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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence.

Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure.

In this review, we present the current status and the recent advances in PDAC treatment together with the

biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining

distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome – with a specific focus

on protocols involving radio(chemo)therapeutic approaches.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most

prevalent neoplastic disease of the pancreas accounting

for more than 90% of all pancreatic malignancies [1]. To

date, PDAC is the fourth most frequent cause of cancer-

related deaths worldwide with a 5-year overall survival

of less than 8% [2]. The incidence of PDAC is expected

to rise further in the future, and projections indicate a

more than two-fold increase in the number of cases

within the next ten years, both in terms of new diagno-

ses as well as in terms of PDAC-related deaths in the

U.S. as well as in European countries ([3, 4], www.can-

cerresearchuk.org/health-professional/cancer-statistics/

statistics-by-cancer-type/pancreatic-cancer#heading-

Zero). A particular reason for this – apart from the gen-

eral aging of our society – is the evident implication of

obesity and type 2 diabetes, two emerging public health

challenges, in PDAC etiology [5–7]. Life style habits, in-

cluding alcohol and tobacco abuse, which are well-

known to increase the risk for several other types of

cancer, such as lung cancer and squamous cell carcin-

omas of the head and neck region [8–10], also appear to

be involved in PDAC development [11–15]. Finally, for a

subgroup of approximately 5-6% of all PDAC patients,

genetic predispositions, such as germline mutations in

the genes BRCA1/2, ATM, MLH1, TP53, or CDKN2A,

represent further risk factors [16–18].

Current treatment standards and recent advances in

PDAC chemo- and/or radiotherapy

Efficacy and outcome of PDAC treatment are largely de-

termined by the stage of disease at the time of diagnosis.

Surgical resection followed by adjuvant chemotherapy is

the only possibly curative therapy available, yet only 10-

20% of PDAC patients present with resectable PDAC

stages, while the residual 80-90% show locally advanced,

non-resectable stages or – in the majority – distant metas-

tases [19, 20]. Systemic chemotherapy is commonly

employed as first-line treatment in patients with non-

resectable or borderline-resectable tumors. This encom-

passes nucleoside analogues, including gemcitabine and

capecitabine, or the pyrimidine analogue 5-fluorouracil (5-

FU) in monotherapy settings or in combination with other

treatment modalities, such as radiotherapy, respectively

[20–22]. FOLFIRINOX, a poly-chemotherapeutic regimen
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composed of folinic acid, 5-FU, irinotecan, and oxaliplatin,

has been reported to nearly double median survival in the

metastasized stage as compared to gemcitabine alone [23],

and the combination of gemcitabine and a nanoparticle

albumin-bound paclitaxel (nab-paclitaxel) has also been

shown to significantly improve overall survival [24]. How-

ever, these protocols are associated with relevantly higher

toxicity, thus often preventing their application in elderly

patients and/or patients with poor performance status,

but overall quality of life was reported to increase [25].

Radio(chemo)therapy has been rather infrequently

adopted for the treatment of PDAC, since the majority

of patients suffer from disseminated stages in which

local treatment procedures are of secondary importance

[26]. Nevertheless, neoadjuvant radiotherapy has the po-

tential to improve PDAC resectability in locally advanced

or primarily inoperable/borderline-operable patients, and

its beneficial effects on local tumor control are well docu-

mented [27, 28]. Compared to other cancer entities,

PDAC tumors exhibit a rather high degree of radioresis-

tance – a characteristic which is currently addressed by

combining PDAC radiotherapy with radiosensitizing

agents, including gemcitabine, capecitabine, or 5-FU, re-

spectively [28, 29]. According to the guidelines of the

National Comprehensive Cancer Network (NCCN), the

use of radio(chemo)therapy is recommended for PDAC

patients with borderline-resectable tumors, and several

regimens involving capecitabine, gemcitabine, or 5-FU

have been clinically implemented [29, 30]. The advances

of modern external beam radiation techniques, including

image-guided radiation therapy (IGRT), stereotactic body

radiation therapy (SBRT), and ablative radiation therapy,

as well as the combination with novel chemotherapeutic

protocols have clearly widened the spectrum of radio-

therapeutic options [27, 31, 32].

Expecting increased toxicities when combining more

aggressive treatment approaches, sequential application

is currently being evaluated in the randomized phase III

CONKO-007 trial for PDAC patients with borderline-

resectable, non-metastatic disease (NCT01827553). Pre-

liminary results from an interims analysis document a

promising outcome with higher rates of resectability, con-

firming previous phase II findings [27, 30, 33]. As the per-

formance of systemic therapies gradually improves, local

tumor control moves back into the focus of interest, both

with respect to symptom control as well as with respect to

quality of life. In consequence, the importance of local

radiotherapy for the treatment of PDAC patients is con-

stantly growing. SBRT is a highly conformal radiation

technique which is employed to deliver high doses in a

small number of fractions. Due to its steep dose gradients

around the target volume, SBRT efficiently spares adjacent

organs at risk resulting in relevantly lower toxicity. In sev-

eral studies, SBRT achieved significant improvements in

pain control paralleled by increased local tumor control

[34]. Hence, SBRT can be seen as an effective and safe

therapeutic option, and its use in multimodality treatment

concepts and/or in palliative settings is considered more

and more frequently.

In several other cancer entities, e.g. in melanoma

and lung cancer, the implementation of immunothera-

peutic approaches, specifically immune checkpoint in-

hibition, has proven compelling success [35–38]. Yet,

at least so far, treatment efficacy in PDAC has been

rather limited [35, 39], and checkpoint inhibition has

only received approval for the small subset of PDAC

tumors with high microsatellite instability (1-2% of all

cases) [40, 41]. This may be due to the strongly im-

munosuppressive, desmoplastic PDAC microenviron-

ment, the relatively low mutational burden (resulting

in a low number of neo-antigens), as well as other

biological and/or immunological hallmarks of PDAC

which are discussed in this review [42].

