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METHOD Open Access

Pancancer analysis of DNA methylation-driven
genes using MethylMix
Olivier Gevaert1*, Robert Tibshirani2 and Sylvia K Plevritis3

Abstract

Aberrant DNA methylation is an important mechanism that contributes to oncogenesis. Yet, few algorithms exist

that exploit this vast dataset to identify hypo- and hypermethylated genes in cancer. We developed a novel computational

algorithm called MethylMix to identify differentially methylated genes that are also predictive of transcription. We apply

MethylMix to 12 individual cancer sites, and additionally combine all cancer sites in a pancancer analysis. We discover

pancancer hypo- and hypermethylated genes and identify novel methylation-driven subgroups with clinical implications.

MethylMix analysis on combined cancer sites reveals 10 pancancer clusters reflecting new similarities across malignantly

transformed tissues.

Background
DNA methylation is being increasingly recognized as an

important process underlying oncogenesis [1]. Besides

genetic mutations and copy number alterations, differen-

tial methylation is an alternative mechanism that is cap-

able of altering the normal state and driving a wide

range of cancers [1-3]. Recent studies have identified

DNA methylation, including genome-wide DNA methy-

lation, in normal tissues and cancer [1,4-6]. Irizarry

et al. [5] concluded that DNA methylation is mostly lo-

cated in CpG shores and conserved between human and

mouse. Ruike et al. [4] analyzed DNA methylation in

breast cancer cell lines and showed that methylation is

altered during the epithelial to mesenchymal transition.

Hon et al. [7] showed that extensive hypomethylation is

present in intergenic regions in breast cancer and is mu-

tually exclusive with repressive histone methylation (that

is, H27K3me3 and H3K9me3). Berman et al. [6] identi-

fied focal regions of hypermethylation within long-range

regions of hypomethylation using sequencing in colorec-

tal cancer. Collectively, these studies are beginning to re-

veal a methylation map that is critical to understand

epigenetic drivers of cancer.

Many prior studies have identified hypo- or hyperme-

thylation of cancer based on heuristic measures

(reviewed in [8]). However, few studies formalize the

identification of DNA methylation-driven genes using a

model-based approach. We propose a method called

MethylMix that aims to derive key methylation-driven

genes in cancer based on three key criteria. First, the de-

termination of the degree of methylation should not rely

on arbitrary thresholds. Second, the identification of a

cancer gene as hypo- or hyper-methylated should be

made by comparing its differential methylation state in

cancer versus normal tissue. Finally, the identification of

genes that are hypo- and hypermethylated in cancer and

likely drivers should be selected as having a significant

predictive effect on gene expression, thereby implying

that their methylation is predictive of transcription and

thus functionally relevant.

Here we present and apply MethylMix on over 4,000

tumors across 12 cancer sites from The Cancer Genome

Atlas (TCGA). MethylMix is an algorithm that produces

transcriptionally predictive and differentially methylated

genes in cancer that serve as potential epigenetic driver

genes of malignancy and, in this manner, provides a

complement to the mutation spectra being derived from

DNA sequencing efforts. We applied MethylMix indi-

vidually on each cancer site to identify the cancer-

specific heterogeneity in the methylome; in addition, we

created a pancancer methylation map by applying

MethylMix on all 12 cancers sites simultaneously.
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Results
MethylMix: a beta mixture model to identify differential

and transcriptionally predictive methylation states

To identify key methylation-driven genes, we developed

a model-based method called MethylMix that addresses

all three criteria stated above (Figure S1 in Additional

file 1). First, MethylMix uses a univariate beta mixture

model to identify ‘methylation states’ for each CpG site

(or cluster of correlated CpG sites), which is then associ-

ated with its nearest gene. Each methylation state is de-

fined by a statistically similar methylation pattern across

a large number of patients, removing the need for arbi-

trary thresholds. Second, MethylMix compares the DNA

methylation of cancer with the methylation state in nor-

mal tissue to determine if a specific gene is differentially

methylated in cancer. Since the normal state of DNA

methylation is tissue specific, MethylMix incorporates

the DNA methylation of normal tissue obtained from a

subset of cancer patients in the same tissue to determine

if a specific gene is hyper- or hypomethylated in that

specific tissue type. Next, MethylMix produces a new

metric called the ‘differential methylation value’ or ‘DM-

value’ defined as the difference between the cancer

methylation state and the normal methylation state. Fi-

nally, MethylMix defines the methylation state of a gene

as ‘transcriptionally predictive’ if its gene expression can

sufficiently be predicted by methylation of its CpG sites

using a linear regression model.

MethylMix identifies differential and transcriptionally

predictive genes in 12 cancers

First we applied MethylMix individually on 12 cancer

sites from TCGA: bladder cancer (BLCA), breast cancer

(BRCA), colon cancer (COAD), glioblastoma (GBM),

head and neck squamous carcinoma (HNSC), clear cell

renal carcinoma (KIRC), acute myeloid leukemia

(LAML), lung adeno carcinoma (LUAD), lung squamous

carcinoma (LUSC), serous ovarian cancer (OV), rectal

cancer (READ) and endometrial carcinoma (UCEC), to-

taling 4,291 patients. Using MethylMix we identified

hyper- and hypomethylated genes, and dual genes -

genes with two methylation statuses, hypermethylated in

one subgroup and hypomethylated in another subgroup

of patients - in a particular cancer. This resulted in be-

tween 408 and 1,133 genes called differentially and tran-

scriptionally predictive methylated by MethylMix in

each cancer (Table 1). For all cancers we identified more

hypermethylated genes than hypomethylated genes. For

each cancer we also found a significant number of dual

genes, suggesting a dependence on the genomic context

as these genes can switch from a tumor suppressor role,

through hypermethylation, to an oncogene role via hy-

pomethylation, depending on the context. Particularly

for AML we identified a large number of dual genes.

