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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third highest 

cause of cancer-related deaths in the US, and is projected to 

be second only to non-small cell lung cancer (NSCLC) by the 

2020s (1). In 2017, there are estimated to be 53,670 new cases 

of pancreas cancer and 43,090 deaths (2). Of these, 85% will 

present with unresectable disease, with a 5-year survival of 

3% in patients who are metastatic at diagnosis (3). Despite 

these challenging figures, exciting novel therapeutics are in 
development and there is hope for improved outcomes in 

the near future. 

Current therapies for metastatic PDAC

For decades, gemcitabine was a standard of care for first 

line treatment of unresectable and metastatic PDAC (4). In 

2007, erlotinib with gemcitabine was approved, but more 

recently, FOLFIRINOX (folinic acid, 5-FU, irinotecan 

and oxaliplatin) and gemcitabine with nab-paclitaxel (GN) 
have become the two upfront standards of care regimens. 

FOLFIRINOX demonstrated a median overall survival 

(mOS) of 11.2 vs. 6.8 months for gemcitabine (P=0.001) 

(PRODIGE-III-2011) (5). GN improved mOS from 
6.7 to 8.5 months (P=0.001) compared to gemcitabine 

(MPACT-2013) (6). Recently, as second line and beyond, 

nano-liposomal irinotecan in combination with 5-FU and 

leucovorin was approved in patients previously treated with 

gemcitabine (NAPOLI-1-2015). Nano-liposomal irinotecan 

with 5-FU had a mOS of 6.1 months compared to  

4.2 months for 5-FU and leucovorin alone (P=0.012) (7).

Despite studying numerous agents over the last decade, 
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almost none beyond cytotoxic agents have demonstrated 
survival benefit in late stage PDAC studies. Nonetheless, 

our understanding of PDAC pathobiology has evolved, 

including genetic basis, microenvironment and immune 

response. 

Pathobiology

Over 90% of PDAC’s are driven by early activating 
KRAS mutations (8,9). Activated KRAS signals through 

a phosphorylation cascade of RAF, MEK and ERK lead 
to transcription of proliferation genes. In parallel, RAS 

activation increases signaling through PI3K, AKT and 

mTOR also lead to transcription of pro-survival and 

proliferation genes (10). Inactivating mutations and 

deletions in genes that regulate the cell cycle are frequent 

in PDAC. In a set of 336 patients whose tumors underwent 

genomic profiling at Memorial Sloan Kettering Cancer 

Center, mutations in TP53 were present in 72% and 

CDKN2A in 18% with 9p21 deletions involving CDKN2A 

and/or CDKN2B in 14%. TGF-βeta effector SMAD4 

was mutated in 22%. Beyond these alterations, of the 256 

different mutated genes and 128 different genes with copy 

number alterations, only ARID1A was altered in >10% 

of PDACs, although 4.2% of these patients had germline 

mutations in BRCA2 (9). These patients with germline 

DNA repair deficits represent an important subset with 

physiology that appears to predispose sensitivity to DNA 

damaging agents.

Histologically, PDAC is characterized by a dense stroma 

composing an average of 48% of tumor volume in one  

series (11). Stromal components include fibroblasts, 

hyaluronic acid (HA), collagen and other extracellular matrix 
proteins, inflammatory cells and cancer stem cells (CSCs). 
There is debate whether the stroma supports malignancy 

or acts as a protective barrier, however, evidence supports 

the stroma impairing drug delivery and supporting an 

immunosuppressive tumor microenvironment (TME) (12).  
Although PDAC is not considered an immunogenic cancer, 

activated CD8+ T cells are seen in the TME, but are far 
outnumbered by immunosuppressive inflammatory cells not 
seen in the normal pancreas (13). Novel therapeutics are in 

development targeting the stroma to improve drug delivery 

and the immune response. Stromal modifying therapy and 

immunotherapeutics as well as novel targeted agents and 

metabolism-directed strategies will be reviewed in detail. 

A selection of ongoing trials are described in Table 1 and 

therapeutic targets are depicted in Figure 1.

Stromal targeting agents

Enzymatic stromal disruption strategies

The PDAC stroma contains an abundance of hyaluronan 

(HA), collagen and fibronectin, which are deposited by 

activated cancer-associated fibroblasts (CAFs). HA forms 

a gel-like, compression resistant fluid leading to increased 
interstitial pressures causing vessel collapse, impeding 

blood flow and reducing therapeutic delivery in murine 

PDAC models (14). A retrospective study evaluating HA 

levels in human PDAC found that high HA tumor staining 

was associated with worse overall survival (mOS 9.3 vs.  

24.3 months; P=0.037) (15). 

PEGPH20 is a recombinant pegylated hyaluronidase 
enzyme developed to target tumor stromal HA effects. 

In a study using KPC (KrasLSL.G12D/+; p53R172H/+; 
PdxCretg/+) mice, PEGPH20 administration improved 
vessel patency and increased intra-tumoral delivery of 

doxorubicin and gemcitabine. Furthermore, combination 
therapy with gemcitabine and PEGPH20 led to improved 
survival relative to gemcitabine alone (28.5 vs. 15 days; 

P=0.002) (16).

Early stage studies of PEGPH20 have shown promise. 
A phase Ib non-randomized single arm study of PEGPH20 
in combination with gemcitabine as first line treatment 

for metastatic PDAC demonstrated a signal of interest in 

patients with high HA levels when compared to the low HA 

groups with median progression free survival (mPFS) of 7.2 

vs. 3.5 months and mOS of 13 vs. 5.7 months (17).

Randomized  phase  I I  resu l t s  o f  PEGPH20 in 
combination with GN compared to GN continue to 
demonstrate potential benefit, notably and perhaps 

exclusively in high HA patients. Utilizing a tissue based 
immunohistochemistry assay to determine HA levels, the 

study met the pre-specified secondary endpoint of mPFS 

in the high HA group (9.2 vs. 5.2 months; P=0.048). 

