely ignoring
some performance aspects of image search as search is a
technology inherently suitable for looking at border cases and
fuzziness of histologic similarity. The concept of similarity in image
search is intrinsically a gradual concept (i.e., cannot be answered
with a simple yes/no in many cases) and mostly a matter of
degree (very similar, quite dissimilar, etc.). In addition, the
similarity (or dissimilarity) between images is generally calculated
using a distance metric/measure (in our case the Hamming
distance46). The histologic similarity as perceived by pathologists
may not correspond to tests where we used distance as a
classification criterion. In other words, the classification-based
tests that we run may be too harsh for search results and ignorant
toward anatomic similarities among different organs.
One of the possible ways of examining the performance of the

search is to look at the heatmap47 of the confusion matrix. The
values to construct the heatmap can be derived from the relative
frequency of every subtype among the top ten search results for a
given subtype. A perfect heatmap would exhibit a pronounced
diagonal with other cells being insignificant. Figure 6 shows the
generated heatmap for all diagnostic subtypes in the data set. The

ordering of subtypes along the y-axis was done manually. It
should be noted that our matching heatmap is not symmetrical
like a correlation-based heatmap.

Analysis of the heatmap. The pronounced diagonal in Fig. 6
shows that most disease subtypes have been correctly classified as
they were very frequently retrieved among the top ten horizontal
search results. Other obvious observations:

● MESO is a difficult diagnosis with almost absent diagonal values.
● READ and COAD build a confusion region of four squares; they

are confused with each other frequently.
● The same observation can be made for LUAD and LUSC. The

vertical values for LUAD and LUSC also show that they are
present in many other searches, for instance, when we search
for UESC, HNSC, and ESCA.

● LIHC is frequently among the search results for CHOL.
● For PRAD and BRCA we predominantly found PRAD and BRCA

images, respectively.

Of note, the observational analysis of the heatmap alone may
be limited. If we cluster (group) the search result frequencies and
construct the dendrograms for the relationships in order to create
an advanced heatmap, we might more easily discover the benefits
of the search (see Fig. 7). From there, we can observe:

● LGG and GBM are both glial tumors of the central nervous
system.

● Rectum and colon cancer are gland forming tumors of
the colon.

Fig. 4 Accuracy of vertical search for diagnostic slides. Vertical search in permanent diagnostic slides from different anatomic sites (a–j) with
at least two cancer subtypes.
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● Both uterine and ovarian carcinoma are grouped under
gynecological.

● Gallbladder, stomach, and esophagus are upper gastrointest-
inal tumors.

● Adenocarcinoma and squamous cell carcinoma are both
subtypes of lung tumors.

● Three kidney tumors appear close together.

The errors (i.e., misclassifications) identified were still within
the general grouping that the tumor originated from. Hence,
from an image search perspective, it suggests that is it good at

being close to the site of origin when it makes “classification”
errors.

Chord diagram of image search

We used a chord diagram to further explore retrieved results. A
chord diagram is the graphic display of the inter-relationships

between numbers in a matrix. The numbers are arranged radially
around a circle with the relationships between the data points
generally visualized as arcs connecting the numbers/labels48. In

Table 3. Accuracy and recall (sensitivity) for cancer subtype identification (vertical search) among frozen section slides.

