
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6047  | https://doi.org/10.1038/s41598-021-84787-5

www.nature.com/scientificreports

Pancancer survival analysis 
of cancer hallmark genes
Ádám Nagy1,2, Gyöngyi Munkácsy1 & Balázs Győrffy1,2*

Cancer hallmark genes are responsible for the most essential phenotypic characteristics of malignant 
transformation and progression. In this study, our aim was to estimate the prognostic effect of the 
established cancer hallmark genes in multiple distinct cancer types. RNA-seq HTSeq counts and 
survival data from 26 different tumor types were acquired from the TCGA repository. DESeq was 
used for normalization. Correlations between gene expression and survival were computed using the 
Cox proportional hazards regression and by plotting Kaplan–Meier survival plots. The false discovery 
rate was calculated to correct for multiple hypothesis testing. Signatures based on genes involved 
in genome instability and invasion reached significance in most individual cancer types. Thyroid 
and glioblastoma were independent of hallmark genes (61 and 54 genes significant, respectively), 
while renal clear cell cancer and low grade gliomas harbored the most prognostic changes (403 
and 419 genes significant, respectively). The eight genes with the highest significance included 
BRCA1 (genome instability, HR 4.26, p < 1E−16), RUNX1 (sustaining proliferative signaling, HR 2.96, 
p = 3.1E−10) and SERPINE1 (inducing angiogenesis, HR 3.36, p = 1.5E−12) in low grade glioma, CDK1 
(cell death resistance, HR = 5.67, p = 2.1E−10) in kidney papillary carcinoma, E2F1 (tumor suppressor, 
HR 0.38, p = 2.4E−05) and EREG (enabling replicative immortality, HR 3.23, p = 2.1E−07) in cervical 
cancer, FBP1 (deregulation of cellular energetics, HR 0.45, p = 2.8E−07) in kidney renal clear cell 
carcinoma and MYC (invasion and metastasis, HR 1.81, p = 5.8E−05) in bladder cancer. We observed 
unexpected heterogeneity and tissue specificity when correlating cancer hallmark genes and survival. 
These results will help to prioritize future targeted therapy development in different types of solid 
tumors.

Pancancer projects help to analyze the similarities and di�erences among di�erent types of cancer by investigat-
ing genomic, epigenomic, transcriptomic and proteomic traits of the tumors. A leading e�ort in the pancancer 
genomic �eld is the PanCancer Atlas from the TCGA consortium 1, which focuses on the transcriptome, on 
the genomic interactions between somatic drivers and germline mutations, on the links to the methylome, on 
the proteome and on the tumor microenvironment and their implications for targeted and immune therapies 2.

During tumorigenesis, normal cells evolve to a neoplastic state in which they share common characteristics, 
including sustained proliferative signaling, loss of growth suppressors, apoptosis resistance, replicative immortal-
ity, angiogenesis induction, invasion and metastasis activation, genomic instability, in�ammation, and energy 
metabolism reprogramming—the so-called “hallmarks of cancer” 3,4. A comprehensive database of genes associ-
ated with diverse cancer hallmarks was recently established, enabling the selection of hallmark-speci�c genes to 
be measured in transcriptome-level studies 5. Altogether, 671 cancer genes were grouped into eight main hallmark 
categories; notably, some of the genes were linked simultaneously to multiple hallmarks 5.

Analysis of gene expression contributed to the identi�cation of molecular cancer subtypes capable of charac-
terizing tumors and recognizing their biological characteristics, enabling the development of e�ectively targeted 
therapeutics. Single or multigene tests have been introduced to measure the deregulation of speci�c molecu-
lar pathways that can guide therapeutic decision-making by identifying genes that can serve as predictive or 
prognostic biomarkers. Breast cancer treatment is an outstanding example of a multigene decision tree-based 
treatment decision support protocol. �e decision tree includes human epidermal growth factor receptor 2 
(HER2), estrogen receptor (ER), and progesterone receptor (PgR). �e overexpression or ampli�cation of HER2 
is present in approximately 25% of breast cancer cases 6. HER2-overexpressing tumors treated with anti-HER2 
(trastuzumab and pertuzumab) therapy have improved disease-free and overall survival 7. ER-positive tumors 
are eligible for endocrine therapy 8. Increased disease-free and overall survival time was obtained by targeting 
ER with the antiestrogen tamoxifen in breast cancer 9. PgR positivity helps to improve the identi�cation of 
ER-positive patients. ER, HER2, and PgR de�ne three molecular subtypes of breast cancer, each with di�erent 
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treatment modalities. �ose patients who are negative for all three markers are designated as triple-negative breast 
cancer; these patients have generally worse prognoses and conversely need a more aggressive systemic therapy.

