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Abstract	41 

Molecular alterations in malignant tumors can cause phenotypic changes in tumor cells and their 42 

microenvironment. Routine histopathology tissue slides – which are ubiquitously available for 43 

patients with solid tumors – can reflect such morphological changes. Here, we show that deep 44 

learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, 45 

gene expression signatures and standard pathology biomarkers directly from routine histology 46 

images of cancer. We developed, systematically optimized, validated and publicly released a one-47 

stop-shop workflow and applied it to routine tissue slides of more than 5000 patients across a 48 

broad spectrum of common solid tumors including lung, colorectal, breast and gastric cancer. 49 

Our findings show that a single deep learning algorithm can be trained to predict a wide range of 50 

molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin 51 

and eosin. These predictions generalize to other populations and yield spatially resolved predic-52 

tions. Our method can be implemented on mobile hardware, potentially enabling point-of-care 53 

diagnostics for personalized cancer treatment. More generally, this approach can be used to elu-54 

cidate and quantify genotype-phenotype links in cancer.  55 
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Introduction	56 

Precision treatment of cancer relies on detection of genetic alterations which are diagnosed by 57 

molecular biology assays.1 These tests can be a bottleneck in oncology workflows because of high 58 

turnaround time, tissue usage and costs.2 Clinical guidelines recommend molecular testing of 59 

tumor tissue for most patients with advanced solid tumors. However, in most tumor types, rou-60 

tine testing includes only a handful of alterations, such as KRAS, NRAS, BRAF mutations and mi-61 

crosatellite instability (MSI) in colorectal cancer.3 While new studies identify more and more mo-62 

lecular features of potential clinical relevance, current diagnostic workflows are not designed to 63 

incorporate an exponentially rising load of tests. For example, in colorectal cancer, previous stud-64 

ies have identified consensus molecular subtypes (CMS)4 as a candidate biomarker, but sequenc-65 

ing costs and method complexity preclude widespread testing in clinical routine and clinical tri-66 

als.5 Therefore, there is a growing need to identify new, inexpensive and scalable biomarkers in 67 

medical oncology. 68 

While comprehensive molecular and genetic tests are hard to implement at scale, tissue sections 69 

stained with hematoxylin and eosin (H&E) are ubiquitously available. We hypothesized that these 70 

routine tissue sections contain information about established and candidate biomarkers and that 71 

molecular biomarkers could be inferred directly from digitized whole slide images (WSI). The ra-72 

tionale for this hypothesis is that genetic changes in tumor cells cause functional changes, which 73 

can influence tumor cell morphology.6,7 In addition to such first-order genotype-phenotype cor-74 

relations, genetic changes in tumor cells can influence the tumor microenvironment, resulting in  75 

higher-order genotype-phenotype correlations. Specific examples for such correlations are 76 

known for microsatellite instability (MSI)8, a clinically approved biomarker for cancer immuno-77 

therapy in colorectal cancer.9 In the case of MSI, the genotype-phenotype correlation is con-78 

sistent enough to robustly infer the genotype just by observing morphological features in a his-79 

tological image, as we have previously shown.10 Other previous studies have identified genotype-80 

phenotype links for selected genetic features in lung cancer11,12, prostate cancer13, head and 81 

neck14 and liver15 cancer, among others. Building on these previous studies, we systematically 82 
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investigated the presence of genotype-phenotype links for a wide range of clinically relevant mo-83 

lecular features across all major solid tumor types. Specifically, we asked which molecular fea-84 

tures leave a strong enough footprint in histomorphology so they can be inferred from histology 85 

images alone with deep learning. We aimed to use deep learning in a pan-molecular pan-cancer 86 

approach, with a focus on clinically relevant genetic molecular features. Such an approach could 87 

ultimately yield clinically useful biomarkers with favorable cost, time and material requirements. 88 

More specifically, this approach could guide a more narrow indication for molecular testing, in-89 

creasing the pre-test probability of a given molecular feature. Independently of potential clinical 90 

application, inferring genetic changes from histology images could also elucidate biological mech-91 

anisms of downstream effects of molecular alterations in solid tumors. Therefore, we developed, 92 

optimized and externally validated a new deep learning pipeline to determine molecular features 93 

directly from histology images.  94 

 	95 
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Methods	96 

Patient	cohorts	and	ethics	statement	97 

All experiments were conducted in accordance with the Declaration of Helsinki and the Interna-98 

tional Ethical Guidelines for Biomedical Research Involving Human Subjects. Anonymized 99 

scanned whole slide images were retrieved from The Cancer Genome Atlas (TCGA) project 100 

through the Genomics Data Commons Portal (https://portal.gdc.cancer.gov/). We applied our 101 

method to 14 of the most common solid tumor types: breast (BRCA)16, cervical (CESC)17, colorec-102 

tal (COAD and READ)18, gastric (STAD)19, head and neck (HNSC)20, hepatocellular (LIHC)21, lung 103 

adeno (LUAD)22, lung squamous (LUSC)23, melanoma (SKCM)24, pancreatic (PAAD)25, prostate 104 

(PRAD)26, renal chromophobe (KICH)27, renal clear cell (KIRC)28 and renal papillary cancer (KIRP)29. 105 

