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Abstract We investigate the effect of using convection-permitting models (CPMs)9

spanning a pan-European domain on the representation of precipitation distribu-10

tion at a climatic scale. In particular we compare two 2.2km models with two11

12km models run by ETH Zürich (ETH-12 km and ETH-2.2 km) and the Met-12

Office (UKMO-12 km and UKMO-2.2 km).13

The two CPMs yield qualitatively similar differences to the precipitation cli-14

matology compared to the 12 km models, despite using different dynamical cores15

and different parameterization packages. A quantitative analysis confirms that the16

CPMs give the largest differences compared to 12 km models in the hourly pre-17

cipitation distribution in regions and seasons where convection is a key process:18

in summer across the whole of Europe and in autumn over the Mediterranean19

Sea and coasts. Mean precipitation is increased over high orography, with an in-20

creased amplitude of the diurnal cycle. We highlight that both CPMs show an21
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increased number of moderate to intense short-lasting events and a decreased22

number of longer-lasting low-intensity events everywhere, correcting (and often23

over-correcting) biases in the 12 km models. The overall hourly distribution and24

the intensity of the most intense events is improved in Switzerland and to a lesser25

extent in the UK but deteriorates in Germany. The timing of the peak in the26

diurnal cycle of precipitation is improved. At the daily time-scale, differences in27

the precipitation distribution are less clear but the greater Alpine region stands28

out with the largest differences. Also, Mediterranean autumnal intense events are29

better represented at the daily time-scale in both 2.2 km models, due to improved30

representation of mesoscale processes.31

Keywords convection-permitting models · Europe · Mediterranean · diurnal32

cycle · convection33

1 Introduction34

Global climate models (GCMs) are our primary tool for understanding how climate35

may change in the future with increasing greenhouse gases. These typically have36

coarse resolutions with grid spacings of 60-300 km (Taylor et al 2012). To provide37

regional detail, higher resolution regional climate models (RCMs; 12-50 km grid38

spacing) are often used, which only span a limited area (Jacob et al 2014). These39

give a better representation of mountains and coastlines and fine-scale (order 10-40

100km) physical and dynamical processes. In general, RCMs are able to capture the41

average statistics of daily precipitation on scales of a few grid boxes, with greatest42

agreement for moderate intensities and model biases increasing for heavier events43

(Boberg et al 2009; Kjellström et al 2010).44

Both GCMs and RCMs with typical grid spacings (>10km) rely on a convection45

parameterisation scheme to represent the average effects of convection. This sim-46

plification is a known source of model errors and leads to deficiencies in the diurnal47

cycle of convection (Brockhaus et al 2008) and the inability by design to produce48

hourly precipitation extremes (Hanel and Buishand 2010; Gregersen et al 2013).49

Very high resolution models (order 1 km grid spacing), can represent deep convec-50

tion explicitly without the need for such parameterisation schemes (Kendon et al51

2012; Hohenegger et al 2008). Such models are termed ‘convection-permitting’ (or52

for simplicity sometimes ‘convection-resolving’ but this is not stricly true): larger53

storms and mesoscale convective organisation are permitted (largely resolved) but54

most turbulent kinetic motions are not represented (Wyngaard 2004). More specif-55

ically, while there is some evidence that km-scale resolution represents convection56

in some bulk sense (Langhans et al 2013), resolving convective updrafts requires57

about ten times higher resolutions (Dauhut et al 2015).58

Convection-permitting models (CPMs) are commonly used in short-range weather59

forecasting, where they have been shown to give a much more realistic represen-60

tation of convection and can be used to forecast the possibility of localised high-61

impact rainfall not captured at coarser resolutions (Done et al 2004; Richard et al62

2007; Lean et al 2008; Weisman et al 2008; Weusthoff et al 2010; Schwartz 2014).63

However, due to their high computational cost, they have not commonly been64

applied at climate-time scales. Studies to date show that convection-permitting65

models do not necessarily better represent daily mean precipitation (Chan et al66
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2013), but have significantly better sub-daily rainfall characteristics with improved67

representation of the diurnal cycle of convection (Ban et al 2014), the spatial struc-68

ture of rainfall and its duration-intensity characteristics (Kendon et al 2012), the69

intensity of hourly precipitation extremes (Chan et al 2014; Ban et al 2014; Fosser70

et al 2015), orographic precipitation and snowpack (Liu et al 2016), which are71

typically poorly represented in climate models.72

Convection-permitting models provide a step change in our ability to represent73

convection, but there are still remaining issues. Smaller showers are not properly74

resolved, which results in a tendency for heavy rain to be too intense and for cell75

sizes to be too large. CPMs are also sensitive to sub-grid scale process represen-76

tation (turbulence, microphysics), associated with many unknowns. The use of77

ever higher resolution does not necessarily result in convergence in terms of the78

representation of convection. For example, showers tend to become smaller (more79

speckly) with finer resolution rather than upscale on to the correct meteorological80

scale (Hanley et al 2015) and improvement with resolution can depend on use of81

appropriate parameterisation (Bryan and Morrison 2012).82

Although convection-permitting simulations have been used at climate-scales83

on small domains in several regions of Europe and North America (see Prein et al84

(2015) for a review), Mediterranean intense precipitation events occuring in au-85

tumn have not yet been studied with such high-resolution on long time-scales.86

These events have been widely studied mainly on single cases with convection-87

permitting models within the the Mesoscale Alpine Programme (MAP, Richard88

et al (2007) and the HyMeX project (Drobinski et al 2014) and climatologically89

with convection-parameterised models within Med-CORDEX framework (Berthou90

et al 2016; Cavicchia et al 2016; Vaittinada Ayar et al 2016; Ruti et al 2016). Kho-91

dayar et al (2016) compared various convection-permitting models and convection-92

parameterised models on a single case study and showed that the former better93

represent the short-intense convective events whereas the convection-parametrized94

models tend to produce a large number of weak and long-lasting events. Although95

convection-parameterised models at scales of 10-40 km are able to capture the96

role of orography, blocking and convergence lines in shaping heavy-precipitation97

events, organised convection only represented at convection-permitting scales and98

interaction of this convection with the orography can be important in the trigger-99

ing, propagation and life-time of some heavy precipitation in the Mediterranean100

(Ducrocq et al 2008a; Bresson et al 2012; Manzato et al 2015; Meredith et al 2015;101

Barthlott and Davolio 2016).102

Following the work of Leutwyler et al (2017), who provided an analysis of the103

performance of the 10-year long ETH-2.2 km simulation in comparison with the104

driving 12 km simulation, we compare 9 years of simulations for a pan-european105

domain from the UKMO and the ETH 2.2 km models with 12 km models and106

with observations. The main added value of the article is to provide the first107

model-intercomparison study of convection-permitting climate simulations across108

the wide variety of European climates and to objectively assess in which regions109

and seasons they differ most with coarser resolution models in terms of precipita-110

tion.111

After presenting the models and datasets in Sect. 2 and the methods in Sect. 3,112

we identify regions and seasons where the 2.2 km models differ most from the 12 km113

models in terms of distribution shape and mean of hourly precipitation in Sect. 4114

and evaluate if this is an improvement against observations. We then gain more115
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country/region name reference native resolution years
France SAFRAN Quintana-Segui et al (2008) 8 km 1999-2007
Germany HYRAS Rauthe et al (2013) 5 km 1998-2006
Spain Spain02 Herrera et al (2012) 12 km 1999-2007
United Kigdom UKCPOBS Perry et al (2009) 5 km 1999-2007
Alps APGD EURO4M Isotta et al (2014) 5 km 1999-2007
Switzerland RdisaggH Perry et al (2009) 1 km 2003-2010
Germany GERMANY Paulat et al (2008) 7 km 2001-2008
United Kingdom NIMROD Golding (1998) 5 km 2003-2011

Table 1 Datasets used in this study: daily datasets in the top part of the table, hourly datasets
in the bottom part of the table. Years indicate the years of the datasets used in this study.
Most datasets span a longer period.

insight as to how the distribution changes in summer in Sect. 5. Finally, we focus116

on the representation of Mediterranean heavy precipitation in Sect. 6 with the use117

of high percentiles and an illustrative case study. We provide conclusions and a118

discussion in Sect. 7.119

2 Datasets and simulations120

2.1 Datasets121

2.1.1 Daily precipitation122

For the analysis of daily precipitation we use the regional gridded datasets pre-123

sented in the top section of Table 1 covering the UK, France, Germany, the Nether-124

lands, the Alps and Spain. Regional datasets were chosen for the comparison, as125

advised by Prein and Gobiet (2017): their native resolution are higher than the126

european-wide EOBS dataset (Haylock et al 2008) and include higher densities of127

raingauges (up to 44 times more). Furthermore, EOBS is not advised to be used for128

coastal areas and mountainous regions of Southern Europe (Flaounas et al 2012)129

and can be biased over regions with a low density of stations, especially regarding130

the extremes (Hofstra et al 2010; Lenderink 2010; Prein and Gobiet 2017). Fur-131

ther information about how each dataset was computed can be found in Sect. 8.1.132