We compared MethylMix with three previously devel-

oped methods to determine differential methylation:

IMA [9], COHCAP [10] and minfi [11]. Table S1 in

Additional file 2 shows a comparison of the number of

hyper- and hypomethylated genes for all methods. IMA

and COHCAP identify significantly more hyper- and

hypomethylated genes for most cancer sites compared

with MethylMix. Minfi is similar to IMA and COHAP

but does not identify hypomethylated genes. Genes iden-

tified only by IMA, COHCAP or minfi were enriched

with genes that are not transcriptionally predictive

whereas genes uniquely identified by MethylMix were

typically differentially methylated in less than 50% of the

samples (Table S2 in Additional file 2). More specifically,

when focusing on the transcriptionally predictive genes,

MethylMix identifies 94 hyper- and 15 hypomethylated

Table 1 Overview of the number of samples for each TCGA cancer site and the number of hyper-, hypo- and dual

methylated genes as identified by MethylMix

TCGA cancer code Number of
cancer samples

Number of
normal samples

Number of
hypermethylated genes

Number of
hypomethylated genes

Number of
dual genes

BLCA 123 6 443 74 23

BRCA 313 27 798 203 132

COAD 415 71 526 102 72

GBM 402 4 246 140 22

HNSC 310 50 728 101 42

KIRC 500 355 319 251 32

LAML 194 28 470 77 164

LUAD 430 47 576 182 39

LUSC 358 64 605 133 38

OV 584 7 234 229 66

READ 162 12 321 75 37

UCEC 500 34 618 238 77
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genes with a prevalence of less than 15% compared with

between 3 and 5 hypermethylated genes and only 1

hypomethylated gene for IMA, COHCAP and minfi, on

average, across all cancers (Table S2B in Additional file

2). For example, IMA does not identify BRCA1 hyper-

methylation in breast cancer while MethylMix identifies

BRCA1 hypermethylation in 8% of breast cancer

patients.

Next, we investigated for all methods the enrichment

of genes with cancer driver genes identified using inde-

pendent information. More specifically, we identified for

each cancer site genes significantly correlated with can-

cer pathological stage at the gene expression level. For

four cancer sites we were able to identify a sufficient

number of cancer stage driver genes and showed that

genes identified by MethylMix are more enriched with

cancer stage driver genes compared with those identified

by IMA, COHCAP and minfi (Table S3 in Additional

file 2).

Top ranked hyper- and hypomethylated genes

Next, we ranked the MethylMix genes by the prevalence

of their hypo- or hypermethylation state in the 12 can-

cers separately for hyper- and hypomethylation and ex-

cluding dual genes (Tables S4 and S5 in Additional file

2). We identified 266 pancancer hypermethylated genes

and 42 pancancer hypomethylated genes with differential

methylation in at least five cancer sites. Seven genes

are hypermethylated in ten cancer sites: six encoding

zinc finger transcription factors (ZNF135, ZNF354C,

ZNF415, ZNF542, ZNF671, ZSCAN18) and one encod-

ing a transmembrane protein (TMEM25). The top hypo-

methylated gene, MAGEA4, is hypomethylated in nine

cancer sites. We also investigated the gene expression

fold change for the top ranked methylation-driven genes

between the differential methylation state and the nor-

mal state (Tables S6 and S7 in Additional file 2). The top

hypermethylated genes were down-regulated 3.3-fold, on

average, over each of the corresponding 10 cancer sites.

The top hypomethylated gene, MAGEA4, was up-

regulated 121-fold, on average, for each of the nine can-

cer sites it is hypomethylated in.

Hypermethylation suppresses differentiation

We investigated the enrichment of molecular pathways

in the hyper- and hypomethylated genes in all 12 cancer

sites using enrichment analysis. We specifically looked at

the enrichment of stem cell gene sets based on previous

reports describing epigenetic stem cell signatures in can-

cer [12]. We focused on stem cell gene sets that are dif-

ferentially enriched in the hyper- versus hypomethylated

genes and only found gene sets that are exclusively

enriched in hypermethylated genes (Table S8 in

Additional file 2). These genes sets are related to

suppression of genes involved in differentiation, such as

genes repressed by co-binding of POU5F1 (also known

as OCT4), SOX2 and NANOG [13]; genes affected by

knockdown of TCL1A (also known as TCL1) [14]; a

polycomb target module and targets of SMAD1 and

ZNF281 [15], and genes differentially expressed after

RNA interference knockdown of NANOG [16].