Establishing prognostic multigene classi�cation protocols can contribute to the understanding of tumor biol-
ogy and to better prediction of cancer progression and cancer treatment strategies. One important issue is the 
selection of the proper method for the combination of the genes. First, genes can be utilized independently in a 
decision tree, where each node can be based on a single gene. Second, when multiple genes are combined, the 
most widespread approach is to compute their mean expression and to use this new value as a surrogate for the 
activity of the entire signature. A third option is to combine multiple genes a�er assigning a di�erent weight to 
each of them. With breast cancer as an example, such combined signatures are utilized in FDA-approved multi-
gene signature platforms, including the 76-gene signature, 21-gene signature and 70-gene signature platforms; 
all three of these can predict the prognosis of cancer under di�erent conditions 10–12.

In this study, our goal was to rank established cancer hallmark genes according to their correlation to survival 
in a large cohort of distinct cancer types. We also aimed to correlate the relevance of each cancer hallmark in 
each of the available tumor types by assessing the prognostic power of signatures comprising hallmark genes.

Results
Transcriptomic database. �e complete dataset of RNA-seq samples with follow-up comprised 9663 
specimens from 26 distinct tumor types with breast cancer as the largest (n = 1090) and thymoma as the smallest 
set (n = 118). Across the entire database, the median follow-up for overall survival (OS) was 24.3 months, and 
for relapse-free survival (RFS), it was 23.8 months. Most datasets contained both OS and RFS data, with the 
exception of AML, glioblastoma, melanoma and thymoma, which only had RFS data. Ovarian cancer patients 
had the highest median OS, while gastric and head and neck cancer patients had the shortest OS (Fig. 1C). In 
addition, glioma and liver cancer patients had the longest and the shortest median RFS at 23.8 and 6.7 months, 
respectively (Fig. 1C).

Clinico-pathological characteristics of patients, including stage, grade, sex and race, were available for 6301, 
4126, 9720 and 9471 patients, respectively (Table 1). According to the stage, head and neck cancer had the most 
patients in stage 4, and testicular cancer had the most patients in stage 0 or stage 1. �e proportion of patients 
by tumor grade indicates that an unfavorable high grade was more common in bladder cancer, while a favorable 
low grade was restricted to head and neck cancer. Sex and ethnicity data of the patients showed that the number 
of males with cancer is higher than the number of females with cancer and that Caucasians give the majority in 
the TCGA database (Table 1).

The strongest cutoff value in the survival analysis. We demonstrate the calculation of the best cuto� 
via the CDK1 gene in kidney papillary carcinoma and ovarian cancer in Fig. 1A,B. To validate the robustness 
of CDK1 expression in kidney papillary carcinoma, we performed multivariate survival analysis for OS using 
the somatic mutation data of 278 renal cancer patients including CDK1 expression and the mutations of the top 
�ve mutated genes. �ese include MET (proportion of patient samples with a mutation in kidney renal papillary 
carcinomas: 24%), MUC16 (20%), KMT2C (19%), SETD2 (17%) and FAT1 (15%). In the multivariate survival 
analysis, we found that the association between the CDK1 expression retained its signi�cance (p = 1.55E−07) 
when including the mutation status of MET (p = 0.952), MUC16 (p = 5.65E−01), KMT2C (p = 0.909), SETD2 
(p = 0.04) and FAT1 (p = 0.948) genes.

Prognostic significance of hallmark-associated genes across 26 types of cancer. Cox regres-
sion analysis was performed using the RNA-seq expression of 671 cancer hallmark genes. �e results of survival 
analysis across 26 types of cancer for each gene are listed in Supplemental Table S1. We computed the proportion 
of signi�cant genes in each hallmark and in each tumor type (Fig. 2). Hierarchical clustering was performed to 
correlate di�erent tumor types and cancer hallmark-associated genes. In this analysis, genes associated with 
invasion and metastasis activation, genome instability, sustained proliferative signaling and cellular energetics 
deregulation clustered into separate cohorts (Fig. 2). �e top �ve tumors that contained the highest proportion 
of established cancer hallmark genes signi�cantly associated with overall survival were kidney renal clear cell 
carcinoma, low grade glioma, melanoma, thymoma, and liver cancer.

Hallmark signatures and survival in different types of tumors. �e expression signature of hall-
mark features was determined for each sample, and the prognostic e�ect of these signatures was investigated in 
di�erent types of cancer. Signi�cant p values (p < 0.05) are illustrated as forest plots in Fig. 3A.