Tumor type WSI count Patient count Majority-5 Majority-10 Majority-20

Accuracy Recall Accuracy Recall Accuracy Recall

Brain

GBM 1102 582 94.19 94.19 92.74 94.37 92.92 93.65

LGG 695 501 82.58 82.59 80.28 83.02 81.00 83.31

Endocrine

ACC 81 81 45.67 46.91 28.39 48.15 20.98 35.80

PCPG 174 170 85.63 86.78 86.20 89.66 83.90 86.78

THCA 514 478 97.08 97.67 97.47 98.44 97.85 98.83

Gastrointestinal tract

COAD 830 449 63.73 69.40 56.62 74.10 60.00 78.43

ESCA 166 165 25.90 31.33 12.04 23.49 09.03 15.66

STAD 623 428 71.10 74.48 65.48 80.42 67.41 81.70

READ 328 170 14.32 19.21 05.48 14.63 02.13 8.54

Gynecological

OV 1184 586 99.07 99.24 98.98 99.16 98.81 99.16

CESC 298 291 64.42 68.12 59.06 65.44 58.05 63.42

UCS 49 49 10.20 12.24 04.08 12.24 02.04 2.04

UCEC 685 524 90.07 90.80 89.05 90.80 89.34 91.68

Hematopoietic

DLBC 57 45 91.22 91.23 80.70 87.72 73.68 78.95

THYM 124 124 97.58 97.58 95.16 97.58 95.16 95.97

Liver, pancreaticobiliary

LIHC 392 370 93.36 93.88 92.60 94.64 93.62 94.90

CHOL 51 51 35.29 45.10 19.60 47.06 13.72 27.45

PAAD 216 181 91.66 91.67 90.74 93.52 90.74 93.98

Melanocytic malignancies

SKCM 463 460 98.70 98.49 98.48 98.92 99.56 99.78

UVM 69 69 46.37 46.38 31.88 39.13 18.84 27.54

Prostate/testis

TGCT 155 149 86.45 87.74 83.87 85.81 81.29 85.81

PRAD 600 485 98.33 98.33 98.33 98.33 98.50 98.67

Pulmonary

LUSC 745 485 78.25 78.79 70.87 77.99 73.42 77.72

LUAD 806 500 68.23 69.11 64.14 71.34 66.12 70.84

MESO 83 83 27.71 32.53 14.45 26.51 03.61 21.69

Urinary tract

BLCA 420 401 92.85 94.29 90.95 94.29 90.95 95.00

KICH 138 88 78.26 81.16 68.11 77.54 57.24 73.19

KIRC 1055 529 97.81 97.91 97.25 98.20 97.63 98.20

KIRP 367 282 62.12 67.30 51.22 63.76 47.13 58.86

Only those primary sites were considered for vertical search which had at least two subtypes in the repository. A positive correlation of 0.57 was measured

between the number of patients and the highest accuracy.
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Fig. 8a, the chord diagram of horizontal search (cancer-type
recognition) for 11,579 permanent diagnostic slides of the TCGA
data set is illustrated. We can observe the following:

● Adenocarcinomas from several disparate organ systems
match (e.g., colon, lung, stomach, and breast). This is not
surprising, as adenocarcinomas formed by glandular struc-
tures of equivalent grade in most organs are morphologically
similar.

● Certain tumors derived from the same organ are related (e.g.,
LGG and GBM, UCEC and CESC, and kidney RCC and KIRP).

● High-grade tumors from different anatomic locations appear
to match (e.g., GBM and sarcoma). This may be attributed to
the fact that such high-grade tumors likely display similar
morphologic findings (e.g., necrosis).

● Squamous tumors from the head and neck and lung resemble
urothelial carcinoma from the urinary bladder. In clinical practice,
this differential diagnosis can be morphologically challenging to
diagnose, and thus warrants the use of ancillary studies such as
immunohistochemistry to determine tumor origin.

● Hepatocellular carcinoma and thyroid carcinoma appear to
exhibit the greatest number of matches (eight to nine) to other

Table 4. Accuracy and recall (sensitivity) for cancer subtype identification (vertical search) among permanent diagnostic slides.