MethylMix identifies both known and novel methylation

subtypes

We constructed a pipeline to identify methylation-

defined patient subgroups with common hyper- and hy-

pomethylation patterns. We used consensus clustering

to identify robust subgroups of patients based on DM-

values [17]. The best studied methylation subgroups

have been described in colorectal cancer, GBM and

LAML [18]. We identified similar hypermethylated phe-

notypes in these cancers. In COAD, we confirmed the

C-CIMP or C-CIMP-high subtype using DM-values, and

its correlation with MLH1 silencing and BRAF mutation

(Figure 1A) [19]. Next, we confirmed the hypermethy-

lated phenotype in GBM, also known as G-CIMP [20],

and the hypermethylated phenotype in LAML, also

known as L-CIMP characterized by IDH1 or IDH2 mu-

tations [21] (Figure 1B,C; Figures S2, S3 and S4 in

Additional file 1). Additionally, we confirmed a basal

enriched methylation subtype in BRCA described previ-

ously, next to three other methylation subgroups (Figure

S5 in Additional file 1) [22].

We also discovered that the DM-value clustering is su-

perior to other clustering approaches. Clustering with

the beta values instead of the DM-values resulted in

lower intra-cluster and higher inter-cluster consensus

(Table S9 in Additional file 2) and identified significantly

less coherent CIMP subtypes for COAD and LAML

(Table S10 in Additional file 2). Clustering using RPMM,

a methylation specific clustering algorithm [23], did not

result in discovery of the known CIMP groups (Figure

S6 in Additional file 1; Table S11 in Additional file 2).

Next, we compared the DM-value clustering with clus-

tering of the matched gene expression data to investigate

if the DM-value-derived clusters capture unique sub-

groups. This resulted in lower quality gene expression

clusters characterized by lower intra-cluster and higher

inter-cluster consensus compared with clustering DM-

values for the majority of cancer sites (Table S12 in

Additional file 2). Additionally, comparisons of each

gene expression clustering with the corresponding DM-

value clustering using the Jaccard coefficient shows low

correspondence (Table S12 in Additional file 2). Qualita-

tive analysis of the known CIMP groups for COAD,

GBM and LAML show that gene expression clustering

identifies clusters enriched with the COAD and GBM
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CIMP cluster but not the LAML CIMP cluster (Figure

S7 in Additional file 1).

In addition to confirming known methylation sub-

groups, we further identified several subgroups that have

previously not been well studied or reported. We identi-

fied five methylation clusters for KIRC that have a spe-

cific methylation pattern significantly correlated with

tumor stage (P-value <0.001; Figure 2A) and with sur-

vival (P-value <0.001; Figure 2B). Two clusters are

enriched with high stage tumors and have poor survival.

Cluster 5 is correlated with low stage tumors and also

has the fewest non-zero DM-values, reflecting a normal-

like KIRC tumor. The good prognosis cluster, cluster 3,

is characterized by hypermethylation of CYTIP, with

65% of all hypermethylated cases in cluster 3 (Figure 2C)

and virtually all samples in cluster 3 are CYTIP hyper-

methylated (n = 192/204). This observation is consistent

with CYTIP’s role in KIRC protecting cancer cells from

apoptosis signals and based on its previously shown epi-

genetic protective effect [24].

For HNSC we identified five distinct clusters signifi-

cantly correlated with distinct mutational patters for

each cluster (Figure 3A). Interestingly, cluster 2 was sig-

nificantly associated with mutations in NSD1 (P-value

<0.001); more than half of the cluster 2 samples carry a

mutation. Next, cluster 4 is enriched with CASP8 and

NOTCH1 mutations (P-value <0.001 and <0.001, re-

spectively), both of which have been strongly implicated

in HNSC [25]. This group is also characterized by hyper-

methylation of BCL2, with more than 50% of the hyper-

methylated cases being in cluster 4 (Figure 3C), and vir-

tually all cases in cluster 4 having BCL2 hypermethylated

(that is, 75 out of 77 cases). Lastly, cluster 5, which does

not have any of the key mutations present in the other

clusters, showed a markedly better survival compared

with the other groups (P-value <0.001) and was enriched

with low stage tumors (P-value <0.001).

For UCEC we identified four methylation clusters that

are correlated with histology and microsatellite instabil-

ity (MSI; Figure 4A). Clusters 1 and 3 are enriched with

endometrioid tumors whereas cluster 3 is a mixture of

endometrioid and serous tumors (P-value <0.001). Clus-

ter 1 is strongly correlated with the TCGA MSI cluster

that has been proposed as a CIMP cluster in endometrial

carcinoma [26]. This cluster is dominated by hyperme-

thylation (Figure S8 in Additional file 1). Although this

CIMP group is associated with MLH1 hypermethylation,

MethylMix identified other hypermethylated genes that

characterize this group, such as hypermethylation of

ELOVL4 and EPM2AIP1, a gene sharing a promoter with

MLH1 (Figure 4B).

