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Pancreatic regulation of glucose homeostasis

Pia V Röder1, Bingbing Wu2, Yixian Liu2 and Weiping Han1,2

In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is

accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain,

pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by

secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the

hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence,

comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the

mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to

develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other

organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways

underlying the network will be discussed.
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THE PANCREAS IS AN EXOCRINE AND ENDOCRINE

ORGAN

The pancreas has key roles in the regulation of macronutrient

digestion and hence metabolism/energy homeostasis by releas-

ing various digestive enzymes and pancreatic hormones. It is

located behind the stomach within the left upper abdominal

cavity and is partitioned into head, body and tail. The majority

of this secretory organ consists of acinar—or exocrine—cells

that secrete the pancreatic juice containing digestive enzymes,

such as amylase, pancreatic lipase and trypsinogen, into the

ducts, that is, the main pancreatic and the accessory pancreatic

duct. In contrast, pancreatic hormones are released in an

endocrine manner, that is, direct secretion into the blood

stream. The endocrine cells are clustered together, thereby

forming the so-called islets of Langerhans, which are small,

island-like structures within the exocrine pancreatic tissue that

account for only 1–2% of the entire organ (Figure 1).1 There

are five different cell types releasing various hormones from

the endocrine system: glucagon-producing α-cells,2 which

represent 15–20% of the total islet cells; amylin-, C-peptide-

and insulin-producing β-cells,2 which account for 65–80% of

the total cells; pancreatic polypeptide (PP)-producing γ-cells,3

which comprise 3–5% of the total islet cells; somatostatin-

producing δ-cells,2 which constitute 3–10% of the total cells;

and ghrelin-producing ε-cells,4 which comprise o1% of the

total islet cells. Each of the hormones has distinct functions.

Glucagon increases blood glucose levels, whereas insulin

decreases them.5 Somatostatin inhibits both, glucagon and

insulin release,6 whereas PP regulates the exocrine and

endocrine secretion activity of the pancreas.3,7 Altogether, these

hormones regulate glucose homeostasis in vertebrates, as

described in more detail below. Although the islets have a

similar cellular composition among different species, that is,

human, rat and mouse, their cytoarchitecture differs greatly.

Although islets in rodents are primarily composed of β-cells

located in the center with other cell types in the periphery,

human islets exhibit interconnected α- and β-cells.2,8

Through its various hormones, particularly glucagon and

insulin, the pancreas maintains blood glucose levels within a

very narrow range of 4–6mM. This preservation is accom-

plished by the opposing and balanced actions of glucagon and

insulin, referred to as glucose homeostasis. During sleep or in

between meals, when blood glucose levels are low, glucagon is

released from α-cells to promote hepatic glycogenolysis. In

addition, glucagon drives hepatic and renal gluconeogenesis to

increase endogenous blood glucose levels9 during prolonged

fasting. In contrast, insulin secretion from β-cells is stimulated

by elevated exogenous glucose levels, such as those occurring

after a meal.10 After docking to its receptor on muscle and

adipose tissue, insulin enables the insulin-dependent uptake of
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glucose into these tissues and hence lowers blood glucose

levels by removing the exogenous glucose from the blood

stream (Figure 2).11–13 Furthermore, insulin promotes

glycogenesis,14–26 lipogenesis27,28 and the incorporation of

amino acids into proteins;29 thus, it is an anabolic hormone,

in contrast to the catabolic activity of glucagon.

THE INSULIN SECRETION SIGNALING PATHWAY

Endocrine cells secrete their respective hormones in response

to external signals, such as nutrient intake or stress, via

humoral, neural or hormonal signaling pathways. The under-

lying molecular process that translates the stimulus into the

actual hormone release is called stimulus-secretion coupling

which is known as the stimulus-dependent exocytosis of a

particular substance, such as glucose-stimulated β-cell insulin

release.30

In β-cells, the main stimulus for insulin release are elevated

blood glucose levels following a meal.10 The circulating blood

glucose is taken up by the facilitative glucose transporter

GLUT2 (SLC2A2), which is located on the surface of the

β-cells. Once inside the cell, glucose undergoes glycolysis,

thereby generating adenosine triphosphate (ATP), resulting in

an increased ATP/ADP ratio. This altered ratio then leads to

the closure of ATP-sensitive K+-channels (KATP-channels).

Under non-stimulated conditions, these channels are open to

ensure the maintenance of the resting potential by transporting

positively charged K+-ions down their concentration gradient

out of the cell. Upon closure, the subsequent decrease in the

magnitude of the outwardly directed K+-current elicits the

depolarization of the membrane, followed by the opening of

voltage-dependent Ca+-channels (VDCCs). The increase in

intracellular calcium concentrations eventually triggers the

fusion of insulin-containing granules with the membrane and

the subsequent release of their content.31 The whole secretory

process is biphasic with the first phase peaking around 5

minutes after the glucose stimulus with the majority of insulin

being released during this first phase. In the second, somewhat

slower, phase, the remaining insulin is secreted.32–34 Insulin is

stored in large dense-core vesicles that are recruited to the

proximity of the plasma membrane following stimulation such

that insulin is readily available.35,36 The key molecules that

mediate the fusion of the insulin-containing large dense-core

vesicles are the synaptosomal-associated protein of 25 kDa

(SNAP-25), syntaxin-1 and synaptobrevin 2 (or vesicle-

associated membrane protein VAMP2), all of which belong

to the superfamily of the soluble N-ethylmaleimide-sensitive

factor attachment protein (SNAP) receptor proteins (SNAREs).