Of the eight hallmark feature signatures, seven showed a signi�cant association with OS in low grade glioma. 
On the other hand, lung squamous carcinoma, uterine, ovarian, sarcoma, bladder and esophageal cancer con-
tained only one signi�cant hallmark signature (Fig. 3B).

Tumor mutation burden was also determined, and it showed a signi�cant association with OS in glioma (HR 
3.25, p = 6.3E−11), melanoma (HR 0.41, p = 6.5E−10), bladder cancer (HR 0.49, p = 5.6E−06), uterine cancer (HR 
0.33, p = 2.5E−05), ovarian cancer (HR 0.69, p = 3.8E−03), stomach cancer (HR = 0.62, p = 4.2E−03) and kidney 
renal clear cell carcinoma (HR 2.26, p = 2.0E−04) (Fig. 3C). To demonstrate the reliability of these results, we 
selected breast cancer and performed univariate survival analysis for the signi�cant cancer hallmark signatures 
using an independent gene expression dataset of 1976 samples obtained from the METABRIC study 13. Of the 
four cancer hallmark signatures signi�cant in the TCGA dataset, three were also signi�cant in the META-
BRIC (sustaining proliferative signaling: HR 0.83, p = 2.55E−03, CI 0.74–0.94; inducing angiogenesis: HR 0.77, 
p = 2.13E−05, CI 0.69–0.87; deregulation of cellular energetics: HR 1.23, p = 2.98E−03, CI 1.07–1.41) showing 
high reproducibility of the overall analysis pipeline (Fig. 3B).
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In multivariate analysis of OS, including the expression signature of hallmark features, sex, race, tumor stage, 
tumor grade and age, most of the signatures retained their signi�cance (Table 2).

Genes with the greatest prognostic power in multiple tumor types. In at least ten tumor types, 
there were 39 genes whose expression was associated with OS (Fig. 4A). We pinpointed the genes with the high-
est prognostic power in each cancer hallmark feature: BRCA1 associated with genome instability in low grade 
glioma (HR 4.26, p < 1E−16), CDK1 linked to cell death resistance in kidney papillary carcinoma (HR 5.67, 
p = 2.1E−10), the E2F1 tumor suppressor in cervical cancer (HR 0.38, p = 2.4E−05), EREG enabling replicative 
immortality in cervical cancer (HR 3.23, p = 2.1E−07), FBP1 participating in the deregulation of cellular energet-
ics in kidney renal clear cell carcinoma (HR 0.45, p = 2.8E−07), MYC activating invasion and metastasis in blad-

Figure 1.  Overview of cuto� determination and survival distribution in the database. �e determination of the 
best cuto� value in the survival analysis demonstrated with the CDK1 gene in kidney papillary carcinoma (A) 
and ovarian cancer (B). Survival time characteristics of tumors with observed events (C).
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der cancer (HR 1.81, p = 5.8E−05), RUNX1 sustaining proliferative signaling in glioma (HR 2.96, p = 3.1E−10) 
and SERPINE1 playing a role in inducing angiogenesis in glioma (HR 3.36, p = 1.5E−12) (Fig. 4B–I).

In addition, multivariate Cox regression analysis was also performed using the expression of the 39 most 
signi�cant genes and the available clinical variables, including race, sex, age, tumor stage and tumor grade. Of 
the clinical parameters, age and tumor stage were the variables that reached signi�cance in the Cox model in 
most tumors (for detailed results, see Supplemental Table S2).

Gene set enrichment analysis. In glioma, the expression of BRCA1, RUNX1, and SERPINE1 were 
analyzed using GSEA. High expression of BRCA1 was associated with the enrichment of cell cycle checkpoint 
genes (p < 1E−16) and DNA repair genes (p = 0.038) that have important role in genome instability. High expres-
sion of RUNX1 was associated with several proliferation signaling genes such as JAK-STAT (p < 1E−16), KRAS 
(p < 1E−16) and TGFB (p = 0.007) signaling genes. In patients with high expression of SERPINE1 angiogenesis 
associated genes (p = 0.02), apoptosis genes (p < 1E−16) and hypoxia related genes (p < 1E−16) were overrepre-
sented.

In cervical cancer, the high expression of E2F1 was associated with the enrichment of tumor suppressor genes 
such as E2F signaling pathway genes (p = 0.002) and the high expression of EREG was associated with TGF-beta 
(p < 1E−16) signaling pathway genes.

In renal papillary carcinoma, the high expression CDK1 was associated with the enrichment of apoptosis 
genes (p = 0.025). In renal clear cell cancer the high expression of FBP1 gene was associated with enrichment 
of metabolic genes such as fatty acid metabolism (p < 1E−16), reactive oxygen species pathway (p = 0.015), and 

Table 1.  Clinical characteristics of patients.