Biological and immunological hallmarks of PDAC

Tumor plasticity and heterogeneity

The pancreas contains cells of exocrine (acinar), epithelial

(ductal), and endocrine (α, β, δ, ε) origin among which aci-

nar cells are well known for their high degree of plasticity.

This plasticity is considered to drive pancreas homeostasis

and regeneration, as – in contrast to other organs of the

gastrointestinal tract – the pancreas seems to lack a

defined stem cell compartment [43]. In a process called

acinar-to-ductal metaplasia (ADM), acinar cells transdif-

ferentiate to more epithelial (ductal-like) phenotypes when

experiencing certain macro- and microenvironmental

stimuli, e.g. tissue damage, inflammatory, or stress condi-

tions [44, 45]. During ADM, acinar cells acquire ‘progeni-

tor cell-like’ characteristics which render them more

susceptible to pro-oncogenic hits, such as activating muta-

tions in the proto-oncogene KRAS, eventually transform-

ing them into pancreatic intra-epithelial neoplasias

(PanINs). This transformation is generally considered as

the initial step in PDAC development followed by sequen-

tial progression involving genetic hits in several tumor

suppressor genes [46] (Fig. 1).

In order to examine the mutational and transcriptional

landscape of PDAC, a number of next generation se-

quencing approaches were initiated in the last years

[48–51]. In conjunction, these studies showed that the

gene encoding the proto-oncogenic GTPase KRAS as

well as several tumor suppressor genes, including tumor

suppressor protein 53 (TP53), cyclin-dependent kinase in-

hibitor 2A (CDKN2A), and mothers against decapenta-

plegic homologue 4 (SMAD4), exhibit the most frequent

alterations and/or mutations in PDAC [49]. For instance,

KRAS was not only found to be mutated in most PDAC

tumors (> 90%), its mutant alleles were additionally
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amplified in a subgroup of samples, resulting in accel-

eration of their tumor-promoting potential [52]. Fur-

thermore, RAC-beta serine/threonine-protein kinase

(AKT2) is frequently overexpressed, and the activity

of its upstream regulator phosphoinositide 3-kinase

(PI3K) is often elevated in PDAC leading to increased

tumor cell survival [53, 54]. Apart from these key

mutations, several more uncommon alterations, such

as germline mutations in DNA damage repair genes

(e.g. breast cancer early onset genes 1/2 (BRCA1/2),

partner and localizer of BRCA2 (PALB2), and ataxia

telangiectasia mutated protein serine/threonine kinase

ATM), or somatic mutations in DNA mismatch repair

regulator genes leading to increased microsatellite in-

stability have been found in certain subsets of pa-

tients [55]. Of note, the transcriptomic landscape of

PDAC is not entirely governed by genetic alterations.

Integrated epigenetic regulatory circuits comprising chro-

matin-based mechanisms, such as DNA methylation and

histone post-translational modification, as well as regula-

tion by non-coding RNAs are also largely distorted in

PDAC. In this regard, key tumor suppressor genes have

been described to be repressed, and oncogenes upregu-

lated due to epigenetic alterations [56]. Furthermore, epi-

genetic (re-)programing is fundamentally linked to tumor

progression and metastasis formation [57, 58], and the

epigenetic landscapes of human PDAC subtypes differ

substantially [59].

PDAC is a highly heterogenic disease, and various

attempts have been undertaken to define distinct

subtypes with the aim of stratifying patients towards

personalized treatment strategies [49, 50, 60–62]. Cur-

rently available transcriptome-based classifications were

extracted via unsupervised clustering methods and dif-

fer in the numbers of subtypes identified. Nevertheless,

all share common subtypes, including a classical/ca-

nonical subtype hallmarked by epithelial-like gene ex-

pression, and a quasi-mesenchymal/basal-like subtype

characterized by a more mesenchymal gene expression

pattern and poorer prognosis (Fig. 2). These subtypes

meanwhile can be stratified by immunohistochemistry

using hepatocyte nuclear factor 1A (HNF1A) and cyto-

keratin-81 (KRT81) as markers [64]. Furthermore, sub-

types related to exocrine pancreas function have been

described as well as subtypes with expression signatures

of immune cell-related genes [50, 61, 62]. Although to

date there is still no consensus classification which

would be the prerequisite for clinical application, retro-

spective as well as prospective analyses have shown that

subtype-based stratification has the potential for gen-

omics-driven precision medicine [64, 65]. The PDAC

subtypes obviously stem from inter-tumoral heterogen-

eity. Yet, intra-tumoral heterogeneity needs to be con-

sidered as well, and tumor cell plasticity might render

these classifications dynamic, especially upon thera-

peutic intervention.

Fig. 1 Multi-step PDAC carcinogenesis. Modified from [47].
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Desmoplastic, hypoxic, immunosuppressive

microenvironment

A crucial hallmark of PDAC is the existence of extensive

desmoplastic stroma which can constitute up to 90% of

the tumor volume and is commonly considered to origin-

ate from cancer-associated fibroblasts (CAFs) [42] (Fig. 3).

Distinct subtypes of CAFs with either myofibroblastic or

inflammatory phenotypes have been identified [67, 68],

and the major source of CAFs appear to be pancreatic

stellate cells which upon activation, e.g. by injury or

chronic inflammation, start depositing huge amounts of

extra cellular matrix, including laminins, fibronectins, col-

lagens, and hyaluronan [69–72]. Interestingly, expression

of focal adhesion kinase 1 (FAK1) in PDAC cells has re-

cently been reported to be decisive for this process as

pharmacological targeting of FAK1 interfered with the for-

mation of desmoplasia, thus offering a potential target for

therapeutic intervention [73]. Hypoxia is another key fea-

ture of the PDAC microenvironment, and it is closely

interlinked with desmoplasia. It originates from desmopla-

sia-associated hypovascularization and vice versa favors

desmoplastic progression by activating pancreatic stellate

Fig. 2 Molecular classifications of PDAC. Modified from [63].