Together with the Sec1/Munc18-like (SM) proteins they

form the so-called SNARE complex.37 To initiate fusion,

synaptobrevin 2, a vesicle (v-)SNARE that is integrated into

the vesicle’s membrane, fuses with the target (t-)SNAREs

syntaxin-1 and SNAP-25, which are located in the target cell

membrane,38,39 with mammalian uncoordinated (munc)-18

playing a key regulatory role (Figure 3).40,41

To date, numerous SNARE isoforms, including syntaxin-1,

-3 and -4, SNAP-25 and -23, as well as syntaptobrevins 2 and 3

(VAMP2 and 3), have been shown to be involved in

glucose-stimulated insulin secretion,42–46 whereas VAMP8,

a non-essential SNARE protein for glucose-stimulated insulin

secretion, has a role in the regulation of the glucagon-like

Figure 1 Anatomical organization of the pancreas. The exocrine function of the pancreas is mediated by acinar cells that secrete digestive

enzymes into the upper small intestine via the pancreatic duct. Its endocrine function involves the secretion of various hormones from

different cell types within the pancreatic islets of Langerhans. The micrograph shows the pancreatic islets. LM×760 (Micrograph provided

by the Regents of University of Michigan Medical School © 2012). Adapted from Human Anatomy and Physiology, an OpenStax College

resource.404
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peptide-1-potentiated insulin secretion.47 In addition to

SNARE and SM proteins, a calcium sensor is required for

the initiation of membrane fusion. Synaptotagmins, which are

highly expressed in neurons and endocrine cells, were shown to

participate in Ca2+-dependent exocytosis processes. To date,

17 synaptotagmins (Syts 1–17) have been identified and only

eight of them, namely Syt-1, -2, -3, -5, -6, -7, -9 and -10, are

able to bind calcium.48 Following Ca2+-binding,

Figure 2 Maintenance of blood glucose levels by glucagon and insulin. When blood glucose levels are low, the pancreas secretes glucagon,

which increases endogenous blood glucose levels through glycogenolysis. After a meal, when exogenous blood glucose levels are high,

insulin is released to trigger glucose uptake into insulin-dependent muscle and adipose tissues as well as to promote glycogenesis.

Figure 3 Glucose-stimulated insulin release from a pancreatic β-cell. Exogenous glucose is taken up by GLUT2 and undergoes glycolysis

inside the cell. Elevated adenosine triphosphate (ATP) levels alter the ATP/ADP ratio, which in turn leads to the closure of ATP-sensitive

K+-channels. The subsequent membrane depolarization opens voltage-dependent Ca2+-channels in response to increasing intracellular

calcium levels, which eventually trigger insulin secretion following vesicle fusion with the membrane.
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synaptotagmins form a complex with the SNAREs to facilitate

and trigger the vesicle-membrane fusion process. Among the

synaptotagmin family, Syt-3, -5, -7, -8 and -9 are implicated in

insulin exocytosis.49–52

EXTERNAL FACTORS AFFECTING PANCREATIC

HORMONE SECRETION

Metabolism–cAMP coupling

The glucose-triggered stimulus-secretion coupling is an

established paradigm of insulin secretion from β-cells and

includes a great variety of modulators that trigger, potentiate or

inhibit glucose-stimulated insulin secretion, primarily through

G-protein-coupled receptors (GPCRs). The most traditional

external factor that initiates insulin secretion is glucose. In

addition to its trigger function, glucose also induces pathways

that amplify insulin secretion through metabolism-cAMP

(cyclic adenosine monophosphate) coupling or the incretin

hormones glucagon-like peptide (GLP)-1 and glucose-

dependent insulinotropic peptide (GIP).31 Metabolism–cAMP

coupling refers to the signaling cascade that occurs after the

conversion of ATP, which is generated during intracellular

glucose metabolism, into cAMP by adenylate cyclase (AC),53

which in turn activates protein kinase A (PKA)54 and

cAMP-regulated guanine nucleotide exchange factors, also

referred to as exchange protein directly activated by cAMP

(Epac) 2.55,56 Although Epac2 activation amplifies insulin

secretion by mobilizing calcium from internal stores to increase

Ca2+ levels57,58 and by controlling the granule density in

proximity to the plasma membrane,59 activated PKA exerts

its effects by modulating KATP-channel
60,61 and calcium

channel62,63 activity through phosphorylation, thereby

enhancing the number of highly Ca2+-sensitive insulin-

containing granules64 and the probability of releasing secretory

vesicles from the readily releasable pool,65 respectively.