CMORPH (NOAA Climate Prediction Center morphing method) was also used133

to evaluate the representation of heavy precipitation events in the Mediterranean134

in autumn in Sect. 6. It was not included in the rest of the analysis as it is not135

representative of the whole precipitation spectrum in northern Europe (Kidd et al136

2012).137

2.1.2 Hourly precipitation datasets138

For the analysis of hourly precipitation we use the datasets presented in the bottom139

section of Table 1 covering the UK, Germany and Switzerland, which were all the140

gridded hourly datasets available to the authors. 8 or 9 years were used to compare141

with the models, they are not necessarily the same as the model years due to data142

availability (see Table 1). However, we are interested in the multi-year climatology143

of hourly precipitation, and this is not expected to depend strongly on the exact144

choice of years providing a sufficient number of years are chosen.145
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The percentage of missing values for the hourly datasets for 2003-2008 in sum-146

mer are shown as a map in Figure 1b. The German dataset shows between 10 and147

20% of days with missing data all over Germany, the Swiss dataset about 10% of148

missing data in the southeast of the country and the UK dataset does not cover149

some regions in the southeast and northeast of England, and has variable coverage150

in Scotland with about 40% of missing data. For this dataset, only grid-points151

with less than 30% of missing data are used and the same points are used in the152

models to avoid inconsistencies.153

It should be kept in mind that possible uncertainties in the datasets arise from154

rain-gauge undercatch, gridding procedures (Frei et al 2003), and weather radar155

measurements (Wuest et al 2010). The rain-gauge undercatch implies that rainfall156

intensities may well be underestimated with an amplitude that is difficult to assess.157

Prein and Gobiet (2017) mention that it can reach up to 80% in mountainous158

region for snowfall at exposed locations.159

All the datasets were conservatively regridded to the 12 km UKMO grid with160

the Python interface to the Earth System Modeling Framework (ESMF) regrid-161

ding utility interface before the calculation of indices. The first-order conservative162

regridding is a variant of a constant method which compares the proportions of163

overlapping source and destination cells to determine appropriate weights.164

2.2 Models165

Both CPMs use the same pan-european domain as shown in Fig. 1a defined on166

a 2.2 km regular grid with a rotated pole located at (43N, 190E). The grid has167

1536x1536 points and 70 vertical levels for the UKMO model and 60 for the ETH168

model. Both models are forced at their boundaries with 6-hourly ERA-interim169

reanalyses. ETH-2.2 km uses a 12 km-simulation as an intermediate step for the170

downscaling (dashed domain in Fig. 1a), whereas the UKMO-2.2 km is directly171

forced by ERA-interim. This large resolution jump (factor 34) for the UKMO172

configuration implies that the spin-up zone for small-scale transient eddies to de-173

velop is larger than for the ETH model. In fact, Matte et al (2017) suggest that174

spin-up effects for small-scale transient eddies in the vorticity field are present on175

a 3xL zone, where L is the e-folding distance on which the asymptotic value is176

reached. According to their findings, we get a spin-up zone of 3x2x75km/2.2km ≃177

205 grid points. Comparing maps of mean precipitation between the UKMO-12km178

and UKMO-2.2km (not shown), we removed 220 points from the domain on each179

side for our analysis (zone depicted in Fig. 1) to prevent contamination from the180

downscaling method.181

The simulations are starting in March 1998 for UKMO-2.2 km and in November182

1998 for ETH-2.2 km. The soil moisture initial conditions in UKMO comes from183

ERA-interim from the start of the run. The ETH-2.2 km initialisation is based on184

the soil moisture fields of ETH-12 km after 5 years of simulation initialised with185

the CCLM EURO-CORDEX simulation (Kotlarski et al 2014). The UKMO-12 km186

simulation was set on a wider domain (in yellow in Fig. 1a) and started in January187

1998. The article is based on 9 years of simulation from January 1999 to December188

2007.189
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2.2.1 UKMO 12 km and 2.2 km190

The Met Office Unified Model (UM) can be run in climate mode (Walters et al191

2016), seasonal forecasting mode (Scaife et al 2014) or at convection-permitting192

scales for numerical weather prediction (NWP) (Clark et al 2016). The UKMO193

2.2 km (UM version 10.1) model is based on the UKV Met Office regional model194

which has been in use for operational numerical weather prediction since 2012195

(Clark et al 2016). The UKMO 12 km (UM version 10.3) is based on the climate196

version (Williams et al in rev.).197

The UM is a non-hydrostatic model with a deep-atmosphere formulation based198

on a semi-implicit semi-Lagrangian dynamical core: ENDGame (Even Newer Dy-199

namics for General atmospheric modelling of the environment) (Wood et al 2014).200

The prognostic fields are discretised horizontally onto a rotated-pole grid with201

Arakawa C-grid staggering (Arakawa and Lamb 1977) whilst vertical decompo-202

sition is done via CharneyPhillips staggering (Charney and Phillips 1953) using203

terrain-following hybrid height coordinates on 70 levels for the 2.2 km model and204

63 levels for the 12 km model. Both models have a 40km top, but different spacing205

of levels in the lower troposphere. The lowest grid level is 2.5m above the ground206

and the grid spacing increases quadratically with height. The model time-step is207

1mn at 2.2 km and 4mn at 12 km.208

The 2.2 km model does not include any convection parametrization and relies209

on the model dynamics to explictly represent convective clouds. Although it is210

acknowledged that not all types of convection are represented with such grid-211

spacing, this choice was made in the current absence of a scale-aware convection212

scheme which correctly parametrizes sub-grid convective motion and hands over213

to the model dynamics for clouds larger than the model filter scale. The UKMO214

12 km model uses a mass flux convection scheme based on Gregory and Rowntree215

(1990) with various extensions which include downdrafts (Gregory and Allen 1991)216

and convective momentum transport.217

The UKMO 12 km model uses a prognostic cloud fraction and prognostic con-218

densate scheme (PC2; Wilson et al (2008)) whereas the UKMO 2.2 km model, like219

other convection-permitting UM formulations, uses the diagnostic Smith (1990)220

scheme.221

Both models use the radiative transfer scheme of Edwards and Slingo (1996)222

with a similar configuration as described by Walters et al (2011), with several223

upgrades (more details in Stratton et al (in rev.)). Aerosol absorption and scatter-224

ing assumes climatological aerosol properties. Full radiation calculations are made225

every 15minutes, with sub-stepped corrections due to cloud evolution performed226

every 5 minutes. The treatment of cloud microphysical processes is based on Wil-227

son and Ballard (1999), with extensive modifications described in Williams et al228

(in rev.). The UKMO 2.2 km model includes graupel as a prognostic variable in229

addition to the moist variables of water vapour, cloud liquid, cloud ice and rain230

used by the 12 km model. This allows the inclusion of a lightning flash rate pre-231

diction scheme (McCaul et al 2009). The UKMO 2.2 km model uses the blended232

boundary-layer parametrization (Boutle et al 2014). This scheme transitions from233

the one-dimensional vertical scheme of Lock et al (2000), used for lower resolution234

simulations such as UKMO 12 km, to a three-dimensional turbulent mixing scheme235

based on Smagorinsky (1963) and is suitable for high-resolution simulations, with236

a weighting which is a function of the ratio of the grid-length to a turbulent length237
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scale. The UM uses the JULES (Best et al 2011; Clark et al 2011) land surface238

scheme with the default four soil layers with thicknesses of 0.1, 0.25, 0.65 and 1.0 m,239

giving a total depth of 3 m. The tiles share a common soil water reservoir, with240

the van Genuchten et al (1991) relationship describing soil hydraulic conductivity241

and soil moisture. Note, however, it has recently been discovered that there may242

be an inconsistency between the Van-Genuchten hydrology and the soil properties243

provided in the ancillary, such that soil moisture infiltration rates may be too low.244

Initial tests using Brooks-Corey hydraulic equations, which are consistent with245

the soil properties, show that this impacts the soil moisture content but appears246

to have only limited impact on surface temperature and precipitation. The 12km247

and 2.2km models also have a different set up in the treatment of saturated soil248

layers: in the 2.2km model excess water moves upward, whilst in the 12km model249

it moves downward. The sensitivity of the results to this setting are discussed in250

Sect. 7 (see supplementary material for more detail).251

The sub-grid hydrology model is also different: the UKMO 2.2 km configura-252

tions use the Probability Distributed Model (PDM Moore (1985)) and the 12 km253

follows the climate configuration of the TOPMODEL (Beven and Kirkby 1979).254

More details can be found in Walters et al (2016), Williams et al (in rev.) and255