Fig. 3 PDAC desmoplasia. Modified from [66].
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cells [74–76]. PDAC hypoxia and desmoplasia, which are

observed in clinical samples as well as in genetically engi-

neered mouse models, seem to represent barriers to T cell

infiltration – intriguingly both for effector as well as regula-

tory T cells – and T cell activation [77–79]. Moreover, hyp-

oxia and desmoplasia are accompanied by a strong

accumulation of myeloid cells [80, 81]. Macrophages that

are recruited adopt an immunosuppressive, pro-angiogenic

M2-like state, block CD4+ T cell entry into the PDAC

microenvironment, support PDAC progression, and thus

are a marker of negative clinical prognosis [76, 82, 83]. Sys-

temic frequencies of monocytes and granulocytes are ele-

vated in PDAC patients, and due to their pathological

activation and immunosuppressive function they are classi-

fied as monocytic or polymorphonuclear myeloid-derived

suppressor cells (MDSCs), respectively. Both populations

are potent suppressors of T cell function and inhibit anti-

tumor immune responses [84, 85]. Recently, the CXCL-1/

CXCR2-axis has been shown to be crucially involved in

intra-tumoral recruitment of MDSCs, suppressing CD8+ T

cell infiltration and function as well as compromising re-

sponsiveness to immunotherapy [86]. Apart from these in-

nate immune cell subpopulations, immunosuppressive T

and B cell subpopulations, including regulatory T cells, γδ

T cells, and regulatory B cells, have been described in the

PDAC microenvironment. They do not only block activa-

tion but also infiltration of effector T cells resulting in low

intra-tumoral CD8+ T cell frequencies [87–89]. These ef-

fector T cells appear to be antigen-experienced, but tumor

antigen recognition and/or T cell activation seem to be dis-

turbed [90]. However, the intra-tumoral T cell repertoire

shows enrichment in distinct T cell receptors, suggesting

that in principle PDAC tumors are sites of local T cell ex-

pansion [91].

On the cytokine level, the PDAC microenvironment

represents a comparable degree of complexity. Neverthe-

less, the dominating cytokines seem to be transforming

growth factor beta (TGF-β), interleukin (IL-) 6, IL-8, IL-

10, IL-35, granulocyte macrophage colony-stimulating

factor (GM-CSF), CC-chemokine ligand 2 (CCL-2), CXC-

chemokine ligand 1 (CXCL-1), and CXCL-13. In complex

networks they orchestrate the recruitment and education

of innate and adaptive immune cells as well as their

crosstalk with tumor cells, CAFs, and other cells in the

PDAC microenvironment, culminating in the desmo-

plastic, immunosuppressive milieu that has been de-

scribed above [92–94].

Metastasis formation

Another feature of PDAC is its early progression to

metastatic disease [1]. In advanced stages, patients show

invasion of the (retro)peritoneum, the liver, and other

gastrointestinal organs, as well as – in some cases – the

vascular and/or the nervous system [95]. The key drivers

of PDAC metastasis formation are still poorly under-

stood, especially since the genetic composition of most

metastases is closely resembling the one of the corre-

sponding primary tumors [96–98]. Nevertheless, metas-

tasis formation appears to be a clonal process, since

primary PDAC tumors are composed of different sub-

clones with individual metastatic potential, and most of

the metastases show high levels of clonality, indicating

that they initially evolved from one or only a few dissem-

inated tumor cells [96, 98]. Mechanistic studies with

genetically traceable mouse models identified a crucial in-

volvement of epithelial-to-mesenchymal transition (EMT)

explaining also why the quasi-mesenchymal PDAC sub-

type as characterized by stronger expression of mesenchy-

mal genes may be associated with poorer prognosis due to

accelerated metastasis formation [61, 62, 99] (Fig. 4). EMT

so far has been considered to be orchestrated by a com-

plex network of transcription factors which repress epithe-

lial gene expression and/or induce mesenchymal gene

expression, including twist-related protein 1 and 2

(TWIST1/2), snail family zinc finger protein SNAI1 and 2

(SNAI1/2), zinc finger E-box-binding homeobox 1 and 2

(ZEB1/2), and paired mesoderm homeobox protein 1

(PRRX1a/b) [100, 101]. Especially the EMTactivator ZEB1

has been assigned a central role for tumor cell plasticity

and metastasis formation in murine PDAC models [102].

miRNAs, particularly miR-10, miR-21 and members of the

miR-200 family, constitute another regulatory level of

EMT and are closely interlinked with the EMT transcrip-

tion factors via diverse feedback and feedforward circuits

[103, 104]. Recently, a novel, partial program of EMT

has been described which is driven by post-transla-

tional internalization of epithelial proteins resulting in

cluster-like rather than single-cell dissemination [105].

Several parameters of the tumor micro- and macroen-

vironment are known to influence EMT regulation.

Amongst those, hypoxia, inflammation, and metabolic

stress appear to be of special importance [100]. Interest-

ingly, high blood glucose concentration, a crucial charac-

teristic of diabetes, has also been shown to facilitate

EMT and metastasis formation [7], thus linking a docu-

mented risk factor to a relevant tumorbiological process.

In order to colonize foreign tissues circulating PDAC

cells must undergo a reverse form of EMT (MET) and

re-acquire the epithelial state [106, 107]. Morphologic-

ally and mechanistically, MET displays many features of

EMT in an inverse manner. However, the details of this

process as well as its master regulators are still being

investigated.