Tumor 
type

TCGA 
code

Samples 
with RNA-
seq data

Median 
survival–
OS 
(months) Events (n)

Median 
survival 
time in 
patients 
with an 
OS event

Median 
survival–
RFS 
(months) Events (n)

Median 
survival 
in patients 
with a 
relapse 
(months) Sex (F/M)

Stage (S0/S1/S2/
S3/S4)

Grade 
(low/
high)

Race 
(White/
Asian/
Black-
African)

AML LAML 151 10.13 97 7.13 0.00 0 – 68/83 – – 135/1/13

Bladder BLCA 405 17.87 179 13.60 0.00 31 15.40 106/299 0/2/130/138/133 21/381 321/44/23

Breast BRCA 1090 28.10 151 42.40 21.35 84 25.77 1078/12 0/181/619/247/20 – 752/61/182

Cervical CESC 304 21.23 71 20.23 12.75 26 16.10 304/0 – 153/119 209/20/30

Colon COAD 454 22.30 102 13.47 0.00 23 16.87 214/240 0/75/176/128/64 – 212/11/59

Esophagus ESCA 161 13.57 64 13.38 0.00 21 7.47 23/138 0/16/69/49/8 82/44 100/38/5

Glioblas-
toma

GBM 153 11.90 122 12.70 0.00 1 51.67 54/99 – – 137/5/10

Glioma LGG 510 22.12 125 27.13 0.00 20 19.93 228/282 – 248/261 470/8/21

Head and 
neck

HNSC 500 21.27 217 14.33 0.00 28 7.70 133/367 0/25/70/78/259 360/121 426/10/47

Kidney 
(clear cell)

KIRC 530 39.85 173 27.30 0.00 15 30.00 186/344 0/265/57/123/82 241/281 459/8/56

Kidney 
(papillary)

KIRP 288 25.58 44 21.37 13.22 28 15.72 76/212 0/172/21/51/15 – 205/6/60

Liver LIHC 371 19.57 130 13.85 10.73 143 9.10 121/250 0/171/86/85/5 232/134 184/158/17

Lung 
(adeno)

LUAD 513 21.13 187 19.93 9.80 89 15.90 276/237 0/274/121/84/26 – 387/7/52

Lung 
(squa-
mous)

LUSC 501 21.63 216 17.85 11.83 61 18.40 130/371 0/244/162/84/7 – 349/9/30

Melanoma SKCM 468 34.45 215 35.67 0.00 0 – 179/289 7/76/140/170/23 – 445/12/1

Ovarium OV 374 34.03 230 36.55 0.00 126 17.67 374/0 – 43/321 324/11/25

Pancreas PAAD 177 15.43 92 12.90 0.00 23 14.97 80/97 0/21/146/3/4 125/50 156/11/6

Paragan-
glioma

PCPG 178 25.08 6 15.08 20.42 4 27.65 101/77 – – 147/6/20

Prostate PRAD 495 30.80 10 36.73 20.53 30 25.30 0/495 – – 147/2/7

Rectum READ 165 20.33 25 20.33 0.00 6 28.68 75/90 0/30/51/51/24 – 80/1/6

Sarcoma SARC 259 31.57 98 22.27 5.37 66 11.17 141/118 – – 226/6/18

Stomach STAD 375 14.23 147 11.60 6.60 37 10.50 134/241 0/53/111/150/38 147/219 238/74/11

Testis TGCT 134 42.03 4 18.85 20.67 27 15.03 0/134 0/55/12/14/0 – 119/4/6

�ymoma THYM 119 38.83 9 28.43 0.00 0 – 57/62 – – 99/12/6

�yroid THCA 502 31.47 16 34.03 18.72 26 16.43 367/135 0/281/52/112/55 – 332/51/27

Uterine UCEC 543 30.37 91 23.63 21.03 57 17.33 543/0 – 218/325 372/20/106

∑ – 9720 24.33 2821 19.23 23.8 972 15.6 5048/4672 7/1941/2023/1567/763 1870/2256 7031/596/844
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bile acid metabolism (p = 0.002). In bladder cancer, the high expression of MYC was associated with metastasis 
related genes that takes role in apical junction (p = 0.002) and MYC signaling pathway genes (p = 0.008).

Overall, the GSEA identi�ed cancer hallmark gene sets are in line with our previous results.

