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Pancreatic β-cells are generated by neogenesis from non-β-cells after birth
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ABSTRACT
The mass of pancreatic β-cells is maintained throughout lifetime to control blood glucose levels. 
Although the major mechanism of the maintenance of β-cell mass after birth is thought to be self-
replication of pre-existing β-cells, it is possible that pancreatic β-cells are also generated from 
non-β-cells. Here, we address this issue by using the inducible Cre/loxP system to trace β-cells. 
We generated Ins2-CreERT2/R26R-YFP double knock-in mice, in which pancreatic β-cells can be 
labeled specifically and permanently upon injection of the synthetic estrogen analog tamoxifien, 
and then traced the β-cells by pulse and chase experiment in several different conditions. When 
β-cells were labeled in adults under physiological and untreated conditions, the frequency of the 
labeling (labeling index) was not altered significantly throughout the 12-month experimental peri-
od. In addition, the labeling index was not changed after ablation of β-cells by streptozotocin 
treatment. However, when tamoxifen was injected to pregnant mothers just before they gave birth, 
the labeling index in the neonates was decreased significantly around weaning, suggesting that 
β-cells are generated from non-β-cells. These results indicate that various mechanisms are in-
volved in the maintenance of β-cells after birth, and that the present system using knock-in mice 
is useful for investigation of β-cell fate.

Pancreatic β-cells produce and secrete insulin, which 
is the only hormone that lowers blood glucose lev-
els. The mass of the β-cells is not static but rather 
dynamic throughout lifetime (9, 19). The number of 
pancreatic β-cells increases in response to systemic 
insulin demand in obesity (18) and pregnancy (29), 
as well as in the neonatal period (17). It has been 

thought that β-cells are constantly replenished even 
under normal conditions (turnover) (9, 19). In gen-
eral, adult tissues and organs are thought to be 
maintained by the stem cell system. The primary 
role of adult (tissue-specific) stem cells is to main-
tain and repair the tissue in which they reside. Al-
though such stem cells have been found in several 
tissues including neurons (32), small intestine (5), 
and blood (15), both the existence and the nature of 
stem or progenitor cells in adult pancreas are yet to 
be established.
　By using genetic cell lineage tracing, Dor et al. 
demonstrated that adult pancreatic β-cells in mice 
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GGTCCTCCACTTCA-3’, and reverse for CreERT2: 
5’-CAGCATTGCTGTCACTTGGT-3’). The ampli-
cons were 362 bp for the wild type allele and 512 bp 
for the targeted allele (Fig. 1A and B). Ins2-CreERT2 
knock-in mice were crossed with R26R-YFP mice 
(provided by F. Costantini, Columbia University, 
New York) (30) to generate Ins2-CreERT2/R26R-
YFP mice for tracing pancreatic β-cells.

Labeling β-cells by tamoxifen injection. For lineage 
tracing in adult pancreas, Ins2-CreERT2/R26R-YFP 
mice of 6 weeks of age were injected intraperitone-
ally with tamoxifen (Sigma, St. Louis, MO) five 
times (6 mg/head for the first time and 4 mg/head 
for the remaining) within two weeks. For tracing in 
neonates, pregnant mothers of Ins2-CreERT2/R26R-
YFP mice were injected intraperitoneally with a 
single dose of 6 mg/30 g body weight of 4-hydroxy-
tamoxifen (Sigma) on the day before they gave 
birth.

Streptozotocin treatment. For tracing β-cells after a 
severe injury, Ins2-CreERT2/R26R-YFP mice were 
injected intraperitoneally with streptozotocin (STZ) 
(Sigma) at 100 mg/kg body weight 10 days after 
tamoxifen treatment as described above. Mice with 
blood glucose concentration above 300 mg/dL were 
used for the study.