The incretins GLP-1 and GIP

The gut-derived hormones GLP-1 and GIP, which are secreted

from enteroendocrine L-cells66 and K-cells,67 respectively,

upon glucose,66,68 fructose,69 amino acid70 and free fatty acid

(FFA)71,72 ingestion, also potentiate insulin release through the

so-called incretin effect. This effect describes the observation

that orally, but not intravenously, administered glucose

enhances insulin secretion by triggering GLP-1 and GIP

secretion;73–75 the resulting potentiation of insulin secretion

may account for up to 50% of the total release. The underlying

mechanism includes GLP-1 and GIP binding to their GPCRs

(GLP-1R and GIPR), both of which are expressed in pancreatic

β-cells.76 The binding induces a conformational change in the

receptors’ structure, followed by the exchange of guanosine

diphosphate for guanosine triphosphate and the subsequent

dissociation of the Gsα-subunit from the receptors. This

subunit, in turn, activates adenylate cyclase to convert ATP

into cAMP, thereby stimulating the cAMP signaling pathway

described above.77–82 Furthermore, GLP-1 increases intra-

cellular calcium concentrations by mobilizing Ca2+ from

ryanodine-sensitive stores83,84 or, similar to GIP, by acting

on voltage-dependent Ca2+-channels,85 thereby potentiating

insulin release.85–87 Recent studies have also shown that

GLP-1R agonists, such as exendin-488, induce the PKA-

mediated phosphorylation of Snapin or Synaptotagmin-7,

which in turn enhances GSIS by Snapin interacting with

SNAP-2589 or by directly enhancing glucose- and Ca2+-trig-

gered insulin release.90

Free Fatty Acids

FFAs not only stimulate incretin secretion but are also known

to modulate insulin release through fatty acid metabolism.

Although long-chain FFAs augment insulin secretion, short-

chain FFAs inhibit it. The binding and subsequent interaction

of long-chain FFAs with the G-protein-coupled free fatty acid

receptor (FFAR) 1 in the pancreatic β-cells leads to the

activation of phospholipase C. PLC then hydrolyzes phospha-

tidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol and

inositol-1,4,5-triphosphate (IP3), with the latter docking on a

calcium channel in the endoplasmic reticulum. The subsequent

release of Ca2+ into the cytosol increases the intracellular Ca2+

concentration, which eventually triggers insulin secretion.91–94

In contrast, short-chain FFAs inhibit glucose-stimulated insulin

secretion due to decreased glucose oxidation and the

subsequently decreased ATP/ADP ratio.95 Another inhibitor

of insulin release is stress, specifically norepinephrine (nora-

drenaline) produced in response to stress.96 Norepinephrine

binds to its α2-adrenergic receptors, which are linked to

GPCRs, resulting in the inhibition of AC as well as in

hyperpolarization. This prevents an increase in the cytosolic

Ca2+ concentration and, subsequently, insulin secretion.97,98

INTERPLAY BETWEEN THE PANCREATIC ISLETS AND

OTHER ORGANS

The brain–islet axis

Just as insulin exerts its effects on other organs and tissues,

other organs interact with the pancreas to modulate insulin

secretion (Figure 4). One of these interacting organs is the

brain, which comprises the mutual brain–islet axis that

interacts with the pancreas and vice versa. The pancreas is

highly innervated with both, parasympathetic99,100 and

sympathetic100,101 nerve fibers from the autonomic nervous

system. At the same time, insulin receptors are widely

distributed within the brain, including the hypothalamus,

cerebral cortex, cerebellum102 and hippocampal formation103

in humans, as well as the olfactory and limbic areas,104,105

hypothalamus106—particularly the periventricular nucleus107

and the arcuate nucleus108,109—hippocampus and the choroid

plexus105 in rat brains. Lesions in various brain regions were

shown to affect pancreatic hormone secretion. The destruction

of the ventromedial hypothalamus results not only in insulin

hypersecretion110–112 due to loss of the ventromedial

hypothalamus-mediated inhibitory impact on pancreatic

β-cells113 but also in higher glucagon levels.111,112 Glucagon

secretion may also be modulated by the hypothalamic brain-

derived neurotrophic factor114 via efferent nerves,115 whereas

the melanocortin system directly reduces basal insulin levels by

Pancreatic regulation of glucose homeostasis
PV Röder et al

4

Experimental & Molecular Medicine



stimulating sympathetic nerve fibers via α-adrenoceptors.116

Acting via α-adrenoceptors,117 norepinephrine also inhibits

insulin secretion,96 which is an important aspect of the fight-

or-flight response. The neurotransmitter Neuropeptide Y

(NPY), which is mainly expressed in the sympathetic nerve

fibers of the autonomic nervous system, also blunts insulin

release,118,119 and the loss of NPY’s inhibitory action results in

elevated basal and glucose-stimulated insulin secretion as well

as in increased islet mass.120 NPY binding to its GPCR Y1
causes the activated Giα-subunit to block adenylate cyclase

