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Abstract

The comparison of DNA methylation patterns across

cancer types (pan-cancer methylome analyses) has

revealed distinct subgroups of tumors that share similar

methylation patterns. Integration of these data with the

wealth of information derived from cancer genome

profiling studies performed by large international

consortia has provided novel insights into the cellular

aberrations that contribute to cancer development.

There is evidence that genetic mutations in epigenetic

regulators (such as DNMT3, IDH1/2 or H3.3) mediate or

contribute to these patterns, although a unifying

molecular mechanism underlying the global alterations

of DNA methylation has largely been elusive. Knowledge

gained from pan-cancer methylome analyses will aid the

development of diagnostic and prognostic biomarkers,

improve patient stratification and the discovery of novel

druggable targets for therapy, and will generate

hypotheses for innovative clinical trial designs based on

methylation subgroups rather than on cancer subtypes.

In this review, we discuss recent advances in the global

profiling of tumor genomes for aberrant DNA

methylation and the integration of these data with

cancer genome profiling data, highlight potential

mechanisms leading to different methylation

subgroups, and show how this information can be used

in basic research and for translational applications. A

remaining challenge is to experimentally prove the

functional link between observed pan-cancer

methylation patterns, the associated genetic aberrations,

and their relevance for the development of cancer.
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Introduction
Ongoing molecular characterizations of large cohorts of

cancer patients using tumor samples from all major organs

have made available a wealth of genomic, epigenomic, tran-

scriptomic and proteomic data, enabling integrated analysis

across different tumor types - so called pan-cancer analyses.

These studies aim to identify genomic and epigenomic

similarities and differences among distinct cancer types,

independent of their tissue of origin [1]. The large number

of available tumor sample datasets increases statistical

power, allowing researchers to detect molecular aberra-

tions that otherwise would have been missed. From these

integrated analyses, mutational landscapes are emerging

that have revealed novel oncogenic signatures and cancer

driver mutations [2-4].

Cancer is no longer seen as solely a genetic disease;

epigenetic alterations are now being taken into account

as additional layers in the regulation of gene expression.

Epigenetic modifications, including DNA methylation,

non-coding RNAs, histone modifications and nucleosome

positioning, modify chromatin structure and hence gene

transcription. These mechanisms act coordinately to form an

epigenetic landscape regulated by various enzymes, either es-

tablishing (writers), interpreting (readers), modifying (editors)

or removing (erasers) epigenetic marks (reviewed in [5]).

DNA methylation is by far the best characterized epi-

genetic modification and is involved in the regulation of

gene expression, genome stability and developmental pro-

cesses (reviewed in [6]). High-throughput techniques, in-

cluding array and sequencing-based technologies, now

provide genome-scale DNA methylation maps (also called

methylomes), which have confirmed aberrant methylation

as a hallmark of all cancer types and are used to identify

novel methylation-based cancer biomarkers.

Multidisciplinary international consortia such as The

Cancer Genome Atlas (TCGA) or the International Cancer

Genome Consortium (ICGC) have produced methylomes

for thousands of samples from at least 15 cancer types

(Box 1). Integrative data analyses have revealed that methy-

lomes in subgroups within one tumor type might differ

more than between distinct cancer types. Even within the

same tumor, regional differences in DNA methylation
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alterations have been identified, associated with intrinsic

tumor heterogeneity [7].

The TCGA Pan-Cancer project was launched in 2012

with the goal of collecting, analyzing and interpreting

data across distinct tumor types and of making these re-

sources publically available [2]. One of the aims of this

project is to define pan-cancer methylation patterns and

to integrate them with genomic, transcriptomic and

proteomic data. A remarkable initial finding was that

tumor samples cluster largely according to their tissue of

origin [1]. Analyses of single tumor entities revealed that

colorectal, gastric and endometrial cancers have similar

highly methylated subgroups that are associated with tu-

mors with microsatellite instability and hypermethyla-

tion of the MLH1 promoter. Subtypes of breast, serous

endometrial, high-grade serous ovarian, colorectal and

gastric carcinomas are associated with high chromo-

somal instability as well as with recurrent TP53 muta-

tions and share patterns of low methylation. Moreover,

emerging evidence shows that cancer genomes exhibit

frequent mutations in epigenetic regulators, suggesting a

close interplay between epigenomic and genomic events

(reviewed in [8]). Identifying commonalities between

tumor entities might help to identify therapeutic regi-

mens that are in place for one tumor type as being of

use for another, less well characterized one, and will

allow better patient stratification [1]. Deciphering the

mechanisms underlying methylation patterns will facili-

tate the identification of novel therapeutic targets.

In this review, we aim to highlight recent findings

from genome-wide DNA methylation profiling studies.

We describe DNA methylation subgroups in 11 distinct

tumor entities and analyses across cancer types, and dis-

cuss the potential mechanisms underlying the different

methylation subgroups. We also explore the potential

use of DNA methylation as a biomarker for diagnostic,

prognostic and treatment response, and as a target for epi-

genetic therapy.

Definition and function of DNA methylation
DNA methylation usually occurs at cytosine-guanine

(CpG) dinucleotides, where DNA methyltransferases

(DNMTs) catalyze the transfer of a methyl group to pos-

ition 5 of a cytosine, generating 5-methylcytosine (5mC).

DNMT1 maintains the patterns of DNA methylation

after cell division using hemi-methylated DNA as a tem-

plate [9], while the de novo methyltransferases DNMT3A

and DNMT3B establish cytosine methylation during early

development [10]. For a long time, it was believed that

methyl groups are only removed passively after cell repli-

cation. However, active mechanisms of DNA demethyla-

tion were recently identified. For instance, DNA repair

pathways have an essential role in the active removal of

5mC, involving proteins such as GADD45 (reviewed in

[11]). Another mechanism implicates the ten-eleven trans-

location (TET) family of proteins, which catalyze the hy-

droxylation of 5mC to 5-hydroxymethylcytosine (5hmC)

[12]. Subsequent studies showed that 5hmC can be further

converted to 5-formylcytosine and/or 5-carboxylcytosine,

which can then be excised by thymine-DNA glycosylase [13].

The location and distribution of 5mCs across the gen-

ome have important implications for understanding the

roles of DNA methylation [6]. In mammalian genomes

CpGs are unevenly distributed: they are depleted on a glo-

bal scale but enriched at short CpG-rich DNA stretches

known as CpG islands (CGIs), which are preferentially

located at transcription start sites of gene promoters

(reviewed in [14]). In normal cells, cytosines within

CGIs are generally protected from DNA methylation, in

contrast to the vast majority of CpGs, which are usually

methylated (that is, at non-coding regions and repetitive

elements) [15]. Flanking regions of CGIs (±2 kilobases),

referred to as CGI shores, show tissue-specific DNA

methylation and are associated with gene silencing [16].