Immunohistochemistry. Pancreata removed from the 
mice were fixed in 4% paraformaldehyde. Frozen 
sections were stained with antibodies against insulin 
(Zymed, San Francisco, CA) (1 : 100), Cre (Novagen, 
Madison, WI) (1 : 10,000), GFP (Molecular Probes, 
Eugene, OR) (1 : 200), and Ki67 (Dako Japan, 
Tokyo, Japan) (1 : 500). Secondary antibodies con-
jugated with Alexa Fluor 488- or 546 (1 : 400) (Mo-
lecular Probes) were used for detection. Nuclei were 
visualized by DAPI (Dojindo, Kumamoto, Japan). 
Because YFP is one of the emission variants of GFP 
in which only four amino acids are substituted from 
GFP, antibodies against GFP can recognize this pro-
tein (20). The stained sections were observed with 
BZ9000 microscope (Keyence, Osaka, Japan). The 
frequency of the labeling (labeling index) of the 
pancreatic β-cells was calculated by dividing the 
number of YFP-positive cells by the number of in-
sulin-positive cells. For measurement of β-cell mass, 
we first measured percent area of β-cells in the 
pancreas from five distinct sections of each mouse 
pancreas. The β-cell mass was then estimated by 
multiplying the β-cell area by the pancreas weight 
of corresponding animals. All data are means of the 

are maintained predominantly by self-replication of 
pre-existing β-cells (6). Furthermore, another study 
using a DNA analog-based lineage-tracing technique 
showed that unlike gastrointestinal and skin epithe-
lia, specialized progenitors do not contribute to adult 
β-cell mass, even during acute β-cell regeneration 
(33). Instead, adult β-cells exhibit equal prolifera-
tion potential, and expand from a vast and uniform 
pool of mature β-cells (3). These findings support 
the notion that the mass of pancreatic β-cells is 
maintained primarily by self-replication of pre-exist-
ing β-cells. On the other hand, there are many stud-
ies suggesting generation of pancreatic β-cells from 
non-β-cells (Ref. 21 for review). Importantly, Xu et 
al. made use of a unique model of tissue damage 
and found that cells expressing Ngn3, which repre-
sent progenitors for endocrine cells during embryo-
genesis, reappeared in adult mice following injury 
and gave rise to new β-cells (36). This study pro-
vides evidence that facultative β-cell progenitors ex-
ist, although definitive identification of the cell type 
having progenitor property remains elusive. Exten-
sive analysis of the formation of new pancreatic 
β-cells is required to elucidate the mechanisms of 
the maintenance of β-cell mass.
　In the present study, we newly generated a knock-
in mouse model, in which the endogenous mouse 
insulin 2 gene is replaced with a gene of Cre- 
recombinase and modified estrogen receptor fusion 
protein (CreERT2). By crossbreeding these mice 
with a reporter strain expressing yellow fluorescent 
protein (YFP) by Cre-mediated loxP recombination 
(R26R-YFP) (30), we established a system for trac-
ing pancreatic β-cells upon tamoxifen injection. We 
analyzed the fate of pancreatic β-cells in the Ins2-
CreERT2/R26R-YFP double knock-in mice in three 
different settings. Our data indicate that new β-cells 
are generated from non-β-cells after birth.

MATERIALS AND METHODS

Generation of Ins2-CreERT2/R26R-YFP mice. All 
animal experiments were approved by the Animal 
Research Committee of Kobe University Graduate 
School of Medicine. Ins2-CreERT2 knock-in mice 
were generated by replacing the mouse insulin 2 
gene with a CreERT2 cassette, which was inserted 
into the ATG site of the gene located in exon 2, by 
homologous recombination (Fig. 1A). Genotyping  
of Ins2-CreERT2 knock-in mice was performed by 
PCR with primers for mouse insulin 2 and CreERT2 
(forward for both genotypes: 5’-CCCTAAGTGATC 
CGCTACAA-3’, reverse for wild type: 5’-CTTGTG 
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recombinase driven by insulin promoter, expression 
of Cre-recombinase in the Ins2-CreERT2 knock-in 
mice perfectly reproduces insulin expression and no 
position effect is caused in the mice. We confirmed 
that body weight and casual blood glucose levels of 
the homozygous mice were identical to those of the 
heterozygous and wild-type mice (Fig. 1C and D). 
Expression of Cre-recombinase was detected only in 
insulin-expressing β-cells (Fig. 1E). We then cross-
bred the Ins2-CreERT2 knock-in mice with R26R-
YFP mice (30) to generate Ins2-CreERT2/R26R-
YFP double knock-in mice (Fig. 2A). Upon injection 
of tamoxifen as described in MATERIALS AND 
METHODS, expression of YFP was detected exclu-
sively in insulin-expressing β-cells (Fig. 2B). These 
results demonstrate that Ins2-CreERT2/R26R-YFP 
double knock-in mice work well for tracing pancre-
atic β-cell fate.

results from five mice.