activation, which in turn inhibits the cAMP pathway.121

Furthermore, the NPY-mediated inhibition was shown to be

Gβγ- and Ca2+-independent.122 In addition to the well-known

insulin stimulator acetylcholine, which exerts its effects via M3

muscarinic receptors,123 melanin concentrating hormone,

vasoactive intestinal peptide (VIP), its close relative pituitary

adenylate cyclase-activating polypeptide (PACAP) and gastrin-

releasing peptide also promote insulin and, in the case of

VIP124 and PACAP,125 glucagon release. The various neuro-

peptides exert their effects through various pathways, including

the extracellular signal-regulated kinase (ERK)/Akt pathway,

and modulation of Ca2+-influx (melanin concentrating

hormone),126 cAMP and, to a lesser extent, PI3K signaling

(VIP and PACAP),127,128 muscarinic/β-adrenoceptors signaling,

PI3K/PKC signaling and Ca2+-mobilization from intracellular

stores (gastrin-releasing peptide).129,130

Likewise, insulin release is stimulated by the so-called

cephalic phase, which represents the conditioned reflex of

increased hormone secretion, referred to as cephalic phase

insulin response,131 even in the absence of nutrients/glucose as

a trigger,132–134 such as when anticipating a meal, to prepare

the organism to adequately respond to incoming nutrients.135

Moreover, cephalic phase insulin response is pivotal for

ensuring normal postprandial glucose management.136 The

neural mechanism underlying cephalic phase insulin response

was found to include cholinergic and non-cholinergic

processes136 as well as the dorsal vagal complex located in

the medulla oblongata.137 Conversely, insulin released in

response to a meal enters the brain via the blood–brain–

barrier138 to decrease food intake139,140 by stimulating

hypothalamic pro-opiomelanocortin neurons141 and initiating

the PI3K signaling pathway142 in these pro-opiomelanocortin

neurons.143 In contrast to its pro-opiomelanocortin-

stimulating action, insulin inhibits NPY expression144 in

Agouti-related peptide (AgRP/NPY) neurons, which are known

to secrete the orexigenic neuropeptides NPY145–147 and

AgRP.148,149 Both, peripheral and central insulin signaling are

impaired in obese or diabetic states.150–154

The liver–islet axis

The second group represents the liver–islet axis. The liver has a

key role in glucose homeostasis by storing (glycogenesis) or

releasing (glycogenolysis/gluconeogenesis) glucose upon

Figure 4 The interplay of the pancreas with the brain, liver, gut as well as adipose and muscle tissue. The pancreas interacts with the

brain, liver, gut and adipose and muscle tissue in a highly sophisticated network via various hormones, neurotransmitters and cytokines.

BNDF, brain-derived neurotrophic factor; CCK, cholecystokinin; GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like

peptide 1; GRP, gastrin-releasing peptide; IL-6, Interleukin 6; MCH, melanin concentrating hormone; NPY, neuropeptide Y; PACAP,

pituitary adenylate cyclase-activating polypeptide; POMC, pro-opiomelanocortin; VIP, vasoactive intestinal peptide.
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interaction with insulin and glucagon, respectively. The binding

of glucagon to its hepatic GPCR evokes the signaling cascade

described under ‘External factors affecting pancreatic hormone

secretion’, eventually resulting in the activation of PKA,

which in turn stimulates two processes; one promotes

glycogenolysis/gluconeogenesis and the other inhibits

glycolysis/glycogenesis.155,156 Glycogenolysis is a multistep

process that includes the PKA-mediated phosphorylation of

phosphorylase kinase,157 cleavage of glucose-1-phosphate

(G-1-P) from glycogen by activated glycogen phosphorylase

a158 and the conversion of G-1-P into G-6-P,159 eventually

resulting in phosphate and free glucose. Hepatic gluconeo-

genesis is promoted by the PKA-mediated phosphorylation of

the cAMP response element-binding protein, which in

turn upregulates peroxisome proliferator-activated receptor-γ

coactivator (PGC)-1.160 Together with the hepatocyte nuclear

factor (HNF)-4, PGC-1 induces the transcription of phospho-

enolpyruvate carboxykinase,161 which catalyzes the conversion

of oxaloacetate into phosphoenolpyruvate, a rate-limiting step

in gluconeogenesis. This is followed by reversed glycolysis,

during which stimulation of the bifunctional PFK-2/FBPase-2

leads to both, enhanced gluconeogenesis through the

abrogation of disabled fructose-1,6-bisphosphatase (FBPase)-1,

which facilitates the successive conversion of substrates into

G-6-P, and to suppressed glycolysis.162,163 Glycolysis is further

inhibited by the PKA-mediated inactivation of pyruvate

kinase,164–166 resulting in the production of glucose instead

of pyruvate. In addition, glucagon was found to suppress

pyruvate kinase gene expression as well as to enhance pyruvate

kinase mRNA degradation.167,168 Finally, the PKA-induced

inactivation of hepatic glycogen synthase169–171 decreases

glycogen synthesis and concomitantly increases the hepatic

glucose pool.

As glucagon’s opponent, insulin stimulates glycolysis via

enhanced expression of the hepatic glucokinase gene,14,15 a key

enzyme that converts glucose into G-6-P. This increase is

mediated by the sterol regulatory element binding protein-1c15

and requires the absence of cAMP.14 Furthermore, insulin

inactivates glycogen phosphorylase and glycogen synthase

kinase (GSK)-3172 through the PI3K pathway, which in turn

activates glycogen synthase.18–20 The second liver-specific

effect of insulin is to repress the expression of the phospho-

enolpyruvate carboxykinase and G-6-Pase genes; the first by

disrupting the association of cAMP response element-binding

protein and RNA polymerase II with the phosphoenolpyruvate

carboxykinase gene promoter,23 whereas G-6-P suppression

requires PKBα/Akt and forkhead transcription factor

(FOXO1),24,25 whose expression was shown to be diminished

by the inhibition of GSK-3.26

It is not only insulin and glucagon acting on the liver;