Box 1 The International Cancer Genome Consortium:

characterizing cancer genomes in different tumor types

Cancer genomes are complex. The integration of comprehensive

catalogues of genomic, transcriptomic, epigenomic and proteomic

data is a promising strategy for tackling this complexity. Institutions

from across the globe have joined forces to achieve this ambitious

goal. In 2006, The Cancer Genome Atlas (TCGA) Research Network

was launched in the USA with the aim of generating molecular

profiles of thousands of samples from more than 25 distinct tumor

types [2]. A year later, the International Cancer Genome Consortium

(ICGC) was created, with the goal of characterizing genomes from

50 different cancer types and subtypes worldwide [103]. By 2013,

TCGA – now an ICGC member – produced comprehensive

molecular profiles of more than 7,000 samples from 27 types of

cancer [2]. All the data generated by these research networks are

publicly available via the ICGC [104], TCGA [105] and the cancer

genomics hub [106] data portals.

To make these data comparable, the ICGC aims to standardize the

collection, processing and analysis of samples across multiple

institutions. Infinium HumanMethylation27 and

HumanMethylation450 BeadChips have been used by ICGC to

produce genome-wide DNA methylation profiles. From at least 15

cancer methylomes generated so far, the breast cancer methylome

comprises the largest number of samples, followed by serous ovarian

and kidney renal clear cell carcinoma (Table 1). Moreover, whole-

genome bisulfite sequencing (WGBS) will be applied for some tumors

and has already been used to generate the methylomes of pediatric

brain tumors and chronic lymphocytic leukemia (CLL).
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The patterns of DNA methylation observed in normal

genomes change during tumorigenesis. The first epigen-

etic alteration reported in cancer cells was a widespread

loss of 5mC [17], which has been recently confirmed

in single-base-resolution methylomes of colorectal can-

cer, chronic lymphocytic leukemia (CLL) and medullo-

blastoma [18-20]. Loss of DNA methylation occurs

mainly at repetitive sequences, centromeric DNA and

gene bodies, leading to genomic instability, reactivation

of transposable elements or loss of imprinting, which

ultimately contribute to tumor initiation or progression

[21]. Hypomethylation can also lead to transcriptional

activation of normally silenced genes such as oncogenes

(reviewed in [22]). Additionally, whole-genome bisulfite

sequencing (WGBS) analyses have shown that global

hypomethylation usually coincides with large partially

methylated domains (PMDs) that are associated with late

replication lamina-associated domains and might lead to

long-range epigenetic silencing through repressive chro-

matin domain formation [23,24]. Recent studies have also

revealed that hypomethylation occurs at more localized

regions, termed DNA methylation valleys (DMVs), which

are enriched for developmental genes and may regulate

tissue-specific expression [20,25]. Global or localized DNA

hypomethylation in cancer cells is often accompanied by

focal hypermethylation of CGIs (Figure 1), which contrib-

utes to carcinogenesis by transcriptional silencing of genes

including tumor suppressor genes (TSGs) [26].

DNA methylation subgroups according to tumor
types
It has long been thought that each tumor type has a

characteristic DNA methylation pattern. For example, a

specific pattern of high methylation at CGIs, defined as

the CpG island methylator phenotype (CIMP), was first

discovered in colorectal cancer [27], even before the

omics era. Now, genome-wide sequencing projects have

confirmed the existence of this and additional DNA

methylation subgroups in multiple cancer types. The ques-

tion remains as to what extent these DNA methylation pat-

terns are unique for a specific tumor type or comparable

across different types of cancers. The comprehensive mo-

lecular catalogs generated by the TCGA might help to shed

light on this (summarized in Table 2).

However, a caveat should be noted: the methylation

data underlying these reports were derived from 27 k and

450 k Illumina platforms. Only CpG sites covered on both

platforms were considered and filtered for sites overlap-

ping with single-nucleotide polymorphisms, resulting in

around 10,000 eligible CpGs. From these, the most vari-

able CpG sites were used for cluster analyses. The inter-

pretation of these datasets is to a certain extent biased, as

27 k arrays mainly cover sites located within CGIs, while

information on additional regulatory regions (for example,

shores, intra- and intergenic enhancers) is missing. Also,

information on larger genomic domains such as PMDs

and DMVs cannot be determined from these datasets.

Colorectal and gastric cancer

According to the degree of methylation, colorectal can-

cer is currently divided into four DNA-methylation sub-

groups with specific genetic and clinical features [28,29];

that is, CIMP high (CIMP-H), CIMP low (CIMP-L) and

two non-CIMP subgroups. CIMP-H is associated with

hypermethylation of the repair gene MLH1, the activating

BRAFV600E mutation and microsatellite instability (MSI).

Tumors in this subgroup are often derived from the right/

ascending colon, show high mutation rates (hypermuta-

tion) and low somatic copy-number alterations (SCNAs).

Table 1 International Cancer Genome Consortium

projects with methylomes generated by Infinium

BeadChips

Tumor type Project and country
identification

Number of
methylomes

Breast BRCA-US 971

Ovary OV-US 572

Kidney KIRC-US 491

Head and
neck

THCA-US 488

Uterus UCEC-US 481

Lung LUAD-US 460

Colorectal COAD-US 414

Lung LUSC-US 410

Head and
neck

HNSC-US 407

Brain GBM-US 393

Skin SKCM-US 338

Stomach STAD-US 328

Brain LGG-US 293

Bladder BLCA-US 198

Prostate PRAD-US 196

Blood LAML-US 194

Pancreas PACA-AU 167

Blood CLLE-ES 159

Colorectal READ-US 150

Liver LIHC-US 149

Kidney KIRP-US 142

Cervix CESC-US 127

Brain PBCA-DE 115

Ovary OV-AU 93

Pancreas PAAD-US 72

Pancreas PAEN-AU 23

Modified from the International Cancer Genome Consortium data portal [104].

AU, Australia; DE, Germany; ES, Spain; US, United States.
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Figure 1 DNA methylation patterns in normal and cancer cells. (A) In normal cells, most CpGs located outside of promoters in gene bodies

and intergenic regions are methylated (red circles), whereas promoter-associated CpG islands are protected from DNA methylation (white circles).