Stratton et al (in rev.). The latter article provides a more detailed description of256

a similar model set-up over Africa.257

Note that unlike flux formulated schemes, semi Lagrangian advection schemes258

are typically not designed to locally conserve the advected quantities. Correctors259

are applied in the global UM, but in regional configurations the issue is complicated260

by the need to account for fluxes through the lateral boundaries in the calculation261

of the error and no correction scheme is implemented in these versions of the262

model. Stratton et al (in rev.) showed that it is likely causing enhanced mean263

precipitation (by ≃ 20% in Africa), especially due to increased intense rainfall264

events.265

2.2.2 ETH 12 km and 2.2 km266

The simulation setup has been introduced in Leutwyler et al (2016) and verification267

was performed in Leutwyler et al (2017). Therefore we here only briefly summarize268

the most important aspects.269

The 12 km and 2.2 km ETH simulations have been performed with version 4.19270

of the Consortium for Small-scale Modeling weather and climate model (COSMO)271

(Böhm et al 2006; Rockel et al 2008). COSMO is a non-hydrostatic limited-area272

model solving the fully compressible governing equations with finite-difference273

methods in a rotated coordinate system, projected on a regular structured grid274

(Steppeler et al 2003; Förstner and Doms 2004). To integrate the prognostic275

variables forward in time, a split-explicit 3-stage Runge-Kutta integrator is used276

(Wicker and Skamarock 2002). For horizontal advection a fifth-order upwind scheme277

and in the vertical an implicit Crank-Nicholson scheme are used (Baldauf et al278

2011). Multi-dimensional advection of scalar fields is implemented using the one-279

dimensional Bott scheme (Bott 1989; Schneider and Bott 2014). The model time-280

step is 90 s for the 12 km model and 20 s for the 2.2 km model, considerably shorter281

than for the UKMO equivalent model.282

Depending upon resolution, sub-grid convection is parameterized using an283

adapted version of the Tiedtke mass-flux scheme with moisture-convergence clo-284
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sure (Tiedtke 1989). Cloud-microphysics are parameterized with a single-moment285

bulk scheme using five species (cloud water, cloud ice, rain, snow, and graupel)286

(Reinhardt and Seifert 2005), radiative transfer is based on the δ-two-stream ap-287

proach (Ritter and Geleyn 1992), and a turbulent-kinetic-energy-based parametriza-288

tion is used in the planetary boundary layer (PBL) as well as for surface trans-289

fer (Mellor and Yamada 1982; Raschendorfer 2001). The ten-layer soil modeel290

TERRA ML has a total soil depth of 15.24 m (Heise et al 2006) and the aerosol291

climatology has been changed from the default climatology (Tanré et al 1984) to292

the AeroCom climatology (Kinne et al 2006).293

The model configuration follows a two-step one-way nesting approach with the294

outer nest consisting of a simulation with parameterized convection (ETH 12km)295

and the inner nest of a simulation with the parameterization of deep-convection296

switched off (ETH2km, Fig. 1a). It should be noted that the parameterization of297

shallow convection remains active in the ETH 2.2km model, which is an impor-298

tant difference compared to the UKMO configuration (which has no convective299

parameterization). The outer nest has a grid spacing of 12 km and the inner nest300

follows the same setup as the UKMO 2.2 km simulation. In both ETH simulations,301

the vertical direction is discretized using 60 stretched model levels, ranging from302

the first model level at 20 m to the model top at 23.5 km. To provide adequately303

spun-up soil moisture fields, the soil layers in ETH 12 km have been initialized304

on 1 November 1993 based on the soil-moisture fields from the CCLM EURO-305

CORDEX simulation (Kotlarski et al 2014), and thereafter integrated for 5 years.306

Subsequently ETH 2.2 km was initialized on 1 November 1998 with the soil mois-307

ture fields of ETH 12 km, leaving two months of integration for soil spinup.308

The simulations have been performed with a version of COSMO capable of309

using GPU accelerators (Fuhrer et al 2014). The new COSMO version enables310

execution of the time stepping algorithm entirely on accelerators, which is essen-311

tial to minimize expensive data movements between the CPU and the GPU. To312

this end the dynamical core has been rewritten in C++, using the domain-specific313

Stencil Loop Language (STELLA) (Gysi et al 2015; Osuna et al 2015), and the314

physical parametrization have been ported using OpenACC (2011) compiler direc-315

tives (Lapillonne and Fuhrer 2014). Data exchange at the sub-domain boundaries316

(i.e. halo exchange) is handled using a re-usable communication framework. On317

144 compute nodes of a hybrid Cray XC30 system, the time-to-solution for a 10-318

year-long integration is about 1.7 months (Leutwyler et al 2016).319

3 Methods320

All the models and datasets are regridded to the UKMO 12 km grid before the321

computation of all diagnostics in order to show a fair comparison between models.322

Therefore, scales smaller than 12 km are not evaluated. However, most of the323

regional datasets are also not necessarily accurate enough to evaluate scales smaller324

than 12 km. It should be stressed that this approach is not entirely fair for the325

12 km models, as they are not supposed to represent the 12 km scale properly, but326

rather a 25 km scale or larger (Skamarock 2004).327

We use the average of values above the 99th percentile of all days to evaluate the328

representation of moderate to intense events (p99avg) to compare fairly the model329
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extremes, independently from the wet-day/wet-hour frequency, as recommended330

by Schär et al (2016).331

To gain insight into the distribution of precipitation, we use the ASoP method332

(“Analyzing Scales of Precipitation”, version 1.0 ASoP1) presented in Klingaman333

et al (2017), which gives a spectrum of the precipitation intensities contributing to334

the mean precipitation rate. This allows a comparison of the contribution of differ-335

ent intensities to the mean across different time-scales and grid-point by grid-point336

to better understand the underlying model physics. It provides a view of differ-337

ences in the distribution in its entirety and also allows differences coming from a338

pure shift to higher/lower intensities to be distinguished from an increase/decrease339

of precipitation in all the bins.340

Fig. 2 shows the steps of calculation for the ASoP method and illustrates the
differences with a probability density function. The example uses the distribution
of daily precipitation in the southern UK from the UKCPOBS dataset and the
UKMO-12 km model for 1999-2007. The bins used to calculate precipitation fre-
quency in the ASoP method are designed such that the number of events per bin
is rather similar across bins (except in the largest bins so that their signal is not
lost in one single bin). This is illustrated in panel b compared to panel a, where
the vertical bars representing each bin are spaced differently. The function defining
the bins is given by Eq. (1).

bn = e

(

ln(0.005)+

[

n
(ln(120)−ln(0.005))2

59

] 1
2

)

(1)

The frequency of events fi in each ith bin is multiplied by the mean precipita-341

tion rate of the bin pi: Ci = fi pi. This provides the actual contribution Ci of the342

bin to the mean precipitation rate. The sum across all bins (area under the curve)343

gives the mean precipitation rate. The resulting spectrum is shown in Figure 2c.344

It provides information about the relative contribution of each bin to the mean.345

Further dividing each bin’s actual contribution by the mean precipitation rate
(sum across all bins of the actual contribution spectrum), as shown in Eq. (2) gives
a spectrum which area under the curve is unity (fractional contribution, panel d),
providing information mostly about the shape of the distribution, independently
from the mean precipitation.

FCi =
Ci∑
Ci

=
Ci

mean
(2)

This method provides a quantitative visualisation of model differences or bi-346

ases against observations in all parts of the precipitation distribution, and not only347

in the head or tail of the distribution like more traditional approaches (probabil-348

ity distribution function, cumulative distribution function). As an example, two349

spectrums are plotted: a reference spectrum and a model spectrum for the actual350

contribution (Fig. 2e) and the fractional contribution (Fig. 2f). Their difference351

is plotted in panels g and h, respectively. These figures illustrate two facts: first352

of all, the model shows a dry bias compared to the reference: the area under the353

red curve in panel e is smaller than the area under the blue curve, which is more354

easily seen in panel g, where the negative area between the curve and the zero355

line is larger than the positive area. More importantly, it illustrates which bins356

contribute to the mean bias: the model shows mainly too much precipitation from357
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the intensities below 8mm/day but a stronger underestimation of the contribution358

from events between 8 and 100mm/day. This latter contribution has the largest359

effect on the mean as the sum of all bins is negative. Panels e and g therefore mix360

the information between the mean bias and the shape of the distribution.361

Looking at the fractional contributions in panels f and h, they mainly illustrate362

the differences in the shape of the distribution between the model and the data.363

By construction, the integral of the difference between the two curves is zero: the364

positive and negative grey areas in panel h compensate each other. These figures365

mainly show that the lower intensity bins contribute too much to the mean com-366

pared to the higher intensity means. It loses the information about the differences367

in the means of the models. In this case, actual contribution and fractional contri-368

butions are not very different, but it is easy to think about a model which would369

have the right shape of fractional distribution but too much precipitation com-370

ing from all the bins: the actual contributions would be larger and the mean bias371

positive, but the fractional contribution would be similar as in the observations.372