Discussion
In this study, we examined the prognostic signi�cance of previously established cancer hallmark genes 5. For the 
survival analysis, we utilized an RNA-seq database from the TCGA that contains 9720 patients of 26 tumor types 
with clinical annotations. Kidney renal clear cell carcinoma, low grade glioma and melanoma had the highest 
proportion of cancer hallmark genes that correlated with survival. Hierarchical clustering analysis showed that 
some cancer hallmark genes clustered together, such as those involved with invasion and metastasis activation, 
genome instability, sustained proliferative signaling and cellular energetics deregulation (distance was based on 
the percentage of signi�cant genes per hallmark in each tumor type).

A transcriptomic surrogate signature for each hallmark was also determined; this is based on the means of the 
average expression of the cancer genes associated with the given hallmark. �e prognostic signi�cance of these 
factors was examined in di�erent types of cancers. Among the eight main hallmark signatures, those associated 
with oncogene activation, genome instability, cellular energetics, invasion and metastasis and cell death resist-
ance were signi�cant in at least �ve tumor types.

It is important to mention that in this analysis we did not simply averaged genes whose overexpression wors-
ens the prognosis and those whose loss worsens prognosis. Rather, we use a pre-selected set of genes linked to a 
single cancer hallmark. �erefore, not the mean of the genes but their relative change in�uences the �nal clas-
si�cation. Within a single hallmark, we do not expect to have a perfect negative or positive correlation between 
the genes, and their mean will be representative for the overall activity of the hallmark.

�is approach is supported by the observation that many genes have inverse expression patterns—a negative 
correlation in terms absolute gene expression levels. For example, for CDKN2A and CCND1 this was observed 
in multiple studies 14–17. In case of a negative correlation, exactly those genes should be combined for which 

Figure 2.  �e prognostic power of cancer hallmark genes.
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the higher expression of one is linked to worse prognosis and the low expression of another also leads to worse 
prognosis. By combining these into a single signature the overall power of detecting the combined e�ect will 
increase. Because of the large number of genes involved in each cancer hallmark we believe that the combined 
signature is satisfactorily robust. Of note, this issue is complicated by the fact that di�erent genes have di�erent 
correlation to survival in di�erent tumor types. For example both CDKN2A and CCND1 had increase expres-
sion in senescent �broblasts 18.

Oncogenes have a major role in the control of cell proliferation, di�erentiation and survival during tumori-
genesis. c-MYC was the �rst characterized oncogene that is activated by chromosome translocation in human 
Burkitt’s lymphomas 19. Expression of the altered c-MYC gene is increased in tumor cells and is associated with 
extensive cell proliferation and contributes to tumor development. �e association between c-MYC expres-
sion and patient survival remains controversial 19, and we observed a worse prognosis in patients with higher 
expression of c-MYC. Similar results were present in the case of the ERBB2 gene, which encodes a cell surface 
protein-tyrosine kinase receptor that is associated with the progression of breast cancer 20 and higher expres-
sion of genes in the Wnt-β-catenin pathway. �is pathway is mutated in more than 85% of colorectal cancers 21. 
β-catenin (CTNNB1) is the most frequently mutated gene, and it can be detected in more than 80% of colorectal 
tumors. In addition, high expression of CTNNB1 is associated with shorter survival in colorectal cancer 21. 
Finally, overexpression of cyclin D1 (CCND1), a member of the cyclin family, also correlated with poor survival 
in esophageal squamous cell carcinoma 22.

Chromosomal instability (CIN) and microsatellite instability (MSI) are the two main types of genomic insta-
bility in human cancers 4. �e expression of genomic instability-related genes is higher in metastatic samples 
than in primary tumors 23. In breast cancer, Habermann et al. performed gene expression pro�ling in which they 
examined the correlation between gene expression, genome instability and clinical outcomes 24 and identi�ed a 
12‐gene aneuploidy‐speci�c signature that is an independent predictor of clinical outcome. In our analysis, the 
transcriptomic signature consisting of 150 genes contributing to genome instability 5 was prognostic in eight 
tumors. Among these, high signature expression was associated with poor survival in low grade glioma, liver 
cancer, kidney papillary cancer, lung adenocarcinoma and sarcoma. In cervical cancer, renal clear cell carcinoma 
and thymoma, the high expression of the hallmark signature was correlated with a favorable outcome.

Altered energy metabolism involves an increased rate of glycolysis and limited oxidative phosphorylation. 
�ese features of proliferating cancer cells enable the retention of macromolecules, which help to drive con-
stitutive cell growth and proliferation 4. Among the numerous metabolic pathway-associated genes, the high 
expression of GLUT1, G6PD, TKTL1 and PGI/AMF are signi�cantly correlated with decreased survival in 
breast cancer 25. �e FAS gene is upregulated at an early stage in multiple cancers, including breast 26, stomach 27 
and prostate cancers 28; its expression is positively correlated with poor survival. Our results show that the high 
expression of the transcriptomic signature of cancer metabolism-associated genes is linked to decreased survival 

Figure 3.  E�ect of hallmark signatures (A) and tumor mutation burden (C) on patient survival. Summary of 
the signi�cant prognostic hallmark signatures in di�erent types of tumors (B).
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in acute myeloid leukemia, head and neck cancers, breast cancer, lung adenocarcinoma and melanoma. However, 
in kidney renal clear cell carcinoma, kidney papillary cancer and low grade glioma, the high expression of the 
signature was associated with a better outcome.