(B) In cancer cells, a global or localized loss of 5-methylcytosine occurs at gene bodies and intergenic regions, whereas CpG-rich regions like

promoters are usually heavily methylated, which might lead to transcriptional repression. Regions of intermediate CpG levels such as shores are

associated with tissue-specific methylation. Global loss (left plot) and focal gain (right plot) of DNA methylation are depicted as tracks of the

University of California Santa Cruz genome browser [118] using whole-genome bisulfite sequencing data for normal and cancer cell lines. Tracks

for CpG islands and selected histone modifications, including H3K4me3, which is associated with transcriptionally active promoters, and H3K4me1

and H3K27ac as markers for enhancers, are illustrated below the gene track. Each color of the histone tracks represents an individual ENCODE cell

line. The deleted in colon cancer gene (DCC) was taken as an exemplary locus for which long-range hypomethylation regions (horizontal blue

bars) are observed in the breast cancer cell line HCC1954 and in the liver carcinoma cell line HepG2, but not in normal mammary epithelial cells

(HMEC) or the myofibroblast cell line IMR90. The glutathione S-transferase P1 gene (GTSP1) represents an example of promoter hypermethylation

(highlighted in red) in cancer cell lines compared to normal cells. TSS, transcription start site.
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Table 2 Pan-cancer patterns of DNA methylation

Tumor type
(number of
methylation
groups)

Methylation
subgroup

Genomic
aberrations

Methylation
pattern*

Comments References

AML High
IDH1/2 or TET2
mutations

A Associated with patients presenting with an
intermediate-risk karyotype

[43,51,107]

Co-occurrence of IDH1/2 and NPM1 mutations is
associated with good clinical outcome

Bladder urothelial(3)

High RB1 mutations Smoking-pack years as predictor of CIMP
phenotypeFrequent mutations in chromatin regulators
such as MLL2, ARID1A, KDM6A, and EP300†Mutations in
chromatin regulators were more frequent than in any
other TCGA tumor

[35]
Low

↑ TP53 mutations B

Breast(5)

B-CIMP

↓ mutation rate Luminal ER/PR-positive tumors

[31,32]

Low metastatic risk and better clinical outcome

Enriched for genes targeted by the PRC2 (e.g. SUZ12
and EZH2)

B-CIMP-negative
↑ TP53 mutations B Basal-like tumors (ER/PR-negative)

High metastatic risk and poor clinical outcome

Cholangiocarcinoma High
IDH1 and/or IDH2
mutations

A Longer survival
[47]

Chondrosarcoma High
IDH1 and/or IDH2
mutations

A
[46,64]

Colorectal(4)

CIMP-H

MLH1
hypermethylation

C MSI

[29,108]

Right/ascending colonic region
↑ mutation rate

↑ BRAFV600E

mutation
Good prognosis

↑ BRAFV600E

mutation

CIMP-L
KRAS mutations CIN (non-MSI)

Poor prognosis

Two non-CIMP
↑ TP53 mutations B Anatomic origins distinct from CIMP groups

↑ SCNAs

Endometrial(4)

High

MLH1
hypermethylation

C MSI

[33]

ARID5B mutations
↑ mutation rate

Low
↑ TP53 mutations B Serous-like tumors

↑ SCNAs Poor prognosis

Two non-
methylated

↑ POLE mutations Endometrioid tumors

↑ SCNAs ARID1A and PTEN mutations were present in all groups
without high TP53 mutations

Gastric(4) EBV-CIMP

↑ PIK3CA, ARID1A
and BCOR
mutations

EBV-positive tumorsHighest frequency of
hypermethylation events among TCGA tumors

[30]
CDKN2A
hypermethylation

Amplifications of
JAK2, CD274 and
PDCD1LG2
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The molecular mechanisms underlying these relationships

need more investigation. CIMP-L is associated with tumors

enriched for KRAS mutations and chromosomal instabil-

ity (non-MSI). The non-CIMP subgroups, corresponding

to the majority of colorectal tumors, do not show

specific mutations, but are enriched for SCNAs and ori-

ginate from distinct anatomical sites compared with the

CIMP groups.

Table 2 Pan-cancer patterns of DNA methylation (Continued)

Gastric CIMP
MLH1 silencing C MSI

↑ mutation rate

Cluster 3 – low

RHOA and CDH1
mutations

Enriched for the diffuse histological variant

Genomically
stable

Also fusions involving RHO-family GTPase-activating
proteins

Cluster 4 – low

↑ TP53 mutation B CIN

Focal
amplifications of
receptor tyrosine
kinases

Glioblastoma(6)

G-CIMP

IDH1 mutations A Secondary tumors with proneural expression

[41,42,48]

ATRX mutations

MYC mutations
and amplifications

Younger age at diagnosis

Better survival rates

G-CIMP negative
proneural

No IDH1
mutations

Relative hypomethylation

PDGFRA
amplifications

Proneural subtype cases without IDH1 mutations

Pediatric
glioblastoma(6)

Global loss of
methylation at
non-promoter
regions

H3F3A mutations H3F3A mutations are mutually exclusive with IDH1
mutations and are associated with TP53 mutations and
alternative lengthening of telomeres (ALT)

[49,109]

Renal cell
carcinoma

Global loss of
methylation

SETD2 mutations VHL hypermethylation in about 7 % of the tumors†

[36]
Loss of methylation at non-promoter regions

One of the tumor types with the lowest frequency of
DNA methylation events

Lung ADCA(3) CIMP-high

CDKN2A
hypermethylation

Associated either with ↑ ploidy, ↑ mutation and the PI
subtype or with ↓ ploidy, ↓ mutation rate and the TRU
subtype [39]MYC

overexpression Mutations in chromatin modifiers such as SETD2,
ARID1A, SMARCA4†

Lung SQCC(4)
High

CDKN2A
inactivation

Classical expression subtype

[38]
NFE2L2, KEAP1,
PTEN mutations

Chromosomal instability

↑ SCNAs

Low Primitive expression subtype

Serous ovarian(4)

High
Germline and
somatic BRCA1
mutations

More differentiated tumors

[34]

Better survival

Low

↑ TP53 mutation B TP53 mutations occur in 90 % of the tumors and are
not exclusive for the low methylation group

↑ SCNAs

BRAC1
hypermethylation

Poor clinical outcome

*Methylation patterns A, B and C indicate common genetic and epigenetic aberrations across different tumors. †These molecular aberrations were not necessarily

associated with a specific methylation subgroup. ADCA, adenocarcinoma; AML, acute myeloid leukemia; CIMP, CpG island methylator phenotype; CIN,

chromosomal instability; EBV, Epstein-Barr virus; ER, estrogen receptor; MSI, microsatellite instability; PI, proximal inflammatory; PR, progesterone receptor; PRC,

polycomb repressor complex; SCNAs, somatic copy-number alterations; SQCC, squamous cell carcinoma; TCGA, The Cancer Genome Atlas; TRU, terminal

respiratory unit.
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Epstein-Barr virus (EBV)-positive gastric tumors display

an extreme EBV-CIMP profile [30], with hypermethyla-

tion of CDKN2A but not of MLH1. This phenotype has

the highest frequency of DNA hypermethylation when

compared with other cancer types reported by TCGA

[30]. In contrast, gastric CIMP tumors showed hyper-

mutation, MSI and epigenetic silencing of MLH1.