Pan-cancer DNA methylation landscape

Next we used MethylMix to define methylation states

across all 12 cancers combined. First, we identified the

methylation states in all normal samples across all 12

cancer sites to select unimodal transcriptionally predict-

ive genes and eliminate heterogeneity in the normal

methylation data (Figure S9 in Additional file 1). This

resulted in 1,780 genes with unimodal methylation in

Figure 1 Consensus clustering [17] and methylation profiles for three cancer sites with known CIMP groups. (A) Colon cancer (COAD);

(B) glioblastoma (GBM); (C) acute myeloid leukemia (LAML). Top panel: visualization of the consensus clustering with blue indicating high

consensus and white indicating low consensus. Bottom panel: methylation profile with red indicating hypermethylation, white indicating normal

methylation and blue indicating hypomethylation. Middle panels: COAD - CIMP-high, CIMP-low subgroups according to [19], MLH1 hypermethylation

and BRAF mutation; GBM - CIMP subgroup; LAML - IDHx mutation in IDH1 or IDH2, mutation in WT1 and AXL1.
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normal tissue. Next, we used MethylMix on the cancer

samples using only these 1,780 unimodal genes and

identified the pancancer DM-values. This resulted in

1,028 transcriptionally predictive genes with differential

pancancer methylation states. We used consensus clus-

tering on the corresponding DM-values of these 1,029

genes to identify pancancer clusters (Figure 5). We

found 10 pancancer clusters showing significant tissue-

specific enrichment (Table S13 in Additional file 2), cor-

responding tissue-specific correlations with mutations

(Figure S10 in Additional file 1) and survival (Figure S11

in Additional file 1).

Six pancancer clusters, namely pancancer clusters 1, 4,

5, 7, 9 and 10, are tissue specific and correspond to colo-

rectal, GBM, LAML, KIRC, UCEC and BRCA pancancer

clusters, respectively. The remaining four clusters con-

tain tumors from multiple tissues (Table S13 in

Additional file 2). We used enrichment analysis of over-

expressed genes to assess the commonalities that are

exclusively enriched in each pancancer cluster across

tissues.

A striking example is pancancer cluster 2, containing a

mixture of LUAD, LUSC, BLCA, HNSC and BRCA

(Figure 5). BRCA samples in this cluster are almost

exclusively basal breast cancers (27 out of 32 BRCA

cases in pancancer cluster 2). The lung cancer samples

are not enriched in TCGA expression subtypes [27]; ra-

ther, pancancer cluster 2 is exclusively enriched in ex-

pression of collagen genes and the associated syndecan 1

and integrin pathways (Table S14 in Additional file 2),

defining a syndecan-integrin signaling cluster.

Pancancer cluster 3 contains the remaining LUAD

cases and a significant portion of BLCA, LUSC and

UCEC. This cluster has striking enrichment of immune

response genes and the FOXA1 transcriptional network

(Table S14 in Additional file 2), defining a FOXA-

immune response cluster. This cluster also has high ex-

pression of other parts of the integrin signaling pathway

when compared with pancancer cluster 2.

Next, pancancer cluster 6 illustrates that a subset of

UCEC tumors has a similar methylation pattern as the

OV tumors. These UCEC samples are characterized by

Figure 2 Clear cell renal carcinoma (KIRC) methylation clustering. (A) Consensus clustering [17] in five subgroups, correlation with

pathologic M stage and binarized pathologic stage (stages 3 and 4 versus stages 1 and 2) and their corresponding methylation profiles with red

indicating hypermethylation, white indicating normal methylation and blue indicating hypomethylation. (B) Overall survival for the five

methylation subgroups. (C) MethylMix model for the CYTIP gene and distribution of CYTIP hypermethylation across the five KIRC subgroups.
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high stage, high grade and serous histology compared

with the UCEC pancancer cluster 9 (P-value <0.001), de-

fining a serous ovarian-endometrial cluster. In addition,

the UCEC tumors in cluster 6 significantly overlap with

the high copy number TCGA subgroup [26] (P-value

<0.001).

Pancancer cluster 8 captures a squamous methylation

pattern based on its composition of most HNSC tumors

and also a subset of LUSC and BLCA tumors. The LUSC

tumors are enriched with the classical TCGA subtype

(P-value <0.001) and the BLCA tumors are enriched for

only papillary tumors and are more likely to be low stage

(P-value 0.003), together they are defining a squamous-

like cluster. We also observed a significant correlation

between mutations in the lincRNA ADAM6 and

pancancer cluster 8 (P-value <0.001; Figure S10 in

Additional file 1). ADAM6 mutations appear across tis-

sue in pancancer cluster 8, including in HNSC, LUSC

and BLCA cases.

Finally, we compared the DM-value pancancer clusters

with previously reported pancancer clusters based on

mutation, copy number data, gene expression data [28]

and a meta-clustering analysis combining all of the

above [29]. Comparing the DM-value pancancer clusters

with the mutation and copy number pancancer clusters

demonstrates the unique aspects of the DM-value pan-

cancer clusters, with very few copy number or mutation

pancancer clusters capturing the same phenomenon

(Figures S12 and S13 in Additional file 1). The mutation

pancancer clusters show significant overlap with the

KIRC and OV pancancer clusters (Figure S12 in

Additional file 1). The copy number pancancer clusters

show overlap with the colorectal, GBM and again the

KIRC cluster (Figure S13 in Additional file 1). None of

the pancancer mutation and copy number clusters, how-

ever, identify any of the four cross-tissue pancancer clus-

ters. Similarly, comparison with the gene expression

clustering and the meta-clustering shows that both of

these analyses do not capture the four pancancer clus-

ters that we identified with DM-value clustering (Figures

S14 and S15 in Additional file 1). First, both these clus-

terings do not identify the similarities between serous

endometrial cancer and serous ovarian cancer. Next,

the squamous-like pancancer cluster in both of these

Figure 3 Head and neck squamous carcinoma (HNSC) methylation clustering. (A) Consensus clustering [17] in five subgroups, mutation

status for four genes (NSD1, CASP8, NOTCH1 and TP53) and their corresponding methylation profiles with red indicating hypermethylation, white

indicating normal methylation and blue indicating hypomethylation. (B) Overall survival for the five methylation subgroups. (C) MethylMix model

for the BCL2 gene and distribution of BCL2 hypermethylation across the five HNSC subgroups.
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clusterings encompasses all squamous cancers, including

lung squamous carcinoma, and does not distinguish

between the lung squamous carcinoma in the syndecan-

integrin signaling cluster and the pure squamous cluster.