EMT/MET phenomena seem to be crucial elements in

the process of metastasis formation, yet gene expression

profiling and epigenomic comparisons between primary

tumor cells and metastatic cells also disclosed an in-

volvement of other mechanisms, such as rewiring of the
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carbohydrate metabolism, e.g. in the oxidative branch of

the pentose phosphate pathway, as well as shifts in en-

ergy consumption [58, 108, 109]. Further studies re-

vealed a (re-)activation of embryonic programs and/or

elevated expression levels of cancer stem cell markers,

including forkhead box protein A1 (FOXA1), aldehyde

dehydrogenase 1 (ALDH1), ATP-binding cassette sub-

family G member 2 (ABCG2), and hepatocyte growth fac-

tor receptor (c-Met), in metastatic PDAC cells, suggesting

a close relationship between retrograde developmental

transition, cancer cell stemness and biological features of

metastasis formation [57, 110]. Finally, the primary

tumor appears to condition the future target organ of

metastasis by releasing soluble factors and/or exosomes,

thus generating a pre-metastatic niche – even in the sta-

tus of a premalignant lesion [111]. Key players in this re-

gard have been identified to be tissue inhibitor of

metalloproteinases 1 (TIMP-1) and macrophage migra-

tion inhibitory factor (MIF) [112, 113].

Therapy resistance

A signature hallmark of PDAC is its high degree of re-

sistance against virtually any kind of therapy [114–116].

Accordingly, overcoming treatment resistance will be

essential in order to improve the overall prognosis of

PDAC.

The therapeutic success of current first-line chemother-

apy involving cytidine analogues, the poly-chemothera-

peutic protocol FOLFIRINOX, or gemcitabine plus nab-

paclitaxel, respectively, is strongly limited by intrinsic and/

or acquired chemoresistance, and the underlying mecha-

nisms are only poorly understood [21, 115]. Several pre-

dictive biomarkers have been identified, e.g. increased

expression of ribonucleotide reductase catalytic subunits

M1/2 (RRM1/2), an enzyme catalyzing the reduction of ri-

bonucleotides, or human equilibrative nucleoside trans-

porter 1 (hENT1), a transmembrane protein which

imports nucleosides into the cytosol [117, 118]. In preclin-

ical studies, it was observed that elevated expression levels

of RRM1 indeed mediate resistance of PDAC cells to gem-

citabine [117–119], yet no association between RRM1 ex-

pression and OS was detected in clinical analyses [120].

Similar examples are given by integrin-linked kinase (ILK)

[121] and hypoxia-inducible, pro-apoptotic factor BCL2/

adenovirus E1B 19 kDa protein-interacting protein 3

(BNIP3) [122]. Furthermore, cells of the microenviron-

ment limit the efficacy of gemcitabine treatment. Recent

data show that CAFs contribute to gemcitabine failure by

Fig. 4 PDAC epithelial-mesenchymal transition and metastasis formation.
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metabolizing gemcitabine to the active metabolite 2′,2′-

difluorodeoxycytidine-5′-triphosphate (dFdCTP). How-

ever, since dFdCTP cannot cross cell membranes, this

process scavenges gemcitabine and reduces the effective

concentration of the active metabolite in the tumor cells

[123]. In case of FOLFIRINOX treatment, increased ex-

pression of thymidylate synthase (TS) and the 5-FU-catab-

olizing enzyme dihydropyrimidine dehydrogenase (DPD)

were shown to contribute to therapy resistance, both in

preclinical models and in retrospective clinical analyses

[119, 124]. However, despite all these efforts, biomarker-

based, individualized chemotherapy protocols are far from

being clinical standard. This is predominantly due to a

lack of prospective validation studies, let alone random-

ized controlled trials.

PDAC tumors also exhibit a high degree of radioresis-

tance often resulting in tumor progression even during

therapy [125]. As in case of chemoresistance, the

responsible mechanisms appear to be multifactorial.

From a biophysical point of view, the hypoxic PDAC

microenvironment reduces the biological effectiveness of

photon irradiation by 2-3 fold as compared to well-

oxygenated tissues and, thus, attenuates its therapeutic

efficacy [126, 127]. Additionally, several studies revealed

an overexpression of key regulators of the DNA damage

response, e.g. RAD51, in PDAC which contribute to ac-

celerated repair of radiation-induced DNA damage [128,

129]. Other studies provided evidence for an implication

of Integrin- or SMAD signaling in PDAC radioresistance

[130–132]. Finally, increased recruitment of monocytes

upon irradiation stimulating tumor cell proliferation and

neovascularization in response to therapy have been

discussed [133]. In order to counteract PDAC radioresis-

tance, several approaches focused on adjusting radio-

therapeutic protocols. As such, radiotherapy meanwhile

is frequently combined with concomitant chemotherapy

(radiochemotherapy), using gemcitabine, 5-FU, or cape-

citabine as radiosensitizing agents [134, 135]. Addition-

ally, stereotactic irradiation regimens with higher single

doses, including SBRT and ablative body radiotherapy,

are increasingly being employed aiming at the delivery

of higher biologically active doses to the tumor [26, 31,

136]. However, therapeutic success is still rather limited,

and future attempts should evaluate the clinical potential

of biologically and/or immunologically optimized radio-

chemotherapy strategies.

Novel approaches of mechanism-based, molecularly

targeted therapies

Biologically targeted therapies (1,363 words)

Since less than 20% of all PDAC patients exhibit surgi-

cally resectable disease at time of presentation, systemic

chemotherapy is currently the most frequently applied

treatment option [21]. Albeit the development of novel

poly-chemotherapy protocols, the overall prognosis, and

survival rate of PDAC patients still remain poor. Hence,

there is a strong demand for novel, biologically motivated

treatment strategies with higher specificity for PDAC-

relevant, tumor-driving targets. The genomic landscape of

PDAC is dominated by a handful of signature genes which

are affected by aberrations and mutations at high frequen-

cies: KRAS, CDKN2A, TP53, and SMAD4 [49, 51]. All of

these genes are still basically considered to be undrug-

gable, although agents targeting mutant TP53 have been

developed, and attempts to pharmacologically manipulate

RAS function are constantly increasing [137, 138]. So far,

substances targeting downstream effectors of these major

PDAC drivers or other regulators which are also fre-

quently altered, including BRAF, ERK, PI3K/AKT, and

mTOR, are in the focus of investigation.