hepatocyte-derived factors conversely influence the pancreas

and/or insulin secretion. Although HNF3β was proposed to be

pivotal for the transcription of the pancreatic and duodenal

homeobox 1 (pdx1 or insulin promotor factor 1 (IPF-1)) gene,

a transcription factor regulating pancreatic development173,174175,

it is the loss of HNF1α resulting in an almost abolished insulin

secretion, likely due to a decreased response to intracellular

calcium. These findings support the importance of HNF1α in

maintaining β-cell function176 and its involvement in maturity-

onset diabetes of the young (MODY3).177

The hepatokine betatrophin, also known as TD26, re-feeding

induced fat and liver (RIFL), lipasin or angiopoietin-like

(ANGPTL) 8, was first identified as a factor that drives β-cell

proliferation and thus increases β-cell mass in a murine model

of insulin resistance.178 Subsequent studies, however, did not

reveal impairments in glucose homeostasis179 or β-cell expan-

sion in Angptl8 knockout mice.180 Moreover, betatrophin does

not have an effect on human β-cell replication, challenging its

usefulness in diabetes therapy.181 This is substantiated by the

fact that betatrophin levels are higher in T2DM patients,182–184

although they were lower in one study.185 However, this is

likely to be due to technical issues.186

The gut–islet axis

Another important axis is the gut–islet axis. The gut releases

various hormones upon nutrient ingestion, including GLP-1

and GIP, that bind to their respective receptors on pancreatic

β-cells to potentiate insulin secretion, as described under

‘External factors affecting pancreatic hormone secretion’.

Furthermore, both hormones exert pancreatic effects, such as

GLP-1-stimulated insulin gene expression,77,187 incretin-

induced β-cell neogenesis, proliferation188–191 and survival,192

the prevention of β-cell apoptosis in general193,194 and in

response to glucolipotoxicity.195 The extrapancreatic actions

of GLP-1 include suppression of endogenous glucose

production196/glycogenolysis,197 glucagon secretion,197,198

appetite,199,200 a delay in gastric emptying198,199 and improved

β-cell insulin sensitivity199,201,202 and glucose disposal,203,204

whereas GIP positively affects lipid205–207 and bone

metabolism.208–211 Thus, GLP-1 and GIP mediate insulin

secretion and concomitantly, insulin modulates GIP212 and

GLP-1 release; the latter ocurring through the PI3K/Akt-

and mitogen-activated protein kinase kinase (MAPKK or

MEK)/ERK1/2 pathway.213 The importance of this interplay

is also demonstrated by defective insulin responses and

consequent glucose intolerance in GLP-1R−/− and GIPR−/−

mice214–218 as well as in the pathogenesis of T2DM.219–223

In addition to incretins, there are the so-called decretins,

namely limostatin and Neuromedin U (NmU), which are

secreted during fasting to suppress insulin release. NmU, a

(neuro)peptide that mediates the contraction of smooth

muscles in the uterus (hence the ‘U’) among others, was first

isolated from the pig spinal cord.224 Further mRNA expression

studies, however, revealed NmU to be highly expressed in the

gastrointestinal (GI) tract with the highest levels found in the

upper GI, that is, duodenum and jejunum.225,226 Within the GI

structure, NmU is mainly located in submucosal and myenteric

cells,227,228 indicating its possible involvement in the neuronal

control of GI function.229 In addition to this, NmU is likely to

regulate insulin secretion; the G-protein-coupled NmU

receptor 1 (NmUR1) is expressed in pancreatic islets and its

simulation dose dependently decreased insulin release.230,231
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The underlying mechanism involves the simultaneous

release of somatostatin—a known modulator of insulin

secretion6—upon NmUR1 activation.232 A very recent study

showed231 that the peptide hormone limostatin, which is

expressed in Drosophila melanogaster, also reduces insulin

secretion and its absence caused hyperinsulinemia, hypo-

glycemia and obesity. Moreover, knockdown of the fly NmUR

orthologue not only reproduced the consequences of limostatin

deficiency but also diminished its insulin-suppressing ability.

Limostatin release is initiated by food depletion and hence may

represent a novel mechanism for modulating insulin secretion

during fasting.

