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Abstract

Background: Gold nanoparticles (AuNPs) have a wide range of applications in various fields.
This study provides an understanding of the modulatory effects of AUNPs on an antioxidant
system in male Wistar diabetic rats with autism spectrum disorder (ASD). Normal littermates
fed by control mothers were injected with citrate buffer alone and served as normal, untreated
controls controlin this study. Diabetes mellitus (DM) was induced by administering a single
intraperitoneal injection of streptozotocin (STZ) (100 mg/kg) to the pups of (ND) diabetic
group, which had been fasted overnight. Autistic pups from mothers that had received a single
intraperitoneal injection of 600 mg/kg sodium valproate on day 12.5 after conception were
randomly divided into 2 groups (n 2 7/group) as follow; administering single intraperitoneal
injection of streptozotocin (STZ) ( (100 mg/kg) to the overnight fasted autistic pups of (AD)
autistic diabetic group. The treatment was started on the 5th day after STZ injection with the
same dose as in group Il and it was considered as 1st day of treatment with gold nanoparticles
for 7 days to each rat of (group IV) treated autistic diabetic group(TAD) at a dosage of 2.5 mg/
kg. b. wt. Results: At this dose of administration AuNPs, the activities of hepatic superoxide
dismutase (SOD), glutathione peroxidase (GPx), and catalase were greater in group TAD
compared with the control group (P < 0.05). Oxidised glutathione levels were lower (P > 0.05)
in the liver of autistic diabetic AuUNPs —supplemented rats, whereas reduced glutathione was
markedly higher than in control rats, especially after administration of AuNPs. Moreover, the
kidney functions in addition to the fat profile scoring supported the protective potential of
that dose of AuNPs. The beta cells revealed euchromatic nuclei with no evidence of separation
of nuclear membrane. Conclusions: Our results showed that AuNPs improved many of the
oxidative stress parameters (SOD, GPx and, CAT), plasma antioxidant capacity (ORAC) and
lipid profile relative to the other parameters. In addition to the apparent reversibility of the

pancreatic B cell in group IV which may reflect the regenerative capacity of AuNPs.
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Introductions

Oxidative stress is associated with the diminished capacity of a biological system to
counteract the overproduction or invasion of reactive oxygen species and other radicals.
Because oxidative stress is the leading cause of DNA damage, genetic disorders, cancer,
and many environmental pollution-related diseases, there is an urgent need for oxidative
stress screening and prevention. Oxidative stress is enhanced in autism, a disorder with
poorly understood aetiology and neurobiology. There is growing evidence that oxidative
stress can cause autism in children [1]. Because oxidative stress plays a significant role in
the neurobiology of autism [2, 3], targeting of oxidative stress is suggested as a therapeutic
approach [2]. Superoxide dismutase (SOD) and GSH-Px levels are lower in autistic individuals
than in controls [4, 5]. In addition, the concentrations of exogenous antioxidants, vitamins E
and A, and lycopene in individuals with autism are insufficient [6].

Oxidative stress has also been implicated in the development of diabetes. The
tripeptide glutathione and its oxidised form, glutathione disulphide (GSSG), form a redox
potential maintenance system in all eukaryotic cells. Because glutathione efficiently protects
DNA, proteins and lipid membranes from radical attacks, diminished levels of glutathione
are a signal of oxidative stress and the increased vulnerability of a biological entity to
environmental influences. An increased level of 3-nitrotyrosine, which is formed under
oxidative stress in the presence of nitric oxide, has been found in diabetic patients [7]. In this
investigation, methods for detecting oxidative stress biomarkers based on their interactions
with gold nanoparticles (AuNP) are described. Specific maternal illnesses, conditions and
treatments can result in adverse neurodevelopment outcomes in children [7]. Perinatal
complications place an infant at significant risk for mental, neurological and behavioural
disorders [8]. Maternal metabolic conditions may increase the risk of ASD. Maternal Type
2 diabetes, hypertension, and obesity have been identified as risk factors for ASD and other
developmental disorders [7, 9]. Prenatal factors, such as advanced maternal (and paternal)
age, bleeding or gestational diabetes, have been associated with the risk of ASD [10].
Elevated prenatal cortisol is known to negatively affect the behaviour of newborn children
with increased irritability, attention and temperament problems [11]. Excess plasma
cortisol levels have been implicated in the aetiology of comorbid illnesses associated with
ASD, such as depression, anxiety, dyspepsia and migraine [12]. Furthermore, elevations in
plasma cortisol and platelet serotonin levels have been observed in schizophrenic patients
[12]. Hence, there is evidence to suggest that excess cortisol levels co-exist with serotonin-
selective pathologies. One of the prenatal risk factors for ASD is gestational diabetes. During
late pregnancy mothers can develop insulin resistance [13]. Gestational diabetes occurs in up
to 14% of all pregnancies; estimates vary depending on the test criteria used [14]. Elevated
cortisol levels have been measured in pregnant women with impaired glucose tolerance or
gestational diabetes [15]. Gestational diabetes is a growing health concern with both short-
and long-term outcomes for both mothers and their offspring [16]. Deterioration of glucose
tolerance occurs in all women with the development of diminished peripheral sensitivity to
insulin [17]. Normal pregnancy is characterised by insulin resistance and hyperinsulinemia,
particularly during the third trimester, due to elevated metabolic stress on maternal lipids
and glucose homeostasis [18]. Progesterone receptors expressed in pancreatic islet cells
inhibit beta cell proliferation to reduce insulin secretion and glucose tolerance during
pregnancy [16]. Foetal hyperglycaemia as an outcome of maternal hyperglycaemia can
contribute to either increased or decreased birth weight [19]. Many prenatal risk factors
for ASD can alter cortisol levels either directly or indirectly. Prenatal depression and
psychological stress are associated with elevated cortisol levels, prematurity and low birth
weights [20]. In mammals, glucocorticoids are central to foetal growth, tissue development
and the maturation of various organs [21]. Normally, foetal physiological glucocorticoid
levels are lower than the maternal levels [22]. Some children diagnosed with ASD or who
have higher scores on ASD spectrum screening have low birth weights [23], potentially
due to elevated cortisol levels present during the prenatal period. Furthermore, males are
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more vulnerable to elevated maternal cortisol levels, as the placenta of female foetuses
exhibit increased glucocorticoid inactivation and lower corticoid receptor densities than the
placentas of males [24]; this difference may render and explain gender differences in the
prevalence of ASD. The future widespread use of nanoparticles is likely to have an enormous
impact on human disease, particularly diabetes. Therefore, it is essential to understand the
effects of nanoparticles on the pancreas, which is one of the major organs affected by this
disease. This study was undertaken to investigate the effect of AuNPs (50 nm) for 7 days on
autistic rats with diabetes. Their effects on oxidative stress and antioxidant defense indices
were investigated together with the electron microscopic study of the pancreas.