The mitogen-activated protein kinase (MAPK) signaling

cascade offers promising perspectives in this regard, be-

cause PDAC cells are known to depend on MAPK signal-

ing, both in terms of progression and metastasis formation

[139, 140]. The most apical possibility to interfere with

MAPK signaling is targeting the epidermal growth factor re-

ceptor (EGFR). However, a phase III trial evaluating the effi-

cacy of anti-EGFR treatment with cetuximab in addition to

gemcitabine-based chemotherapy showed no significant

improvement in clinical outcome [141]. Recent data

attributed this to a compensatory activation of Integrin β1

signaling [142]. Downstream of EGFR, KRAS constitutes a

near-perfect target for PDAC treatment as revealed by pre-

clinical RNA interference experiments [143]. However, clin-

ical RNA interference is challenging, and no reliable KRAS

inhibitors have been described so far [144]. Nevertheless,

pharmacological disruption of the interaction between

KRAS and phosphodiesterase PDEδ was shown to effi-

ciently suppress PDAC progression in vitro and in vivo

[145]. The only targeting approach forMAPK signaling that

has entered the clinical routine thus far is the combination

of gemcitabine and the EGFR-specific tyrosine kinase in-

hibitor erlotinib [146]. Although EGFR is considered to be

its only target, erlotinib was reported to be similarly effect-

ive in tumors with wildtype or hyperactive mutants of

KRAS, respectively [147]. This implies that either inhibition

of tyrosine kinases other than EGFR or feedback regulatory

mechanisms between hyperactivated KRAS and EGFR may

be involved, respectively [148–151]. Sunitinib, a tyrosine

kinase inhibitor that does not target EGFR, failed to show

similar performance when combined with gemcitabine

[152], and preclinical data support the notion that indeed

inhibition of gemcitabine-induced MAPK signaling by erlo-

tinib accounts for the observed clinical benefits [153].

Several other inhibitors of MAPK signaling, including in-

hibitors of EGFR, MEK, ERK, and corresponding protein

phosphatases, have shown convincing performance in pre-

clinical studies [154–156], but their potential for clinical
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implementation remains to be examined, as for instance in

ACCEPT, a randomized phase II trial combining gemcita-

bine with the EGFR inhibitor afatinib (NCT01728818).

Single-drug treatments – most likely – will not be

sufficient to improve the therapeutic outcome of

PDAC [157]. Instead, dual or even multiple targeting

strategies appear to be required in order to achieve

significant advances. One example is the concomitant

inhibition of MAPK and PI3K/AKT signaling. Preclin-

ical data revealed that inhibition of MAPK signaling

results in potent compensatory activation of PI3K/

AKT signaling and vice versa, each being of import-

ance for PDAC progression [158, 159]. Indeed, con-

comitant inhibition of MAPK and PI3K/AKT signaling

did interfere with tumor progression to significantly

greater extent than the single-drug treatments in pre-

clinical PDAC models [158, 160]. However, other

studies reported only modest effects of combined

MAPK and PI3K/AKT inhibition [161–163], and

clinical trialing of this combination failed [164]. One

potential explanation could be that inhibitors of dif-

ferent target specificities were employed. A more de-

tailed characterization of the target spectrum of these

inhibitors would clarify this and could also help to

find new targets for mechanism-based therapies. In

this regard, upstream and/or transcriptional regulators

of PI3K expression, such as transducin beta-like 1

(TBL1), may also be of interest as studies in genetic

mouse models have identified them as crucial check-

points in PDAC development and progression [165].

Nevertheless, if this mechanism can be exploited

therapeutically remains unclear [166].

The mammalian target of rapamycin (mTOR) pathway

is best known for its functions in cell survival, prolifera-

tion, motility, and evasion of apoptosis [167]. In several

preclinical studies, mTOR inhibitors revealed promising

results [168–171], but it was also reported that inhibition

of mTOR stimulates feedback activation mechanisms in-

volving MEK/ERK or AKT signaling, respectively, further

emphasizing the need for combinatorial treatment regi-

mens [172–176]. Not surprisingly, multi-pathway inhib-

ition regimens are commonly associated with higher levels

of toxicity [177]. This toxicity often interferes with clinical

implementation. Nevertheless, clinical trials evaluating

mTOR inhibition as monotherapy in PDAC altogether

failed [178–180], and combined modality approaches of

mTOR inhibition in conjunction with capecitabine re-

vealed only limited improvements as compared to capecit-

abine alone [181]. These findings raise the question

whether mTOR inhibitors, despite their successful clinical

implementation for the treatment of neuroendocrine pan-

creatic tumors, may at all represent a therapeutic alterna-

tive for the treatment of PDAC [182], or whether such

approaches have been inadequately tested in the clinic.

PDAC is commonly considered a hypovascularized

tumor [183], but relevant expression of vascular endo-

thelial growth factor A (VEGF-A) has been observed

[184]. Therefore, the VEGF-A-specific antibody bevaci-

zumab was tested in combination with gemcitabine in a

randomized phase III trial with locally advanced PDAC

but failed to show improved outcome [185]. A possible

explanation could be the expression of other VEGF

isoforms. However, complementary phase III trials

which evaluated the VEGF receptor tyrosine kinase in-

hibitor axitinib in combination with gemcitabine, or

the combination of bevacizumab, gemcitabine, and er-

lotinib, respectively, also failed [186, 187]. In sum-

mary, these results render therapeutic targeting of

angiogenesis a questionable approach for the treat-

ment of PDAC [188].

A subset of PDAC tumors (approximately 15% of all

cases) is characterized by mutations in genes that are re-

lated to the DNA damage response [54]. Amongst those,

PDAC tumors carrying mutations in BRCA1/2 genes are

of highest interest as they are supposed to be defective

in homologous recombination DNA damage repair

[189]. Accordingly, patients with BRCA1/2-mutated tu-

mors were reported to benefit significantly more from

platinum-based chemotherapy than patients with

BRCA1/2 wildtype tumors [190, 191]. For BRCA1/2-de-

ficient tumors, the inhibition of Poly-(ADP-ribose)-poly-

merase (PARP) may be promising, since this enzyme

shares an axis of synthetic lethality with BRCA1/2 [192].