Epithelial-mesenchymal transition (EMT) is a multistep process that contributes to the migratory and invasive 
capacity of cells, which are essential for the development and metastasis of cancer 4. In many types of cancer, 
including breast and head and neck cancers, developmental EMT pathways such as Notch have been reported 
to be dysregulated, and activation of these pathways o�en correlates with poor survival 29. �e suppression of 
EMT results in the increase of cell proliferation with increased expression of nucleoside transporters in pancre-
atic tumors. �ese changes lead to enhanced sensitivity to gemcitabine treatment and increased overall survival 
in mice 30. �e importance of EMT is supported by our observation that the transcriptomic signature of the 
tumor invasion and metastasis activation-associated genes 5 had prognostic signi�cance in the highest number 
of tumors. Among the tumors, the high expression of the signature was linked to poor survival outcome in low 
grade glioma, liver cancer, acute myeloid leukemia, cervical cancer, head and neck cancers, pancreas cancer, 
bladder cancer and lung adenocarcinoma.

�e resistance of cancer cells to apoptosis is a fundamental aspect of cancer development, which includes the 
upregulation of antiapoptotic proteins and the downregulation of proapoptotic proteins 31. �e number of gene 
expression signature studies of apoptotic genes is limited, and studies more commonly re�ect on single apoptotic 
genes. Holleman et al. performed a microarray gene expression study in which they examined the expression 
pattern of 70 key apoptotic genes in acute lymphoblastic leukemia (ALL) and concluded that leukemia subtypes 
have a unique expression pattern of apoptosis genes and that select genes are linked to cellular drug resistance 
and prognosis in childhood B-lineage ALL 32. Another study investigated 40 genes involved in the extrinsic and 
intrinsic pathways in myeloma cells, and these genes were linked to poor prognosis and were overexpressed in 
normal plasmablastic cells 33. In our study, the cell death resistance signature based on a set of 119  genes34,35 was 
linked to poor survival in liver and pancreatic cancers and good survival in melanoma, kidney renal clear cell 
carcinoma, breast cancer and thyroid cancer.

In brief, RNA-seq-based transcriptomic data were utilized to perform survival analysis across 26 di�erent 
types of cancer. Strikingly, the signatures constructed from the cancer hallmark genes showed tumor type-speci�c 
correlations with survival. Individual cancer hallmark genes showing prognostic signi�cance in more than 10 

Table 2.  Multivariate Cox regression analysis of hallmark gene signatures a�er including sex, race, stage, grade 
and age. Signi�cant p (p < 0.05) and HR values in univariate and both uni- and multivariate survival analyses 
are bold and italics, respectively. HR values with asterisk (*) shows that there are not any events in one of the 
groups in the survival analysis*.

Tumor types

Sustaining 
proliferative 
signaling Resisting cell death

Inducing 
angiogenesis Genome instability

Evading growth 
suppressors

Enabling replicative 
immortality

Deregulation of 
cellular energetics

Activation invasion 
and metastasis

p HR p HR p HR p HR p HR p HR p HR p HR

Bladder 9.90E−09 0.78 1.45E−08 0.8 8.23E−09 1.48 1.92E−08 0.86 1.95E−08 0.86 5.56E−09 1.4 1.61E−08 1.17 6.76E−09 1.37

Breast 1.05E−16 0.64 8.41E−17 0.69 3.23E−16 0.73 1.67E−16 1.57 1.59E−16 1.42 7.19E−18 1.88 1.93E−17 1.59 4.02E−16 1.34

Cervical n.s 0.82 n.s 1.08 4.85E−02 1.73 7.82E−05 0.32 n.s 1.25 n.s 1.3 n.s 0.81 1.14E−02 2.19

Colon 1.45E−05 1.02 1.93E−06 0.55 1.31E−05 1.2 1.36E−05 0.97 1.29E−06 0.51 5.66E−06 1.57 1.40E−05 0.97 1.44E−05 1.01

Esophagus 1.94E−02 0.84 1.73E−02 0.72 1.72E−02 0.77 1.77E−02 1.21 2.01E−02 0.93 9.40E−03 2.16 2.60E−04 3.68 1.80E−02 0.77