The study underwent a temporary hold due to increased 

thrombosis rate, both venous and arterial, in the PEGPH20 
arm (43% vs. 25%). After resumption of the trial (stage II), 

high risk patients for thromboembolism were excluded and 
all patients were placed on low molecular weight heparin 

primary prophylaxis resulting in similar thrombosis rates 
between groups and mitigating the negative signal. It is 

notable, that many patients discontinued treatment during 

the clinical hold potentially decreasing the treatment effect 

in stage I analysis. In stage II (following hold and with 

institution of low molecular weight heparin), an improved 

PFS signal was observed in high HA patients and a trend 
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Figure 1 Tumor microenvironment and common dysregulated intracellular signaling pathways with selected novel therapeutic targets.
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towards improved OS was seen in the high HA group 11.7 

vs. 7.8 months (HR 0.52, 0.22–1.23) (18). 

Recently, however, a phase I/randomized phase II of first 
line mFOLFIRINOX ± PEGPH20 (NCT01959139) in a 
non-biomarker selected population was stopped for futility 

at interim analysis (Table 2). The data set is being further 

analyzed including a retrospective analysis of tumor HA 

levels (25). 

A phase III registration study for first line PEGPH20 
in combination with GN vs. GN and placebo is recruiting 
in HA high patients (NCT02715804) and our group 

is evaluating PEGPH20 and GN in patients at higher 
risk for thrombosis in combination with rivaroxaban 
(NCT02921022).   

Chemokines and the immune stroma

The immunosuppressive nature of the PDAC TME is 
established early in disease with interstitial aggregates of 

tumor-associated macrophages (TAMs), myeloid derived 

suppressor cells (MDSCs) and Tregs recruited from the 

bone marrow (13,27). Once in the microenvironment, 

MDSCs and TAMs inhibit proliferation and induce 

apoptosis of activated T-cells (27). The relatively small 

numbers of cytotoxic T cells in the microenvironment 
are rarely found in proximity to tumor epithelial cells 
and have down regulation of the activating T-cell co-

receptor CD3 (28,29). An emerging strategy to combat 

the immunosuppressive TME targets the chemokine 
receptors that mobilize immunosuppressive cells and inhibit 

Table 2 Recently reported negative trials in patients with PDAC

Clinical trial 

identifier

Experimental 

therapeutic

Mechanism  

of action

Study  

agents

Treatment  

line
Phase Results

NCT01956812 90Y-clivatuzumab Anti-MUC-1 

antibody labeled with 

yttirum-90 

90Y-clivatuzumab 

with gemcitabine

3rd line III Interim analysis:  

futile (19)

NCT01072981 Algenpantucel-L Allogenic pancreas 

cells expressing 

alpha-gal

Adjuvant gem with 

or without 5-FU 

chemoradiation ± 

algenpantucel-L

Adjuvant III mOS: control  

30.4 months, 

intervention  

27.3 months (20)

NCT02004262 CRS-207 Mesothelin expressing 

live, attenuated listeria 

CRS-207 ± GVAX with 

cyclophosphamide 

vs. chemotherapy

3rd line II mOS (n=213): CRS-207 

and GVAX 3.8 months 

(HR 1.52, P=0.97), CRS-

207 alone 5.4 months 

(HR 1.05, P=0.48) 

and 4.6 months for 

chemotherapy (21) 

NCT01746979 Evofosfamide Hypoxia induced 

mustard pro-drug

Gemcitabine ± 

evofosfamide 

1st line III mOS 7.6 vs. 8.7 months 

(P=0.0589), 15% vs. 

19% (P=0.16) (22)

NCT02202785 MLN0264 Anti-guanylyl 

cyclase C antibody 

conjugated to MMAE 

MLN0264 Previously 

treated

II Interim analysis (n=38): 

ORR 3%, SDR 24%, 

PDR 74% (23)

NCT01621243 Necuparanib Heparin substance Gemcitabine/

nab-paclitaxel ± 

necuparanib

1st line I/II Interim analysis (n=117): 

futile (24)

NCT01959139 PEGPH20 Pegylated 

recombinant 

hyaluronidase

mFOLFIRINOX ± 

PEGPH20

1st line I/II Interim analysis:  

futile (25)

NCT02117479 Ruxolitinib JAK 1/2 inhibitor Capecitabine ± 

ruxolitinib

2nd line III Interim analysis:  

futile (26)

mOS, median overall survival; SDR, stable disease rate; PDR, progressive disease rate.
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migration of effector cells. 

CXCR4 is a chemokine receptor expressed by effector 
T-lymphocytes.  In the TME, the CXCR4 ligand, 
CXCL12, is secreted by fibroblast activation protein-alpha 
positive CAFs (FAP+ CAFs). In a KPC mouse model, 

CXCL12, coated malignant cells and appeared to exclude 
effector T-cells from regions with tumor epithelial cells. 

Depletion of CAFs or administration of the CXCR4 

inhibitor, plerixafor, induced the accumulation of tumor-
infiltrating lymphocytes among cancer cells and acted 

synergistically with PDL-1 inhibition (30). CXCR4 has also 

been identified on PDAC cells and PDAC stem cells as a 

mediator of invasion and engraftment in the pre-metastatic 

niche (31,32). Plerixafor is currently being evaluated in 
a phase I dose finding study (NCT02179970). BL-8040, 

a peptide inhibitor of CXCR4, is under investigation in 

two phase II studies in combination with pembrolizumab 

(NCT02907099, NCT02826486). And, ulocuplumab, an 

anti-CXCR4 monoclonal antibody, has been studied in 

combination with nivolumab in a phase I/II of metastatic 

PDAC and NSCLC (NCT02472977) and results are 

awaited.