Initial trials examining the therapeutic potential of PARP

inhibitors in patients with BRCA1/2-deficient PDAC re-

ported promising results [193–196]. Currently, the ran-

domized phase III POLO trial is evaluating PARP

inhibition in patients who received first-line platinum-

based chemotherapy, and results are awaited in 2019

(NCT02184195). Beyond BRCA1/2, mutations in other

genes of the DNA damage response, including ATM,

may select for PARP inhibitor sensitivity [197].

In addition to the described genetic alterations,

PDAC tumors display relevant changes in epigenetic

modifications, including DNA methylation, histone

post-translational modification, nucleosome remodel-

ing, and regulation by non-coding RNAs [56]. In con-

trast to genetic alterations, epigenetic modifications

are in principle reversible, and it is plausible to as-

sume that pharmacological interference with epigen-

etic mechanisms underlying PDAC pathology and

progression could open new therapeutic perspectives

[198]. Preclinical results of epigenetic therapies have

so far been promising, PDAC cell plasticity could be

reduced, and resistance against standard chemother-

apy was attenuated. However, in mono-agent settings,

epigenetic therapeutics did not provide any measurable

benefits, demanding for combined modality settings, e.g.
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in conjunction with chemotherapy or in form of multi-

agent combinations, such as combined inhibition of bro-

modomain and extra-terminal motif (BET) proteins and

histone deacetylases (HDACs) [199]. Currently, various

phase I/II trials are ongoing which will determine the clin-

ical perspectives of such approaches. Despite all efforts,

individualized, mechanism-based treatment strategies for

PDAC are still far from being clinical standard [200].

Therapeutic targeting of hypoxia and metastasis for-

mation appears to be very attractive in the PDAC con-

text, since hypoxia is a principal determinant of therapy

resistance and metastasis formation, and metastases are

the major cause of death [20, 74]. Regardless of all pre-

clinical efforts [201], however, no therapeutic strategy

could so far be established. Sort of alternatively, efforts

to (re-)activate the immune system in order to detect

and combat macro- and micro-metastases have been

undertaken and will be discussed in the following.

Immunotherapy

Immunotherapy implementing immune checkpoint in-

hibitors has revolutionized cancer treatment in the last

years [202]. Therapeutic antibodies targeting cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) or the axis of

programmed cell death protein 1 (PD-1) and its corre-

sponding ligand PD-L1 have shown compelling results

in several different cancer types, including metastasized

melanoma and lung cancer [36, 203]. Hence, immune

checkpoint inhibition was also tested in PDAC [35, 39],

but compared to melanoma and lung cancer, consider-

ably smaller numbers of patients (approximately 2%) ex-

hibited clinical benefits [40, 204]. Consistently, the

responding tumors showed high levels of microsatellite

instability, providing a mechanistic explanation as well

as a potential future stratification marker, since micro-

satellite instability is known to increase the number of

tumor-associated neo-antigens [205].

A major determinant of the immunotherapeutic suc-

cess are tumor-specific T cells and their (re-)activation.

Although their numbers have been described to be ra-

ther low in PDAC patients [90], recent data suggest that

the tumor-reactive T-cell repertoire is similar to the one

found in melanoma where T cell-based therapies mean-

while have relevant therapeutic impact [91]. Further

studies showed that neo-antigen quality rather than

quantity, and strong intra-tumoral CD8+ T cell infiltra-

tion are associated with prolonged survival, indicating

that the stimulation of anti-tumor T cell responses can

indeed be a promising strategy for the treatment of

PDAC [60, 206, 207]. Along these lines, different vaccin-

ation strategies employing various kinds of antigens have

already been tested [208–210]. The Algenpantucel-L vac-

cine consisting of irradiated, allogeneic pancreatic tumor

cells stably expressing alpha-1,3-galactosyltransferase 2

(A3GALT2), a glycosylating enzyme that mainly targets

lipids and extracellular proteins, turned out to be the most

promising candidate for a PDAC-targeting vaccine [209].

However, this vaccine failed to improve treatment efficacy

when being tested in a randomized phase III trial com-

bined with the standard of care [211]. Other antigens that

were examined include peptides derived from human tel-

omerase 1 (TERT1) and GVAX, a vaccine comprised of

autologous or allogeneic tumor cells expressing the den-

dritic cell-stimulating cytokine GM-CSF [212, 213]. Unfor-

tunately, none of these vaccines achieved convincing

clinical results. In principle, common PDAC driver muta-

tions, such as KRASG12D, can harbor tumor-specific, T cell

epitopes [214]. An ongoing phase II trial first predicts

such neo-antigens using exome-sequencing of tumor

biopsies, followed by production of personalized den-

dritic cell vaccines loaded with the respective epitopes

(NCT03300843) [215]. Whether this strategy turns

out to be successful needs to be awaited. Overall, sev-

eral vaccination approaches could successfully elicit

measurable anti-tumor T cell responses, yet so far

none of these strategies resulted in clear clinical ben-

efits [216].

Antigen-independent immunostimulatory therapies

aim at the activation of antigen-presenting cells. Diverse

receptor-ligand-axes have been explored in this regard.

As such, treatment with agonistic anti-CD40 antibodies

is well known to activate antigen-presenting cells and to

polarize macrophages towards the pro-inflammatory

M1-like state [217, 218]. However, clinical evaluation of

this strategy in PDAC patients disclosed only short-term

responses, and no long-term anti-tumor immunity was

observed [219]. Nevertheless, CD40 stimulation in com-

bination with chemotherapy and immune checkpoint

blockade is currently under clinical investigation in a

phase I/II trial (NCT03214250). Complementary ap-

proaches to achieve activation of antigen-presenting cells

involve ligand-dependent stimulation of pattern recogni-

tion receptors (PRRs) [220]. Indeed, agonists of toll-like

receptors (TLRs), RIG-I-like helicases (RLHs), and the

stimulator of interferon genes (STING) revealed encour-

aging results in preclinical PDAC models [221–223], but

their clinical potential remains to be elucidated.