Breast, endometrial and ovarian carcinomas

A breast CpG island methylator phenotype (B-CIMP)

was first reported in 2011 [31]. B-CIMP is enriched in

estrogen and progesterone receptor (ER/PR)-positive tu-

mors and is associated with good survival rates and low

metastatic risk. It is characterized by high methylation of

genes targeted by the polycomb repressor complex 2

(PRC2), including SUZ12 and EZH2 [31]. In contrast,

the B-CIMP-negative group shows high metastatic risk

and poor clinical outcome. TCGA analyses confirmed

these findings, although they defined five distinct DNA

methylation subgroups. The high methylation group

overlapped with luminal B tumors (ER/PR-positive) and

had a low rate of mutations. Conversely, the methylation-

low group had a high TP53 mutation rate and was enriched

in basal-like tumors (ER/PR-negative) [32].

In endometrial carcinomas, TCGA identified four DNA

methylation subtypes. Similar to colorectal cancer, the

high methylator phenotype was mainly composed of

hypermutated MSI tumors showing extensive MLH1

promoter hypermethylation and an under-representation

of TP53 mutations [33].

Four DNA methylation clusters were defined for serous

ovarian cancer. This cancer type has a 90 % prevalence of

TP53 mutations. TCGA identified a methylation-high

group enriched for highly differentiated tumors with

germline BRCA1 mutations. BRCA1 mutations were

mutually exclusive with BRCA1 hypermethylation, which is

characteristic of methylation-low tumors with high SCNAs.

Survival analysis showed that cases with hypermethylated

BRCA1 had a poorer clinical outcome compared to tu-

mors with BRCA1/2 mutations [34].

Bladder urothelial and kidney renal clear cell carcinomas

Bladder urothelial carcinomas were divided into three

DNA methylation subgroups; one of these groups had a

CIMP-like hypermethylation profile and was enriched

for tumors with RB1 mutations. Similar to the low methy-

lation groups in breast, endometrial, gastric and colorectal

tumors, the methylation-low group had the highest per-

centage of TP53 mutations, suggesting a common mo-

lecular mechanism of epigenetic regulation. Interestingly,

chromatin regulators such as the histone methyltrans-

ferase MLL2, the chromatin remodeling gene ARID1A,

the histone demethylase KDM6A and the histone

acetyltransferase EP300 were frequently mutated in this

cancer type [35].

For renal clear cell carcinoma, the most common type

of kidney cancer, TCGA identified epigenetic silencing of

the tumor suppressor VHL in about 7 % of the tumors,

which was mutually exclusive with VHL mutations. In-

creased promoter methylation was linked to tumors with

a higher grade and stage. Tumors with a widespread loss

of DNA methylation were associated with mutations of

the H3K36 methyltransferase SETD2, in contrast to

methylation-low subgroups in other cancer types [36].

Lung adenocarcinoma and squamous cell carcinoma

Non-small-cell lung carcinoma (NSCLC), the most com-

mon type of lung cancer, is divided into three subtypes:

adenocarcinoma, squamous cell carcinoma (SQCC), and

large cell carcinoma [37]. Methylation analysis of SQCC

identified four groups with distinct DNA methylation

patterns. The methylation-high group overlapped with

tumors from the so-called classical subtype, which are

characterized by chromosomal instability. Moreover, the

TSG CDKN2A was inactivated in 72 % of cases, 21 % of

which were due to epigenetic silencing [38].

Recent results for adenocarcinoma revealed three differ-

ent methylation subgroups: CIMP-H, a subgroup with

intermediate methylation levels, and CIMP-L. Remarkably,

these methylation subgroups were not specifically related

to genomic, transcriptomic or histopathological subtypes.

CIMP-H subtypes were either associated with tumors with

high ploidy and a high mutation rate and were classified as

proximal inflammatory (previously known as squamoid),

or were associated with tumors presenting with low ploidy

and a low mutation rate and were classified as terminal re-

spiratory unit (formerly bronchioid). Moreover, an associ-

ation between tumors enriched for SETD2 and CDKN2A

methylation was found, suggesting an interaction between

SETD2 mutations and altered chromatin structure for

these tumors [39].

Glioblastoma

Aberrant DNA methylation has been widely described

for glioblastoma multiforme (GBM) – the most common

adult brain tumor. In 2008, TCGA chose GBM as the

first cancer to be comprehensively characterized, reveal-

ing an important association between MGMT methyla-

tion, mutations in mismatch repair genes and response

to therapy [40]. Subsequently, TCGA identified three

DNA methylation groups, one of which showed hyper-

methylation at a large number of loci and was termed

G-CIMP [41]. This group was enriched in secondary tu-

mors with proneural expression and somatic mutations

of the isocitrate dehydrogenase 1 (IDH1) gene [42]. This

gain-of-function mutation results in increased catalysis

of α-ketoglutarate to D-2-hydroxyglutarate (2-HG), which
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inhibits the activity of TET and KDM proteins, affecting

chromatin remodeling and leading to an increase in DNA

methylation. IDH1/2 mutations are also common in

hematopoietic malignancies, including acute myeloid

leukemia (AML) [43], myelodysplastic syndromes (MDS),

myeloproliferative neoplasms [44] and T-cell lymphomas

[45], as well as in solid tumors such as chondrosarcoma

[46] and cholangiocarcinoma [47].

The G-CIMP group is associated with better survival

compared with G-CIMP-negative tumors. The survival ad-

vantage of G-CIMP tumors was confirmed by a follow-up

TCGA study characterizing more than 500 GBM tumors

[48]. In this study, six DNA methylation clusters, including

the G-CIMP subgroup, were identified. Additionally, the

G-CIMP phenotype was associated with a younger age

at diagnosis, enrichment for mutations in the chromatin

remodeling gene ATRX, and MYC alterations.

The landscape of DNA methylation and genomic aber-

rations in pediatric GBM varies. Instead of having a hyper-

methylator phenotype, these tumors show a global loss of

5mC, which is mainly associated with extensive changes

in histone modifications caused by mutations in H3F3A

(reviewed in [8]). This was defined by Sturm et al., who

found six epigenetic subgroups harboring specific muta-

tions, SCNAs and transcriptome patterns [49]. Two

methylation subgroups specifically correlated with hotspot

mutations in H3F3A, namely at K27 and G34, and

were associated with a younger age at diagnosis. Strikingly,

the G34 tumors showed a global loss of methylation

occurring mainly at chromosome ends. The presence

of IDH1 mutations was mutually exclusive with H3F3A

mutations.

Acute myeloid leukemia

AML is a highly heterogeneous myeloid disorder and

the most common acute leukemia in adults. AML pa-

tients from the normal or intermediate cytogenetic risk

category frequently have mutations in epigenetic regulators

such as IDH1/2, DNMT3 and TET enzymes (reviewed in

[50]). Similar to GBM, AML with a DNA hypermethylation

phenotype is associated with IDH1/2 mutations [43]. These

mutations are mutually exclusive with mutations in the

demethylating enzyme TET2, suggesting a complementary

role. It might be that DNA methylation is a consequence of

mutant IDH expression and that this phenotype contributes

to AML development. The association of IDH1/2 muta-

tions with the hypermethylation phenotype in AML was

confirmed by a recent TCGA study. Gain of DNA methyla-

tion was mainly observed at CpG-sparse regions of the gen-

ome. Other subtypes of tumors were associated with a

substantial loss of DNA methylation and with the presence

of MLL fusion genes or co-occurring mutations in NPM1,

DNMT3A or FLT3 [51].