Statistical analysis. Values are expressed as means ± 
S.E. The significance of difference between test 
groups was evaluated by use of multiple analysis of 
Tukey-Kramer’s test. P < 0.05 was considered sig-
nificant.

RESULTS

Generation of Ins2-CreERT2/R26R-YFP double knock- 
in mice
We first generated Ins2-CreERT2 knock-in mice, in 
which a fusion protein containing Cre-recombinase 
and modified estrogen receptor is replaced with 
mouse insulin 2 gene (Fig. 1A). Genotypes of the 
mice were determined by genomic PCR (Fig. 1B). 
Unlike conventional transgenic mice expressing Cre-

Fig. 1　Generation of Ins2-CreERT2 knock-in mice. (A) Schematic representation of mouse insulin 2 gene, targeting vector, 
and targeted allele. A CreERT2 cassette was inserted into the ATG site of the gene located in exon 2 of mouse insulin 2 
gene. Triangles indicate primers used for genotyping. (B) Genomic PCR analysis for Ins2-CreERT2 knock-in mice. Triangles 
in (B) represent primers used for PCR, which correspond to those seen in (A). (C and D) Body weight (C) and casual 
blood glucose levels (D) of each genotype. There were no significant differences among these groups. (E) Immunohisto-
chemistry of pancreas of Ins2-CreERT2 knock-in mice for insulin and Cre-recombinase. All of the Cre-positive cells were 
also positive for insulin. Scale bar, 50 μm.
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weeks of age. Three days after the last injection 
(pulse), pancreata of these mice were dissected and 
subjected to immunostaining for YFP and insulin  
to determine labeling index. We found that 25.8 ± 
3.75% of insulin-positive cells were labeled with 
YFP (Fig. 3B and C). The labeling index was not 
changed significantly throughout the 12-month ex-

Tracing pancreatic β-cells with aging under normal 
condition
Using Ins2-CreERT2/R26R-YFP double knock-in 
mice, we chased pancreatic β-cells in several set-
tings. Firstly, we investigated the β-cells in adult un-
der normal condition (Fig. 3A). We injected tamoxifen 
five times to the mice for two weeks starting at 6 

Fig. 3　Tracing β-cells with aging. (A) Outline of experimental design. Tamoxifen was injected five times to Ins2-CreERT2/
R26R-YFP double knock-in mice from 6 to 8 weeks of age to label β-cells. Three days after the last injection represents the 
“Pulse” period. The β-cells were chased up to 12 months after the treatment. (B) Double immunostaining for insulin and YFP 
in pancreas of the mice after tamoxifen injection. Scale bars, 100 μm. (C) Quantification of YFP-labeled β-cells. Change in 
the labeling index (percentage of the number of YFP-positive cells among insulin-positive cells) is shown. When compared to 
the pulse period, the index of each time point did not differ significantly. NS, difference not significant vs. pulse period.

Fig. 2　Generation of Ins2-CreERT2/R26R-YFP double knock-in mice. (A) Experimental strategy of inducible Cre-mediated 
tracing of pancreatic β-cells. Ins2-CreERT2/R26R-YFP double knock-in mice were generated by crossbreeding of Ins2- 
CreERT2 mice and R26R-YFP mice. Upon infection of tamoxifen, insulin-expressing cells (β-cells) begin to express YFP 
and are permanently labeled with the fluorescent protein. (B) Double immunostaining of pancreas of Ins2-CreERT2/R26R-
YFP double knock-in mice for insulin and YFP after injection of tamoxifen. Expression of YFP was highly restricted in insu-
lin-positive cells. Scale bar, 50 μm.



Pancreatic β-cell tracing 171

perimental period (Fig. 3B and C). This result is 
consistent with the previous finding by Dor et al. 
(6). Our data support the notion that the major 
mechanism of the maintenance of adult pancreatic 
β-cells may be self-replication rather than neogene-
sis from stem/progenitors under normal condition, 
as reported previously (6, 10).