Melanoma (SKCM) tissue slides in the TCGA database comprised primary tumor samples as well 106 

as metastasis tissue. These groups were analyzed separately. For external validation, we acquired 107 

colorectal cancer tissue samples from the DACHS study30,31, which were retrieved from the tissue 108 

bank of the National Center for Tumor Diseases (NCT, Heidelberg, Germany) as described be-109 

fore.10 110 

Molecular	labels	111 

The aim of this study was to predict clinically relevant features, including genetic alterations, di-112 

rectly from routine histology slides. We systematically applied this screening approach to four 113 

groups of molecular alterations: First, we used single-gene mutations, considering any genetic 114 

variant. We used the most commonly mutated genes in the respective tumor types (derived from 115 

the “cbioportal” database32,33 at http://cbioportal.org) and clinically targetable genes (level one 116 

genes from OncoKB at http://www.oncokb.org, Pan Cancer Atlas Project34). We required each 117 

mutation to affect at least four patients in a given cohort. Second, we repeated the analysis on 118 

putative and confirmed oncogenic driver mutations only, as defined in OncoKB. Third, we aimed 119 

to predict gene expression subtypes, relevant gene expression signatures and immune-cell gene 120 

expression signatures derived from systematic studies35-37. Fourth, we used “standard of care” 121 

features derived from the TCGA database (data at http://portal.gdc.cancer.gov), including hor-122 

mone receptor status in breast cancer. All labels (genetic variants, driver mutations, signatures 123 
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and standard features) are listed in Suppl. Table 1. For each individual target label in each tumor 124 

type and each cross-validation run, we re-trained a single deep neural network, using identical 125 

hyperparameters. Features with continuous values were binarized at the mean. 126 

Image	preprocessing		127 

Scanned whole slide images of diagnostic tissue slides (formalin-fixed paraffin-embedded tissue) 128 

stained with hematoxylin and eosin were acquired in SVS format. All images were downsampled 129 

to 20x magnification, corresponding to 0.5 µm/pixel (px). Each whole slide image was manually 130 

reviewed and the tumor area with was annotated under direct supervision of a specialty 131 

pathologist. During annotation, all observers were blinded with regard to any molecular or clini-132 

cal feature. Only those images containing at least 1 mm2 contiguous tumor tissue were used for 133 

downstream analysis. 6% of whole slide images, corresponding to 5% of patients were excluded 134 

due to technical artifacts or lack of tumor (Suppl. Table 2). Tumor tissue on all other slides was 135 

tessellated into square tiles of 512x512 px edge length, corresponding to 256x256 µm at a reso-136 

lution of 0.5 µm/px. Tiles with more than 50% background were discarded; background pixels 137 

were defined by brightness over 0.86 (220/255). For the benchmark task (identification of an 138 

optimal neural network model), these images were resized to 224x224 px (at 1.14 µm/ px) to be 139 

consistent with a previous study10. All steps in the data preprocessing pipeline (including prepro-140 

cessing of images and preprocessing of metadata) are documented in detail in our in-house man-141 

ual for data preparation, which is publicly available at https://dx.doi.org/10.5281/ze-142 

nodo.3694994. All methods for whole slide image processing, including tessellation of images 143 

and visualization of spatial activation maps, were implemented in QuPath v0.1.2 in Groovy 144 

(http://qupath.github.io).  145 

Patient-level	cross-validation	146 

Aiming to develop a one-stop-shop method for systematic discovery of genotype-phenotype links 147 

in multiple cancer types, we developed a reusable pipeline of data processing steps. One or more 148 

whole slide images (WSI) per patient were collected tumor regions in these images were tessel-149 

lated into tiles. All tiles inherited the molecular label of their parent patient. Before training, the 150 

patient cohort was randomly split in three partitions, keeping the target labels balanced between 151 



 

8 

 

partitions. Neural networks were trained on two partitions each and subsequently evaluated on 152 

the third partition. Thus, no tiles from a given patient were ever part of a training set and a test 153 

set for the same classifier. Before training, tile libraries were randomly undersampled in such a 154 

way that the number of tiles per label was identical for each label (Fig. 1a). 155 

Neural	network	training,	model	selection	and	hyperparameter	optimization	156 

Deep neural networks were trained on image tiles with the aim of predicting molecular labels. 157 

All neural networks were pre-trained on the ImageNet database as described previously10 and 158 

were specifically modified for the classification task at hand by replacing the three top layers with 159 

a 1000-neuron fully connected layer, a softmax layer and a classification layer. For training, we 160 

used on-the-fly data augmentation (random horizontal and vertical reflection) to achieve rota-161 

tional invariance of the classifiers. Hyperparameter selection was performed for five commonly 162 

used deep neural networks: resnet18, alexnet, inceptionv3, densenet201 and shufflenet. The 163 

sampled hyperparameter space was as follows: learning rate 5e-5 and 1e-4, maximum number 164 

of tiles per whole slide image: 250, 500 and 750, number of trainable layers: 10, 20 and 30. We 165 

trained for four epochs with a mini batch size of 512, similar to previous experiments.10 As a 166 

benchmark task, we used MSI detection in colorectal cancer as described before.10  167 

Inference	of	molecular	status		168 

During inference, a categorical prediction was made for each tile by the neural network (Fig. 1b). 169 

The percentage of positive predicted tiles for each class was regarded as a “probability score” for 170 

each patient. This score was used as the free variable for a receiver operating characteristic (ROC) 171 

analysis with area under the ROC curve (AUROC) being the primary endpoint for each target fea-172 

ture. AUROC values are reported as mean with a confidence interval representing lower and up-173 

per range of a 10x bootstrapped experiment. To quantify if predictions for different classes of 174 

patients were statistically significant, the probability scores for patients in a given class were 175 

compared to probability scores of all other patients. Statistical significance of these differences 176 

was assessed with a two-tailed t-test with a pre-defined significance level of 0.05. To compensate 177 

for the large number of tested hypotheses in this study, we performed “false detection rate” 178 
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(FDR) correction for p-values with the Benjamini-Hochberg method on all p-values across all can-179 

cer types. All p-values smaller than 10-5 after FDR-correction are reported as 10-5. Statistical 180 

methods are further described in Suppl. Fig. 1a-c. The number of tiles generated per whole slide 181 

image is shown in Suppl. Fig. 2. Training and inference were performed on our local computing 182 

cluster on 10 Nvidia RTX graphics processing units (GPUs), each with 24 GB of GPU RAM. Cumu-183 

lative computing time for all experiments within this study was approximately 12,000 GPU-hours. 184 

All deep learning algorithms were implemented in Matlab R2019a (Mathworks, Natick, MA, USA). 185 

External	validation	186 

To investigate if complex deep learning biomarkers generalize to external patient cohorts, we 187 

trained deep learning classifiers on all TCGA samples of a given tumor type and externally vali-188 

dated the predictions in patient cohorts from our respective institutions. External validation was 189 

performed for BRAF mutation status and CpG island methylator phenotype (CIMP) in colorectal 190 

cancer in N=408 patients, a subset of the multicenter DACHS study which was previously col-191 

lected and described.10 BRAF and CIMP were chosen as validation markers because of their bio-192 

logical relevance and availability of robust measurements of these markers in the DACHS cohort.  193 