These contributions are calculated at each grid-point and can then be averaged373

over a given region or maps can be shown by aggregating the contributions over374

several bin categories.375

On top of this method, we build indices to summarize information about the376

shape of the distribution and the mean precipitation differences between datasets377

to serve two purposes:378

– identify the regions, seasons and timescales where the mean precipitation and379

the shape of the precipitation distribution are most different between the 12 km380

and the 2.2 km381

– in these cases, identify whether the 2.2 km models provide an overall better382

or worse representation of the contributions of different intensities to mean383

precipitation where observations are available.384

The first index gives information about how much the fractional contributions385

differ between a model (mod) and a reference dataset (ref): the index FC (Frac-386

tional Contribution Index) is given in Eq. (3).387

FC(mod, ref) =
∑

i

|FC
mod
i − FC

ref
i | (3)

FC represents how different the shapes of the two distributions are indepen-388

dently from the differences in the means. It has no units either but is the area389

between the two fractional contribution spectrums (in grey in (Figure 2f and h).390

Its minimum and best value is zero while the maximum is two and means no391

overlap between the distributions.392

The second index assesses which model (between m1 and m2) performs best393

in terms of fractional contributions to the mean (Eq. (4)).394

FCbest(m1,m2) =
FC(m1, obs)− FC(m2, obs)

FC(m2, obs)
x100 (4)

This index measures the percentage of improvement or worsening of the frac-395

tional spectrum of model m1 over model m2 with regards to the observations. If396

m2 agrees better with the observations, the index is positive (the area between m1397
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and obs is larger than the area between m2 and obs) and the index is negative if398

m1 agrees better. The index gives some credit to a model which has a better frac-399

tional contribution but a worse bias, meaning that it would potentially reproduce400

well the underlying physical processes but just do too much of all of them.401

The indices are calculated at each grid-point and then averaged over regions402

or presented as maps. With these score we require the models not only to capture403

the area mean, but also each grid point accurately.404

4 Regions and seasons of largest difference across resolution405

4.1 Comparing 2.2 km with 12 km models406

In this section, we identify where and for which season the 2.2 km hourly precipi-407

tation statistics differ most from the 12 km ones. We use a combination of the ab-408

solute mean difference ratio: AMD=(|mean(2.2 km) - mean(12 km)|)/mean(12km)409

and the fractional contribution index (FC) presented in Sect. 3, calculated between410

the 2.2 km and the 12 km models. Calculated at each grid point, these measures are411

then averaged over the different domains presented in Fig. 1a. Only points with av-412

erage precipitation above 0.03mmh−1for hourly precipitation and 0.5mmday−1for413

daily precipitation are taken into account, to avoid regions with too little precipi-414

tation which do not have a robust precipitation spectrum. The results are not very415

sensitive to these chosen thresholds (not shown).416

Each domain can be quite vast but this region definition is chosen as a first417

order description of the variability of climates using a limited number of regions,418

inspired by the Köppen-Geiger map of climates (Peel et al 2007). Figure 3 shows419

a plot of FC(2.2 km, 12 km) as a function of AMD for hourly precipitation. The420

higher the value of FC, the larger the differences in shape of the distribution421

between the 2.2km and 12km models and the larger the AMD, the larger the422

difference in means of the two models.423

For both model sets and for each individual region, the 2.2 km models differ424

most from the 12 km models in summer in terms of precipitation distribution (FC).425

In terms of differences in the mean (AMD), it is largest over high orography in426

all seasons (>1500m), and it is high in the Mediterranean in summer too. Note427

however that the ‘Med Sea’ and ’Med coast’ points for summer are not as reliable428

since they are based on a limited number of points because mean precipitation is429

very low.430

A second conclusion which can be drawn is that the UKMO is overall more431

sensitive to the changes in resolution than the ETH model for most regions and432

seasons, comparing the right and left panels. This may partly be due to the fact433

that the UKMO 12 km model and 2.2 km model do not have exactly the same434

model physics.435

Another point is that in all seasons, the largest differences between resolutions436

in terms of shape of the distribution (FC) are found over the Mediterranean sea or437

coasts, these points especially stand out compared to the other regions in autumn438

and summer.439

In most seasons and models, the smallest sensitivity to resolution is found in440

flat lands in Northern Europe and Central Europe except in summer in the UKMO441

where these regions show large differences in the shape of the distribution. Most442
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of the differences occur in the shape of the distribution and not in the mean state443

except in summer in the UKMO. In the ETH model, CEurM (orography between444

500m and 1500m in Central Europe) shows more sensitivity to resolution than445

flat lands in all seasons in both the mean and shape of the distribution.446

Guided by these findings, we will mainly focus the rest of the study on the447

summer season in all regions and the Mediterranean coasts and sea in autumn,448

where the differences between models are largest.449

4.2 Model performances against available observations450

We show the mean bias compared to observations and a comparison of the frac-451

tional distribution differences (FC best (2.2 km, 12 km)) at each grid-point on a452

map for daily (Fig. 4)) and hourly precipitation (Fig. 5).453

Regarding daily precipitation differences, Fig. 4 first highlights that the Alpine454

region stands out as a region of large increase in the mean precipitation in the two455

models, as highlighted in the previous part. The bias increases with height above456

800m in both of the 2.2 km models (Fig. 5 of the supplementary materials) and457

areas above 1500m in this region show a wet bias of around 30-70%. Although this458

region tends to be more biased in the 2.2 km mean, it shows a better performance459

for the distribution in the western part of the mountain range and worse in the460

northeastern part (panels c and f). The wet bias partly comes from an overestima-461

tion of wet days for all intensities, which was quantified as an increase by 10-30%462

of the wet-day frequency (not shown). It should be stressed that the observations463

over high ground may underestimate precipitation by at least 10% as discussed in464

Sect. 8.1.465

A second point which can be made is the overall improvement in the shape466

of the fractional contribution to the mean in both 2.2km models south of the467

Alps and to a lesser extent north of the range. The improvement is about 30-50%468

compared to the 12 km performances. This is associated with a smaller mean bias469

in the ETH 2.2 km in this region. The UKMO is however dominated by a dry bias470

in this region, although there are improvements in the mean bias in Liguria.471

Northern Germany, the Netherland and the UK coasts are also regions of im-472

provement in both 2.2 km models. The other regions do not show any clear im-473

provement in the distribution between the 2.2 km and the 12 km models.474

The mean bias is not very different across resolutions in the ETH model, and is475

worse in the UKMO 2.2 km model with an overall dry bias of 20-50% in northern476

Italy, northern Spain, France and western Germany. The fact that there is not477

much of a resolution-dependence in the model skill in capturing the shape of the478

distribution, but a large dependence in the mean indicates that the dry bias in the479

UKMO 2.2 km mostly comes from a reduction in the overall wet day frequency,480

which was quantified as being around 20%.481

Regarding the mean and shape of the distribution for hourly precipitation,482

Fig. 5 shows similar mean biases as for daily precipitation, which is reassuring483

given that the reference datasets are different and the time-period of comparison484

is not the same (Table 1). The signal in FCbest, showing which model shows the485

best overlap with the observation in terms of fractional contributions is now much486

stronger than for daily data. There is a clear improvement by the 2.2 km models in487

terms of which intensities contribute to the mean for Switzerland in both models,488
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especially at higher altitudes for the UKMO. In Germany, the overall tendency489

is to a worsening of the distribution in the 2.2 km models, especially strong on a490

southwest-northeast diagonal. A common improvement is however found in north491

and northwestern Germany. In the UK, the model performance is very spatially492

dependent and there is mostly a tendency of improvement along the coasts of the493

Irish Sea and of a deterioration inland.494

Overall, the 2.2 km models improve the daily and hourly distribution shape495

over the western Alps but show a tendency of having too many wet-days in the496

high-grounds, although the raingauge under-catch is hard to evaluate in this region.497

They seem to deteriorate the hourly distribution on flat land away from the coasts498

in the UK and Germany. The UKMO has also an overall dry bias linked with too499

few wet hours and days in France, Spain and northern Italy.500

5 Shift to shorter and more intense wet-spell intensities in 2.2 km501

models502

5.1 Shift to larger contributions from moderate and intense precipitation503

We now look further into the distributions to evaluate which parts are most affected504

by the changes in resolution. We focus on hourly distributions, since the differences505

are clearer at this scale.506

Both the differences in fractional and actual contributions against observations507

are shown in Figure 6. They illustrate the very different behaviour of the 2.2 km508

models compared to the 12 km models on the hourly time-scales. The 12 km models509

tend to show a too large contribution to total precipitation from low-intensity510

events (below 2-3mm/h) by 5 to 40% depending on countries, which is can be511

over-corrected in the 2.2 km, which tend to have too much rainfall contributed512

by moderate and intense (3-30mm/h) events by 10 to 40%. There is a significant513

improvement in Switzerland and to a lesser extend in the UK in terms of fractional514

contributions but the 2.2 km ETH model overestimates precipitation in all bins in515

terms of actual contributions. In Germany, the 12 km models already have too large516

a contribution from intense events (>8mm/h) by around 40% and the 2.2 km517

models have even larger contributions from events above 2mm/h, resulting in518

a 40% increase in contributions from intensities above 2mm/h. It increases the519

distribution biases against observations in this country. In both models, this is520

due both to a decrease in the actual contribution of low-intensity events and an521

increase in the moderate events. The decrease in actual contribution from low-522

intensity events is larger in the UKMO than in ETH and results in biases of -8 to523