Similarly, both clusterings do not identify the difference

between lung adenocarcinoma in the FOXA-immune

cluster and the syndecan-integrin-squamous like lung

adenocarcinoma.

Discussion
This study represents a large analysis of DNA methyla-

tion in over 4,000 tumors and across 12 cancer sites

from TCGA using a novel computational approach.

DNA methylation at CpG sites is an extensively studied

epigenetic mechanism driving oncogenesis. Loss or gain

of CpG site DNA methylation can result in activation of

oncogenes or inactivation of tumor suppressor genes.

Therefore, DNA methylation is increasingly being recog-

nized as a critical mechanism responsible for the transi-

tion from a normal to a malignant cellular phenotype

[30] and a possible driver of therapeutic resistance [31],

and we have shown that differentially methylated genes

are potential cancer driver genes [2,32].

Our results show the existence of pancancer hypo-

and hypermethylated genes. The former are potential

pancancer drug targets whereas the latter have

Figure 4 Endometrial cancer (UCEC) methylation clustering. (A) Consensus clustering [17] in four subgroups, corresponding histology (that is,

serous or endometrioid), microsatellite instability (MSI cluster), and methylation profiles with red indicating hypermethylation, white indicating

normal methylation and blue indicating hypomethylation. (B) Hypermethylation of MLH1, ELOVL4 and EPM2AIP1 across the four UCEC subgroups.
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diagnostic value as potential pancancer biomarkers.

Next, we found distinct methylation-driven subtypes in

each cancer site. We identified between three and five

clusters in each of the 12 cancer sites studied. This in-

cludes both previously studied methylation subtypes,

such as the CIMP subtype [18], but also new subgroups.

Applying MethylMix to the combined pancancer data

set identified 10 methylation subgroups, including four

clusters with significant presence of multiple tissues.

Our findings emphasize the importance of studying

aberrant DNA methylation in cancer and we identified

surprising commonalities across cancers arising from

different tissues.

Our application of MethylMix on each cancer site in-

dividually identified meaningful hypermethylated genes

and also hypomethylated genes, which have not been

studied extensively before. We identified several genes

that are hyper- and hypomethylated in multiple cancers

individually, resulting in 266 pancancer hypermethylated

genes and 42 pancancer hypomethylated genes. One of

the top hypermethylated genes, TMEM25, has been im-

plicated in colorectal cancer [33] and is correlated with

favorable prognosis in breast cancer, confirming a poten-

tial widespread tumor suppressor role for TMEM25

[34]. Similarly, the top hypomethylated gene, MAGEA4,

is hypomethylated across nine cancers in between 18%

and 60% of cases depending on the tissue. MAGEA4 is a

cancer/testis antigen and a target for immunotherapy

and has been identified to promote growth [35].

MAGEA4 is also a therapeutic target in breast cancer

[36] where we observed hypomethylation in 18% of

BRCA cases. Moreover, a family member, MAGEA3, is

currently the target of a phase three clinical trial for

non-small cell lung cancer [37]. This identifies aberrant

methylation of MAGEA4 as a cause of its widespread

upregulation and as a potential target for immunother-

apy in multiple cancers.

Previous studies on DNA methylation have focused

almost exclusively on hypermethylation leading to the

identification of the CIMP subgroups in at least three

cancer sites, colorectal, LAML and glioma. However,

hypermethylation only offers a partial view of DNA

methylation and our pancancer application of Methyl-

Mix is rooted in an unbiased approach to identify

methylation subtypes. This allowed us to identify not

just the known CIMP subgroups but also novel sub-

groups that are defined by both hyper- and hypomethy-

lation patterns. This is illustrated by the new metric that

we proposed, the DM-value, reflecting differential DNA

methylation with respect to normal DNA methylation

status. We used the DM-value as the basis to define

methylation subtypes in each of the 12 cancer sites. Our

results show that the DM-value is superior to the beta

value for determining subgroups (Tables S9 and S10 in

Additional file 2) and outperformed a dedicated methy-

lation clustering algorithm (Table S11 in Additional file

2). DM-value clustering also resulted in subgroups not

previously described in HNSC, UCEC, and KIRC, with

prognostically significant correlations for KIRC and

HNSC. Moreover, we identified a subtype of HNSC that

is potentially caused by NSD1 mutations. NSD1 is a SET

domain histone methyltransferase that demethylates nu-

cleosomal histone H3 lysine 36. Its mutational pattern

suggests a loss of function creating aberrant histone

Figure 5 Pancancer methylation clustering. Left: consensus clustering [17] in 10 subgroups, corresponding cancer sites and their

corresponding methylation profiles with red indicating hypermethylation, white indicating normal methylation and blue indicating

hypomethylation. Right: cancer site distribution for four pancancer clusters with mixed cancer site distributions (pancancer clusters C2, C3, C6

and C8).
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methylation, also affecting DNA methylation processes

through DNA-histone methylation crosstalk [38], and

thereby potentially defining the NSD1 HNSC subtype.