Feature	visualization	194 

To visualize the deep learning predictions and make them understandable to human observers, 195 

we used two approached: First, we rendered the tile-level soft predictions for each class as acti-196 

vation maps, visualizing prediction scores as a heatmap overlay on the original histology image. 197 

Second, we identified the highest-predicted tiles of the highest-predicted true positive patients 198 

for each class, allowing observers to identify histological patterns that are correlated with a mo-199 

lecular feature. These approaches were designed to allow human observers to identify which 200 

morphological features deep learning classifiers were most sensitive to.  201 

Alternative	approaches	202 

In our baseline approach, image tiles from manually annotated tumor regions on formalin-fixed 203 

paraffin-embedded (FFPE) slides (diagnostic slides) were used. This approach was compared to 204 

several alternative approaches as shown in Suppl. Fig. 3. The first alternative approach used color 205 
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normalization of image tiles with the Macenko method38 to mitigate differences in staining in-206 

tensity and hue (Suppl. Fig. 4). Some previous studies have used color normalization for deep 207 

learning10, while other studies have shown that color normalization can bias histology image clas-208 

sification.39 The second alternative approach we investigated was to use tiles from the whole 209 

slide, as opposed to the tumor region only. In this “weakly supervised” approach, many tiles with-210 

out invasive cancer tissue were present in the training and inference sets (Suppl. Fig. 5). The third 211 

alternative approach was to use frozen slides as opposed to FFPE slides in a weakly supervised 212 

way (Suppl. Fig. 6). 213 

Data	availability	214 

All data (including histological images) from the TCGA database are available at https://por-215 

tal.gdc.cancer.gov/. All molecular data for patients in the TCGA cohorts are available at 216 

https://cbioportal.org. Raw data for Figures and Suppl. Figures are shown in Suppl. Table 3. 217 

Code	availability	218 

All source codes are available and documented at https://github.com/jnkather/DeepHistology. 219 

 	220 



 

11 

 

Results	221 

Optimization	of	deep	learning	for	inference	of	genotype	from	histology	222 

We hypothesized that deep learning can infer molecular alterations directly from routine histol-223 

ogy images across multiple common solid tumor types. To test this, we developed, optimized and 224 

extensively validated a new ‘one-stop-shop’ workflow to train and evaluate deep learning net-225 

works. To select an efficient network model and to optimize the deep learning hyperparameters, 226 

prediction of microsatellite instability (MSI) in colorectal cancer was used as a clinically relevant 227 

benchmark task10. In this benchmark, we sampled a large hyperparameter space with different 228 

commonly used deep learning models10,11,14,40 which were modified specifically for this applica-229 

tion. Unexpectedly, ‘shufflenet’41, a lightweight neural network architecture performed similarly 230 

to more complex networks including ‘densenet’42, ‘inception’43 and ‘resnet’44 networks, which 231 

are used in many other studies45 (Fig. 1c). Shufflenet demonstrated high accuracy at a low train-232 

ing time (raw data in Suppl. Table 1, N=426 patients in the TCGA cohort). Shufflenet is optimized 233 

for mobile devices, making this deep neural network architecture attractive for decentralized 234 

point-of-care image analyses or direct implementation in microscopes46. We externally validated 235 

the best shufflenet classifier by training on N=426 patients in the TCGA-CRC cohort10 and validat-236 

ing on N=379 patients with available MSI status in the DACHS cohort10, reaching an AUROC of 237 

0.89 [0.88; 0.92].This represents an improvement over the previous best performance of 0.84 in 238 

that dataset10 and supports the notion that shufflenet is an efficient and powerful neural network 239 

model which can infer clinically relevant molecular changes directly from histology images.  240 

Pan-cancer	prediction	of	genetic	variants	from	histology	241 

Having thus identified a deep neural network model and a set of suitable hyperparameters, we 242 

systematically applied this approach to hundreds of molecular alterations in 14 major tumor 243 

types, and trained and evaluated deep learning networks by three-fold cross-validation on each 244 

cohort. This yielded approximately 104 independently trained deep neural networks which were 245 

systematically evaluated and compared across molecular features across cancer types. The full 246 

list of candidate mutations (Suppl. Table 1) included all point mutations targetable by FDA-ap-247 

proved drugs (Level 1 evidence on www.oncokb.org, the 20 most common mutations shown in 248 
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Fig. 1d). First, we trained deep neural networks to detect any sequence variants in these target 249 

genes. We found that in 13 out of 14 tested tumor types, the mutation of one or more of such 250 

genes could be inferred from histology images alone, with statistical significance after correction 251 

for multiple testing (Fig. 2a-n, Suppl. Fig. 7). In particular, in major cancer types such as lung ad-252 

enocarcinoma, colorectal cancer, breast cancer and gastric cancer, alterations of several genes 253 

of particular clinical and/or biological examples were detectable (Fig. 2a-d). Examples include 254 

mutations in TP53, which could be significantly detected in all four of these cancer types, as well 255 

as mutations of BRAF in colorectal cancer (TCGA-COAD and TCGA-READ18, N=555, Fig. 2b), MTOR 256 

– a candidate for targeted treatment47 – in gastric cancer (Fig. 2d) and FBXW7 mutation in lung 257 

adenocarcinoma (TCGA-LUAD22, N=457, Fig. 2a) and gastric cancer (TCGA-STAD19, N=321, Fig. 258 

2d). Mutations of PIK3CA (which is directly targetable by a small molecule inhibitor48) was signif-259 

icantly detectable in breast cancer (TCGA-BRCA16, N=995, Fig. 2c) and gastric cancer (Fig. 2d). In 260 

addition, in breast cancer, mutations of MAP2K4 (which is a potential biomarker for response to 261 