Potential mechanisms leading to DNA methylation

subgroups

The observation that many tumor types carry numerous

mutations in enzymes regulating epigenetic patterns sug-

gests that these defects contribute to the global alter-

ations seen in cancer genomes [5,8]. However, despite

this expected molecular link, there are currently only

reports associating methylome subgroups with gene

mutations [29,49], rather than detailed molecular stud-

ies. Exceptions are studies on the histone H3.3 muta-

tion H3F3A(K27M), which inactivates EZH2 in the

PRC2 complex [52-54]. In addition, introduction of an

IDH1 mutant, R132H, into astrocytes induces a specific

methylome pattern [55]. Mutations in IDH1/2 cause accu-

mulation of the oncometabolite 2-HG, which disturbs the

DNA demethylation process, causing hypermethylation [43].

Epigenetic subgroups might also represent preexisting

epigenetic states. For example, PRC2 target genes are

commonly hypermethylated in cancer, and EZH2 is up-

regulated in various cancer subtypes. These changes

were associated with gene amplifications, and alterations

in the regulation of gene expression by noncoding RNAs

and mutations (reviewed in [56]). Apart from mutations

affecting epigenetic modifiers, other genes are certainly

also affected. Colorectal CIMP is tightly associated with

BRAF mutations, although it appears that these muta-

tions do not drive the hypermethylation phenotype [28].

Methylation subgroups might reflect the survival advan-

tage of cell populations that have acquired early defects

in DNA repair genes (for example, MLH1, MGMT and

BRCA1). Distinct methylation clusters might also repre-

sent a common cell type of origin. As an example, the

basal breast cancer subgroup shares characteristics of low

methylation, high TP53 mutations and high chromosomal

instability with serous endometrial and serous ovarian

cancer subgroups [33]. Different epigenetic subgroups

have been suggested to represent differences in tumor eti-

ology induced by environmental factors, such as recently

shown for EBV in gastric cancer [30].

Again, the question of whether there is a causal relation-

ship between epigenetic changes and cancer or whether

these associations represent changes in the methylome

that are non-functional events and thus do not contribute

to the carcinogenic process (passengers) rather than

methylation events that drive the carcinogenic process

(drivers) remains open. However, there are some general

observations that extend across studies. First, mutations in

epigenetic enzymes such as IDH1/2 are causally linked to

the pathogenesis of subtypes of GBM and AML, as well as

to the formation of CIMP. Second, mutations in the gene

H3F3A encoding the histone variant H3.3 are associated

with global loss of methylation, especially in sub-telomeric

regions, and with the alternative lengthening of telomeres

phenotype that is characteristic of a fraction of cancer
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cells, for example in pediatric GBM. Third, mutations

in chromatin regulatory factors such as SETD2, ARID1,

SMARCA4, KDM6A, EP300 and MLL are emerging in

various cancer types [57] but, so far, only a few have been

linked to altered methylome patterns. Many of these fac-

tors act in protein complexes, indicating that mutations in

any of these could disrupt the function of the complex.

Fourth, current cancer epigenome research points to the

fact that methylation of polycomb group targets (PCGTs)

is detectable even in pre-neoplastic lesions and could rep-

resent a risk factor for neoplastic transformation [58].

Fifth, recent reports have described particular methylation

patterns related to infectious agents such as EBV or hu-

man papilloma virus (HPV), which can initiate carcino-

genesis [30,59]; whether these methylation alterations are

primarily useful biomarkers for patient stratification or

whether there is a causal relationship to carcinogenesis

has yet to be demonstrated. Last, similarities in methyla-

tion patterns across tumor types could indicate the accu-

mulation of as yet unidentified, low frequency molecular

aberrations that lead to a common phenotype and con-

tribute to cancer development. Future research will have

to address these points to draw clear conclusions.

Methylome analyses across different cancer types
The genome-wide methylation profiles generated by

TCGA and others have shown that aberrant methylomes

are a hallmark of cancer, and are useful for classifying

tumor subgroups as well as for identifying novel clinical

biomarkers. Currently, efforts are being made to integrate

different methylomes and to determine common and

tissue-specific DNA methylation patterns across multiple

tumor entities (pan-cancer). These integrative analyses

might also help to distinguish the driver methylation

events (that contribute to the carcinogenic process) from

the passenger methylation events (which do not contrib-

ute to the carcinogenic process).

In 2013, TCGA published the first integrative analysis

of genomic data across 12 cancer types. In this study,

SCNAs, somatic mutations and DNA methylation were

integrated, although methylation changes were limited

to a selection of 13 epigenetically silenced genes. From

these genes, MGMT, GSTP1, MLH1 and CDKN2A were

found to be aberrantly methylated in a large number of

samples in different types of tumors. Hypermethylation

of MLH1 was associated with the so-called ‘M class’,

characterized by recurrent mutations, whereas BRCA1

hypermethylation correlated with the ‘C class’ of tumors

enriched for SCNAs [3]. These findings confirm the pre-

vious TCGA reports for single tumor entities. However,

by using this selected panel of genes, the results of this

investigation might not reflect the actual similarities and

differences in DNA methylation patterns across distinct

tumor types, as for example shown in Figure 2.

By combining the methylomes of ten distinct tumor

entities, Kim et al. found that aberrant DNA methylation

affects similar biological pathways across the cancer

types analyzed [60]. Over 50 % of the hypermethylation

events were involved in early development and morpho-

genesis, including neurogenesis and embryonic develop-

ment, whereas the remaining hypermethylation changes

were related to transcription factor activity. A significant

overlap between those pathways and PCGT genes was

observed. Among the pan-cancer hypermethylated genes

targeted by PRC2 were several members of the HOX

family as well as the TSG CDKN2A. This finding is in

agreement with previous studies reporting that methyla-

tion of PCGT genes is frequent in distinct cancer types

(reviewed in [61]).

The integration of genome-wide DNA methylation

data across four different gynecological tumors, namely

breast, ovarian, endometrial and cervical carcinomas, re-

vealed similar results [62]. This study additionally inves-

tigated the dynamics of DNA methylation through

different stages of cervical carcinogenesis (that is, nor-

mal, invasive and metastatic stages). Hypermethylation

at stem-cell PCGT genes was found to occur in cyto-

logically normal cervical cells 3 years before the appear-

ance of the first neoplastic alterations. Moreover, a loss

of DNA methylation in CpGs termed ‘methylated em-

bryonic stem-cell loci’ was predominantly observed in

invasive tissues, suggesting that hypomethylation at

these CpG sites might constitute a poor prognostic sig-

nature for these four gynecological tumor entities.