Tumor type WSI count Patient count Majority-5 Majority-10 Majority-20

Accuracy Recall Accuracy Recall Accuracy Recall

Brain

GBM 851 381 91.18 91.30 87.89 90.01 88.13 89.42

LGG 841 489 89.77 89.54 88.58 90.61 89.17 91.20

Endocrine

ACC 227 56 93.83 93.39 94.27 94.71 94.71 96.92

PCPG 196 176 88.77 88.78 85.71 90.31 84.18 89.29

THCA 513 500 97.66 97.86 96.68 96.89 96.49 96.70

Gastrointestinal tract

COAD 436 428 76.14 82.00 69.72 86.00 74.31 90.00

ESCA 157 155 59.87 69.43 45.22 64.33 39.49 55.41

READ 157 156 10.19 12.20 00.63 3.66 00.00 0.61

STAD 394 369 75.12 79.19 67.76 81.73 67.00 83.25

Gynecological

UCEC 566 505 92.22 93.95 91.69 95.29 92.75 95.97

CESC 277 267 62.45 64.08 54.51 64.79 49.09 58.80

UCS 90 56 42.22 51.11 32.22 48.89 27.77 40.00

OV 106 105 66.98 67.92 59.43 67.92 51.88 62.26

Hematopoietic

DLBC 43 43 58.13 53.49 37.20 58.14 16.27 27.91

THYM 178 120 98.87 98.88 99.43 99.44 100.00 100.00

Liver, pancreaticobiliary

CHOL 39 39 43.58 43.59 25.64 35.90 02.56 17.95

LIHC 378 364 93.65 94.21 93.65 94.74 94.44 95.00

PAAD 201 182 91.04 93.53 92.03 95.02 93.03 99.00

Melanocytic malignancies

UVM 80 80 83.75 83.75 77.50 82.50 68.75 72.50

SKCM 471 429 99.57 99.58 99.57 99.79 99.57 99.79

Prostate/testis

TGCT 254 149 99.21 99.61 96.85 98.82 96.06 96.06

PRAD 447 401 98.43 98.21 98.21 98.66 98.43 98.43

Pulmonary

LUAD 520 465 70.96 71.35 63.26 72.31 64.42 72.50

MESO 86 74 08.13 12.79 02.32 8.14 00.00 1.16

LUSC 503 472 81.70 82.31 78.13 84.10 83.30 88.47

Urinary tract

BLCA 454 384 95.81 96.93 94.27 95.83 93.61 95.83

KIRC 516 511 91.66 93.02 90.11 92.44 89.53 92.64

KICH 108 108 75.92 82.41 66.66 74.07 59.25 70.37

KIRP 296 272 67.22 72.64 53.04 67.91 48.31 64.86

Only those primary sites were considered for vertical search which had at least two subtypes in the repository. A positive correlation of 0.49 was measured

between the number of patients and the highest accuracy.
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tumor subtypes. The significance of this finding is unclear.
● The broad relationship demonstrated among certain tumor

subtypes is unexpected (e.g., cutaneous melanoma to sarcoma,
LUSC, and adenocarcinoma from several organs). Indeed,
melanoma is known as the great mimicker in pathology given

that these melanocytic tumors can take on many morphological
appearances.

One has to emphasize that some relationships depicted in the
chord diagram may disappear if distances are normalized and

Fig. 5 T-distributed Stochastic Neighbor Embedding (t-SNE) visualization of pairwise distances of 3000 randomly selected diagnostic
slides from six different primary sites. These primary sites are selected to contain top, average, worst accuracy from the Table 2—lung, brain
(top-2), kidney, liver (middle-2), lymph nodes, and pleura (bottom-2). Six different areas containing majority of the points from the same
cancer subtype are assigned with unique alphabets—a, b, c, d, e, f. The random slides from the majority cancer subtype within each of the
assigned areas are shown in Samples box (gray background). The outliers (not belonging to majority the cancer subtype or the primary site)
are shown in the outliers box (red outline). For example, area a contains majority of scans from brain with glioblastoma multiforme (GBM),
whereas its outliers are from lymph nodes with diffuse large B-cell lymphoma (DLBC). Without any explicit training, our technique maintains
the semantic categories within the diagnostic slides as shows by the t-SNE plot of the pairwise distances. The kidney, liver, and brain form
different isolated groups whereas lung, pleura, and lymph nodes are intermixed with each other.
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threshold applied. We did not filter any search results. No
threshold was used. Hence, all search results were considered.
The interactive version of TSNE plot is available online at http://
dev1-kimia.uwaterloo.ca:5001/.

DISCUSSION

The accelerated adoption of digital pathology is coinciding with
and probably partly attributed to recent progress in AI applica-
tions in the field of pathology. This disruption in the field of
pathology offers a historic chance to find novel solutions for major
challenges in diagnostic histopathology and adjacent fields,
including biodiscovery. In this study, we indexed and searched
the largest publicly available data set of histopathology WSIs
provided by the NIH/NCI. The question was whether one can build
a computational consensus to potentially remedy the high intra-
and inter-observer variability seen with diagnosing certain
pathology tumors through search in a large archive of previously
(and evidently) diagnosed cases. We performed a horizontal
search to verify basic recognition capabilities of the image search
engine. Furthermore, we performed leave-one-patient-out vertical
searches to examine the accuracy of top n search results for
establishing a diagnostic majority for cancer subtypes.
The results of this validation study show that building a

computational consensus to assist pathologists with “virtual peer
review” is possible if large and representative archives of well-
characterized and evidently diagnosed cases are available. The
ideal size of the data set appears to be in excess of several
thousand patients for each primary diagnosis, and is most likely

directly related to the anatomic complexity and intrinsic
polymorphism of individual tissue types.
Whereas one may need substantial computational power (i.e., a

set of high-performance GPUs) to index a large existing repository
from scratch, the usage of bunch-of-barcodes idea makes the
continuous indexing and search quite feasible for any laboratory,
clinic, and hospital.
Since we used a mosaic (a set of patches) to represent and to