CXCR2 and CCR2 are chemokine receptors expressed 
on immunosuppressive inflammatory cells. CXCR2 on 

MDSCs and TAMs is stimulated by CXCL1, CXCL2 

and CXCL5 secreted by tumor cells and FAP+ CAFs (33). 

In a murine model, inhibition of CXCR2 decreased the 

number of myeloid cells in primary tumors and decreased 

metastases through prevention of metastatic niche 

formation (33). A phase I/II study of CXCR2 inhibitor, 

AZD5069, in combination with durvalumab is recruiting 

(NCT02583477).

CCR2 is expressed by macrophages with its ligand, 
CCL2, secreted by PDAC cells leading to macrophages 

infiltrating PDAC tumors (27). Blockade of CCR2 in mice 
with the novel agent, PF-04136309, decreased infiltration 

of inflammatory monocytes and TAMs in tumors and pre-
metastatic liver and reduced tumor growth and metastases 

when combined with gemcitabine (27). PF-04136309 was 

evaluated in a phase Ib with expansion cohort in borderline 
resectable and locally advanced disease in combination 

with first line FOLFIRINOX. Sixteen of 33 patients  
who obtained repeat imaging had an objective response 

and 32 of 33 had disease control (34). A phase IB/

randomized phase II study in combination with first 

line GN is currently underway (NCT02732938). CCR2 
inhibitor, CCX872-B, has also demonstrated efficacy in an 
orthotopic mouse model decreasing tumor size by 42% 

and the proportion of m-MDSCs by 45% (35). In a mostly 

metastatic phase I population, CCX872-B in combination 

with FOLRINOX had an ORR of 37% with SD of 41%. 

Thirteen of 21 patients with available imaging at 24 weeks 

were progression free (36).

Macrophages colony stimulating factor-1 (CSF-1) is 

over-secreted by PDAC cells and is a crucial survival factor 

for TAMs (37). CSF-1 receptor (CSF-1R) inhibition leads 

to death of CSF-1 differentiated macrophages or functional 

reprogramming that enhances antigen presentation and 

T-cell response (38). In a murine PDAC model, CSF-1  

inhibition also led to increased expression of PDL-1  
and CTLA-4 and therapeutic synergy with anti-PD-1 

and anti-CTLA4 inhibitors (37). Four CSF-1R inhibitors 

are under study in early phase trials in combination with 

PD-1/PD-L1 inhibitors: AMG820 in combination with 
pembrolizumab (NCT02713529), cabiralizumab with 

nivolumab (NCT02526017), pexidartinib with durvalumab 
(NCT02777710) and MCS110 in combination with 

PDR001 (NCT02807844).

 Indoleamine 2,3-dioxygenase (IDO)-inhibition

The enzyme IDO catabolizes tryptophan into kynurenine 

which is toxic to effector T cells and leads to Treg 
differentiation (39). In cellular assays, IDO inhibition 

promotes T-cell and natural killer cell growth and reduces 

Treg cells (40). A phase I of IDO inhibitor, epacadostat, in 

combination with pembrolizumab in multiple malignancies 

recently completed (41). Indoximod has been studied in a 
phase I/II study as first line treatment in combination with 
GN (NCT02077881). At interim analysis 11/30 patients  
had an objective response including one complete  

response (42).

Hedgehog

The hedgehog pathway is involved in cancer stemness, 

stromal desmoplasia and various developmental pathways 

(43,44). Sonic hedgehog activity is increased in the stroma 

and believed to activate CAFs (44,45). There is mixed 
data as to whether targeting the hedgehog pathway and 

resultant stromal desmoplasia inhibits or promotes PDAC 

progression (46). Early studies of smoothened inhibitors, 
vismodegib, saridegib and sonidegib, failed to demonstrate 

improved survival compared to controls (47-49). Both 

sonidegib and vismodegib are under study in combination 

with GN (NCT01431794, NCT01064622). At ASCO 
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2014, interim results were presented for the vismodegib 

study showing mPFS of 5.5 months and OS 10 of  

months (50). 

Vitamin D

Activated pancreatic stellate cells (PSCs) are important 

precursors to CAFs (51). Recent data has demonstrated 

that vitamin D receptor (VDR) agonism modulates PSC 

activation reversing lipid droplet loss and expression of 
alpha-smooth muscle actin (52). Furthermore, incubation of 

PDAC cell lines in culture media from calcipotriol treated 

cancer-associated PSCs (CAPSCs) decreases proliferative 

gene expression including CXCL1, CSF2 and phospho-
STAT3 relative to CAPSC culture media alone. In vivo, 

KPC mice treated with gemcitabine and calcipotriol had 

tumor volume decrease (70%), intratumoral gemcitabine 

increase and a 57% increase in survival compared to 

chemotherapy alone (52). Vitamin D3 has also been 

reported to induce differentiation of immature myeloid 

cells and increases in intratumoral CD4+ and CD8+ T cells 

in NSCLC and head and neck cancers, which may offer 

another mechanism of benefit in PDAC (53).
Paricalcitol is currently being studied in a single arm 

phase II study in combination with nivolumab, gemcitabine, 

nab-paclitaxel and cisplatin for first line metastatic disease 
(NCT02754726) and a neoadjuvant pilot in which it will be 

administered during a single cycle of GN versus GN alone 
before surgery (NCT02754726). Adverse effects as well as 

cellular and imaging markers will be evaluated in the latter. 

Focal adhesion kinase (FAK)

FAK is a cytoplasmic tyrosine kinase with multiple 

functions. FAK pathways promote motility, invasion, 

survival and epithelial to mesenchymal transition (54). In 

an orthotopic mouse model of PDAC, FAK inhibition 

led to fewer CAFs and macrophages in the TME, smaller 
tumor volume, less invasion and fewer metastasis compared 

to controls (55). Phase I studies of PF-00562271 and 

GSK2256098 in combination with trametinib have 
completed (NCT00666926, NCT01938443). A phase 

II of second line GSK2256098 with trametinib and a 
phase I of defactinib with pembrolizumab are recruiting 

(NCT02428270, NCT02546531). 