Other gastrointestinal hormones that interact with the

pancreas are gastrin and cholecystokinin (CCK). Gastrin, which

is secreted from G-cells in the stomach and duodenum, acts as

an islet growth factor, together with transforming growth

factor-α, by promoting differentiation of ductular precursor

cells233 and β-cell neogenesis as well as by enhancing the islet

mass from transdifferentiated exocrine pancreatic tissue.234

Furthermore, it induces the expression of glucagon genes in

α-cells.235 Along the same lines, CCK, which is synthesized and

released from duodenal I-cells, potentiates basal, glucose-236,237

and amino acid-induced insulin secretion,238 and augments

glucagon secretion.237,239 The pivotal role of CCK in

modulating glucose homeostasis is reflected in postprandial

hyperglycemia, which is due to reduced CCK plasma levels in

noninsulin-dependent diabetes mellitus.240

Another important factor that is related to metabolic

disorders such as obesity, T2DM and type 1 DM (T1DM) is

the gut microbiota. Obesity, T2DM and T1DM patients display

alterations in the composition of their microbiota that may

initiate and/or promote the respective disorder. Recent findings

linked an aberrant microbiome, which is generally represented

by diminished diversity, including fewer butyrate-producing

(butyrate was shown to trigger mucin production and

hence gut integrity) and mucin-degrading bacteria,241 to the

development of autoimmunity in T1DM.242 An altered

microbiota composition may also contribute to obesity243,244

as well as to T2DM245–247 and ‘correction’ by antibiotics,248

probiotics249 or prebiotics, the last of which causing a short-

chain FFA-stimulated increase in GLP-1,250 may improve the

disease condition.251

The adipocytes/myocytes–islet axis

On one hand, insulin’s interplay with adipose and muscle

tissues is broadly based on facilitating insulin-dependent

glucose uptake through the glucose transporter 4

(GLUT4).11–13 On the other hand, adipokines and myokines

secreted from the adipose and muscle tissue, respectively,

modulate insulin release. As part of the so-called adipoinsular

axis,252 leptin, the most famous adipokine, mainly acts on its

receptors in the hypothalamic arcuate nucleus to inhibit food

intake and control whole body homeostasis.253 However, leptin

receptor (Ob-R) mRNA expression was also observed in

pancreatic islets254 and its stimulation caused a reduction in

insulin secretion255–257 due to the activation of KATP-channels,

which in turn prevented Ca2+-influx258 and the subsequent

signaling pathway. Furthermore, leptin was shown to suppress

insulin gene expression,259,260 representing a negative feedback

loop. Conversely, insulin enhances ob gene expression

and leptin secretion.261–264 Likewise, insulin modulates the

expression of adiponectin, another well-known adipokine, the

abundance of its receptor in adipose and muscle tissue265,266 as

well as its secretion.267,268 Adiponectin is not only involved in

glucose and fatty acid metabolism269 but it also forestalls

β-cell apoptosis and induces insulin gene expression and

release;270 the latter was mediated by the ERK/Akt pathway

in one study270 and by the AMPK pathway in another study.271

Other adipokines, such as apelin,272,273 chemerin,274–276

omentin,277,278 resistin279 and visfatin,280,281 were also shown

to directly interact with insulin, whereas retinol-binding

protein 4, tumor necrosis factor-α and vaspin are related to

insulin in an indirect manner.282 In addition to adipokine

secretion by adipocytes, myocytes release cytokines, which are

referred to as myokines. Fibroblast growth factor-21 is a widely

expressed protein with a broad mode of action, including the

regulation of carbohydrate and fatty acid metabolism283 and

may be considered as a myokine due to its secretion from

muscle cells.284 Fibroblast growth factor-21 is regulated by

insulin285 through the PI3K/Akt1 signaling pathway.286 Inter-

leukin

(IL)-6, which is both an adipokine and myokine,287 was shown

to influence the pancreas by controlling the expression of

pro-glucagon mRNA as well as glucagon secretion. It also

increases α-cell proliferation and islet mass while protecting

the pancreas from metabolic stress-induced apoptosis.288

Furthermore, IL-6 increased GLP-1 production from

proglucagon in pancreatic α-cells and its secretion from α-cells

and intestinal L-cells, eventually resulting in a GLP-1-mediated

increase in insulin secretion.289

MODULATING INSULIN SECRETION AS A MEANS OF

DIABETES THERAPY

Due to the worldwide, still spreading epidemic of T2DM, there

is an urgent need for (new) anti-diabetic drugs and therapies

that are more effective and have fewer side effects. Currently,

the most commonly used drugs can be classified into

agents that enhance insulin secretion (secretagogues such as

sulfonylureas (SUs) and incretin mimetics), sensitize the target

organs of insulin (for example, metformin from the class of

biguanides or thiazolidinediones), or reduce glucose absorption

from the gastrointestinal tract (inhibitors of gastrointestinal

α-glucosidase). Different therapies address different problems

and stages of T2DM and may be prescribed in combination to

exert synergistic effects.

Sulfonylureas

Α-glucosidase inhibitors and sensitizers do not target the

pancreas or insulin secretion itself but instead target the

upstream (slowed intestinal glucose absorption) or downstream

(improved insulin sensitivity) processes. In contrast, insulin

secretagogues directly modulate insulin release. The SUs are the
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first broadly applied oral anti-hyperglycemic drugs. To date,

there are two generations of agents: acetohexamide, chlorpro-

pamide, tolazamide and tolbutamide, which constitute the first

generation and glibenclamide/glyburide, gliclazide, glimepiride,

glipizide and gliquidone, which comprise the second

generation. First-generation SUs are rarely used these days

since tolbutamide intake was associated with an increase in

lethal cardiac events.290,291 More importantly, the second-

generation SUs are more potent due to modifications in their

side chains’ structure, resulting in improved SUR-affinity,

accompanied by lower effective plasma levels, which in turn

may reduce undesirable drug-protein interactions.