retrieve WSIs, the search was guided to look for features present in
multiple patches to classify the entire WSI. For detailed search,
such as mitotic rates and grading applications, one needs a
different data set and should also apply single-patch search to
look for details. As well, regardless of implementation (e.g., onsite
versus cloud), the validated search technology is completely safe
toward patient-sensitive information as the barcodes do not
contain any reversible information that could compromise patient
privacy.
Future research should look into subtype consensus for

individual primary diagnoses in more details for carefully curated
data sets. As well, the need for much larger curated archives in the
pathology community is clearly evident, which includes additional
tissue types such as hematological. Lastly, comprehensive
discordance measurement for subtypes with and without
computational consensus should be planned and carried out as
the ultimate evidence for the efficacy of the image search as a
supportive diagnostic tool.
The intellectual property as well as the financial implications for

related works emerging from sharing image repositories are
certainly significant issues that need elaboration in future works.

Fig. 6 Heatmap of re-scaled relative frequency of matched (red) and mismatched (pale) search results for each diagnosis from
permanent diagnostic slides. Re-scaling of frequencies was done through dividing each frequency by the total number of slides for each
subtype.
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METHODS

Data collection

We used the publicly available data set of 30,072 WSIs from the TCGA

project49,50 (Genomic Data Commons GDC). Due to the retrospective

nature of this study using only publicly available data, ethics approval was
not required. All WSIs are tagged with a primary diagnosis. We removed
952 WSIs due to the following reasons: poor staining, low resolution, lack
of all magnification levels in the WSI pyramid, large presence of out-of-
focus regions, and/or presence of unreadable regions within an image.

Fig. 7 Recognizing structures through clustering. Dendrograms of clustered relative search frequencies.
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Most WSIs had a magnification of 20 ´ or 40´ , some at lower
magnifications. In total, we processed 29,120 WSIs at 20´ magnification
(approximately six terabytes in compressed form) for this study. The data
set contains 25 anatomic sites with 32 cancer subtypes. Ten tumor types
(brain, endocrine, gastrointestinal tract, gynecological, hematopoietic,
liver/pancreaticobiliary, melanocytic, prostate/testis, pulmonary, and urin-
ary tract) had more than one primary diagnoses. From the 29,120 WSIs,
26,564 specimens were neoplasms, and 2556 were non-neoplastic. A total
of 17,425 files comprised frozen section digital slides, and 11,579 files were
of permanent hematoxylin and eosin (H&E) sections. For the remaining 116
WSIs, the tissue section preparation was unspecified. We did not remove
manual pen markings from the slides when present. The TCGA codes for all
32 cancer subtypes are provided in Table 5 in the appendix. The TCGA data
set has a number of shortcomings50. Many of the cases are of frozen
section in which tissue morphology may be compromised by frozen
artifacts. Available cases may also reflect research bias in institutional
biorepository collections. Furthermore, “tumors routinely subjected to
neoadjuvant therapy may not have been able to be included in TCGA,
because of limited availability of untreated specimens”50. Moreover,
hematopathology is conspicuously absent from the TCGA data"set with

just a few lymph nodes included. In spite of the shortcomings, the TCGA is
the largest public data set that can support a pan-cancer validation of AI
solutions for digital pathology.

The search algorithm

The Yottixel image search engine incorporates clustering, transfer learning,
and barcodes and was used to conduct all experiments30,32,41–43,51–54.
Before any search can be performed, all images in the repository have to
be “indexed”, i.e., every WSI is catalogued utilizing a “bunch of barcodes”
(BoB indexing). These barcodes are stored for later use and generally not
visible to the user. This process contains several steps (Fig. 9):

● Tissue extraction—Every WSI contains a bright (white) background
that generally contains irrelevant (non-tissue) pixel information. In
order to process the tissue, we need to segment the tissue region(s),
and generate a black and white image (binary mask) that provides the
location of all tissue pixels as “1” (white). Such a binary mask is
depicted in the top row of Fig. 9.

● Mosaicking—Segmented tissue now gets patched (divided into

Fig. 8 Horizontal search. a Chord diagram of horizontal image search for diagnostic slides of the TCGA data set. Sample relations for (b) brain
(LGG and GBM), (c) pulmonary (LAUD, LUSC, and MESO), and (d) gynecological (UCEC, UCS, and CESC). The chord diagram can be interactively
viewed online: https://bit.ly/2k6g3k1.
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patches/tiles). These patches have a fixed size at a fixed magnification
(e.g., 500 × 500 µm2 at 20´ scan resolution). All patches of the WSI get
grouped into a pre-set number of categories (classes) via a clustering
method (we used k-means algorithm55). A clustering algorithm is an
unsupervised method that automatically groups WSI patches into
clusters (i.e., groups) that contain similar tissue patterns. A small
percentage (5–20%) of all clustered patches are selected uniformly
distributed within each class to assemble a mosaic. This mosaic
represents the entire tissue region within the WSI. A sample mosaic
consisting of four patches is depicted in the second row of Fig. 9. Most
WSIs we processed had a mosaic with around 70–100 patches.