Finally, we applied MethylMix across all tissues simul-

taneously and identified pancancer clusters. This ‘pan-

cancer map’ illustrates the relationships between the

methylation patterns in different tissues and methylation

patterns common across tissues. Our map revealed six

pancancer clusters that are heavily enriched in one tis-

sue, illustrating that, due to DNA methylation being a

tissue mark, aberrant DNA methylation heavily reflects

the tissue of origin. Besides these homogeneous clusters,

we also identified four mixed pancancer clusters. We

identified two mixed clusters primarily enriched with

lung cancers: a syndecan-integrin signaling cluster and

a FOXA-immune response cluster (that is, pancancer

clusters 2 and 3, Figure 5). The former captures a basal

phenotype enriched in genes related to the integrin sig-

naling pathway whereas the latter is exclusively enriched

in immune response genes. For the remaining two mixed

clusters, we discovered a serous ovarian-endometrial

subgroup, creating opportunities for similar treatment of

these UCEC tumors. This is consistent with the observa-

tion by TCGA that serous uterine tumors have similar

gene expression patterns as serous ovarian cancers [26].

The final cluster we identified is a squamous-like pan-

cancer cluster containing most of the HNSC cases to-

gether with a subset of classical LUSC and papillary

BLCA. Both the LUSC and BLCA samples in this cluster

had a tendency for better prognosis compared with the

remaining samples (data not shown). We also observed

an unexpected similarity between LAML cancers and

KIRC cancers, although clustering in two different pan-

cancer clusters (that is, pancancer clusters 5 and 7), they

have the highest off-diagonal consensus (Figure 4). Com-

parison with previously reported pancancer clusters

based on mutation, copy number data, gene expression

and meta-clustering, combining all of the above, show

the unique aspects of the methylation-based pancancer

map. In addition, none of these other pancancer cluster-

ings identified the mixed tissue pancancer clusters,

such as the serous ovarian-endometrial cluster and the

FOXA-immune response cluster.

By design MethylMix focuses on identifying cis-regula-

tory effects of DNA methylation on gene expression and

does not currently model trans-regulatory effects. Fur-

ther studies are needed to tackle the multiple testing

challenge of identifying trans-regulatory DNA methyla-

tion effects. Additionally, we focused on gene specific

hyper- and hypomethylation as opposed to identifying

regional or genome scale DNA methylation patterns as

shown by other studies [39]. This choice was motivated

based on the properties of the TCGA DNA methylation

platforms that focus primarily on identifying promoter

DNA methylation and warrant gene-specific study com-

plementary to previous work.

Conclusions
Our analysis is far from complete but as more tumor

types are completed by TCGA a more comprehensive

picture will emerge identifying more cross-tissue methy-

lation patterns. Identifying commonalities across cancers

originating from different tissues can help to move away

from a paradigm based on treating cancers based on

anatomy to one based on treatment based on common

DNA methylation patterns.

Materials and methods
We developed MethylMix, a novel multi-step model-

based algorithm to determine significant hypo- and

hypermethylated transcriptionally predictive genes in

cancer (Figure S1 in Additional file 1).

The Cancer Genome Atlas pancancer data

We used level three normalized pancancer data from

TCGA for 12 tissues: BLCA, BRCA, COAD, HNSC,

LAML, KIRC, LUAD, LUSC, GBM, READ, UCEC and

OV [40,41]. We used all available DNA methylation and

RNA-Seq gene expression data from TCGA PAN Cancer

Freeze 4.7 available through synapse [42].

Preprocessing DNA methylation data

The DNA methylation data in TCGA was generated

using the Illumina Infinium HumanMethylation 27 k or

450 k BeadChip. DNA methylation was quantified using

beta values ranging from 0 to 1, with values close to 0

indicating low levels of DNA methylation and close to 1

high levels of DNA methylation. We removed CpG sites

with more than 10% missing values in all samples. We

used the 15-K Nearest Neighbor (KNN) algorithm to es-

timate the remaining missing values in the data set [43].

For cancer sites that had both 27 k and 450 k data, the

overlapping probes between both data sets were used.

For all other data sets, all 27 k or all 450 k probes were

used. Due to the size of TCGA, TCGA samples were an-

alyzed in batches and a significant batch effect was ob-

served based on a one-way analysis of variance. We

applied Combat to adjust for these effects [44]. This pro-

cedure was performed for all primary tumor samples

and normal solid tissue. For GBM, four normal samples

were obtained from [20,45].