All SUs share a central SU backbone but differ in their side

chains. Despite having different pharmacokinetics, they work

in the same way, namely by triggering endogenous insulin

release by blocking KATP-channels and hence activating the

insulin signaling pathway. More precisely, SUs bind to the

sulfonylurea receptor (SUR) subunit of the KATP-channel with

high affinity.292,293 SUR, together with the pore-forming

subunit Kir6.x, forms a hetero–octameric complex consisting

of four inner Kir6.x subunits surrounded by four SUR subunits

(4:4 stoichiometry).294,295 Moreover, different isoforms of the

two subunits are expressed, depending on the tissue-specific

expression of the KATP-channels: SUR1 and Kir6.2 are

expressed in the pancreas and brain,296 Kir6.2 and SUR2A

are expressed in the heart and skeletal muscle,297 while SUR2B

is expressed in the brain and smooth muscle,298 and Kir6.1 and

SUR2B are expressed in vascular smooth muscle.299 Although

SUs bind to both, SURs and Kir6.2, the interactions with the

latter are of low affinity300,301 and hence only SUR-interacting

agents are used for diabetes treatment. In addition to their

mode of action as inhibitors of KATP-channels, SUs were

shown to improve glucose uptake into insulin-dependent

tissues and glucose disposal as well as to reduce hepatic

glycogenolysis/gluconeogenesis.302–304

In contrast to SUs inactivating the KATP-channels by binding

to the SUR1 subunit, ATP closes them by interacting with

Kir6.2.305 Moreover, while the binding of only one ATP

molecule is sufficient to completely close the channel,306

inhibition by SUs is incomplete as the channel might still open

even when SUs are bound to SUR1.299 Nonetheless, second-

generation SUs reduce the glycated hemoglobin or HbA1c,

which represent the average plasma glucose concentrations

over time and thus serve as a diagnostic measure for diabetes

mellitus, by 1.0–2.0%. In addition to the weight gain attributed

to the anabolic effects of increased insulin secretion, the main

side effect of SUs is hypoglycemia307,308 due to excess circulat-

ing insulin levels and due to the fact that SUs evoke insulin

secretion in a glucose-independent manner.309

Although they are not SUs per se, meglitinides, that is,

repaglinide and nateglinide, share their mode of action of

inhibiting KATP-channels.
310 However, meglitinides and some

of the second-generation SUs, for example, glibenclamide,

interact with both, the SUR1 and the SUR2A or B isoforms.311

Despite the possible disadvantage of this generalized binding that

may cause undesirable effects on other KATP-channel types, for

example, those in the heart,312 meglitinides, namely nateglinide,

have an earlier onset of action and a faster dissociation rate from

the sulfonylurea receptor,313–315 resulting in a diminished risk of

hypoglycemia.316 Like SUs, meglitinides also cause weight

gain.317,318

Incretin mimetics

Another group of insulin secretagogues is comprised of the

incretins GLP-1 and GIP. As both incretins are rapidly in-

activated by the enzyme dipeptidyl peptidase IV (DPP-IV),319

their application in T2DM treatment focuses on modified

analogues320–325 or receptor agonists, including the well-

known, short-acting exenatide.326–328 The long-lasting agonists

exenatide LAR,329,330 liraglutide331,332 and lixisenatide333–335

are currently under investigation. However, based on the

lipogenetic properties205–207 of GIP, insufficient insulin-

potentiating effects in T2DM patients220,336 and a possible

worsening effect by GIP,337,338 the focus is on GLP-1

analogues/receptor agonists for T2DM treatment. By acting

on its receptor, GLP-1 induces the signaling cascade described

under ‘External factors affecting pancreatic hormone secretion’,

resulting in its main effect: potentiating insulin secretion.

In addition to reducing the HbA1C levels, GLP-1 analogues/

receptor agonists promote weight loss and, more importantly,

do not evoke hypoglycemia, as do SUs,326–334 due to the

glucose-dependent mode of action and the self-regulating

mechanism of GLP-1.68,336,339 When blood glucose levels are

lowered to physiological levels, GLP-1 is incapable of enhan-

cing insulin secretion, thereby preventing hypoglycemia.79,340

In addition, GLP-1 (analogues/receptor agonists) exerts further

pancreatic and extrapancreatic actions, as mentioned under

‘Interplay between the pancreatic islets and other organs’.

Although GLP-1 (analogues/receptor agonists) exhibits some

minor side effects, including nausea, vomiting or gastro-

intestinal impairments,326–335 the beneficial properties out-

weigh the negative effects, and thus, GLP-1 is a promising

anti-diabetic agent.

Insulin sensitizers

Metformin, which is generally the most widely used first-line

anti-diabetic medication,341 is a so-called (insulin) sensitizer.

It not only diminishes hepatic glucose output due to

glycogenolysis/gluconeogenesis342 but it also enhances glucose

uptake into peripheral tissues, such as skeletal muscle, by

activating 5′-adenosine monophosphate-activated protein

kinase (AMPK-α2).343 Furthermore, it supports weight loss344

by reducing food consumption.345 With respect to its effects on

β-cell function, metformin was shown to increase insulin gene

expression,346 possibly by nuclear accumulation of pdx1 and its

subsequently improved DNA-binding activity.347 Interestingly,

metformin exerts opposing effects on β-cell proliferation

and/or apoptosis; on the one hand, it suppresses β-cell

proliferation and enhances apoptosis through an AMPK-

dependent and autophagy-mediated mechanism348 following

the metformin-induced activation of c-Jun-N-terminal kinase

and caspase-3.349 On the other hand, metformin reduces
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caspase-3- and -8-mediated apoptosis in isolated islets from