MEK inhibitors49) were significantly detectable (Fig. 2c). Among all tested tumor types, gastric 262 

cancer (Fig. 2d) and colorectal cancer (Fig. 2b) had the highest absolute number of detectable 263 

mutations. For all statistically significant features, the mean cross-validated area under the re-264 

ceiver operating curve (AUROC) for the top eight mutations ranged from 0.60 to 0.78 in lung 265 

adenocarcinoma (Suppl. Fig. 8); from 0.65 to 0.76 in colorectal cancer (Suppl. Fig. 9); from 0.62 266 

to 0.78 in breast cancer (Suppl. Fig. 10) and from 0.66 to 0.78 in gastric cancer (Suppl. Fig. 11). 267 

Beyond these four tumor types, a range of notable mutations could be detected in other tumor 268 

types: While in melanoma (TCGA-SKCM24) primary tumors, few mutations were detectable 269 

(Suppl. Fig. 12a-h), in melanoma metastases, mutations in FBXW7 and PIK3CA were significantly 270 

detectable (Fig. 2e, Suppl. Fig. 12i-p). In prostate cancer (TCGA-PRAD26, N=397 patients, Fig. 2f, 271 

Suppl. Fig. 13), our method detected TP53 and FOXA1 mutations from histology, among others. 272 

In pancreatic adenocarcinoma (TCGA-PAAD25, N=171 patients, Fig. 2g, Suppl. Fig. 14), identifying 273 

KRAS wild type patients is of high clinical relevance because these patients are potential candi-274 

dates for targeted treatment and our method significantly identified KRAS genotype in pancreatic 275 

cancer. Lung squamous cell carcinoma is known for its difficulty in molecular diagnosis and few 276 

molecularly or genetically targeted treatment options even in clinical trials. Thus, it is plausible 277 
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that in this cancer type, tumor histomorphology is not well correlated to mutations and corre-278 

spondingly, few mutations were significantly detectable in this tumor type in our experiments 279 

(TCGA-LUSC, N=413, Fig. 2h, Suppl. Fig. 15). In hepatocellular carcinoma (TCGA-LIHC21, N=358 280 

patients, Fig. 2i), the β-catenin gene (CTNNB1) is a key driver gene with broad prognostic and 281 

predictive implications50 and its mutational status was highly significantly detected from histol-282 

ogy (Suppl. Fig. 16). In papillary (Fig. 2j, Suppl. Fig. 17) and clear cell renal cell carcinoma (Fig. 2k, 283 

Suppl. Fig. 18), alterations in multiple genes including KRAS and PBRM were highly significantly 284 

detectable while in and chromophobe renal cell carcinoma (Fig. 2l, Suppl. Fig. 19), no genetic 285 

variants were significantly detectable, possibly due to a low patient number in this cohort. In 286 

head and neck squamous cell carcinoma (TCGA-HNSC20, N=435 patients), genotype of CASP8, 287 

which is linked to resistance to cell death51, was significantly detected (Fig. 2m, Suppl. Fig. 20). In 288 

cervical cancer (TCGA-CESC17, N=261 patients), mutations in TCERG1, STK11, AMER1, among oth-289 

ers, were significantly detectable with high AUROC values (Fig. 2n, Suppl. Fig. 21). Raw data for 290 

prediction performance in any gene in any tumor type are available in Suppl. Table 3. 291 

Pan-cancer	prediction	of	oncogenic	drivers	from	histology	292 

Not all genetic variants are causative of malignant processes. Therefore, we repeated the screen-293 

ing experiment, limiting mutations to confirmed or putative oncogenic drivers (Fig. 3a-n). With 294 

this criterion, the absolute number of patients affected by a particular mutation was lower and 295 

thus, fewer genes met the threshold of at least four positive cases in a given tumor type. On the 296 

other hand, we hypothesized that oncogenic driver genes could leave a stronger pattern in his-297 

tological morphology due to their higher biological relevance. Genetic variants in classical onco-298 

genes such as TP53 and KRAS are almost always oncogenic drivers and correspondingly, muta-299 

tions of these genes reached similar prediction accuracy valued in the “drivers only” experiment 300 

when compared to the “all variants” approach (Fig. 3a-n). For other genes, prediction accuracy 301 

increased when limited to oncogenic drivers: a notable example was EGFR in lung adenocarci-302 

noma (Fig. 3a). In summary, these data show that deep learning can detect a wide range of tar-303 

getable and potentially targetable point mutations directly from histology across multiple preva-304 

lent tumor types. 305 
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Inference	of	molecular	subtypes	and	gene	expression	signatures	306 

In the next step, we asked if established molecular subtypes and gene expression signatures of 307 

cancer and immune cells could be detected by deep learning. Compared to single-gene muta-308 

tions, these changes occur at a higher functional level and we hypothesized that their morpho-309 

logical impact could be larger than that of single mutations. To address this hypothesis, we chose 310 

features with known biological and potential clinical significance. A major group of such features 311 

are immune-related gene expression signatures37 of CD8-positive lymphocytes, macrophages, 312 

cell proliferation, interferon-gamma (IFNg) signaling and transforming growth factor-beta (TGFb) 313 

signaling (full list available in Suppl. Table 1). These biological processes are involved in response 314 

to cancer treatment, including immunotherapy. Detecting their morphological correlates in his-315 

tology images could facilitate the development of more nuanced treatment strategies. Indeed, 316 

across all investigated tumor types, we saw that these high-level biological features were much 317 

better predictable than genetic variants or driver mutations (Fig. 4a-d and Suppl. Fig. 7) Again, 318 

AUROC values for significantly (p<0.05 after FDR correction) predictable features were highest in 319 

lung adenocarcinoma (Fig. 4e), colorectal cancer (Fig. 4f), breast cancer (Fig. 4g) and gastric can-320 

cer (Fig. 4h). In lung adenocarcinoma, signatures of proliferation, macrophage infiltration and T-321 

lymphocyte infiltration were significantly detectable from images with high AUROCs (Fig. 4e). 322 

Similarly, significant AUROCs for these biomarkers were achieved in colorectal cancer (Fig. 4f) 323 

breast cancer (Fig. 4g) and gastric cancer (Fig. 4h). In gastric cancer, we additionally found that a 324 

signature of stem cell properties (stemness) was highly detectable directly from histology images 325 