The 27 k and 450 k DNA methylation platforms have

multiple CpG sites per gene, thereby requiring a method

to collapse the data of multiple CpG sites to assess gene-

specific DNA methylation. Because averaging all CpG

sites can remove signal from the data, we used a dimen-

sionality reduction method to group correlated probes

and reduce redundancy. To accomplish this, we used
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hierarchical clustering with average linkage in combin-

ation with Pearson correlation. This cluster algorithm

groups CpG sites based on a minimum correlation and

keeps them separate when they do not satisfy this mini-

mum correlation threshold. First, the average linkage

hierarchical clustering algorithm was used to cluster all

probes of a single gene into CpG clusters. Then we cut

off the hierarchical tree at a Pearson correlation thresh-

old of 0.4 to define CpG site clusters and single CpG

sites when they do not correlate with other sites, result-

ing in potentially multiple CpG site clusters representing

a single gene.

Preprocessing gene expression data

RNA-seq gene expression data were available for most

primary tumor samples. We log-transformed the RNA-

seq counts and replaced infinities with a low value.

Missing values were estimated similarly as for the DNA

methylation data using 15-KNN [46]. Batch correction

was done using Combat [44].

MethylMix: identifying transcriptionally predictive and

differentially methylated genes in cancer

MethylMix identifies transcriptionally predictive and

differentially methylated genes in cancer via a three-step

algorithm, depicted in Figure 1, and described in detail

below.

Step 1: identifying the methylation state of each CpG site

using univariate beta mixture models

After preprocessing, the methylation data are repre-

sented by ratios bounded between 0 and 1 representing

the proportion of methylated signal versus total signal.

These proportions or beta values are beta-distributed

and we applied beta mixture modeling to identify sub-

populations of patients with similar DNA methylation

levels for each gene using only the cancer methylation

data [47]. Next, for each CpG site, we used a stepwise

approach to determine the minimum number of mixture

components that best fit the patient data. We use the

Bayesian Information Criterion (BIC) for model selec-

tion and to avoid overfitting:

−2 � log Lð Þ þ k � log Nð Þ

where k is the number of parameters of the univariate

beta mixture model, L is the likelihood and N is the

number of data points. BIC is more conservative than

the similar Akaike Information Criterion because it pe-

nalizes the free parameters more. This process involves

iteratively adding a new mixture component if the BIC

improves. This procedure is repeated for each CpG site

or CpG cluster and results in a parameterized model of

a mixture of beta distributions. For a CpG site, each beta

mixture represents a subset of patients for whom a par-

ticular beta distribution of DNA methylation states are

observed.

Step 2: defining hyper- and hypomethylated cancer genes

relative to normal

To determine if a specific CpG cluster is hypo- or hyper-

methylated in cancer, we compare its methylation level

with the DNA methylation levels of normal tissue sam-

ples. We compare the mean of each of the mixture com-

ponents of each CpG site with the average methylation

of its counterpart in the normal samples. We use a

Wilcoxon rank sum test to determine a significant

difference based on a significant Q-value of 0.05 calcu-

lated using P-value multiple testing correction with false

discovery rate (FDR). In addition, we require a minimum

difference of 0.10 based on the platform sensitivity re-

ported in [48].

Step 3: identifying transcriptionally predictive methylation

MethylMix requires that the DNA methylation level

of a gene has a significant effect on its corresponding

gene expression to be considered a methylation-driven

gene. We used linear regression to model the expression

of each gene in terms of its own DNA methylation.

The performance of the model was estimated using the

R-square statistic on the unseen data in each cross-

validation loop. For subsequent enrichment and cluster-

ing analyses we used a P-value threshold of 0.001 and

an R-square of at least 0.10 and required a negative

correlation between methylation and matched gene

expression.

Comparison of MethylMix with IMA, COHCAP and minfi

We compared MethylMix with three previously pub-

lished methods: IMA [9], COHCAP [10] and minfi [11].

IMA is conceptually based on a statistical test compar-

ing the methylation values of a CpG site between cancer

and normal. We used IMA with the default Wilcoxon

rank sum test to determine statistical significance with

the same thresholds as for MethylMix, namely a P-value

threshold of 0.01 and a minimum difference of the beta

value between cancer and normal of 0.1 based on the

platform sensitivity [48].

COHCAP combines several steps of methylation mod-

eling and also includes a differential methylation step.

COHCAP discretizes the methylation data based on

user-specified thresholds and uses a discrete test. We

used COHCAP without the default cutoffs as this

resulted in very few genes being called differentially

methylated for many cancer sites, and set the methyla-

tion and unmethylation cutoffs to 0 and 1, respectively.

We used a delta cutoff of 0.1 to be consistent with

MethylMix.
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Minfi is a pipeline that combines several steps in the

analysis of methylation data. This includes a differential

methylation step based on an F-test. We again used a

Q-value threshold of 0.05 and included a methylation

difference filter of 0.1 to be consistent with all

other methods. Minfi does not identify differential

hypomethylation.

We compared IMA, COHCAP and minfi with Methyl-

Mix by investigating their enrichment with cancer driver

genes. We used correlation of gene expression with can-

cer stage to identify potential cancer driver genes using

independent information. We used the spearman correl-

ation test to identify genes significantly correlated with

cancer stage. We corrected for multiple testing using the

FDR [49] and selected only genes with Q-value <0.1.

Next, we investigated the intersection between hyper-

methylated genes and genes negatively correlated with

cancer stage (that is, putative tumor suppressor genes),

and the intersection between hypomethylated genes and

genes positively correlated with cancer stage (that is, pu-

tative oncogenes). We compared the numbers for IMA,

COHCAP, minfi and MethylMix to identify the potential

of each method to find cancer stage driver genes. Next,

we only focused on cancer sites for which at least 200

significant genes could be identified. Three cancer sites

do not have relevant cancer stage information, GBM

(only advanced stage), LAML (different cancer stage

classification) and ovarian cancer (only advanced stage).