Materials and Methods

Ethical issues

All procedures in this study were carried out according to the National Guidelines on Animal
Experimentation, and the protocol was approved by the ethical committee of the Faculty of Medicine of King
Khalid University. All efforts were made to minimise animal suffering, and the minimum number of animals
necessary to produce reliable scientific data was used.

Experimental animals

Wister-albino rats of both sexes weighing 160-180 g were obtained from the Laboratory Animal Unit
of King Khalid University and housed in plastic cages with mesh grid floors for acclimatisation and mass
breeding. The cages were thoroughly cleaned and the animals were examined daily. Clean tap water and rat
feed were made available ad libitum. The temperature of the animal room was 33 + 3°C with a 12 h:12 h
light-darkness cycle. The animals remained uniformly healthy. Rats that became pregnant were isolated into
solid floor maternity cages. Fine, sterilised wood shavings were provided as bedding and nesting material.
Immediately after weaning (i.e., before sexual maturity), the offspring were transferred into new cages
separated by sex to prevent mating before the experimental induction of pregnancy. This separation was
conducted to ensure that the animals were virgins prior to inducing pregnancy.

Induction of pregnancy

At 90 days of age, 20 virgin rats (10 females and 10 males) produced from the previous mass breeding
period were housed in 10 mating groups of monogamous pairs (1 female and 1 male per cage). At this
age, the animals have reached sexual maturity and the vagina has opened. To ascertain successful mating,
vaginas were examined every morning, and vaginal smears were obtained to detect whether sperm cells
were present. In addition, the vaginas and cage floors were examined for the presence of cornified plugs.
The presence of sperm cells in the vaginal smear or the presence of a cornified plug in the vagina or on the
cage floor indicated successful mating and marked Day 1 of gestation. Gestating females were separated
into maternity cages and constituted pregnant rats for the subsequent intraperitoneal injection of sodium
valproate on day 12.5 after conception.

Animal treatment

Females were fed a standard diet and received a single intraperitoneal injection of 600 mg/kg sodium
valproate on day 12.5 after conception. Administration of this dose to rats during embryogenesis has been
shown to result in a maximum level of total VPA (900 pg/mL) in maternal plasma in less than 1 h, with a
mean plasma elimination half-life of 2.3 h [25]. Control females were maintained on normal standard diet
and injected with physiological saline at the same time (i.e., on day 12.5 after conception). Sodium valproate
(Sigma) was dissolved in saline at a concentration of 250 mg/mL. Dams were housed individually and were
allowed to raise their own litters. After an adaptation period of 1 wk to confirm autism by blood tests (results
not shown), unmanipulated littermates fed by control mothers were injected with citrate buffer alone and
served as untreated controls ( Control) in this study. Diabetes mellitus (DM) was induced by administering
a single intraperitoneal injection of streptozotocin (STZ) (100 mg/kg) in 0.1 mol/L citrate buffer (pH 4.5)
[26] to individual pups fasted overnight; these comprised the diabetic group (ND). Because of the instability
of STZ in aqueous media, the solution was made using cold citrate buffer (pH 4.5) immediately prior to
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administration. A fasting blood glucose level above 11.1 mmol/L was considered diabetic and included in
the analysis. Autistic male pups from mothers that had received a single intraperitoneal injection of 600
mg/kg sodium valproate on day 12.5 after conception were randomly divided into 2 groups (n 2 7/group)
as follows. A single intraperitoneal injection of streptozotocin (STZ) (100 mg/kg) was administered to the
fasted autistic male pups of the autistic diabetic group (AD). Treatment began on day 5 after STZ injection
at the same dosage as administered to Group IL. This constituted day 1 of treatment with gold nanoparticles,
administered by intraperitoneal injection via a tuberculin syringe, at a dosage of 2.5 mg/kg. b. wt [27] for 7
days to each rat of the autistic diabetic treated group (TAD).