In contrast to these findings, a comparative analysis of

methylomes from seven different tissue types revealed

that hypermethylated genes tend to be already repressed

in precancerous tissues and that aberrant methylation

does not contribute to cancer progression under the

classical model of epigenetic silencing [63]. It was sug-

gested that pan-cancer patterns of hypermethylation

occur owing to the variable gene expression profiles in

the corresponding normal tissues. Hypermethylation of

specific genes might then account for passenger methy-

lation events rather than for driver events.

Apart from analyzing pan-cancer methylomes, integra-

tive analyses of different tumors harboring mutations in

common epigenetic regulators might provide clues about

the molecular mechanisms affecting DNA methylation.

Guilhamon et al. performed an exemplary meta-analysis

of the DNA methylation profiles of tumors with IDH

mutations and intrinsic high methylator phenotypes –

namely AML, low-grade GBM, cholangiocarcinomas

and chondrosarcomas [64]. The retinoic acid receptor

pathway, which is usually dysregulated in the early steps

of tumorigenesis, was enriched in the four tumor types.

The early B-cell factor 1 (EBF1) was identified as a novel

interaction partner of the dioxygenase TET2, suggesting
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Figure 2 (See legend on next page.)
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that TET-mediated demethylation is regulated in a

tissue-specific manner through EBF1 acting at the tran-

scriptional or post-transcriptional level.

Clinical applications of DNA methylation in
oncology
The identification of a wide number of genes that are af-

fected by aberrant DNA methylation in cancer has

highlighted the potential use of this epigenetic modifica-

tion as a biomarker for cancer risk diagnosis, prognosis

and prediction of therapy response. Moreover, the stable

nature of DNA compared with RNA and the availability

of high-throughput techniques for measurement of DNA

methylation in large sample sets add advantages for its

clinical application. The most prominent DNA methyla-

tion biomarkers are summarized in Table 3.

DNA methylation for risk prediction and as a diagnostic

biomarker

Recently, it has been proposed that the inherent epigen-

etic variability of normal cells can be used to predict the

risk of neoplastic transformation. DNA methylation is

being implemented as a molecular biomarker for early

cancer detection that is able to distinguish early precan-

cerous lesions from non-cancerous ones. Moreover, the

analysis of DNA methylation offers the possibility of

non-invasively detecting disease at early stages using

biological fluids such as blood, saliva, urine and semen.

For instance, alterations in DNA methylation in healthy

cervical tissues collected 3 years before detectable cyto-

logical and morphological transformations could predict

the risk of acquiring cancer [58]. Differentially variable

CpGs showed increased variance in normal cells from

people predisposed to cervical neoplasia; the differen-

tially variable CpGs were also enriched for developmen-

tal genes and PCGTs. Age-associated variation in DNA

methylation was also correlated with the risk of neoplas-

tic transformation.

A study analyzing whole blood from BRCA1 mutation

carriers identified a methylation signature that predicted

sporadic breast cancer risk and death years in advance of

diagnosis [65]. Hypermethylated CpGs in BRCA1 mutation

carriers were enriched for stem cell PCGTs, demonstrating

that alterations of PCGTs occur early in tumorigenesis,

as previously described [62,66]. Another study using

whole blood samples identified a PCGT methylation sig-

nature present in preneoplastic conditions that was

prone to become methylated with age, suggesting that

age might predispose to tumorigenesis by irreversibly

maintaining stem-cell properties [67]. Although attract-

ive as a surrogate tissue, analyses in whole blood should

be cautiously interpreted and stringently validated owing

to its cellular heterogeneity [68].

Aberrant DNA methylation is also emerging as a po-

tential tool for cancer detection. The list of methylation-

based diagnostic biomarkers for different tumor types is

enormous. For some of these biomarkers commercially

kits are available. Hypermethylation of GSTP1, one of

the first epigenetic biomarkers to be implemented in the

clinic, is used for early diagnosis of prostate cancer [69].

The promoter of this gene is highly methylated in about

90 % of prostate cancers and can be detected in serum,

urine and semen [70]. By combining GSTP1 hyperme-

thylation with (1) the DNA methylation levels of the

TSGs APC and EDNRB [71], (2) the DNA methylation

levels of CDKN2A, ARF and MGMT [72], or (3) the

levels of the prostate-specific antigen, prostate cancer

diagnosis sensitivity is improved [73]. In NSCLC, aber-

rant DNA methylation of CDKN2A and MGMT were

used to detect malignant lung carcinoma 3 years before

its diagnosis using samples from a small cohort of patients

[74]. Hypermethylation of the homeobox gene SHOX2 in

(See figure on previous page.)

Figure 2 Pan-cancer methylome representation for ten cancer cohorts from The Cancer Genome Atlas. The Cancer Genome Atlas

PANCAN12 DNA methylation data, representing 24,980 CpG sites acquired from the 27 k Illumina platform and corresponding to 2,224 tumor

samples, were downloaded from the University of California Santa Cruz Cancer Genomics Browser [119]. CpG sites located on chromosome X and

Y were removed, as well as the ones associated with single-nucleotide polymorphisms (n = 2,750). DNA methylation data for ten tumor entities -

OV (n = 600), UCEC (n = 117), BRCA (n = 315), LUAD (n = 126), LUSC (n = 133), READ (n = 67), COAD (n = 166), GBM (n = 287), KIRC (n = 219) and

AML (n = 194) - are included in the PANCAN12 dataset. For each of the tumor entities, color-coded on the top of the graph, the 500 most variable

CpGs of the remaining 21,844 data points were selected. From the overlap, Qlucore Omics Explorer 3.0 software was used to select the 1,430

most variable CpGs, which were then hierarchically clustered as a heat map. Beta values are offset by −0.5 to shift the whole dataset to values

between −0.5 (in dark blue) and 0.5 (in yellow) for improved graphical display [119]. DNA methylation patterns show relatively high homogeneity

within tumor entities. We do not observe a common CpG island methylator phenotype-like group across several tumor types, suggesting that

the ‘tissue of origin’ methylation signature is a strong decisive factor for the pattern. Colorectal cancer shows the highest overall methylation,

whereas kidney cancer is characterized by low variance of methylation. The methylation patterns of ovarian, endometrial and breast cancer

display a similar distribution of high and low methylation. CpG sites fall into high and intermediate DNA methylation clusters, covering all tumors

entities, and a low methylation cluster with genes methylated in glioblastoma multiforme (GBM) or colorectal tumors and unmethylated in ovarian

cancer. Unexpectedly, the high methylation cluster shows enrichment for membrane-associated genes including claudins (CLDN) and cadherins

(CDH), while polycomb repressor complex PRC2 target genes are highly enriched in the intermediate and low methylation clusters. Some of these

genes, as well as a selection of differentially methylated genes mentioned in the text such as MLH1, APC, BRCA1/2 and VHL, are indicated on the right

side of the graph. For abbreviations of the tumor entities see Table 1.
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bronchial fluid aspirates of more than 500 patient samples

allowed the differentiation of benign lung lesions from

carcinogenic lesions [75]. A subsequent study analyzing

blood plasma from 411 individuals confirmed the specificity

and sensitivity of SHOX2 hypermethylation [76], identifying

it as a potential clinical biomarker for early non-invasive

lung cancer diagnosis.