(Fig. 4h). Recent studies have clustered tumors into comprehensive ‘molecular subtypes’37. We 326 

found that our method could detect TCGA molecular subtypes37 with up to AUROC 0.74 in lung 327 

adenocarcinoma (Fig. 4e), pan-gastrointestinal subtypes36 with up to AUROC 0.76 in colorectal 328 

cancer (Fig. 4f) and PAM50 subtypes with up to AUROC 0.78 in breast cancer (Fig. 4g), among 329 

other molecular subtypes. These findings could open up new options for clinical trials of cancer: 330 

While accumulating evidence shows that such molecular clusters of tumors reflect biologically 331 

distinct groups and are correlated to clinical outcome, deep molecular classification of these tu-332 

mors is usually not available in clinical routine or clinical trials. Detecting these subtypes merely 333 

from histology would allow for these subtypes to be analyzed in clinical trials directly from 334 
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broadly available routine material, potentially helping to identify new biomarkers for treatment 335 

response or to guide specific molecular testing.  336 

Prediction	of	standard	histological	biomarkers	with	deep	learning	337 

To comprehensively evaluate the potential clinical use of our new deep learning pipeline, we 338 

investigated classification accuracy for standard histopathological biomarkers. We found that 339 

deep learning could highly significantly predict most of these biomarkers for breast cancer (Fig. 340 

4c and i), gastric cancer (Fig. 4d and j) and other tumor types (Suppl. Fig. 11-18). In particular, 341 

status of hormone receptors was predictable from routine histology in breast cancer, with an 342 

AUROC of 0.82 for estrogen receptor and 0.74 for progesterone receptor (Fig. 4i). Together, these 343 

results demonstrate that deep-learning-based inference of genetic alterations, high-level molec-344 

ular alterations and established biomarkers from routine diagnostic histology slides is feasible.  345 

Evaluation	of	alternative	approaches		346 

Deep learning-based inference of molecular features from histology is a relatively novel field of 347 

research and it can be anticipated that technical improvements can further improve prediction 348 

performance. We quantified the effect of alternative technical approaches in the colorectal can-349 

cer cohort (TCGA-COAD/READ). First, we investigated the role of color normalization of tiles. In a 350 

head-to-head comparison to the baseline approach, we found a tendency of Macenko’s38 color 351 

normalization to improve classifier performance for mutation prediction but not for predition of 352 

subtypes or gene expression signatures (Suppl. Fig. 4a-c). Second, we investigated a weakly su-353 

pervised approach to our baseline of expert-annotated tumor regions and found that the weakly 354 

supervised approach was only slightly inferior to manual annotation (Suppl. Fig. 4d-f). Third, we 355 

analyzed prediction performance on frozen slides compared to diagnostic slides. While frozen 356 

slides are not generally available in a clinical setting, the TCGA database provides an opportunity 357 

to perform such a direct comparison. In a weakly supervised experiment, we found that predic-358 

tion power for driver genes was on par, but prediction power for genetic variants and high-level 359 

subtypes/signatures was better in frozen slides than in diagnostic slides (Suppl. Fig. 4g-h). These 360 

data provide quantitative guidance for future large-scale validation studies. 361 
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External	validation	of	the	classification	results	362 

Deep learning approaches to a single dataset are prone to overfit and should be validated in 363 

external populations before clinical deployment. For external validation of our method, we used 364 

routine H&E slides of N=408 colorectal cancer patients from the DACHS study for which BRAF 365 

mutational status and CpG-island methylator phenotype (CIMP) was available. We trained deep 366 

learning classifiers for BRAF and CIMP on TCGA colorectal cancer samples and evaluated the pa-367 

tient-level accuracy on DACHS. Both features were statistically significantly detectable from 368 

DACHS H&E images alone: For BRAF mutants, AUROC was 0.77 (0.64 – 0.82, p<10-5) and for CIMP-369 

high, AUROC was 0.66 [0.56– 0.72, p<10-5). These data show that deep-learning-based prediction 370 

of clinically relevant genetic features can generalize to external patient populations.  371 

 	372 
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Discussion	373 

Image-based	genetic	testing	as	a	clinical	and	research	tool	374 

Our results demonstrate the feasibility of pan-cancer deep-learning-based inference of a broad 375 

range of molecular and genetic features directly from histological images. We show that a unified 376 

workflow yields reliably high performance across multiple clinically relevant scenarios without 377 

the need to tune technical parameters to a specific molecular target. Our systematic screening 378 

approach identifies candidate genetic variants, driver genes, gene expression signatures and 379 

standard of care features that can be significantly inferred from histology images, opening up 380 

perspectives for large-scale validation of these candidate markers. As a large-scale, systematic 381 

screening study, this work identifies a number of mutations which are significantly linked to a 382 

detectable phenotype in histological images, including those in key oncogenic pathways including 383 

TP53, FBXW7, KRAS, BRAF and CTNNB1. In addition to individually mutated genes, our data show 384 

that higher-level gene expression clusters or signatures can be inferred from histological images. 385 

Many of these clusters represent groups of patients with distinct and well-described cancer biol-386 

ogy such as consensus molecular subtype (CMS) in colorectal cancer. By linking these molecularly 387 

defined groups to specific histological image features, our method constitutes a new tool to de-388 

cipher downstream biological effects of molecular alterations in solid tumors. In an external val-389 

idation cohort, we show that the models trained on images from the TCGA archive generalize to 390 

external patients, demonstrating the potential of applying these methods to routine material 391 

from real-world clinical cohorts. Of note, additional retrospective and prospective validation and 392 

regulatory approval is needed for histology-based deep learning methods to be implemented in 393 

clinical workflows. An example for clinical implementation would be the use as pre-screening 394 

tools to enrich patient populations for specific molecular testing. While it is expected that the 395 

first applications of deep learning technology in routine workflows will relate to the automatic 396 

identification of tumor tissues for the selection of specimens or regions of interest, our method 397 

could be easily added to such digital pathology workflows, providing a strong additional incentive 398 

for digitization of histopathology. 399 
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Limitations	400 