-34% in the UKMO 2.2 km model to -12 to -15% in ETH (in the UK and Germany524

only) for this range of intensities.525

Although the number of hourly datasets available is limited, the 12 km and526

2.2 km model contributions to total rainfall can be compared on the whole domain527

by plotting maps of the fractional contribution to total rainfall from low intensity528

events (<2mm/h), moderate events (2-8mm/h) and intense events (>8mm/h), as529

shown in Figure 7. These maps show that the shift in contribution of precipitation530

from low to moderate and intense precipitation in both 2.2 km models is present531

everywhere on land and is much larger than differences between the 12 km models.532
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This leads to improvement in Switzerland and to a lesser extend in the UK but to533

larger biases in Germany.534

5.2 Analysis of wet-spell durations and intensities535

Figure 8 presents the distribution of hourly wet-spell frequencies by duration (in536

hours) and mean intensity over the wet-spell for the available observation datasets537

and the four models. A wet spell is defined as consecutive hours with precipitation538

rates larger than 0.1mm/h at a single grid-point. For the observations, the wet539

spell frequency is shown and for the models we show the difference in the number540

of wet spells per year in each intensity/duration bin between the model and the541

observations normalised by the number of wet spells per year in the observations.542

This way, a positive difference between model and observations in a given bin543

reflects an overestimation of wet spells in this bin, not just a larger share of this544

bin in the wet-spell distribution. We also show percentage differences in the number545

of wet-spells against the observations in each panel title.546

In all three countries, the 2.2 km models increase the frequency of short-lasting547

(<10 h) moderate to intense (average intensity of 1-20mm/h) events and decrease548

the share of long-lasting (>5 h) low-intensity (<1mm/h) wet spells compared to549

12 km models. The latter effect is especially strong in the UKMO 2.2 km model.550

As a result, the 2.2 km tend to underestimate the long-lasting weak wet-spells551

contrary to the 12 km models which overestimate them: the 2.2 km models yield552

better results for these events in all countries for the ETH2.2 km and only in553

Switzerland and to a lesser extent the UK for the UKMO2.2 km. The total number554

of wet-spells generally decreases from 12 to 2.2 km, the effect is more pronounced in555

the UKMO 2.2 km due to the former point. The short-lasting moderate to intense556

wet-spells tend to be underestimated in the 12 km models and overestimated by557

the 2.2 km models (except in the UK). Improvement for these high-impact events558

occur for the UK and Switzerland (only for the ETH model).559

The ETH2.2 km model also decreases the occurrence of short-lasting wet-spells560

whereas the UKMO 2.2 km increases these occurrences compared to the 12 km561

model: in this model, low-intensity wet spells become shorter.562

Note that the UKMO 12 km model shows intense and very short-lasting (¡3 h)563

wet spells, in disagreement with the German and Swiss datasets but not the British564

one, this is probably due to grid-point storms.565

5.3 Changes in the tail of the precipitation distribution566

Looking at the representation of intense events, Figure 7 shows a larger contribu-567

tion from intense events (>8mm/h) to total precipitation in the 2.2 km models,568

especially in the ETH 2.2 km where these events can represent up to 20% of the569

mean, as also shown in Figure 6. The average top 1% of all hours shown in Figure 9570

shows that the increase in contribution from the moderate and intense events in571

the 2.2 km models is partly due to more intense hourly rainfall in both models and572

not only linked with a decrease in number of low-intensity hours. This is again an573

improvement for Switzerland and the UK and a deterioration for Germany, where574

this index is overestimated by 10-30% in the UKMO2.2 km and 10-50% in the575
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ETH 2.2 km. This is not the case for daily precipitation on flat land where this576

diagnostic does not show a large intensification (not shown).577

5.4 Diurnal cycle in summer578

Finally, Figure 10 and Figure 11 respectively show the amplitude and the phase579

(hour of the maximum precipitation in local time) of the mean diurnal cycle at each580

grid-point. They show stronger amplitudes in the 2.2 km models over high orog-581

raphy (>1500m) compared to the 12 km models, especially in the Swiss, Austrian582

and north-italian Alps. According to the Swiss and German datasets over the Alps,583

this is an improvement, although the amplitude may tend to be too strong in the584

convection-permitting models. Both models also generally show larger amplitudes585

of the diurnal cycle on lower level topography (Massif Central, Appenines, Dinaric586

Alps), where MCSs are often triggered (Morel and Senesi 2002). The UKMO and587

to a lesser extent the ETH 2.2 km models also reproduce the larger amplitude of588

the diurnal cycle in southern Germany along the Alpine foothills, where MCSs are589

observed (Hagen and Finke 1999; Kaltenböck 2004).590

Figure 11 shows the better timing of the peak precipitation in the 2.2 km591

models, the peak being shifted from late morning-early afternoon in parameterised592

models to mid-late afternoon in the convection-permitting models, which is more593

realistic, in line with Fosser et al (2015); Ban et al (2014). It is worth noting that594

the UKMO-2.2 km still produces precipitation too early in the day in the Swiss595

Alps (around 2-4 pm), whereas the ETH-2.2 km model is in better agreement with596

the observations with a peak between 4 pm and 8 pm. Nisi et al (2016) observations597

are also more in line with the late peak of ETH 2.2 km in the Po valley. Generally,598

the UKMO 2.2 km modeL tends to produce earlier afternoon peaks by about 2 h599

than the ETH 2.2 km model, further away from the observations. Both models600

reproduce well the spatial gradients of the hour of maximum precipitation in the601

UK on the southwestern coasts.602

6 Mediterranean heavy precipitation events603

In autumn, the heaviest precipitation events in Europe occur on the Mediterranean604

coasts, as illustrated by the average of rainfall on the top 1% of all days shown605

in Fig. 12e. In this figure, we use daily CMORPH observations (2001-2008) (see606

Sect. 8.1) as a complement to the daily precipitation datasets for this metric. This607

satellite-derived product is not as reliable as daily observation products and not608

as high resolution (0.25◦), but it provides some estimate of convection over the sea609

and in the regions not covered by high resolution datasets, although it was shown610

to underestimate coastal heavy precipitation events in this region (Stampoulis et al611

2013). This can also probably be seen in the sharp transition between high values612

in Italy in the Appenines in the Alpine dataset and lower values in CMORPH.613

Regions particularly hit by heavy precipitation events are the Valencian coun-614

try in Spain, the southern part of the Massif Central (Cévennes) and the Alps615

in France, the Ligurian region in Italy, the whole southern edge of the Alps and616

the Dinaric Alps. Intense convection also occurs in the Gulf of Lions and the617
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Tyrrhenian Sea. Liguria, most of Italy and the Dinaric Alps were identified as re-618

gions with rather large convection-parameterised model biases in the extremes in619

convection-parameterised models (Berthou et al 2016; Cavicchia et al 2016; Fantini620

et al 2016).621

6.1 Contribution of intense events to mean precipitation in autumn622

Fig. 12 shows the p99avg metric for all the models. The two 2.2 km models seem to623

actually converge to a solution closer to the observations compared to the 12 km624

models which differ from each other. The convection-parameterised models have625

very different biases: the UKMO-12 km model shows very intense wet biases on626

the upslope side of all mountain ridges and on the coasts, while the ETH 12 km627

model underestimates this metric by around 30-50%. The ETH 2.2 km is in better628

agreement with the observations and the UKMO 2.2 km mostly shows stronger629

intensities in northern Italy. All models show stronger precipitation in the coastal630

Pyrenees compared to the observations. The 2.2 km show stronger precipitation in631

the Valencian country, in better agreement with the observations.632

Over the sea, precipitation maximum in CMORPH occurs in the Gulf of Lions633

and the Thyrrenian Sea whereas it is maximum in the Ionian Sea in the UKMO634

2.2 km and in the Thyrrenian Sea in ETH 2.2 km. Precipitation is more intense635

over the sea in each 2.2 km model compared to its 12 km counterpart. This suggests636

that convection is more easily triggered over the sea away from the influence of637

the orography or the coasts in the 2.2 km models.638

6.2 Case study: 8-9 Sept. 2002 in Southern France639

Having examined the climatological differences between the 12km and the 2.2km640

models, we now focus on a single case study to illustrate how processes are rep-641

resented differently across resolution. The chosen case is a Mediterranean heavy642

precipitation event which occurred on the 8th and 9th Sept. 2002 in the Gard643

region in Southern France. This case was chosen for three main reasons: first, it644

is well documented (Delrieu et al 2005; Anquetin et al 2005; Nuissier et al 2008;645