Bypassing the in situ steps of T cell priming by anti-

gen-presenting cells, adoptive transfer of T cells carrying

chimeric antigen receptors (CARs) has proven powerful

clinical performance in B-cell malignancies [224]. CAR

T cells recognize specific cancer cell surface antigens

through a single-chain variable fragment (scFv) whose

ligation stimulates T cell activation via the intracellular

domains of the CAR construct, resulting in efficient T

cell-mediated killing of the target cell [225]. PDAC ex-

hibits several tumor-specific antigens, such as carci-

noembryonic antigen (CEA), mesothelin (MSLN), and
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mucin 1 (MUC1), which are promising determinants for

CAR T cell therapy [226, 227]. However, for solid cancer

entities, intra-tumoral recruitment and trafficking of

CAR T cells as well as the commonly observed immuno-

suppressive tumor microenvironment appear to be

major challenges. Intelligent combinations, thus, are

needed in order to overcome these obstacles.

A cardinal feature of the immunosuppressive PDAC

microenvironment is its massive stromal content and the

excessive deposition of extracellular matrix, including

hyaluronan [72]. Early phase clinical trials combining re-

combinant human hyaluronidase 20 (rHuPH20) with

gemcitabine and nab-paclitaxel revealed promising results,

particularly in those patients whose tumors were charac-

terized by high levels of hyaluronan [228]. Reporting of

the HALO-109-301 phase III trial (NCT02715804) is

awaited in order to fully assess the clinical performance of

this approach [229]. Inhibition of FAK1, a tyrosine kinase

involved in the process of CAF generation, constitutes an-

other approach to interfere with stromal function in

PDAC, and pharmacological FAK1 inhibition eventually

rendered preclinical PDAC model systems more suscep-

tible to T cell immunotherapy and immune checkpoint in-

hibition [73]. Other studies showed that genetic ablation

or inhibition of FAK1 also increases PDAC responsiveness

to gemcitabine and nab-paclitaxel [230, 231]. In rather

strong contrast, genetic deletion of stromal myofibroblasts

in PDAC mouse models led to disease exacerbation and

diminished animal survival due to enhanced regulatory T

cell-mediated immunosuppression, clearly calling for cau-

tion when targeting components of PDAC stroma [78].

On a cellular level, massive infiltration by myeloid

cells, such as MDSCs, and resulting exclusion of CD8+

T cells are major hallmarks of the immunosuppressive

PDAC microenvironment [86, 232]. Several myeloid

cell-targeting approaches have been investigated in re-

cent years in order to overcome these mechanisms of

immunosuppression [82, 233, 234]. Chemokine receptor

2 (CCR2), for instance, is known to contribute to the

infiltration of pancreatic tumors by monocytes and mac-

rophages, and this is associated with reduced patient

survival and poor outcome [235]. Strikingly, the combin-

ation of CCR2 blockade and gemcitabine/nab-paclitaxel

chemotherapy showed promising results in phase I trials

[85, 236]. However, the follow-up phase Ib/II trial

(NCT02732938) was discontinued due to strategic consid-

erations, and instead phase I/II trials with combined mo-

dality approaches of CCR2 blockade in conjunction with

pre-operative SBRT and immune checkpoint inhibition

were recently initiated (NCT03778879, NCT03767582).

Another target that regulates the function of macrophages

and MDSCs in PDAC is M-CSF. Preclinical data suggest

that M-CSF blockade can indeed reprogram macrophages

and thus, synergize with immune checkpoint inhibition,

but the clinical potential of this strategy remains to be ex-

amined [237].

In summary, (re-)activating anti-PDAC immunity in

order to improve the overall clinical outcome appears

clearly more challenging than extrapolated experiences

from other cancer entities have suggested. Probably the

most promising strategies would incorporate combina-

tions of different immunotherapeutic approaches and/or

combinations with other (classical) treatment modalities,

such as chemotherapy and/or radiotherapy [238].

Combined modality treatment approaches encompassing

radio(chemo)therapy

In order to improve the efficacy and the outcome of

clinical PDAC treatment, it will be inevitable to develop

novel treatment strategies which combine different

therapeutic modalities aiming at achieving synergism

[239]. The rationale for such approaches is to outcom-

pete therapy resistance, but their development remains

challenging as combined modality treatments are fre-

quently associated with higher toxicity levels [240]. We

already discussed several combined modality attempts

involving different chemotherapeutics, either with each

other or with novel, molecularly targeted inhibitors. At

this point, we want to concentrate on combinatorial ap-

proaches involving radiotherapy (Fig. 5).

Radiotherapy has rather infrequently been used for

the treatment of PDAC. Nevertheless, there have been

approaches to improve the efficacy of radiotherapy in

PDAC. One obvious strategy is to combine radiother-

apy with radiosensitizing agents which either can be

classical chemotherapeutic drugs, such as gemcitabine

or 5-FU, or – as has been reported more recently –

molecularly designed inhibitors that target specific

proteins and/or structures involved in PDAC radiore-

sistance [28, 125]. The MAPK pathway is a very at-

tractive target [140], and preclinical data derived from

different PDAC mouse models showed that interfer-

ence with MAPK signaling by cetuximab treatment

can indeed increase the efficacy of radiochemotherapy

[241, 242]. Encouraged by these observations, several

clinical trials were initiated, yet with only modest re-

sults [243–246]. The major reason was the persist-

ently high rate of distant failure due to metastasis

formation, rather than poor local control [244, 246].