T2DM patients350 and protects against lipotoxicity-induced

β-cell defects.348,351

The other members of the sensitizer group include the

thiazolidinediones (or glitazones). Currently, only pioglitazone

is available; troglitazone was withdrawn from the market in

2000 and rosiglitazone was withdrawn in 2010 due to liver

toxicity, drug-induced hepatitis352–354 and the increased risk of

cardiovascular events, respectively.355 Their mode of action

involves activation of the peroxisome proliferator-activated

receptor (PPARγ), a nuclear transcription factor that is highly

expressed in adipose tissue, and the subsequent regulation of

genes that are involved in glucose and fat metabolism.356–358 By

promoting lipogenesis, FFAs are removed from the blood

stream, whereupon cells become dependent on glucose as an

energy substrate. However, enhanced lipogenesis also leads to

the weight gain observed in thiazolidinedione-treated T2DM

patients.359 In contrast to metformin, pioglitazone prevents

(oxidative stress-induced) apoptosis360,361 by decreasing the

expression of apoptosis-promoting genes, while increasing

anti-apoptotic and anti-oxidative gene expression. However,

this may depend on the disease state.362,363 Furthermore,

pioglitazone increases β-cell mass by upregulating cell

differentiation/proliferation genes.364 Although they have

partially different modes of action, both groups of sensitizers

cause a reduction in the HbA1c level by 1.5–2.0%.

Α-glucosidase inhibitors

Α-glucosidase inhibitors, such as acarbose, miglitol and

voglibose, not only decelerate the breakdown of starch

into glucose in the small intestine but also decrease its

bioavailability, resulting in reduced levels of glucose entering

the blood stream and hence attenuated postprandial glucose

excursions.365–370 In addition, they support weight loss371,372

and ameliorate blood pressure,373 insulin sensitivity367,368 and

triglyceride levels.369,370 Similar to pioglitazone, α-glucosidase

inhibitors attenuate reductions in β-cell mass, which may delay

the onset of diabetes.374–376 As α-glucosidase inhibitors only

mildly reduce HbA1c levels (0.5–1.0%), they are usually only

used in the early stage of T2DM, that is, impaired glucose

tolerance or in combination with other drugs.377

CONCLUSIONS AND OUTLOOK

The pancreas has key roles in maintaining normal blood

glucose levels by producing and releasing insulin and glucagon.

These opponents interact not only with each other through the

intra-islet insulin axis378–381 but also with other organs/tissues,

that is, the brain, liver, gut as well as insulin-dependent adipose

and muscle tissues. Altogether, the islet–organ/tissues axes

described here form a highly sophisticated network that

includes, but is not limited to, various signaling molecules,

that is, neuropeptides (brain-derived neurotrophic factor, NPY,

melanin concentrating hormone, gastrin-releasing peptide,

VIP and PACAP), hepatokines (betatrophin and HNFs),

enteroendocrine hormones (the incretins GLP-1 and GIP, the

decretins NmU and limostatin, gastrin and CCK) as well as

adipokines (leptin and adiponectin) and myokines (fibroblast

growth factor-21 and IL-6) that mainly interact through GPCR

signaling pathways, such as the cAMP cascade. In good health,

the well-functioning interactions between all of the organs

and tissues involved ensure glucose homeostasis. However,

impairments in the secretion of and/or sensitivity to insulin

may result in metabolic diseases, such as T2DM. Referring to the

American Diabetes Association, T2DM and noninsulin-depen-

dent diabetes mellitus are characterized by insulin resistance,

hyperglycemia and a relative insulin deficiency. Furthermore,

T2DM is associated with low-grade inflammation,382,383 cardio-

vascular disease,384,385 nephropathy386,387 and alterations in the

secretion of various hormones, including IL-6, IL-18, tumor

necrosis factor-α,388 adiponectin and leptin,389 neuropeptides,390

ghrelin391,392 and the incretins GLP-1 and GIP.219–223 Although

lifestyle interventions393 and weight loss394 reverse T2DM in early

stages, when insulin is still secreted, T2DM patients may become

dependent on anti-diabetic drugs in later stages. Currently, there

are three classes of agents: insulin secretatogues, insulin sensitizers

and α-glucosidase inhibitors, all of which have different modes of

action and hence target different stages and symptoms of T2DM.

Treatments that modulate insulin release—on condition of an

appropriate insulin sensitivity of the target organs—appear to be

promising approaches. Current research is unveiling new mole-

cules, enzymes and interactions that are involved in the signaling

pathways underlying insulin secretion, among others, and is likely

to introduce new therapeutic approaches. Strategies that target

these mediating molecules may include, but are not limited to,

the calcium sensor Syt-7,90,395 the SNARE-associated protein

Snapin,89 the t-SNARE SNAP-25,396 cyclin-dependent kinase

(Cdk) 5,397 ryanodine receptor (RyR) 2,398 the nucleotide

exchange factor and intracellular cAMP sensor Epac2,57–59,399

mammalian uncoordinated proteins (munc)13400,401 and

munc1840,41 as well as the Ras-related proteins (Rab) 3A402

and 27A.403
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