Glioblastoma 1.38E−03 1.62 1.91E−03 1.53 7.66E−03 1.22 1.09E−03 0.64 2.44E−03 0.68 1.78E−03 1.51 8.59E−03 1.18 7.36E−03 1.26

Head and neck 3.24E−05 0.81 5.94E−05 0.87 1.74E−05 1.34 2.89E−05 1.28 4.71E−05 0.85 4.79E−05 1.17 1.72E−06 1.83 6.61E−06 1.49

Kidney (clear cell) 1.60E−24 0.85 1.77E−25 0.69 8.43E−25 0.86 1.08E−25 0.69 3.02E−25 0.73 1.25E−24 0.86 6.68E−26 0.67 6.87E−25 0.78

Kidney (papillary) 4.69E−10 2.8 6.04E−10 2.76 5.53E−09 0.54 3.38E−09 2.04 3.08E−09 2.64 1.84E−09 2.29 5.41E−12 0.06 7.56E−09 1.49

AML 8.22E−07 0.62 2.75E−06 0.76 4.57E−06 1.15 3.29E−06 1.28 1.44E−07 1.78 1.67E−06 1.41 6.19E−10 2.69 4.58E−08 1.98

Glioma 5.29E−21 1.82 7.40E−19 0.91 5.72E−22 2.12 1.26E−20 1.7 2.49E−19 1.35 9.92E−24 2.28 9.58E−22 0.5 2.48E−24 2.67

Liver 1.09E−05 1.57 2.40E−06 1.86 3.66E−05 0.7 1.01E−06 1.94 3.02E−05 1.37 2.89E−06 1.72 8.93E−05 1.09 1.12E−06 1.86

Lung (adeno) 8.35E−08 1.36 1.35E−07 1.26 1.73E−07 0.84 1.22E−08 1.53 1.29E−07 1.31 4.11E−09 1.65 6.27E−08 1.53 5.86E−08 1.43

Lung (squamous) 8.48E−07 1.99 9.11E−05 1.45 3.73E−04 1.34 1.54E−04 0.71 2.09E−04 0.71 1.09E−03 1.1 7.24E−04 0.83 2.79E−04 1.34

Ovarium 1.68E−04 1.53 4.45E−03 0.87 1.05E−03 0.75 1.88E−03 0.77 5.94E−03 1.08 3.14E−03 0.83 4.26E−03 0.85 1.14E−03 1.36

Pancreas 7.58E−03 2.03 3.70E−02 1.82 n.s 1.51 4.84E−02 1.52 n.s 1.37 n.s 1.42 n.s 1.32 1.53E−02 1.81

Paraganglioma 6.27E−02 0.12 n.s 3.61 n.s 0.25 n.s 4.57 n.s 2.73 n.s 1.69 n.s * n.s 0.48

Prostate n.s * n.s inf 9.98E−02 * n.s inf n.s * n.s * n.s inf n.s *

Rectum 1.77E−02 2.8 1.36E−02 0.49 8.56E−03 0.44 2.90E−02 0.6 2.24E−02 0.64 3.54E−02 1.02 3.28E−02 1.39 3.53E−02 1.23

Sarcoma 2.83E−02 1.51 n.s 0.73 2.47E−03 0.53 2.73E−03 2.01 2.40E−02 1.49 2.56E−02 1.47 n.s 1.18 n.s 0.71

Melanoma 4.35E−10 0.67 4.29E−13 0.5 1.12E−10 0.61 8.21E−11 1.63 9.88E−09 1.1 2.58E−09 0.75 1.63E−10 1.6 9.99E−09 0.93

Stomach 2.15E−03 1.14 2.20E−03 1.19 1.42E−03 1.35 1.28E−03 0.75 3.74E−04 0.64 1.67E−03 1.21 2.50E−03 0.92 1.00E−03 1.48

Testis 5.88E−03 * 5.72E−03 * 3.58E−03 * 2.96E−03  > 100 4.93E−03 * 5.81E−03 * 5.87E−03  > 100 4.56E−03 *

�yroid 1.73E−10 0.4 6.54E−11 0.34 1.52E−11 3.38 2.36E−10 0.77 6.82E−11 2.02 6.40E−13 0.35 1.31E−11 6.24 2.29E−10 0.59

�ymoma n.s 0.43 n.s 2.35 1.24E−02 7.68 1.65E−02 0.08 n.s 0.25 8.35E−03 0.04 4.97E−02 4.11 2.83E−02 0.2

Uterine 2.07E−07 1.56 9.32E−07 1.54 1.34E−06 0.85 1.58E−06 1.21 7.64E−07 1.43 1.01E−06 1.32 1.89E−06 1.02 1.62E−06 0.82
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cancer types were also uncovered. �ese results help to prioritize targeting the most relevant hallmark for drug 
development in each tumor type.