CSCs

The CSC theory posits that carcinogenesis is initiated by 

a relatively small number of stem cells or early progenitor 

cells, which develop the capabilities of self-renewal and 

multi-lineage differentiation (56). In PDAC, stem cells 

are characterized by the expression of either CD44+/
CD24+/ESA+ or CD133+ (± CXCR4+) surface markers 
and demonstrate resistance to gemcitabine and ionizing 

radiation (32,57,58). 

Therapeutics aimed at these resistant cells target the 

Wnt/β-catenin, notch, hedgehog and JAK/STAT pathways. 

Wnt/β-catenin

Aberrant activation of the Wnt pathway occurs in up to 

65% of pancreatic cancer patients. Wnt pathway factors 

contribute to the epithelial-mesenchymal transition 

in PDAC and may be responsible for resistance to 

gemcitabine, DNA damage and ionizing radiation (59-61).

Inhibition of Wnt in a mouse model inhibits PanIN 

formation and OMP-54F8, a frizzled trap, decreased CSCs 

and reduced tumor growth in a patient derived xenograft 
greater than gemcitabine (62,63). OMP-54F8 is currently 

being studied in a phase I study with GN (NCT02050178). 
PRI-724 is a small molecule inhibitor of the Wnt target 

gene coactivator creb binding protein, and is the only 

wnt pathway inhibitor with clinical results in PDAC. In 

combination with gemcitabine as second line therapy, no 

responses were observed, but 62.5% of patients had a >30% 

reduction in CA19-9 and mPFS was 2 months (64). Two 

other wnt pathway inhibitors (CGX-1321 and Vantictumab) 
are in early phase cl inical  study (NCT02675946, 

NCT02005315). 

Notch

Notch signaling is crucial for the embryonic development of 

multiple tissues including the pancreas and is upregulated in 

early pancreatic carcinogenesis and invasive disease (65-68). 

Increased notch activity facilitates the EMT and gives rise 
to CD44 positive pancreatic CSCs (69). Pre-clinical studies 

of notch inhibition including patient derived xenograft 
models showed promising results, however, clinical 

development has been more sobering (70). Tarextumab, a 
monoclonal antibody against notch 2/3, showed no survival 

benefit in a phase II study with GN and possibly worse 
outcomes in low notch expressers (71). Gamma secretase 
inhibitor, RO4929097 has been discontinued, and a phase I 

of MK0752 with gemcitabine had severe GI adverse effects 
leading to high patient withdrawal (72,73). Anti-delta-like 
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ligand 4 monoclonal antibody, demcizumab, continues to 

be studied in PDAC. In a phase I study in combination with 

first line GN, mPFS was 9.0 months and mOS 10.1 months, 
however, 2 patients developed reversible pulmonary 

hypertension, 1 of which developed heart failure, leading 

to abbreviated treatment dosing regimens of 70 days in 

the later cohorts (74). A randomized phase II study in 

combination with GN is completed and data is awaited. All 
arms received continuous cycles of GN until progression. 
One intervention arm received 3 cycles of demcizumab, the 

other received demcizumab for 3 cycles on, 3 cycles off and 

another 3 cycles on (NCT02289898). 

JAK/STAT

Activation of JAK family receptors leads to phosphorylation 

of the STAT family transcription factors. JAK2/STAT3, in 

particular, is activated in PDAC with target genes including 

cyclin D1, p21, BCR-XL and VEGF contributing to cell 
cycle progression, apoptosis resistance and angiogenesis 

(75,76). In mice orthotopically injected with KRAS G12D 
shp53 cells, STAT3 knockdown leads to lower tumor 

volume and decreased proliferation than controls (77). 

Early and mid-stage trials of JAK inhibitors showed 
promising initial results. In phase II, ruxolitinib and 
capecitabine vs. capecitabine and placebo demonstrated 

increased overall survival, 4.3 vs. 1.5 months, particularly 

in the high CRP subgroup (78). Ruxolitinib progressed 
to the phase III study, JANUS-1, where it again was 

in combination with capecitabine vs. capecitabine and 

placebo as second line treatment in patients with CRP >10. 

Unfortunately, as has been the case in a number of recent 

studies, interim analysis demonstrated futility (Table 2). 

Further development of ruxolitinib was discontinued in 
both the JANUS 1 and 2 trials (79). 

Inhibition of STAT3 transcription by napabucasin 

has demonstrated ability to decrease relapse in PaCa-2  

xenografts. Xenografts treated with gemcitabine or 
napabucasin for 41 days both exhibited decreased tumor 
growth compared to vehicle, however, when treatment was 

stopped tumors from gemcitabine treated mice continued 

to grow during the 22-day observation period, whereas 

napabucasin treated mice did not (80). Napabucasin has 

shown promising early clinical data (81). In a phase I/II  

in combination with paclitaxel in previously treated patients 
with a median of 2 prior regimens, a 52% disease control 

rate was achieved with mPFS of 10 weeks and mOS of  

24 weeks (82). More recently in a phase Ib/II in combination 

with GN as first line treatment, the intention to treat 
population achieved a DCR of 77% and ORR of 38% 

with maturing mPFS and mOS of >7.4 and >10.4 months,  

respectively (83). A phase III trial of napabucasin in 

combination with GN vs. GN and placebo is planned 
(NCT02993731). AZD-9150 is an anti-sense STAT3 

inhibitor with a planned phase II in combination with 

durvalumab in multiple malignancies (NCT02983578). 