Tracing pancreatic β-cells after β-cell ablation
Although β-cell mass is maintained by self-replica-
tion under normal condition, it has been suggested 
that neogenesis from stem or progenitor cells could 
contribute to generation of new β-cells after injury 
(22). The β-cell toxin streptozotocin (STZ) is known 
to cause rapid and severe β-cell damage. In some 
studies, it has been found that insulin-positive cells 
reappear after the loss of pancreatic β-cells by STZ 
treatment (8, 13). Therefore, we examined pancreatic 
β-cell fate after STZ treatment to investigate whether 
β-cells might be generated from non-β-cells (Fig. 4A). 
Pancreatic β-cells of Ins2-CreERT2/R26R-YFP dou-
ble knock-in mice were labeled by tamoxifen injec-
tion 10 days before STZ treatment (100 mg/kg, i.p.). 

This dose of STZ caused a moderate loss of pancre-
atic β-cells (Fig. 4B). We traced the β-cells for up to 
3 months after STZ treatment. The labeling index of 
these β-cells was unchanged throughout the experi-
ment (Fig. 4C), indicating that neogenesis of β-cells 
from non-β-cells did not occur under the conditions 
used. While we failed to detect replenishment of 
β-cells after treatment of STZ, further examination 
using other models of β-cell regeneration are re-
quired to clarify whether neogenesis participates in 
regeneration of pancreatic β-cells.

Tracing pancreatic β-cells in neonate
The mass of pancreatic β-cells increases rapidly 
within a month after birth (7). It has been thought 
that the increase in β-cell mass depends largely on 
replication of pre-existing β-cells during this time (9, 
17). If this is the case, the labeling index in Ins2-
CreERT2/R26R-YFP double knock-in mice should 
be unchanged in this period. We injected 4-hydorxy-
tamoxifen to pregnant mothers of the mice one day 
before they gave birth (Fig. 5A). The frequency of 
the labeling of pancreatic β-cells of new born mice 

Fig. 4　Tracing β-cells under β-cell ablation. (A) Outline of experimental design. Tamoxifen was injected to Ins2-CreERT2/
R26R-YFP double knock-in mice as described and the mice were treated with STZ. The β-cells were chased up to 3 
months after STZ treatment. (B) Double immunostaining for insulin and YFP in pancreas of the mice after STZ treatment. 
Scale bars, 100 μm. (C) Quantification of YFP-labeled β-cells. Change in the labeling index is shown. When compared to 
the pulse period, the index of each time point did not differ significantly. NS, difference vs. pulse period was not significant.
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beling index of pancreatic β-cells in the mice was 
unchanged from P0 to P14 (Fig. 5F). However, the 
index significantly decreased at P28 (Fig. 5F), sug-
gesting the generation of new β-cells by other mech-
anisms than replication of pre-existing β-cells in this 
period.

DISCUSSION

Several studies have shown that adult mouse pan-

(P0) was 28.0 ± 0.95% of total β-cells. We confirmed 
that the pancreas weight of the mice was increased 
(Fig. 5B). The mass of β-cells was also increased, 
especially between postnatal day 14 (P14) and P28 
(Fig. 5C). This is consistent with a previous study in 
rats showing that a significant increase in β-cell 
mass was seen after P20 (25). Proliferating cell 
marker Ki67-positive cells could readily be detected 
(Fig. 5D), suggesting that massive replication of the 
β-cells occurs during this period (Fig. 5E). The la-

Fig. 5　Tracing β-cells during neonatal period. (A) Outline of experimental design. Tamoxifen was injected to pregnant moth-
ers of Ins2-CreERT2/R26R-YFP double knock-in mice the day before they gave birth. The β-cells were chased for a month. 
(B–D) Changes in pancreatic weight (B) and β-cell mass (C) in pancreas of the neonates. (D) Double immunostaining for 
insulin and Ki67 in pancreas of the neonates. A considerable number of insulin/Ki67-double positive cells was detected. 
Scale bars, 50 μm. (E) Double immunostaining for insulin and YFP in pancreas of the neonates. Scale bars, 100 μm. (F) 
Quantification of YFP-labeled β-cells. NS, difference not significant. *P < 0.05 vs. pulse period.
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