● Feature mining—All patches of the mosaic of each WSI are now
pushed through pretrained artificial neural networks (generally trained
with natural images using data sets such as ImageNet56). The output of
the network is ignored and the last pooling layers or the first
connected layers are generally used as “features” to represent each
mosaic patch. There could be ~1000–4000 features. The third row of
Fig. 9 shows this process where the features (colored squares) are
passed on to the next stage, namely BoB indexing.

● Bunch of barcodes—All feature vectors of each mosaic are subse-
quently converted into binary vectors using the MinMax algorithm43.

This bunch of barcodes is the final index information for every query/
input WSI that will be stored in the Yottixel index for future or
immediate search. This is illustrated at the bottom of Fig. 9.

In summary, Yottixel assigns “a bunch of barcodes” to each WSI to index

the entire digital slide. The BoB indexing enables Yottixel to search a large

archive of histopathology images very efficiently. The index can be easily

shared among institutions if necessary. Technical details of Yottixel

algorithms are described in a separate paper where its performance was

tested with 2300 WSIs41.

Reproducibility

Does image search generate the same results for the same WSI if fed into

the Yottixel engine again? We ran indexing several times and the results

did not change significantly. We observed slight changes in the order of

search results affecting neither the hit rate nor the majority vote. The only

component of our approach with some non-deterministic behavior is the

K-means clustering algorithm. However, the K-means is run for as many

iterations until it converges to a stable solution when we index WSIs. After

Table 5. The TCGA codes (in alphabetical order) of all 33 primary

diagnoses and corresponding number of evidently diagnosed patients

in the data set (TCGA = The Cancer Genome Atlas).

TCGA Code Primary diagnosis Number of
patients

ACC Adrenocortical carcinoma 86

BLCA Bladder urothelial carcinoma 410

BRCA Breast invasive carcinoma 1097

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

304

CHOL Cholangiocarcinoma 51

COAD Colon adenocarcinoma 459

DLBC Lymphoid neoplasm diffuse large B-cell
lymphoma

48

ESCA Esophageal carcinoma 185

GBM Glioblastoma multiforme 604

HNSC Head and neck squamous cell carcinoma 473

KICH Kidney chromophobe 112

KIRC Kidney renal clear cell carcinoma 537

KIRP Kidney renal papillary cell carcinoma 290

LGG Brain lower-grade glioma 513

LIHC Liver hepatocellular carcinoma 376

LUAD Lung adenocarcinoma 522

LUSC Lung squamous cell carcinoma 504

MESO Mesothelioma 86

OV Ovarian serous cystadenocarcinoma 590

PAAD Pancreatic adenocarcinoma 185

PCPG Pheochromocytoma and paraganglioma 179

PRAD Prostate adenocarcinoma 499

READ Rectum adenocarcinoma 170

SARC Sarcoma 261

SKCM Skin cutaneous melanoma 469

STAD Stomach adenocarcinoma 442

TGCT Testicular germ cell tumors 150

THCA Thyroid carcinoma 507

THYM Thymoma 124

UCEC Uterine corpus endometrial carcinoma 558

UCS Uterine carcinosarcoma 57

UVM Uveal melanoma 80

Prostate Specimen Extracted Tissue Region (white)

CONVOLUTION

SUBSAMPLING

CONVOLUTION

SUBSAMPLING

Patching the �ssue Clustering (grouping)

Tissue Extrac�on

Bunch of Barcodes

Mosaic

Mosaic

Yo�xel Index

Segmenta�on

Mosaicking

Feature Mining

BoB Indexing

Features

Fig. 9 Yottixel image search engine: whole-slide images are
segmented first to extract the tissue region by excluding the
background (top block). A mosaic of representative patches (tiles) is
assembled through grouping of all patches of the tissue region
using an unsupervised clustering algorithm (second block from the
top). All patches of the mosaic are fed into a pretrained artificial
neural network for feature mining (third block from the top). Finally,
a bunch of barcodes is generated and added to the index of all WSI
files in the archive (bottom block).
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a new WSI has been indexed its “bunch of barcodes” do not change
anymore, and hence the same WSI as input (with unique patient ID) will
generate the same results.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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