Ducrocq et al 2008b). Second, it was strongly forced synoptically (Nuissier et al646

2008) so we can expect it to be present in the climate models (which only receive647

atmospheric information on the observed state at the lateral boundary) and third,648

cold pool interactions with the mesoscale environment played an important role649

in setting the location and intensity of the event, so we may expect the 2.2km650

models to behave differently from the 12km models (Ducrocq et al 2008b).651

Over the two days of the event, maximum rainfall of 600-700mm was recorded652

(Fig. 13e). The meteorological environment of the heavy rainfall event was charac-653

terized by an upper-level trough centred over Ireland and extending meridionally654

to the Iberian peninsula, progressively veering to a northwest, southeast axis. It655

generated a south-westerly diffluent flow over south-eastern France. An associated656

surface cold front, first located over western France, moved progressively eastward.657

Convection first formed well ahead of the front in the warm sector, where a low-658

level south-easterly flow prevailed and was later reinforced by embedded convection659

in the front. Fig. 13 shows that for both 12km models maximum precipitation falls660
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on the southeast facing slopes of the Cévennes. In both 2.2km models, precipita-661

tion occurs both on the slopes of the Cévennes and in the Rhone valley, the latter662

being where the maximum in the observations is found. All models underestimate663

the precipitation in the Rhone Valley, but the 2.2km models have smaller negative664

biases.665

The UKMO climate models show different time-evolutions of the surface cold666

front and first generate precipitation over orography, in association with a strong667

temperature gradient, on the afternoon of the 8th (this differs from the real event668

which already shows cold pools and precipitation in the valley by the afternoon669

of 8th, not shown). The 500 hPa synoptic situation is closer to ERA-interim in670

the 2.2 km model than in the 12 km model, probably as a result of domain size671

(not shown). The UKMO 12 km model mostly shows orographic precipitation and672

convection embedded in the cold front during the whole event. In the UKMO673

2.2 km model, following the triggering of precipitation over orography, convection-674

induced cold air accumulates in the Rhone valley, leading to the formation of a675

mesoscale cold front. By the morning of the 9th, convective cells are triggered on676

the edge of the cold pool (Fig. 14) which gradually propagates upstream of a 50-60677

knot southerly flow, maintaining convective cells in the valley in the 2.2 km model.678

There is no hint of interaction of the flow with a cold pool at any stage of the679

event in the UKMO 12 km model (not shown). The more realistic positioning of680

the rainfall maximum, and higher rainfall totals, in the 2.2km models therefore681

seems to be related to their ability to represent cold pools and some form of682

organised convection. Given this is just a single case study, and we would not683

expect the timing or position of rainfall to be exactly captured across models, it is684

not possible to make any definite conclusions. However, the results are illustrative685

of the potential for improved representation of mesoscale processes and associated686

extreme precipitation events at convection-permitting resolution.687

7 Discussion and conclusion688

This first intercomparison pan-European CPMs confirms and builds on previous689

studies on smaller domains or with single models. Quantitatively we find that the690

largest precipitation differences between CPMs and 12 km parameterised models691

occur at hourly time-scales in summer in most regions. Regions of high topogra-692

phy show the largest differences in mean precipitation at the convection-permitting693

scales and the Mediterranean coasts and sea are most affected in terms of precip-694

itation distribution, especially in summer and autumn.695

The two pan-european CPMs behave similarly in terms of differences in precip-696

itation distribution at the hourly timescale in summer compared to 12 km models.697

Mean precipitation comes from an increased contribution of short-lasting moder-698

ate and intense events and a decreased contribution of longer lasting low-intensity699

events everywhere. This leads to an overall improvement compared with the 12km700

models in Switzerland (also found in Ban et al (2014); Lind et al (2016)) and parts701

of the UK (also in Kendon et al (2012)) but deteriorates the distribution in most702

of Germany with too much moderate and intense precipitation, unlike the find-703

ings of Fosser et al (2015) who evaluated their model against hourly raingauges in704

Southwestern Germany. The lack of low-intensity events in both models is espe-705
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cially large in the UKMO 2.2 km model and is responsible for a 10-30% dry bias706

in France, Spain and Italy in this model.707

The daily precipitation distribution is mostly affected by resolution changes in708

the Alps, in northern Italy and near the coasts (UK/Germany). The Austrian Alps709

show a deterioration of the distribution while the southwestern Alps and north-710

ern Italy benefit from higher resolution. Mean precipitation is increased over the711

Alps and becomes larger than in the observations. This bias increases with height712

above 800m in both 2.2 km models and it is unclear which part is due to obser-713

vation uncertainties or model deficiencies ((Lind et al 2016) yield similar results).714

Mediterranean intense events in autumn at the daily scale are better represented715

by the 2.2 km models, which converge to a solution closer to the observations in716

terms of location and intensity than their 12 km counterparts.717

The phase of the diurnal cycle is better represented in the CPMs but the718

UKMO-2.2 km has still too early a peak over orography. This is a well-known719

improvement in CPMs due to the fact that convective instability takes more time720

to build-up as it is not consumed by parameterised convection which tends to721

start convection around midday (Kendon et al 2012; Prein et al 2013; Ban et al722

2014; Fosser et al 2015). Both CPMs have an enhanced amplitude over orography723

compared to the 12 km models, which is an improvement.724

Regarding model differences, the UKMO-2.2 km has a much reduced wet-day725

frequency compared to the UKMO-12 km, which is a clear bias compared to the726

observations; this is not the case in the ETH model. It is not clear whether it comes727

directly from resolution changes. One of the model differences that we investigated728

is the the way saturated layers of soil are treated. At higher resolution, when729

the top layer of soil is saturated, excess water disappears into the surface run-off730

whereas it is drained into the second layer in the 12km. Initial sensitivity tests have731

shown that modifying the treatment of saturated layers moistens the lower soil732

layers slightly, but has negligible impact on the surface soil moisture (not shown)733

and the surface climate (supplementary material). We note that the impact of soil734

moisture infiltration rates being too low in the UKMO models, due to the use735

of Van-Genuchten hydraulic equations, may impact the 2.2 km model differently736

to the 12 km model, given in the former rainfall is more intense and hence the737

surface layer is more likely to become saturated. Initial tests, however, suggest the738

impact of changing the hydraulic equations on the surface temperature is small,739

with warm/dry biases in the UKMO-2.2km persisting. Thus it is possible that the740

intense/intermittent nature of rainfall in the 2.2km model is responsible for dry741

soil conditions and associated warm temperature bias over Eastern Europe but742

further work looking at more variables such as the work of Brisson et al (2016) on743

clouds is needed. In the ETH model such an effect is less apparent, possibly due744

to the use of a shallow convection parameterisation in this model. Other regions745

such as the UK are less sensitive, as soil moisture is not close to critical value for746

limiting evaporation. It should be noted that Liu et al (2016) using ERA-interim747

driven WRF 4km simulations also show a warm and dry bias in the Central US748

in 13-year long simulations over the US.749

In this study we have shown that two 2.2km convection-permitting models yield750

qualitatively similar differences to the precipitation climatology compared to 12 km751

models, despite using different dynamical cores and different parameterization752

packages. Its also highlights that both convection-permitting models will need to753

address how to better balance the increased number of moderate to intense events754
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and the decreased number of low-intensity events, which are needed to improve755

the 12 km model hourly distributions but are overcompensated in both models.756

Work is on-going to introduce a scale-aware convection parameterisation in future757

model versions of the UKMO, which would enable some sub-grid convection. Work758

on the boundary layer scheme and its coupling with convection is also on-going.759

This intercomparison study would benefit from the availability of new gener-760

ations of hourly precipitation datasets. Future work will examine whether there761

are similarly robust signals of future precipitation change across different CPMs,762

reducing uncertainty in projections of intense events at hourly and km-scales. To763

this end, the CORDEX-Flagship pilot study on CPMs is a promising initiative,764

allowing comparison of more CPMs beyond the two available for analysis here.765

8 Appendix766

8.1 Daily datasets767

FRANCE: SAFRAN (8km) Systeme d’Analyse Fournissant des Renseigne-768

ments Atmospheriques á la Neige (SAFRAN) is a precipitation analysis for conti-769

nental France that uses an optimal interpolation method. One of the main features770

of SAFRAN is that the analyses are performed over climatically homogeneous771

zones, which are areas of irregular shape covering a surface usually smaller than772

1000 km and where the horizontal climatic gradients (especially for precipitation)773

are weak. SAFRAN estimates one value of each parameter for each zone at several774

altitude levels. Within the zone, analyzed parameters depend only on elevation775

and aspect. First, SAFRAN performs a quality control of the observations. This776

is an iterative procedure based on the comparison between observed and analyzed777

quantities at the observation location. There were 3675 measurement stations for778