Methods
Database setup. All data processing steps and statistical analyses were performed in the R v3.5.2 statisti-
cal environment (http://www.r-proje ct.org). �e source code are available at GitHub: https ://githu b.com/adam-
nagy9 1/panca ncer_survi val_analy sis. RNA sequencing (RNA-seq) data were utilized from the Cancer Genome 
Atlas (TCGA, https ://cance rgeno me.nih.gov/). Only tumor types with more than 100 cancer specimens were 
included to ensure a robust sample number in each analysis.

�e RNA-seq HTSeq count data generated by the Illumina HiSeq 2000 RNA Sequencing Version 2 platform 
were used in the expression analyses. �e “DESeq” package based on the negative binomial distribution was 
used to normalize the raw count data 36. �e Bioconductor “AnnotationDbi” package (http://bioco nduct or.org/
packa ges/Annot ation Dbi/) was applied to annotate Ensembl transcript IDs with gene symbols (n = 25,228). A 
second scaling normalization was performed to set the mean expression of all genes in each patient sample to 
1000 to reduce batch e�ects.

For each sample, the preprocessed and annotated Mutation Annotation Format (MAF) data �les that were 
generated by using MuTect2 for variant detection were used to compute the tumor mutation burden. �e 
“ma�ools” package (http://bioco nduct or.org/packa ges/ma�o ols/) was used for the aggregation and visualiza-
tion of mutation data.

Defining cancer hallmark signatures. Altogether, 671 cancer genes were grouped into eight hallmarks 
4, based on gene assignment to hallmarks as described previously 5. �e surrogate hallmark expression signature 
was calculated by computing the mean expression of all genes associated with the given hallmark in each tumor 
sample.

Survival analysis and calculation of the strongest cutoff. Cox proportional hazards regression anal-
ysis was performed to examine the correlation between gene expression and overall survival (OS). �e “survival” 
R package v2.38 (http://CRAN.R-proje ct.org/packa ge=survi val/) was utilized to calculate log-rank P values, haz-
ard ratios (HR) and 95% con�dence intervals (CI). In addition, the survival di�erences were visualized by gen-
erating Kaplan–Meier survival plots.

Figure 4.  Best performing genes in at least 10 distinct tumor types.

http://www.r-project.org
https://github.com/adam-nagy91/pancancer_survival_analysis
https://github.com/adam-nagy91/pancancer_survival_analysis
https://cancergenome.nih.gov/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/maftools/
http://CRAN.R-project.org/package=survival/
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To maximize the sensitivity of the analysis and to uncover any potential correlation to survival independent 
of a preset cuto� value (e.g., median), we computed each possible cuto� between the lower and upper quartiles 
of expression. �en, each of these cuto� values was used in a separate Cox regression analysis. �e false discovery 
rate (FDR) was computed to correct for multiple hypothesis testing, and the result was only accepted as signi�cant 
in the case of FDR < 10%. �e best performing cuto� with the lowest p value was used in the �nal analysis when 
drawing the Kaplan–Meier plot.

In addition, multivariate survival analysis was performed for the gene expression and clinical features to 
assess independence from known epidemiological and clinical variables, including race, sex, age, tumor stage 
and tumor grade.

Data visualization. Hierarchical clustering was applied to group and to visualize the survival-associated 
cancer hallmark genes in di�erent types of cancer using the Genesis so�ware 37. �e “forestplot” R package 
(https ://CRAN.R-proje ct.org/packa ge=fores tplot ) was used to examine the association of cancer hallmark gene 
signatures with OS across di�erent types of cancer. �e “survplot” R package (http://www.cbs.dtu.dk/~eklun d/
survp lot/) was used to generate the Kaplan–Meier plots.

Gene set enrichment analysis (GSEA). Gene set enrichment analysis (GSEA) 38 was performed for the 
most signi�cant cancer hallmark genes (Fig. 4B–I). Patients were divided into high and low expression groups 
based on the expression of the selected gene across all patients within each tumor type. To categorize patients 
into two groups, we used the same cuto� point also used in the survival analysis. �ese categories were to des-
ignate the “phenotype labels” in the gene set enrichment analysis. �e normalized RNA-seq expression and the 
built in “hallmark cancer genes” sets were used as expression datasets and gene set database, respectively.

Data availability
TCGA (�e Cancer Genome Atlas) dataset is available using the following link: https ://porta l.gdc.cance r.gov/.
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