Targeted therapy

Beyond the approval of erlotinib with gemcitabine, targeted 

therapy has demonstrated little efficacy in PDAC. Most 

targeted therapy has been directed at the RAS pathway or 

epidermal/platelet derived growth factor receptors (EGFR/
PDGFR). RAS is a key driver of PDAC, mutated in 90–95%  
and found in early PanIN lesions. It or its downstream 

effectors, RAF, MEK and ERK, are therefore logical 
targets for inhibition. The most common mutations in RAS 

cause a constitutive activation and strategies to inhibit this 

activation have failed (84). Targeting RAS by inhibiting 

translation using small-interfering RNAs is a novel strategy 

to decrease RAS activity. siRNA against the G12D mutant 
RAS RNA by local prolonged delivery, siG12D LODER 
(Local Drug EluteR), has demonstrated decreased growth of 
human pancreatic tumor cells in vivo and prolonged mouse 

survival (85). In a phase Ib/II dose escalation 15 locally 

advanced, unresectable patients received siG12D LODER 
with a mOS of 15.12 months. Ten out of 12 patients  

had SD on repeat imaging and 2 had a PR (86). siRNA 

LODER is planned to be evaluated in locally advanced 
disease by intratumoral injection in a randomized phase 

II in combination with GN with/without LODER 
(NCT01676259). 

MEK/ERK/MAPK, PI3K/AKT/mTOR

Given the challenges with targeting RAS, the downstream 
effectors MEK and ERK offer alternatives with therapeutics 
in development. MEK and ERK inhibitors when used as 
monotherapy or in combination with chemotherapy have 

not demonstrated benefit (87-90). MEK inhibition can lead 
to increased activation of PI3/AKT through hyperactivation 

of EGFR (91). As a result, various combination strategies 
have been attempted combining MEK inhibitors with PI3K, 
AKT and EGFR inhibitors. Unfortunately, this strategy has 
not seen improved outcomes and in some cases increased 

toxicity (92-94).
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There are promising novel targets that intersect with 

RAS pathways including cell-cycle checkpoint inhibitors 

and novel kinase receptors. 

Cell-cycle inhibition

Cell cycle dysregulation is a hallmark of malignancy. Cell 

cycle checkpoints are controlled by interactions between 

cyclins and corresponding cyclin dependent kinases (CDKs). 

p53 and CDKN2 gene mutations are common in PDAC and 

their protein products are intimately tied to the regulation 

of cyclin-D/CDK4/6 and cyclin E/CDK2 complexes which 
are required for progression through the G1/S checkpoint 
(95-97). Pre-clinical studies of multi-CDK inhibitor, 

daniciclib, reduced subcutaneous growth in 100% of 

human pancreatic cancer xenografts and combination with 
gemcitabine was more effective than either agent alone (98).  

In vitro, dual inhibition of CDK4/6 and PI3K/MTOR has 

shown synergistic effects in suppression of the cell cycle and 

CDK4/6 and MEK inhibition was additive (99). 
Multiple CDK inhibitors are being studied in metastatic 

PDAC. Palbociclib is a CDK4/6 inhibitor undergoing 

investigation in two phase I studies—in combination with 

nab-paclitaxel (NCT02501902) and in combination with 
carboplatin or cisplatin (NCT02897375). Ribociclib and 

abemaciclib are in clinical study in combination with 

MEK and PI3K/AKT/MTOR inhibitors. Ribociclib is 
being evaluated in phase I/II studies in combination with 

everolimus (NCT02985125) and in combination with 

trametinib (NCT02703571) both in previously treated 

PDAC. Abemaciclib is being evaluated in a 4-arm phase II 

trial alone, in combination with PI3K/MTOR inhibitor, 

LY3023414, or in combination with TGF inhibitor, 
galunisertib (NCT02981342). 

TGF-beta

Early in oncogenesis TGF-β is cytostatic and pro-apoptotic, 

however, later in disease TGF-β pathway activity leads 

to proliferation and invasiveness (100). TGF-β pathway 

signals through multiple SMAD proteins regulating 

transcription of various genes involved in cell cycle 

regulation and differentiation (101). SMAD4 is commonly 

mutated in PDAC and TGF-β stimulation of homozygous 

deleted SMAD4 cells leads to activation of pro-invasive 

and anti-apoptotic pathways including upregulation of 

ERK, β-catenin and p-BAD (102). In a phase I/II study 

in previously treated patients, trabedersen, an antisense 

oligonucleotide of TGF-β2, achieved a mOS of 13.4 months  

for patients administered the planned phase II dosing (n=9; 

95% CI: 2.2–39.7) (103). Galunisertib, a small molecule 
TGF-βR1 inhibitor, achieved a mOS of 9.1 months 

in combination with gemcitabine vs. 7.59 months for 

gemcitabine and placebo in a recent phase II study (104). 

Another phase II study is planned in combination with cell 

cycle inhibitor, abemaciclib, as described previously, while 

a phase I in combination with durvalumab is recruiting 

(NCT02981342, NCT02734160).

Epigenetics

Epigenetic modification is a crucial method of gene 
control in malignancy. In PDAC, histone acetylation 

changes promote resistance to oxidative stress, poorer 
differentiation and upregulation of DNA repair genes 

leading to chemotherapy resistance (105). HDAC inhibitor, 

azacitidine, is being evaluated in a phase II study after 

adjuvant GN in patients with node positive disease or 
persistently elevated CA19-9 (NCT01845805) and a phase I 

study of refractory, metastatic patients in combination with 

nab-paclitaxel. CG200745 is in phase I/II in combination 
with gemcitabine and erlotinib (NCT02737228). In pre-

clinical studies, CG200745 in combination with gemcitabine 
and erlotinib inhibited growth of xenografts  and 
overcame gemcitabine resistance in cell lines (106). DNA 

methyltransferase inhibitor, decitabine is being evaluated 

in 3 early stage studies in combination with gemcitabine 

or tetrahydrouracil (NCT02959164, NCT02847000, 

NCT02685228).

Immunotherapy

Immunotherapy is revolutionizing cancer therapy, although 

impacts in PDAC remain to be realized. Various methods 

to utilize the immune system to target cancers are being 

developed with promising results in other malignancies. 