2004/2005. The precipitation analysis is performed daily at 0600 UTC, to include779

in the analysis the numerous rain-gauges that measure precipitation on a daily780

basis (in particular in the climatological and snow networks). The first guess is a781

very simple and constant field. An hourly separation is then performed, but in this782

study we use the daily precipitation amount. Further description can be found in783

Quintana-Segui et al (2008).784

ALPS: APGD EURO4M (5km) The Alpine rain-gauge dataset typically785

comprises 5500 observations on any day of the period 1971 - 2008. The analy-786

sis is based on a first guess for a day that is the long-term mean precipitation787

(period 1971 - 1990) of the relevant calendar month. The precipitation-elevation788

relationship is calculated locally and taken into account in this first guess. Then789

an anomaly is computed for every grid point using the stations located within a790

radius that depends on the station density. It can be up to 60 km from the grid791

point. The dataset has a 5km resolution, but its effective resolution is closer to792

10-15km. The dataset is provided by the Federal Office of Meteorology and Cli-793

matology MeteoSwiss. The dataset incorporates local precipitation topography794

relationships at the climatological time-scale, which aims at reducing the risk of795

systematic underestimates at high elevations but does not correct for any gauge796

undercatch, which is comparatively larger during episodes with strong wind and797

during weather with low rainfall intensity or with snowfall. Sevruk and Zahlavova798

(1994) and Richter (1995) estimated measurement errors ranging from 7% (5%)799
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over the flatland regions in winter (summer) to 30% (10%) above 1500m in winter800

(summer). Further description can be found in Isotta et al (2014).801

SPAIN: Spain02 (0.11◦) Daily precipitation gridded dataset developed for802

peninsular Spain and the Balearic Islands using 2756 quality-controlled stations803

over the time period from 1971 - 2010 (Herrera et al 2012). The grid was produced804

by applying the kriging method in a two-step process. First, the occurrence was805

interpolated using a binary kriging and, in a second step, the amounts were inter-806

polated by applying ordinary kriging to the occurrence outcomes. The elevation807

is not explicitly included in the development of the dataset because the available808

dense gauge network represents the orography corresponding to the 0.11◦ grid ap-809

propriately. Explicit comparison of Spain02 with the E-OBS dataset shows better810

performance of Spain02 to represent extreme events of daily precipitation in the811

region of Valencia regarding the amount and spatial distribution of precipitation812

(Herrera et al 2012).813

UK: UKCPOBS (5km) The National Climate Information Centre daily UK814

gridded precipitation dataset (Perry et al 2009) spans the period 1958-present day,815

and from 1990 uses approximately 2500-3500 surface gauge observations. Quality816

control is performed through computerized and manual comparisons of individual817

daily station values against the daily all-station average and daily values from818

nearby stations. Any stations that have failed quality control are excluded from the819

computation of the gridded values. The gridding of the gauge data to a 5km×5km820

grid uses a cubic inverse-distance weighting interpolation using stations within821

50km radius of the grid box.822

CMORPH 1.0 (0.25◦) The CMORPH (NOAA Climate Prediction Center823

morphing method, Joyce et al (2004)) algorithm uses the relatively high-resolution824

IR information to infer the hydrometeorological position between two consecu-825

tive PMW estimates. IR maps are used to derive cloud system advection vectors826

(CSAVs) to propagate PMW rainfall estimates. Such propagation is performed for-827

ward and backward for each time step using information provided by the CSAVs.828

Final values are achieved by averaging forward and backward rainfall analyses829

proportionally to step distance.830

8.2 Hourly datasets831

Nimrod (UK): Gridded hourly radar data for the UK at 5km resolution are avail-832

able from the Nimrod database (Golding 1998) for the period 2003-present-day.833

There are many issues with radar (clutter, anaprop, bright band, beam attenu-834

ation), and in particular radar data are known to systematically underestimate835

heavy rainfall amounts. The Met Office calibrates radar against rain gauges and836

employs algorithms to take account of known issues but some problems cannot be837

fully rectified. One of these is that the hourly gauges used in the calibration are838

relatively sparse, and thus are not able to fully correct for locally-varying effects839

such as attenuation.840

Germany: The hourly precipitation data set assembled by Paulat et al (2008)841

is used. It features a horizontal grid spacing of 7 km and an effective horizontal842

resolution of 14-28 km. The time period of the dataset is 2001-2008 (8 years). To843

assemble this dataset, measurements from rain gauges have been gridded as daily844

sums, following the procedure by Frei and Schär (1998). Afterwards, the daily sums845
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were disaggregated into hourly values using rain rate retrievals from radar (Wuest846

et al 2010). Beyond uncertainties arising from rain-gauge undercatch, gridding847

procedures (Frei et al 2003), and weather radar measurements (Wuest et al 2010),848

possible inconsistencies between gauge observations and radar restricts the data849

set to 92% of the possible days, at the respective grid points (Paulat et al 2008).850

Switzerland: RdisaggH is an experimental precipitation data set for Switzer-851

land which provides gridded, radar-disaggregated rain-gauge observations (Wuest852

et al 2010). In order to obtain hourly data, a gridded daily product was disaggre-853

gated into hourly sums, using information from weather radar fields. The resulting854

dataset has a grid-spacing of 0.01◦× 0.01◦ covers Switzerland and is available for855

the time period May 2003-2010.856
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30 FIGURES

Fig. 1 a. Domains of the different models and subregion definitions: Neur: Northern Europe,
CEurL: Central Europe (low land below 500m); CEurM: Central Europe medium height (above
500m and below 1500m), > 1500m: high lands above 1500m (Alps, Atlas and Pyrenees), Med
coast: Mediterranean coasts, Med sea: Mediterranean sea. b. Percentage of missing values in
the hourly precipitation datasets.
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Fig. 2 Explanation of the ASoP spectral method. a: Probability density function with regular
1mm bins (frequency of events as a function of event intensity), vertical lines represent the
bin widths; b: Probability density function with the ASoP spectral bins defined in Eq. (1); c:
Actual contributions to mean precipitation (mmday−1) as a function of event intensity (from
b to c, each frequency was multiplied by the average intensity of the bin), the area under
the curve is the mean precipitation; d: Fractional contributions (percentage of the mean that
each bin represents): from c to d, each bin was divided by the mean precipitation. The area
under the curve is 1; e: Actual contributions for a reference (blue) and a model (red), the grey
area is the mean absolute difference (mmday−1); f: Fractional contributions for a reference
(blue) and a model (red), the grey area is the absolute difference (%); g: Difference in actual
contributions between the model (red in panel e) and the reference (blue in panel e); f: Same
as g for the fractional contrbutions: difference between the red and blue curves of panel f.