Currently, limitations of our method are the low AUROC values for some molecular features (Fig. 401 

2 and Fig. 3). A strategy to increase the diagnostic performance would be re-training on larger 402 

patient cohorts. Re-training can be expected to boost performance because previous studies 403 

have shown that performance of deep learning systems in histopathology scales with the number 404 

of patients in the training cohort.40 In addition, the performance of deep learning systems could 405 

potentially be improved by technical modifications. Our systematic evaluation of alternative 406 

technical approaches provides a guidance for this on multiple levels: First, regarding the choice 407 

of neural network models, our results demonstrate that lightweight neural network models per-408 

form on par with more complex models, facilitating further evaluation of these methods on de-409 

centralized hardware, including desktop or ultimately mobile hardware. While this finding is 410 

based on a clinically relevant benchmark task and generalizes to an external population, we can-411 

not exclude that other network models perform better in other histology applications. Second, 412 

regarding the type of input image data, other studies in digital pathology have used frozen his-413 

tology sections11. In contrast, our baseline workflow was based on FFPE tissue slides (labeled as 414 

‘diagnostic slides’ in the TCGA archive) due to their clinical relevance. In clinical settings, frozen 415 

specimens constitute only a small fraction of pathology samples and therefore, establishing 416 

methods on FFPE material is paramount for large-scale clinical validation. Our head-to head com-417 

parison shows that molecular inference generally works better on frozen slides, which is a limi-418 

tation of the FFPE-based method. Further studies are needed to determine the reasons for this 419 

observation. Lastly, our baseline method relied on expert annotations of tumor tissue, constrain-420 

ing deep learning models to learn from invasive tumor tissue only. The rationale behind this de-421 

sign was that despite advances in computer vision, expert annotation of tumor tissue remains 422 

the gold standard in histopathology studies. Yet, in a head-to-head comparison, a weakly super-423 

vised approach without any manual annotation did not markedly reduce performance, demon-424 

strating feasibility of even simpler data preprocessing pipelines. We publicly release all source 425 

codes of our method, enabling further optimization and validation on a larger scale.  426 
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Deciphering	genotype-phenotype	links	427 

Beyond being a potentially useful tool for clinical applications, deep learning-based inference of 428 

molecular features from morphology could shed light on more fundamental properties of cancer 429 

biology. Our study systematically screens hundreds of molecular alterations and identifies candi-430 

dates that are linked to detectable patterns in histology images. These patterns can be visualized 431 

through prediction maps (Fig. 5a-e). Such “spatialization” of genetic predictions is a key aspect 432 

lacking in conventional bulk genetic tests of tumor and could be useful to trace back molecular 433 

alterations to specific spatial regions. An alternative approach to understanding deep-learning-434 

based predictions is through visualization of highly ranked image tiles (Fig. 5f-k). This approach 435 

can serve as a plausibility control and may help to discover new morphological features. Indeed, 436 

highly ranked tiles of CMS classes in colorectal cancer showed poorly differentiated tumor in 437 

CMS1 tiles (Fig. 5f), well-differentiated glands for CMS2-3 (Fig. 5g-h) and highly stromal tiles for 438 

CMS4 (Fig. 5i). These patterns correspond to known biological processes underlying CMS sub-439 

classes, corroborating the assumption that our deep learning system detects biologically mean-440 

ingful features. Similarly, visualizing histomorphology in the highest predicted tiles in BRAF mu-441 

tant patients in the validation cohort (Fig. 5j-k) demonstrated poorly differentiated areas and 442 

mucinous areas as recurring features in BRAF mutant image tiles, which is consistent with previ-443 

ous studies.52 Visualizing highly predicted tiles in gastric cancer (Suppl. Fig. 22a-h) highlighted 444 

highly cellular areas as correlates of a “Proliferation” gene expression signature, but at the same 445 

time identified patterns for mutations (e.g. in AMER1 and MTOR) which could help to form new 446 

hypotheses on how these specific mutations influence cancer cell behavior and morphology. In-447 

terestingly, the prediction performance markedly varied between the 14 different types of cancer 448 

(Fig. 2, Suppl. Fig. 7). Variations in sample size between the cohorts could explain some of these 449 

differences, but additional biological effects could contribute to this. One hypothesis is that tu-450 

mor types with few clinically targetable mutations (e.g. lung squamous cell cancer and pancreatic 451 

cancer) also display few detectable mutations. Further studies are warranted to investigate this. 452 

Conclusion	453 

Together, our results demonstrate that molecular changes in solid tumors can be inferred from 454 

routine histology alone with deep learning. This could be a useful tool to objectively elucidate 455 
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genotype-phenotype relationships in cancer and ultimately, could be used as a low-cost bi-456 

omarker in clinical trials and routine clinical workflows.  457 

 	458 
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Figure	Legends	483 

Fig. 1: Deep learning workflow for prediction of molecular features from histology images. We 484 

describe a comprehensive method pipeline for prediction of molecular features directly from his-485 

tological images. (a) Training of the deep learning system comprised six steps. Step 1: Patient 486 

cohorts were randomly split into three partitions for cross-validation of deep classifiers. Step 2: 487 

The tumor region on each whole slide image (WSI) was tessellated into tiles. Step 3: Up to 500 488 

randomly chosen tiles were collected. Step 4: Tiles from patients in the training partitions were 489 

collected, classes were equalized by random undersampling. Step 5: All training tiles were used 490 

to train a deep neural network (pre-trained on a non-medical task). Step 6: Classification perfor-491 

mance was evaluated on patients from the test partition. (b) For patient-level inference of mo-492 

lecular labels in patients not seen during training, three successive steps were used. Step 1: Tiles 493 

were generated from the tumor region on WSI. Step 2: A prediction was made for each tile. Step 494 