Immune checkpoint inhibition in melanoma and NSCLC 

has achieved durable responses in approximately 20–25% 
of patients (107,108). Chimeric antigen receptor T cells, 

in which a patient’s own T-cells are collected, genetically 
altered to express a tumor antigen specific receptor and 
re-infused, are achieving complete responses in refractory 

leukemias and lymphomas (109-111). These modalities are 

emerging as potential treatment options in PDAC as well. 
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Checkpoint inhibition

Immune checkpoints consist of interactions between a series 

of surface proteins and their ligands to differentiate self 

from non-self. The classic model of effector cell stimulation 

involves an interaction between the MHC-presented 

antigen and the T-cell receptor and a costimulatory 

interaction between CD28 on T cells and B7 on antigen 

presenting cells (APCs). Additional inhibitory stimuli 

including PD-L1/PD-1 and CTLA-4/B7-1/2 have been 

identified and inhibitors developed. The PD-1 receptor is 
expressed on activated T cells, B cells and myeloid cells and 
its ligand PD-L1, is expressed on many cancers including 
PDAC. CTLA-4 is upregulated on activated CD4+, CD8+ 

and T-regulatory cells and interacts with B7 antigens on 

APCs (112-114). In a series of resected PDAC specimens, 

expression of B7-1, B7-2, PD-L1 on PDAC cells and 
CTLA-4 and PD-1 on tumor infiltrating immune cells 

were increased in both frequency (all >95%) and degree 

of expression (6.5 fold for CTLA-4 and 6.1 for PD-1) 
compared to normal control pancreas tissue. High PD-L1 

expression in this series correlated with decreased survival 
(24 vs. 10 months, P<0.0001) (115). 

Despite excellent results in other malignancies and pre-
clinical rationale in PDAC, initial clinical studies with 

CTLA-4 inhibitors either alone or in combination with 

traditional chemotherapy have had modest results. A phase 

II of ipilimumab administered to 20 metastatic and 7 

locally advanced patients for 2 cycles did not demonstrate 

any responses by traditional criteria, although one patient 

did have a delayed response after initial progression (116). 

Ipilimumab and tremelimumab have both been studied 

in combination with gemcitabine in phase I studies with 

responses in 2/16 and 2/34 patients and mOS of 8.5 and  

7.4 months, respectively (117,118). 

Anti-PD-1 therapy has met similar challenges in a phase 

I with 0/14 PDAC patients demonstrating a response, 

whereas anti-PD-L1, durvalumab, has demonstrated only 

a 7% response rate (119-121). Multiple PD-1 and PDL-1  

inhibitors are in early-mid phase studies alone or in 

combination with chemotherapy but without reported 

results to this point. PD-1 inhibitor, nivolumab, is in a 

phase II as first line with GN, cisplatin and paricalcitol 
(NCT02988960) and as second line with nab-paclitaxel ±  
gemcitabine (NCT02309177). Pembrolizumab, PD-1 

inhibitor, is in phase I/II studies as first or second line in 

combination with GN (NCT02331251) and mFOLFOX 
(NCT02331251). PDL-1 inhibitor, atezolizumab, is 

also being studied in a phase I in combination with GN 
(NCT02715531). It is noteworthy, that pembrolizumab 

has been approved for microsatellite instability-high and 

mismatch repair deficient cancers agnostic of tissue of  

origin (122) In PDAC specifically, a small sample of 4 

mismatch repair deficient PDAC patients treated with 

pembrolizumab demonstrated 2 PRs and 2 SDs (123). 

Due to the overall modest responses of single agent 

checkpoint inhibition and supporting pre-clinical evidence, 

the focus has shifted to combination approaches including 

dual checkpoint blockade, multi-modality immunotherapy, 

and combination with targeted therapeutics or radiation 

(RT). Durvalumab, and tremelimumab, are being studied 

in combination in phase II as first line treatment with GN 
versus GN (NCT02715531). They are also being studied as 
both first and second line treatment vs. durvalumab alone 

(NCT02527434, NCT02558894). 

Dual modality immunotherapy has signaled benefit in a 
phase I study of ipilimumab and the cancer vaccine, GVAX, 
versus ipilimumab alone. mOS was 5.7 vs. 3.6 months (HR 

0.51; P=0.072) and 1-year OS (27% vs. 7%). Additionally, 

3/15 patients had prolonged disease stabilization of 31, 71 

and 81 weeks (124). GVAX consists of genetically altered 
allogenic PDAC cells that express GM-CSF with the aim 
of inducing an immune response towards the PDAC cells. 

Multiple combination studies with GVAX are ongoing. 
GVAX and ipilimumab are being studied in a phase II 
study vs. FOLFIRINOX (NCT01896869). A phase I/II 

of GVAX with or without nivolumab in resectable disease 
and a phase II of GVAX with pembrolizumab and SBRT in 
locally advanced disease are both recruiting (NCT02451982, 

NCT02648282). 

The combination of checkpoint inhibitors and chemokine 

inhibitors is a rational combination approach. Chemokine 

inhibitors aim to increase the number of effector cells in the 

PDAC stroma and checkpoint inhibitors aim to increase 

effector cell activity. Indeed, KPC mice treated with CXCR2 

inhibition preceding PD-1 inhibition lived longer than 

mice treated with vehicle followed by PD-1 inhibition (33).  

Similarly, a mouse model of CXCR4/CXCL12 and PD-

L1 inhibition demonstrated fewer malignant cells in mouse 

tumors than PD-L1 alone (30). As described above, CSF1R 

inhibition also improves response to checkpoint blockade in 

murine models (37). Combination studies with these agents 

were described previously.