Another exemplary diagnostic biomarker is the hyper-

methylation of SET pseudogene 9 (SETP9) in colorectal

cancer, which can be sensitively and specifically detected in

blood plasma and is able to differentiate between all the

stages of the disease [77]. Tumor-specific methylation of

APC,MGMT, RASSF2A andWIF1 have also been suggested

as potential biomarkers for early detection of colorectal

Table 3 DNA methylation biomarkers and their potential clinical applications

Biomarker name Cancer type Tissue detected

Risk

BRCA1 DNAm signature (1,829 CpGs) Breast Whole blood DNA [65]

140 variable CpGs Cervical Normal uterine cervix cells [58]

Diagnosis

GSTP1 Prostate Serum, urine, ejaculate [70]

APC, EDNRB, GSTP1 Prostate Urine [71]

CDKN2A, ARF, MGMT, GSTP1 Prostate Urine [72]

GSTP1, APC, PTGS2 Prostate Paraffin-embedded tissues [110]

SETP9 Colorectal Blood plasma [77]

APC, MGMT, RASSF2A, WIF1 Colorectal Blood plasma [78]

SHOX2 NSCLC Bronchial fluid aspirates/ blood plasma [76]

CDKN2A, MGMT NSCLC Sputum [74]

CCND2, RASSF1A, APC, HIN1 Breast Fine needle aspiration biopsy [111]

ZNF154, HOXA9, POU4F2, EOMES Bladder Urine [112]

Prognosis

20-gene signature ALL Leukemic cells from bone marrow and peripheral blood [88]

15-gene classifier AML

RASSF1A, APC Breast Serum [82]

ZAP70 CLL CD19 sorted mononuclear cells [80]

CDKN2A CCR Blood plasma [81]

DAPK1 Head and neck Tumor samples [84]

DAPK1 NSCLC Tumor samples [83]

CDKN2A, RASSF1A, CDH13, APC NSCLC Primary tumors and lymph nodes [85]

HIST1H4F, PCDHGB6, NPBWR1, ALX1, HOX9 NSCLC Tumor samples [89]

ALDH1A, OSR2, GATA4, GRIA4, IRX4 OPSCC Tumor samples [59]

GSTP1, APC, PTGS2 Prostate Tumor samples [110]

Response to therapy

BRCA1 Breast Tumor samples [92,93]

BCL2 Breast Tumor samples [113]

PITX2 Breast Tumor samples [114]

TFAP2E Colon Tumor samples [115]

MGMT Glioma Tumor samples [90,91]

APAF1 Melanoma Tumor samples/cell lines [116]

IGFBP3 NSCLC Tumor samples/cell lines [117]

BRCA1 Ovary Tumor samples [94]

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CCR, colorectal cancer; CLL, chronic lymphocytic leukemia; DNAm, DNA methylation; NSCLC,

non-small-cell lung cancer; OPSCC, oropharyngeal squamous cell carcinoma.
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cancer [78]. Moreover, a recent genome-wide screen using

DNA methylation data from more than 700 colorectal

cancer samples identified hypermethylation of the throm-

bin receptor THBD and of C9orf50 as novel blood-based

biomarkers for colorectal cancer detection [79].

DNA methylation as a prognosis biomarker

In addition to its diagnostic applications, aberrant DNA

methylation could help to predict and stratify patients

with risks of distinct clinical outcomes. Studies using DNA

methylation as a prognostic biomarker have identified more

aggressive tumors and predicted overall survival and risk

of disease progression and/or recurrence. Initially, studies

combined clinical characteristics with aberrant DNA methy-

lation at single or multiple genes, but genome-wide DNA

methylation profiling of thousands of CpG sites is now lead-

ing to the identification of prognostic signatures.

In CLL, DNA methylation of a single CpG within the

zeta-chain-associated protein kinase 70 (ZAP70) gene pro-

moter predicted disease outcome better than current genetic

approaches [80]. Examples of other hypermethylated genes

used to predict poor clinical prognosis include CDKN2A in

colorectal cancer [81], RASSF1A and APC in breast cancer

[82], the apoptosis-associated gene DAPK1 in lung and

head and neck cancers [83,84], and CDKN2A, RASSF1A,

cadherin 13 (CDH13) and APC in stage I NSCLC [85].

The first studies characterizing DNA methylation at

a genome-wide scale and using large cohorts of patients

to investigate prognostic signatures were performed on

hematopoietic malignancies. In AML, the methylomes

of 344 patients were used to classify 16 distinct AML

subgroups. From these, 5 subgroups defined new AML

subtypes without any reported cytogenetic, molecular or

clinical features. This study also revealed a 15-gene methy-

lation classifier that predicted overall survival [86]. A recent

investigation that focused on cytogenetically normal AML

patients identified a seven-gene score which combined

DNA methylation and gene expression and was associated

with patient outcome [87]. In childhood acute lymphoblastic

leukemia (ALL), distinct biological ALL subtypes were

identified, as well as a group of genes whose DNA

methylation levels correlated with a higher risk of relapse

[88]. Another study in HPV-driven oropharyngeal squamous

cell carcinoma defined a DNA methylation score of five

genes (ALDH1A2, OSR2, GATA4, GRIA4 and IRX4), which

was associated with clinical outcome [59]. Moreover, DNA

hypermethylation of five genes (HIST1H4F, PCDHGB6,

NPBWR1, ALX1 and HOXA9) was used to classify high-

and low-risk stage I NSCLC and patients with shorter

relapse-free survival [89]. Apart from these studies, the

efforts of TCGA have shown that methylomes could be

used to stratify tumors with distinct biological and clin-

ical characteristics, as mentioned earlier.

DNA methylation as a biomarker to predict

treatment response

The individual response of each patient to chemotherapeutic

drugs is quite heterogeneous and, hence, biomarkers that

predict response to therapy as well as the development

of drug resistance are urgently required. DNA methyla-

tion has proven to be a suitable biomarker to predict

treatment outcome in various types of tumors. Such

a marker was identified in GBM, where hypermethyla-

tion of the DNA repair gene MGMT predicted treat-

ment response. Silencing of MGMT diminishes DNA

repair activity and removal of alkyl lesions, and thus pre-

dicts responsiveness to chemotherapeutic agents such as

temozolomide and carmustine [90,91]. TCGA confirmed

these findings and further identified that MGMT hyper-

methylation in GBM patients might predict responders

from non-responders more accurately than the classical

expression subgroups [48].