32 FIGURES

Fig. 3 Fractional contribution index between the 2.2 km and 12 km simulation
(FC(2.2 km, 12 km)) as a function of the absolute mean difference (|mean(2.2 km) -
mean(12 km)|/mean(12 km)) averaged over the regions defined in Fig. 1a for a) ETH and
b) UKMO models. Red is summer, blue winter, cyan spring and black autumn.
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Fig. 4 Mean daily precipitation bias in percentage of the observation values for the (top)
UKMO and (bottom) ETH models in summer at (a, d) 12km and (b, e) 2.2km resolution.
The best daily fractional index between the 2.2km and the 12km for (c) UKMO and (f) ETH
model (as described by Eq. (4)). Blue means the 12 km model is closest to the observations, red
means the 2.2 km is closest. Values indicate percentage of improvement compare to FC(12 km,
obs). Regions with means smaller than 0.5mmday−1in the observations are masked out.
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Fig. 5 Same as Fig. 4 for hourly precipitation.
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Fig. 6 Differences in the fractional and actual contribution of hourly precipitation between
models and the observations (JJA) for different countries (left: actual contribution, right:
fractional contribution). See Sect. 3 and Figure 2 for details about the method. a. Germany,
b. Switzerland, c. United Kingdom (only points where less than 30% of data is missing in the
observations are taken into account).
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Fig. 7 Fractional contribution (ratio of actual contribution on total precipitation) of three
bin categories in summer: top (<2mm/h), middle (from 2 to 8mm/h), bottom: above 8mm/h.
From left to right: observations, UKMO-12 km, ETH-12 km, UKMO-2.2 km, ETH-2.2 km.
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Fig. 8 Frequency of wet spells in summer in different duration and intensity bins for the a.
UK, b. Switzerland c. Germany. In each panel, observational datasets are shown as reference
and model differences with the observations are shown as indicated in the panel titles (see
Sect. 5.2 for details). The number written above the observation plots is the average number
of wet spells per grid point per season and the percentage indicated above each model panel
is the percentage difference in number of wet spells between models and observations.
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Fig. 9 Average of values above the 99th percentile of all hours in summer. Top row: UKMO
12 km (left) and 2.2 km (right) models (percentage difference with the observations), bottom
row: ETH 12 km (left) and 2.2 km (right) models (percentage difference with the observations);
right column: observations (mmday−1).
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Fig. 10 Amplitude of mean diurnal cycle in summer (maximum - minimum) (mm). Top row:
UKMO 12 km (left) and 2.2 km (right) models, bottom row: ETH 12 km (left) and 2.2 km
(right) models; right column: observations.
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Fig. 11 Hour of maximum precipitation of the mean diurnal cycle in summer (local time).
Top row: UKMO 12 km (left) and 2.2 km (right) models, bottom row: ETH 12 km (left) and
2.2 km (right) models; right column: observations.
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Fig. 12 Average of values above the 99th percentile of all days in autumn (SON). a. UKMO
12 km, b. UKMO 2.2 km, d. ETH 12 km, e. ETH 2.2 km; f. available observations (composite of
CMORPH and gridded regional products, as shown in panel c). Yellow area in panel c shows
the domain of the case study in Fig. 13 and Fig. 14 (mm/day).
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Fig. 13 2-day total precipitation between 08/09/2002 and 09/09/2002. The 12 km models,
2.2 km models and SAFRAN observations are respectively on the left, centre and right. Upper
and lower row are for UKMO and ETH simulations. Green lines outline surface height above
500 and 1000m for the UKMO 12-km simulation on which all models and observations are
regridded. Maximum and spatial mean are also given. The domain corresponds to the box in
Fig. 12.
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Fig. 14 UKMO 2.2 km (upper panel) and 12 km (lower panel) and model-simulated snapshots
of 3h-accumulated precipitation (thick black lines; 10, 20, 50 mm/3h), 925 hPa wind (barbs;
knots) and virtual temperature (colour shading). White space mask when 925 hPa isobar is
below ground.
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The Joint UK land environmental simulation [JULES; Best et al, 2011] is
the the standard land surface model (LSM) for the Met Office UM modelling
system. Within JULES, soil characteristics are parametrised with either the
Van Genuchten [van Genuchten, 1980] or Brooks-Corey [Brooks and Corey,
1964] scheme. The 2.2 km and 12 km Met Office UM simulations here use Van
Genuchten hydraulics, however, this leads to soil infiltration rates being too
low as there is an incompatibility with the soil properties defined in the models.
Recent internal Met Office work suggests that the Brooks-Corey hydraulics may
give improved results, and hence this is tested here. In addition, the 12 km and
2.2 km Met Office UM models have a different set-up in the treatment of the
saturated layers of soil: in the 2.2 km model, if a layer is saturated, the excess
of water is transferred to the layer above. If it is the surface layer, then it
disappears in the surface run-off term and is not available any more. This is
the standard set-up of the operational forecast model. In the 12 km model, if
a layer is saturated, the excess of water is transferred to the layer below. If it
is the bottom layer, then the rainfall disappears in the sub-surface run-off term
and is not available any more. This is the standard climate set-up. Here we test
the effect changing the treatment of saturated layers in the 2.2 km model, from
transfer up (giving excess water run-off at the surface) to down (giving excess
water run-off at the sub-surface).

The configuration of the sensitivity simulations conducted here are given in
Table 1. All simulations are driven by the ERA-Interim reanalysis [Dee et al,
2011]; hence, lateral boundary inter-annual and intra-seasonal variability of all
simulations are the same.

The magnitude of the precipitation differences between the simulations for
the first model summer (Fig. 1) increases from west to east (note the sharper
colours). However, the differences are generally noisy without clear regional
patterns. Opposite signed differences often occur in spatial scales less than
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100 km; this suggests the difference are caused by uncertainties in movement
of precipitation systems. Such uncertainties increase eastward downstream as
LBC influence weakens.

The 2.2km simulations have warm summer surface temperature in Central
Europe and the Balkans [Kendon et al, 2017]. Shown in Fig. 2a-c are summer
surface air temperatures for the first completed model summer. The use of
sub-surface runoff cools surface temperature across continental Europe by less
than 0.5 ◦C, but larger cooling (1 − 1.5 ◦C) are seen in the Balkans. The use
of Brooks-Corey soil characteristics [Brooks and Corey, 1964] has the opposite
effect; northern continental Europe is warmed by about 0.5 ◦C.

The differences with E-OBS [Haylock et al, 2008] temperature for the same
summer is illustrated in Fig. 2d. Differences with E-OBS are much larger than
the differences between model simulations. In central and south east Europe,
there are very large warm biases up to 5− 6 ◦C. However, the different JULES
physics can make notable differences to those temperature biases. Cooling due
to switching to downward movement of excess water and sub-surface run-off
reduces the warm biases in Central Europe and the Balkans by about 20−25%.
This may be explained by less moisture being lost as surface run-off, leading to
more moisture being available for evapotranspiration, which in turn cools the
surface. Switching to Brooks-Corey soil hydraulics exacerbates existing warm
temperature biases in central Europe, but has little impact on the warmest
biases in the Balkans. In this case, infiltration rates are increased, but it appears
not enough to prevent the loss of moisture as surface run-off, especially given the
intense and intermittent nature of rainfall in the 2.2 km convection-permitting
model.

To illustrate the above further, surface air temperatures within the Cen-
tral Europe Pannonian Basin for the first full model year are shown in Fig. 3.
This region is chosen due to its positive surface air temperature bias, low-lying
continental location. Inter-model differences are much smaller than the differ-
ences with E-OBS. The seasonal cycle and intra-seasonal variability are gener-
ally well-captured by all model simulations. Around late spring, warm biases
relative to E-OBS begin to develop for all simulations. The biases are some-
what less severe in SubSfcRunOff simulation, but they are slightly more severe
in the BrooksCoreySoil simulation. Despite of the warm biases, model summer
intra-seasonal temperature variabilities remain well captured. In pre-summer
period, temperature biases are less clear, but individual model days can have
large temperature biases (exceeding 3 ◦C).

Similar temperature changes are seen in regions where summer temperature
biases are smaller. Daily temperature changes in France are shown in Fig. 4.
Similar to the Pannonian Basin, the seasonal and intra-seasonal variability are
well captured by all model simulations for the full model year. However, there
is a clear shift from a pre-spring cold temperature bias to a summer warm bias.

The similar trends in both regions suggest that the origin of the temperature
biases are unrelated to models developing its internal variability, and the model
summer is well constrained by the lateral boundary conditions. The onset of
warm bias in both regions are abrupt between May and June 1999.
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Overall, these sensitivity experiments with the 2.2 km model suggest that
removing the inconsistency between the soil hydraulics and soil properties in the
Met Office UM model (by using Brooks-Corey equations) has little impact on
the warm temperature bias seen over central Europe and the Balkans in summer.
Switching the treatment of saturated layers from upward to downward transfer
(with sub-surface excess water run-off) reduces the bias, but does not remove
it completely. Thus it appears, it is the intense/intermittent nature of rainfall
in the 2.2 km model which is mostly responsible for the dry soil conditions and
associated warm temperature bias in this region. Other regions such as the UK
are less sensitive, as soil moisture is not close to the critical value for limiting
evaporation.

It should be noted that these results correspond to a single summer, and fur-
ther years of simulation are required to draw robust conclusions. In particular,
the deepest soil layers are still spinning up in the first few years of simulation,
which may impact the results.
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Table 1: The configurations of LSM sensitivity simulation

Simulation Soil hydraulics Excess water run-off
Control Van Genuchten [van Genuchten, 1980] Surface

SubSfcRunOff Van Genuchten [van Genuchten, 1980] Sub-surface
BrooksCoreySoil Brooks-Corey [Brooks and Corey, 1964] Surface
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Supplementary Figure 1: Precipitation differences between the control and sen-
sitivity simulations for the first model summer (June-July-August, 1999). Panel
a shows the daily-averaged precipitation for the control simulation, and panels
b and c show the percentage differences between SubSfcRunOff/Brooks-Corey
simulations and the control simulation.
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Supplementary Figure 2: Same as in Fig. 1, but for 1.5m temperature. Unlike
Fig. 1, ◦C differences are shown instead. In addition, we also show the biases of
the control simulation relative to gridded E-OBS air temperature observations
[Haylock et al, 2008] in the bottom panel. The purple and green boxes indicate
regions where the spatial averages of 1.5m temperatures are taken – Fig. 3 for
Pannonian Basin and Fig. 4 for France.
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Supplementary Figure 3: Model-simulated and E-OBS area-averaged 1.5-m air
temperatures in the Pannonian Basin region (see Fig. 2). The actual tempera-
tures are shown in the upper panel, and the differences relative to the control
simulation are shown in the lower panel. Note the differences between E-OBS
and control simulation are control minus E-OBS (i.e. biases relative E-OBS).
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Supplementary Figure 4: Same as in Fig. 3, but for France.
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Supplementary Figure 5: Mean bias (%) against height (m) in summer for the
ALPS EURO4M domain (regridded on the UKMO 12km grid) for the UKMO
12km, UKMO2.2km, ETH 12km and ETH2.2km models.
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