The abscopal effect is a phenomenon in which tumors 

outside of the field of radiation are ‘treated’ by radiation. 
The theory is that radiation causes the expression of 
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antigens and alteration in the TME enabling immune 
stimulation (125). Multiple studies are ongoing or in 

planning to evaluate dual checkpoint blockade and RT in 

the metastatic setting. Three phase I studies are recruiting 

or planned to evaluate various combinations of durvalumab, 

tremelimumab or both with RT (NCT02639026, 

NCT02311361, NCT02868632). Nivolumab and RT with 

or without ipilimumab are also recruiting (NCT02866383). 

Chimeric antigen receptor T cells (CAR-T)

CAR-Ts are T cells that are genetically altered to express 
specific receptors for non-MHC moieties on cancer cells. 

When engaged, the receptor activates the T cell’s cytotoxic 
response. CAR-Ts have shown promising results in 

refractory leukemia and lymphomas, but have not yielded 

as promising results in solid malignancies (126). In PDAC, 

CAR-Ts directed at various targets are being evaluated. 

Anti-CEA CAR-Ts are being studied in patients with CEA 
positive cancers with liver metastases in combination with 

Y90 microspheres (NCT02416466, ongoing) and by hepatic 

artery infusion (NCT02850536, planned). Mesothelin is 

an attractive target for CAR-Ts as it is highly expressed on 
many malignancies including 85% of PDACs (127). Three 

phase I studies of CAR-Ts targeting mesothelin are ongoing, 

but not recruiting at the University of Pennsylvania 

(NCT02465983, NCT02159716, NCT01897415) and a 

single phase I/II enrolling patients with multiple mesothelin 

expressing malignancies is recruiting at the National Cancer 
Institute (NCT01583686). Studies evaluating CAR-Ts 

against MUC1 (NCT02587689), prostate stem cell antigen 

(NCT02744287) and NK receptors (NCT03018405) are 

recruiting, as well. Other targets in development for CAR-

Ts in PDAC include Ca19-9 and MUC16.

Monoclonal antibodies

The surface targets of CAR-Ts have also seen the 

development of monoclonal antibodies and antibody drug 

conjugates. Anetumab ravtansine is an anti-mesothelin 

antibody conjugated to the tubulin inhibitor DM4. This 

has shown strong pre-clinical results eradicating tumor 

in 5/6 orthogenic mice models and significantly lowering 

tumor volume compared to gemcitabine in patient derived 

xenografts (128). A phase I dose finding study in ovarian 
cancer, mesothelioma and pancreatic cancer was performed, 

however,  outcomes were not reported for PDAC 

(NCT01439152) (129). A phase II study in pancreatic 

cancer is planned. Morab-009 is an anti-mesothelin 

antibody that was studied in a phase II trial in combination 

with gemcitabine vs. gemcitabine alone (NCT00570713). 

No results have been published. SS1P is an anti-mesothelin 

antibody conjugated to pseudomonas toxin being studied 
in a phase I/II study of mesothelin expressing malignancies 
(NCT01362790).

MVT-5873 is an antibody targeting CA19-9. MVT-

5873 has demonstrated cytotoxicity in murine xenograft 
models and is being studied in a phase I dose finding 

study evaluating MVT-5873 alone and in combination 

with GN for patients with CA19-9 positive malignancies 
(NCT00570713) (130). Preliminary data has shown 

acceptable toxicity with DLT of transient grade 3 AST, 
ALT and bilirubin elevations and potential efficacy with 

stable disease of >4 months in 24% of patients and Ca19-9 

reductions of >50% in 48% of patients (131). MVT-5873 is 

being developed in parallel with MVT-2163, a radiolabeled 

anti-CA19-9 antibody designed as a PET imaging agent, 
which is in phase I in combination with MVT-5873 to 

evaluate pharmacokinetics and optimal timing of imaging 

(NCT02687230) and combined with lutetium as a 

radioisotope (MVT-1075; NCT03118349).

Combining immunotherapy and antibody dependent 

cellular cytotoxicity, enoblituzumab is an antibody with 
a high affinity Fc region designed to stimulate antibody 

dependent cytotoxicity when it binds the immune 
checkpoint molecule B7-H3 (132). It is being studied 

in phase I studies in combination with pembrolizumab 

(NCT02475213) and ipilimumab (NCT02381314).

Metabolism

Malignant cells commonly have different metabolic 

requirements than normal cells. Malignant cells tend 

to rely on glycolysis and anaerobic metabolism, require 

increased amount of glutamate and may be deficient in 

argininosuccinate synthase and asparagine synthetase 

(ASNS) (133-135). Autophagy is a key mechanism 

that PDAC utilizes to obtain glutamate and may be 

required for PDAC growth (136). Autophagy inhibitor, 

hydroxychloroquine, is being studied in a number of trials—
as neoadjuvant therapy in a randomized trial of gemcitabine 

and nab-paclitaxel ± hydroxychloroquine (NCT01978184), 
as first or second line in combination with gemcitabine for 
metastatic disease (NCT01506973) and as monotherapy 

in previously treated metastatic patients (NCT01273805). 

CPI-613 inhibits mitochondrial metabolism by inhibiting 
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alpha-ketoglutarate  dehydrogenase and pyruvate 

dehydrogenase and has shown efficacy in PDAC xenografts 
and early phase investigation (137). In a phase I trial in 

combination with FOLFIRINOX, an ORR of 53.9% was 

found comparing favorably to 31.8% for FOLFIRINOX 

alone in the pivotal PRODIGE study (5,138). ADI-PEG 20 
inhibits argininosuccinate synthase, the activity of which is 

required for arginine production in PDAC cells. A phase I/

Ib study of ADI-PEG with GN demonstrated promising 
results with a mPFS of 6.1 months, mOS 11.3 months,  

45% ORR and 91% tumor regression rate in patients 

treated with the recommended phase II dose in the first 

line setting (139). A randomized phase II/III trial is in 

development in untreated metastatic PDAC. Eryaspase, 
red blood cell encapsulated L-asparaginase, hydrolyses 

asparagine to aspartic acid leading to asparagine depletion 

and impaired protein synthesis in low ASNS expressing 
tumors. Interestingly, in a phase IIb second line study in 

combination with gemcitabine or FOLFOX, eryaspase 

treatment improved OS in both the low ASNS (HR 0.62, P 

value not specified) and entire study population (HR 0.57, 
P=0.034) (140). 