Hypermethylation of the DNA repair gene BRCA1 in

sporadic triple-negative breast tumors has also been

proposed as a biomarker to predict sensitivity of breast

cancers to the cross-linking agent cisplatin [92] and to

the poly(ADP)-ribose polymerase inhibitor olaparib [93].

Similar results were observed in ovarian tumors with

BRCA1/2 mutations, where BRCA1 hypermethylation

predicted better response to poly(ADP)-ribose polymerase

inhibitor treatment [94].

Therapeutic use

Owing to its reversible nature in comparison to genetic

alterations, aberrant DNA methylation can also be thera-

peutically targeted. Epigenetic drugs such as the histone

deacetylase (HDAC) inhibitors, DNA demethylating agents

or small molecule inhibitors of the BET family of bromodo-

main proteins have been shown to modify chromatin

structure and modify DNA methylation patterns across

the genome [95,96]. DNMT inhibitors can be incorpo-

rated into the DNA or RNA of replicating cells, blocking

the catalytic domain of DNMTs and thus inhibiting the

maintenance of DNA methylation after cell division.

The DNMT inhibitors azacitidine (5-azacytidine) and

decitabine (5-aza-2'-deoxycytidine) have been tested in

clinical trials for hematopoietic malignancies and were

approved by the US Food and Drug Administration for

the treatment of MDS and AML [97,98]. Moreover, azaci-

tidine in combination with an HDAC inhibitor has been

used as a treatment regimen in a phase II clinical trial

for solid tumors including NSCLC, breast cancer and

colorectal cancer [95,99]. The results obtained for NSCLC

showed durable responses and better patient survival,

suggesting that combined epigenetic therapy may have

clinical benefits for the treatment of this and other solid

tumor types.
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Conclusions and future perspectives
The integration of genome-wide DNA methylation profiles

with genomic and other omic profiles is just emerging, and

further efforts are needed to complete cross-tumor ana-

lyses, which will then help us to understand the molecular

mechanisms responsible for the epigenetic defects that can

result from aberrant DNA methylation. Several interesting

findings have been revealed. Subgroups of cancers with

high methylation (including CIMP), are associated with in-

dividual genomic aberrations underlying these patterns, and

have been identified in various cancer entities. At present,

however, there is no evidence for a unifying mechanism

leading to these high methylation phenotypes.

Moreover, several tumor types, such as basal breast,

high-grade serous ovarian and subtypes of serous endo-

metrial, gastric and colorectal carcinomas, related to fre-

quent TP53 mutations and high levels of SCNAs, share

a pattern of low methylation in CGIs. Apparently, in these

tumor subtypes, CGIs retain the low methylation patterns

observed in normal tissues and are protected from methyla-

tion or are subjected to active demethylation. Again, the

molecular mechanism underlying these observations is not

known. We hypothesize that in this case structural genomic

alterations are sufficient to drive carcinogenesis.

Although still in its infancy, pan-cancer methylome

analyses have provided some interesting insights into the

mechanisms of cancer development. First, it is becoming

more apparent that multiple cancer types are affected by

mutations in genes encoding epigenetic regulatory enzymes,

histone variants and chromatin regulatory factors. Some of

these have been experimentally shown to contribute to al-

terations in methylation patterns. Comparing methylomes

across cancer types might now help to identify novel non-

recurrent mutations converging on common biological

pathways that might lead to the development of altered

methylation phenotypes in specific subgroups of cancers.

Second, hypermethylation of PCGTs is apparent in basically

every tumor type and can even be observed in preneoplastic

tissues. Third, the influence of environmental factors on

DNA methylomes might have been underestimated until

now. For example, infectious agents have been recently

linked to specific methylation patterns.

However, pan-cancer methylome analyses still need to

overcome some challenges. First, in the past, DNA

methylation data were generated on two different plat-

forms for some tumor types. Integration of these data

restricts the output to overlapping CpG sites, mostly

representing CGIs, and strongly reduces the genome-

wide coverage. With the generation of larger datasets

derived from the 450 k platform, these limitations will

be overcome in the future. Second, comparing datasets

derived from different platforms, and from samples pro-

vided by various centers, is intrinsically prone to system-

atic batch effects that need to be carefully monitored.

Third, some tumor types are characterized by high tumor

heterogeneity that is difficult to control and might lead

to false positive results. Also, high tumor purity is an

important prerequisite for correct data interpretation,

but is often difficult to achieve. Enrichment of certain cell

types by sorting or laser capture microdissection prior to

analysis might be desirable. Fourth, for the development

of clinical predictive, diagnostic or prognostic biomarkers

and stratification of patient subgroups, the availability of

well documented clinical data is essential. Last, integrative

and comparative analyses of multi-platform datasets require

powerful bioinformatic and biostatistical algorithms. Dedi-

cated computational centers have to develop and rigorously

test and validate these tools.

The epigenetic field is rapidly evolving, and in the near

future more single-base resolution methylomes for a

large number of tumors will be available. The generation

of such methylomes is now affordable due to a consider-

able reduction in next-generation sequencing costs, im-

proved computational expertise and emerging technologies

that use lower DNA input, such as tagmentation-based

WGBS. This method is used for WGBS library preparation,

and is based on the enzymatic activity of a transposase to

simultaneously fragment and tag DNA with adapters [100].

High-resolution methylation maps will provide additional

information to the current methylomes, especially regard-

ing cytosine methylation in a non-CpG context, long-range

methylation interactions, and better assessment of allele-

specific DNA methylation (reviewed in [101]). In addition,

high sequencing coverage will accurately quantify DNA

methylation in genomic regions such as enhancers, insula-

tors, intergenic regions and repetitive elements, which are

currently not included in pan-cancer methylome analyses.

In the longer term, novel technologies will also allow

genomic and epigenomic analyses of single cells. These

analyses will generate more precise datasets by avoiding

the problems associated with tissue impurities or hetero-

geneity, and will allow a direct link between the methy-

lome and the transcriptome [102]. However, the broad

application of single-cell analyses still requires meth-

odological development to reduce technical artefacts.

To fully understand the interplay between the genome,

epigenome and transcriptome, existing datasets need

to be integrated with information about additional

mechanisms of epigenomic regulation, including the

emerging non-coding transcriptome and higher-order

chromatin organization. Importantly, hypotheses generated

from these combined efforts need to be experimentally

tested to prove their functional relevance.

Finally, in terms of translation to the clinic, an essential

aspect is to use the knowledge generated by methylome

analyses as well as from the integration of methylation data

with other omic data to identify novel clinical markers that

should be able to stratify patients better and to define
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molecular signatures across different tumor types. On the

basis of these molecular markers, novel epigenetic therapies

could be developed, setting the stage for better clinical trial

strategies across cancer types as well as for personalized

medicine based on next-generation sequencing data. Already,

pan-cancer analyses have revealed molecular similarities that

will allow existing therapies to be applied to different cancer

types.
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