3: Tile-level class predictions were pooled on a patient level. (c) Hyperparameters of the deep 495 

learning system were optimized in a benchmark task (prediction of microsatellite instability sta-496 

tus [MSI] in colorectal cancer). The opacity of each point corresponds to the number of trainable 497 

layers (Suppl. Table 3). Shufflenet, a lightweight neural network architecture was selected as a 498 

highly efficient network model. (d) This workflow was subsequently applied for prediction of four 499 

types of molecular features across 14 cancer types. In particular, this included genetic mutations. 500 

The distribution of the 20 most common among all analyzed mutations is shown for each tumor 501 

type.  502 

Fig. 2: Inference of genetic mutations from histological images. A deep learning system was 503 

trained to predict mutational status (mutated or wild-type) of relevant genes in 14 cancer type 504 

and was evaluated by cross-validation. All mutations, including variants of unknown significance, 505 

were included in the ‘mutated’ class. For each gene, patient-level test set performance is shown 506 

as area under the receiver operating curve (AUROC) with p-value for prediction scores corrected 507 

for multiple testing (false detection rate, FDR). The significance level of 0.05 is marked with a line 508 

and the distribution of p-values in each panel is shown as a density plot. P values smaller than 10-509 

5 are set to 10-5. N denotes the number of patients per tumor type. (a-d) In lung adenocarcinoma, 510 
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colorectal cancer, breast cancer and gastric cancer, a number of relevant genes were significantly 511 

predictable from histology alone, including key oncogenic drivers such as TP53, BRAF and MTOR. 512 

(e-n) In all other tested tumor types, mutational status was predictable for some genes, with 513 

notable examples including KRAS in pancreatic cancer, CTNNB1 in hepatocellular carcinoma and 514 

TP53 and CASP8 in head and neck cancer.  515 

Fig. 3: Inference of putative oncogenic drivers from histological images. A deep learning system 516 

was trained to predict oncogenic driver genes from histology. Only putative and confirmed driv-517 

ers were included and variants of unknown significance were pooled with the “wild type” class. 518 

(a-n) This process uncovered significant predictability of multiple oncogenic drivers, including 519 

EGFR, BRAF and TP53.  520 

Fig. 4: Inference of molecular subtypes, gene expression signatures and standard biomarkers di-521 

rectly from histology. In addition to prediction of single-gene mutations, the capability of deep 522 

learning to infer high-level molecular features was systematically assessed. (a-d) In lung, colorec-523 

tal, breast and gastric cancer, gene expression signatures (such as TCGA molecular subtype in any 524 

tumor type) and standard of care features (such as hormone receptor status in breast cancer) 525 

were highly predictable from histology alone, as shown by the distribution of false-detection rate 526 

(FDR)-corrected p-values. (e-h) Gene expression signatures for Proliferation (Prolif), Wound Heal-527 

ing (WoundHeal), Macrophage infiltration (Mcrphg), Homologous Repair Deficiency (HRD), CD8-528 

positive Lymphocyte (LymCD8), TCGA molecular subtypes (LUAD 1-6), pan-gastrointestinal (GI) 529 

molecular subtypes, consensus molecular subtypes (CMS), PAM50 subtypes and other key mo-530 

lecular features were highly predictable across multiple tumor types. Patient-level AUROC with 531 

bootstrapped confidence intervals, * denotes FDR-p-value < 0.05. (i-j) Standard of care bi-532 

omarkers including estrogen and progesterone receptor (ER and PR) status in breast cancer, path-533 

ologic subtype and microsatellite instability (MSI) were highly predictable from routine histology 534 

alone by deep learning.  535 

Fig. 5: Explainability of deep learning-based analysis of histological images. Deep learning-based 536 

predictions were visualized through genotype maps and comparison of highly ranked image tiles. 537 

(a-e) Prediction maps for consensus molecular subtype (CMS) in colorectal cancer show spatially 538 
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resolved prediction scores, unveiling intratumor heterogeneity of predicted genotype. As a ge-539 

neric tool, this visualization approach allows to identify spatial regions associated with a molec-540 

ular feature. In this patient, the correct prediction of CMS4 correctly show that deep learning 541 

robustly predicts CMS from histology alone while highlighting potential intratumor heterogeneity 542 

(f-i) For each of the CMS classes, the most highly scored test set tiles are shown, enabling corre-543 

lation of deep learning-predictions with histopathological features at high resolution. In this case, 544 

highly predicted CMS1 tiles contain numerous tumor-infiltrating lymphocytes while predicted 545 

CMS4 tiles contain abundant stroma, consistent with previous studies. (j-k) Highly scored tiles in 546 

the external test cohort DACHS for prediction of BRAF mutant and wild type (l-m) and CpG-island 547 

methylator phenotype (CIMP) high or non-CIMP.  548 

 	549 
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Supplementary	Figure	Legends	667 

Suppl. Fig. 1: Additional details on the statistical procedures. (a) For patient-level three-fold 668 

cross-validation, the patient cohort was split into three random partitions. Each partition had 669 

approximately the same proportion of patients within each class. Three classifiers were trained 670 

and their patient-level predictions on the respective test set were concatenated. Thus, a predic-671 

tion was gained for each patient in the cohort, but no patient was ever part of a training set and 672 

a test set of the same classifier at the same time. (b) The percentage of predicted tiles for each 673 

class was used for a receiver operating characteristic (ROC) analysis with 10x bootstrapped 674 

pointwise confidence bounds. (c) In addition to the ROC analysis, the prediction scores (percent 675 

predicted tiles) for patients in each class was compared to prediction scores for patients in all 676 

other classes. The resulting false-detection-rate (FDR)-corrected p-value in a two-tailed t-test for 677 

this comparison was reported for each feature of interest. Icons are from Twitter Twemoji (CC-678 

BY 4.0 license). 679 

Suppl. Fig. 2: Distribution of tumor content across slides in all tumor types. Central mark = me-680 

dian, bottom and top edge of the box = 25th and 75th percentile, line extends to the most extreme 681 

data points, circles = outliers. Outliers larger than 2000 mm2 are not plotted. Median tumor con-682 

tent on slide is 139 mm2 of tumor tissue per slide for colorectal cancer (CRC).  683 