DNA repair

A small but significant subset of PDAC patients has an 

inheritable genetic predisposition. In a case series of  

175 patients with pancreatic cancer and suspicious personal 

or family history who were treated at Memorial Sloan 

Kettering Cancer Center, a pathogenic germline mutation 

was found in 15.1% (BRCA2 7.4%, BRCA1 2.2%, p16 

1.1%, PALB2 0.6% and Lynch syndrome 2.2%) (141). In 

other series’ of high risk patients, ATM mutations have a 
prevalence of 1–5.7%. In an unselected group of PDAC 

patients the rate of BCRA1/2 mutations is between 3.6–7%, 

but is significantly higher in Ashkenazi Jewish patients 

than non-Ashkenazi Jewish patients (12.1% vs. 3.7%;  

P=0.05) (142,143). 

A majority of identified inheritable genetic mutations 

in PDAC affect proteins involved in homologous 

recombination. Homologous recombination is the highest 

fidelity double stranded DNA repair mechanism and is 

also crucial for removing DNA crosslinks. The process is 

initiated when the MRN (MRE11–RAD50–NBS1) complex 
identifies and stabilizes a double stranded DNA break. The 
MRN complex activates ATM leading to a complex series of 
interactions that require BRCA1/2 interactions with RAD51 

and PALB2 to complete DNA repair (144-146). Impaired 

homologous recombination leads to the use of alternative 

DNA repair mechanisms and the accumulation of mutations 

that increase the risk of carcinogenesis, but also confer an 

increased sensitivity to platinum agents. Platinum agents 

create DNA crosslinks, which require repair through HR. 

Indeed, a number of small case series have shown evidence 

that patients with BRCA-associated PDAC are responsive 

to platinum agents and a retrospective review of 71 patients 

with stage III and IV BRCA associated PDAC found 

improved survival in patients treated with platinum agents 

(22 vs. 9 months; P=0.039) (147-149).

Poly ADP ribose polymerase (PARP) is necessary for 

repair of single stranded DNA breaks, which if not repaired 

lead to double stranded breaks (150). Additionally, PARP 

is also involved in alternative double stranded DNA repair 

pathways in the absence of HR. In the setting of BRCA1/2 

mutations, PARP inhibition leads to accumulation 

chromatid aberrations, cell cycle arrest and cell death (145). 

PARP inhibitor (PARPi) olaparib is approved in BRCA 

mutant ovarian cancer and in clinical development for 

PDAC. A phase II study of olaparib in germline BRCA (+) 

patients included 23 patients with PDAC and demonstrated 

a 22% response rate and 35% stable disease with 1 year 

survival of 41% (151). Olaparib is currently being evaluated 

in a phase III study for patients with germline BRCA 

mutations and metastatic disease who have had stable 

disease on platinum therapy for at least 16 weeks. Patients 

receive olaparib monotherapy maintenance or placebo after 

completing chemotherapy (NCT02184195). Olaparib is 

also being studied as second line therapy in a phase II study 

for patients with ‘BRCAness’—no BRCA mutation but a 
family history of BRCA associated cancers (NCT02677038) 

and a separate phase II for ‘BRCAness’ which also includes 
mutations in other DNA damage repair genes is being 

planned (NCT02511223). 

The combination of platinum and PARP inhibitor is 

an attractive treatment regimen to exploit DNA damage 
repair deficits. Veliparib, is under evaluation in a 3-arm 

phase II study for patients with BRCA1/2 or PALB2 

mutations in combination with first line gemcitabine/

cisplatin vs. gemcitabine/cisplatin/placebo vs. veliparib 

alone (NCT01585805). A phase II evaluating second 

line mFOLFIRI with or without veliparib is recruiting 

without requirement for BRCA mutation or BRCAness 

(NCT02890355) .  A tr ia l  evaluat ing rucaparib as 

maintenance after induction platinum-based therapy 

in patients with deleterious germline or somatic BRCA 

mutations is planned.
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Conclusions

Improving survival in PDAC is a critical unmet need. With 

increased understanding of PDAC pathobiology, novel 

therapeutics targeting the stroma, harnessing the power 

of the immune system and blocking aberrant signaling 

pathways have reached clinical development providing a 

sense of optimism that recent scientific advances will turn 
into clinical results. Beyond therapeutic discovery, trial 

design with strict success criteria is critical to expeditiously 
realizing these results. Rahib et al. investigated 32 phase 

III studies between 1997 and 2015, but found that half of 

studies with a paired phase II advanced to phase III despite 

a negative phase II outcome, contributing significantly to 

the overall 15% phase III success rate (152). Incorporating 

biomarkers and utilizing surrogate endpoints will also aid 

in maximizing therapeutic potential and identifying failing 
candidates early. Across multiple malignancies, Jardim et al. 

found that 57% of successful programs utilized biomarker 

driven patient selection, however, only 16% of failed drug 

programs did (153). 

The application of these strategies is emerging in large 

collaborative trials. The Precision Promise trial is an 

initiative of the Pancreatic Cancer Action Network in which 

patients will undergo biomarker analysis with pathologic 

evaluation, genomic sequencing and transcriptome analysis 

to determine assignment in treatment arms focused on 

stromal disruption, DNA damage repair or immunotherapy. 

The trial is designed to be dynamic incorporating promising 

novel therapeutics and eliminating failing ones. 

Still, despite optimism, with current approved treatment 

options, survival in PDAC remains limited, and it is 

recommended that all patients enroll in clinical trials with 

the hope, now more than ever, of improved outcomes from 

novel therapeutics. 
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