Pharmacological intervention with the PI3K/AKT and

the mTOR pathway has also been examined with regards

to its radiosensitizing potential. Several preclinical stud-

ies obtained basically positive results [247–253]. How-

ever, due to very unfavorable pharmaceutical properties

of the employed substances, e.g. elevated toxicity levels

and crossover inhibition, none of these approaches have

entered the clinic thus far.
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A very direct approach of radiosensitization is the em-

ployment of molecularly designed drugs which target

components of the DNA damage response, specifically the

upstream kinases ATM, ATR, CHK1/2, and DNA-PK

[254–256]. Several of these inhibitors displayed convin-

cing synergism with ionizing irradiation or DNA-dam-

aging chemotherapy in preclinical PDAC model systems

[257–263], but the transferability into the clinic remains

to be investigated – particularly in view of local control

versus distant failure. PARP is another example for a DNA

damage response regulator that can be targeted by highly

refined inhibitors, and preclinical data suggest that PARP

inhibition indeed can radiosensitize PDAC cells [264].

However, since PARP is known to share synthetic lethality

with BRCA1/2 [192], PARP inhibition may turn out to be

only effective in BRCA1/2 deficient tumors [265]. This is a

general lesson that has been learned in the era of molecu-

larly targeted therapy: Molecularly designed therapy re-

quires upfront molecular diagnostics and proper patient

stratification, since otherwise promising agents are prone

to fail if they are trialed in the wrong subgroups of

patients.

Apart from its potential to induce tumor cell death,

radiotherapy is known to recondition the tumor micro-

environment and to stimulate systemic anti-tumor im-

mune responses – a phenomenon summarized as

abscopal effects of radiotherapy [266–268]. However, in

the monotherapy setting, radiation is often not sufficient

to break the immunosuppressive milieu of established

tumors, and combinations with immunostimulating

agents are required. As an example, radiotherapy plus

GM-CSF, a potent stimulator of antigen-presenting cell

maturation, produced objective abscopal responses in a

subset of patients with different metastatic tumors [269],

and a recent case report showed similar effects in a pa-

tient with metastatic pancreatic cancer [270]. In preclin-

ical model systems, PDAC tumors have been reported to

regress convincingly upon immunotherapeutic targeting

of CCL2 or PD-L1 in combination with radiotherapy via

a reduction of intra-tumoral immunosuppressive mye-

loid cells and enhanced recruitment of tumor-specific T

cells [133, 271], and the clinical performance of this ap-

proach will be investigated (NCT03778879, NCT03767582).

Similarly, radiotherapy has been described to repro-

gram tumor-infiltrating macrophages towards an M1-

like phenotype and to favor intra-tumoral recruitment

of adoptively transferred T cells in a mouse model of

neuroendocrine pancreatic cancer [272]. These obser-

vations were confirmed by pilot data from patients with

advanced PDAC stages undergoing neoadjuvant irradi-

ation prior to tumor resection revealing 3- to 5-fold in-

creases in intra-epithelial CD4+ and CD8+ T cells as

compared to non-irradiated control patients [272, 273].

If these findings may also be transferred to combina-

tions with PDAC-specific CAR T cells remains to be ex-

amined. On a mechanistic level, cytosolic DNA-sensing

upon irradiation-induced DNA damage and type I

interferon signaling appear to be involved in the immu-

nostimulating effects of radiotherapy [274, 275]. Ac-

cordingly, artificial activation of cytosolic DNA sensors,

Fig. 5 Combined modality perspectives for the treatment of PDAC.
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such as STING, was shown to increase the efficacy of

radiotherapy by enhancing CD8+ T cell responses – at

least in preclinical PDAC models [276].

From clinical experiences with other cancer entities it

is becoming increasingly evident that the combination of

radiotherapy and immunotherapy requires very careful

considerations regarding timing, dosing, and treatment

sequence in order to achieve the best outcome [266].

This may be of particular interest for PDAC with its

highly challenging immunosuppressive microenviron-

ment. In brief, higher single doses of radiotherapy, e.g.

SBRT or ablative protocols, applied in neoadjuvant set-

tings appear to be beneficial, and immunotherapy needs

to be started before or with the first irradiation fraction,

respectively [266]. However, the optimal treatment regi-

men and the best combination of agents for PDAC remain

unclear as well as the impact of additional chemotherapy

and other factors, such as type II diabetes and/or obesity.

A pilot study addressing some of these combinatorial is-

sues added radiotherapy to CD40-dependent immunosti-

mulation plus anti-CTLA-4/anti-PD-1-mediated immune

checkpoint blockade in genetically engineered PDAC

mouse models and utilized machine learning algorithms

to extract signature patterns for each therapeutic compo-

nent [277]. Along these lines, more in depth-analyses

are needed in order to fully exploit the synergism

between radiotherapy and immunotherapy. Neverthe-

less, several clinical phase I/II trials combining

radiotherapy with different immunotherapeutic ap-

proaches have been initiated for advanced PDAC,

and first results are awaited [278] (NCT02648282,

NCT03161379, NCT03767582, NCT03563248).

Conclusions

PDAC represents a cancer entity of extraordinarily high

malignancy, particularly poor prognosis, and constantly

increasing patient numbers. Its aggressive biology and

the fact that most patients present in advanced or dis-

seminated stages of disease render the development of

novel PDAC treatment strategies one of the super-

ordinate challenges in current oncological research. Re-

sults of the last 20 years have led to the establishment

of a detailed multi-step model of PDAC development

and progression. Although this has unquestionably re-

formed our understanding of PDAC as a disease, none

of these findings could be successfully translated into a

therapeutic breakthrough so far. It is becoming increas-

ingly evident that the clinical performance of single-

agent therapies lags behind the original expectations,

and instead intelligent combinations appear to be re-

quired. In this regard, radiotherapeutic protocols, and

particularly modern radiation techniques with high

conformality and steep dose gradients, represent at-

tractive partners both for biologically motivated as well

as for immunotherapeutic strategies. Importantly, how-

ever, this will require in-depth optimization of timing,

dosing, and treatment sequences, as well as careful up-

front patient stratification. Otherwise per se promising

combinations run the risk of failing prematurely.
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