Identifying patient subgroups based on differential

methylation values

Similar to copy number data analysis, the mixture model

feature of MethylMix allows us to generate a ‘differential’

DNA methylation value by clustering each DNA methy-

lation measurement to its nearest mixture component.

We represent each sample by its differential methylation

value, or DM-value, defined as the difference of the

mean of the mixture component it clusters in and the

mean of normal DNA methylation. This essentially cre-

ates a differentially methylated data set. Next, we clus-

tered the DM-values using consensus clustering for each

cancer and compared with known methylation sub-

groups. This analysis was limited to mixture components

that have significantly different DNA methylation com-

pared with normal and thus focused only on aberrantly

methylated CpG sites or clusters. We compared cluster-

ing of the DM-values with clustering of the beta values

to identify the benefit of using methylation states com-

pared with beta values for identifying patient subgroups.

We used consensus clustering as a clustering algorithm

and also compared with RPMM [23], a dedicated clus-

tering algorithm for DNA methylation data (see the

‘Clustering analysis’ section below).

Pancancer MethylMix analysis

To create a pancancer methylation map across all

tissues, we used the following workflow (Figure S9 in

Additional file 1). First, we used MethylMix on the

combined methylation data of all normal tissue samples.

Next, we selected all genes that only have one beta dis-

tribution in the mixture model. These genes are defined

as unimodal genes in the normal DNA methylation

data. Next we intersected this list with genes that are

transcriptionally predictive in the pancancer analysis

based on a significant negative correlation between

DNA methylation and gene expression in the combined

pancancer DNA methylation and gene expression data.

Then we applied MethylMix on all the cancer samples

using the unimodal transcriptionally predictive genes

only. This resulted in a matrix with the pancancer DM-

values for all samples. This matrix was further analyzed

using consensus clustering (see the ‘Clustering analysis’

section below).

Clustering analysis

We used consensus clustering [17] to identify robust

clusters defined by DM-values within each tissue and

across all cancers (see the ‘Pancancer MethylMix ana-

lysis’ section above). For the cluster analysis within each

tissue we used the following parameters: maximum nr of

clusters = 10, number of subsamples = 1,000 with 0.8 the

proportion of the subsample and we used the k-means

cluster algorithm with Euclidean distance. For clustering

of the pancancer DM-values we used the same consen-

sus cluster parameters except we investigated up to 20

clusters. Next, we used PAM analysis to identify the cen-

troids for each cluster [50] and SAM analysis to identify

differentially expressed genes for each cluster [51]. For

SAM analysis we used the Wilcoxon rank sum test and

100 permutations. SAM differentially expressed genes

were analyzed with gene set enrichment analysis (see the

‘Gene set enrichment analysis’ section below).

We compared consensus clustering with a dedicated

cluster algorithm for methylation data called RPMM

[23]. RPMM is a model-based recursive-partitioning

clustering algorithm that specifically models the beta

values. We used RPMM on the genes identified

by MethylMix corresponding to both differential and

transcriptionally predictive genes. In addition we also

ran RPMM on the top 25% most varying genes based on

their beta value methylation profiles. Using default

RPMM parameters resulted in an impractically high

number of between 50 and 100 clusters identified for

individual cancer sites. Therefore, we restricted the

maximum level of the hierarchical tree to three, resulting

in a maximum of nine clusters, consistent with our

consensus clustering default parameters.
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Gene set enrichment analysis

To evaluate the gene set enrichment of hyper- and

hypomethylated gene, we used several databases,

namely MSigDB version 3 [52], GeneSetDB version 4

[53], CHEA for CHIP-X gene sets version 2 [54] and

manually curated gene sets related to stem cells and im-

mune gene sets. We used a hypergeometric test to check

for enrichment of gene sets in gene lists. We corrected

for multiple testing using the FDR [49]. We used Fisher’s

method to combine P-values of the pathway enrichment

for all 12 cancers.

We used the gene set enrichment analysis to identify

unique enrichment to characterize the pancancer clus-

ters. For each cluster we used SAM to identify the up-

regulated genes for each cluster and then used the gene

set enrichment procedure to investigate the enrichment

of the gene list databases. Next, we only looked at the

gene sets that are uniquely enriched in each pancancer

cluster with the following cutoffs: P-value <0.0001,

Q-value <0.05, SAM fold change >1.

Survival analysis

We used Cox proportional hazards modeling to investi-

gate univariate relationships between DM-values and

survival (survival R package v.2.36-10). Hazard ratios

were used to report the direction of the survival effect

and the Wald test was used to determine significance of

Cox models. We used Kaplan-Meier survival curves to

visualize survival relationships. We used multiple testing

correction with FDR to correct for multiple testing

and calculate Q-values [49]. We focused on genes with

Q-value <15%.

Software availability

MethylMix was implemented as an R package [55] and

is available at [56] or through bioconductor at [57].

Additional files

Additional file 1: Supplementary figures: compilation of all

supplementary figures visualizing supporting data.

Additional file 2: Supplementary tables: compilation of all

supplementary tables containing supporting data.
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