Suppl. Fig. 3: Design of additional technical optimization experiments. The baseline approach in 684 

this study was to perform image analysis of tiles based on manual tumor annotations in every 685 

single tissue slide, without performing any color normalization. This approach was compared to 686 

three alternative approaches as shown here. 687 

Suppl. Fig. 4: Results of additional technical optimization experiments: Normalization. (a) Com-688 

parison of cross-validated absolute differences in AUROC to the baseline model (no normaliza-689 

tion), genetic variants. (b) Comparison of AUROC differences for genetic driver mutations. (c) 690 

Comparison of AUROC differences for expression signatures and subtypes. 691 
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Suppl. Fig. 5: Results of additional technical optimization experiments: Weakly supervised. (a) 692 

Comparison of cross-validated absolute differences in AUROC to the baseline model (no normal-693 

ization), genetic variants. (b) Comparison of AUROC differences for genetic driver mutations. (c) 694 

Comparison of AUROC differences for expression signatures and subtypes. 695 

Suppl. Fig. 6: Results of additional technical optimization experiments: Frozen tissue. (a) Com-696 

parison of cross-validated absolute differences in AUROC to the baseline model (no normaliza-697 

tion), genetic variants. (b) Comparison of AUROC differences for genetic driver mutations. (c) 698 

Comparison of AUROC differences for expression signatures and subtypes. 699 

Suppl. Fig. 7: Distribution of predictability scores for feature classes in all cancer types. Target 700 

features were assigned to one of four categories as shown in Suppl. Table 1: Genetic variants, 701 

oncogenic drivers, high-level signatures and standard-of-care features. For each of these classes, 702 

predictability by deep learning was assessed and the distribution of false-detection-rate (FDR)-703 

corrected p-values is shown, with low p-values capped at 10-5. High-level signatures were highly 704 

predictable in most tumor types.  705 

Suppl. Fig. 8: Detailed prediction statistics for lung adenocarcinoma (LUAD). (a-c) Area under the 706 

receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 707 

view of the features with highest AUROC values. Low p-values capped at 10-5.  708 

Suppl. Fig. 9: Detailed prediction statistics for colorectal cancer (COAD, READ). (a-c) Area under 709 

the receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) De-710 

tailed view of the features with highest AUROC values. Low p-values capped at 10-5.  711 

Suppl. Fig. 10: Detailed prediction statistics for breast cancer (BRCA). (a-c) Area under the re-712 

ceiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 713 

view of the features with highest AUROC values. Low p-values capped at 10-5.  714 

Suppl. Fig. 11: Detailed prediction statistics for gastric cancer (STAD). (a-c) Area under the re-715 

ceiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 716 

view of the features with highest AUROC values. Low p-values capped at 10-5.  717 
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Suppl. Fig. 12: Detailed prediction statistics for melanoma (SKCM) primary tumors and metasta-718 

ses. (a-c) Area under the receiver operating curve (AUROC) with corresponding p-values, for each 719 

feature, for primary tumors. (e-h) Detailed view of the features with highest AUROC values. Low 720 

p-values capped at 10-5, for primary tumors. (i-l)   721 

Suppl. Fig. 13: Detailed prediction statistics for prostate cancer (PRAD). (a-c) Area under the re-722 

ceiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 723 

view of the features with highest AUROC values. Low p-values capped at 10-5.  724 

Suppl. Fig. 14: Detailed prediction statistics for pancreatic cancer (PAAD). (a-c) Area under the 725 

receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 726 

view of the features with highest AUROC values. Low p-values capped at 10-5.  727 

Suppl. Fig. 15: Detailed prediction statistics for lung squamous cell carcinoma (LUSC). (a-c) Area 728 

under the receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) 729 

Detailed view of the features with highest AUROC values. Low p-values capped at 10-5.  730 

Suppl. Fig. 16: Detailed prediction statistics for hepatocellular carcinoma (LIHC). (a-c) Area under 731 

the receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) De-732 

tailed view of the features with highest AUROC values. Low p-values capped at 10-5.  733 

Suppl. Fig. 17: Detailed prediction statistics for renal papillary cancer (KIRP). (a-c) Area under the 734 

receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 735 

view of the features with highest AUROC values. Low p-values capped at 10-5.  736 

Suppl. Fig. 18: Detailed prediction statistics for renal clear cell cancer (KIRC). (a-c) Area under the 737 

receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 738 

view of the features with highest AUROC values. Low p-values capped at 10-5.  739 

Suppl. Fig. 19: Detailed prediction statistics for renal chromophobe cancer (KICH). (a-c) Area un-740 

der the receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) 741 

Detailed view of the features with highest AUROC values. Low p-values capped at 10-5.  742 
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Suppl. Fig. 20: Detailed prediction statistics for head and neck cancer (HNSC). (a-c) Area under 743 

the receiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) De-744 

tailed view of the features with highest AUROC values. Low p-values capped at 10-5.  745 

Suppl. Fig. 21: Detailed prediction statistics for cervical cancer (CESC). (a-c) Area under the re-746 

ceiver operating curve (AUROC) with corresponding p-values, for each feature. (e-h) Detailed 747 

view of the features with highest AUROC values. Low p-values capped at 10-5.  748 

Suppl. Fig. 22: Highest scoring tiles for molecular features in gastric cancer (STAD). (a-b) Top tiles 749 

corresponding to AMER1 mutational status. (c-d) Top tiles corresponding to MTOR mutational 750 

status. (e-f) Top tiles corresponding to high or low values of a proliferation signature. (a-b) Top 751 

tiles corresponding to hypermutated samples.  752 

  753 



 

32 

 

Supplementary	Table	Legends	754 

Suppl. Table 1: All investigated molecular labels. 755 

Suppl. Table 2: Slide numbers and case numbers for each cohort (diagnostic slides, TCGA). For 756 

melanoma (TCGA-SKCM), the total number of patients included in the analysis was N=430, of 757 

which N=290 had a tissue slide of the primary tumor available and N=141 had a tissue slide of 758 

metastatic tissue available. 759 

Suppl. Table 3: All raw values for prediction experiments, alternative methods and hyperparam-760 

eter optimization experiments. 761 
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