Oxygen radical absorbance capacity (ORAC)

The antioxidant capacity was measured as the oxygen radical absorbance capacity (ORAC method)
[28]. This assay measures the oxidative degradation of fluorescein after being mixed with free radical
generators such as azo-initiator compounds. The ORAC values were calculated and expressed in mmol Trolox
equivalents/mg protein. Free radicals were produced using 2,29-azobis (2-amidinopropane) hydrochloride
(AAPH), and the oxidation of the fluorescent indicator protein b-PE was measured. Both reagents were
prepared in 75 mmol/L phosphate buffer (pH 7.0), and 50 mmol/L Trolox was used as the standard. The
liver samples were homogenised in 4 volumes of phosphate buffer in a Thomas homogeniser (20 strokes)
and centrifuged at 12,000 x g for 10 min at 48°C. The supernatant was deproteinised using 0.25 mol/L PCA
and centrifuged at 16,000 3 g for 15 min. The supernatants were then stored at 280°C before analysis. The
reaction was performed in 96-well microtiter plates and consisted of 170 mL of b-PE (80 mg/L) and 10 mL
of diluted (1:1) sample incubated at 37°C for 15 min. The reaction was initiated by the addition of 20 mL of
AAPH (240 mmol/L), and the fluorescence (emission 590 nm, excitation 530 nm) was recorded every 5 min
until the reading had declined to 0.5% of the initial reading.

Plasma and liver samples were obtained for further analysis. Liver homogenates were prepared with
50 mmol/L Tris buffer containing 0.25 mol/L of sucrose pH 7.5. Liver homogenates were centrifuged at
100,000 3 g for 1 h at 4°C. Cytosol aliquots were collected and preserved at -80°C for enzymatic assay.

Antioxidant enzymes assays

Total SOD activity was determined following Spitz and Oberley [29]. The total SOD activity in each
sample was calculated using a concurrently run SOD (Sigma Chemical) standard curve and expressed as U/
mg sample protein. Tissue GPx activity was measured following Flohe and Gunzler [30]. Catalase activity
was measured following Aebi [31]. Total glutathione (GSH and oxidised glutathione, GSSG) was measured
following Tietze [32]. The change in absorbance was monitored at 410 nm for 5 min, and GSH and GSSG
levels were calculated using pure GSH and GSSG as standards.

Lipid peroxidation assays
Liver lipid peroxidation was assessed as the amount of thiobarbituric acid reactive substances
(TBARS) produced following Tappel and Zalkin [33].

Lipid composition analysis
Following Bligh and Dayer [34]. Triglecerides were determined following Gottfried and Rosenberg
[35] and total cholesterol was determined following Zlatkis et al. [36].

Transaminase assay
[37]. Urea and creatinine levels in the plasma were estimated by the method described earlier [38].

Glucose, glycogen, cortisol and serotonin estimation

Blood samples were obtained immediately to estimate blood glucose level with a 201_ glucose
meter (Hemocue Ltd., Sheffield, U.K.), measured in mmol/L. Hepatic glycogen concentration (umol/g of
liver) was measured using the enzymatic procedure of Gire [39]. Plasma cortisol levels were determined
according to the competitive protein binding procedure of Dalle and Delost [40] and expressed in pmol/ L.
Plasma serotonin level was analysed using high performance liquid chromatography (HPLC) as described
previously [41].
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Transmission electron microscopic study

Small samples from the pancreas of each experimental group on PND 21 were immediately fixed in
3% phosphate-buffered glutaraldehyde (pH = 7.4; 4°C) for 2 h. The tissues were post-fixed in 1% aqueous
osmium tetraoxide in an appropriate buffer for 1 h and embedded in Epon. Ultrathin sections (80-100 nm)
were prepared and stained with uranyl acetate and lead citrate.

Statistical analysis

The results are expressed as means * SD. ANOVA was used to evaluate differences between multiple
groups, and comparisons between the means of the treated groups and the control group were made using
Dunnett’s test. Differences were considered significant at P < 0.05.

Results

Antioxidant status and oxidative stress

The biomarkers of antioxidant status and oxidative stress are summarised in Table 1.
The concentrations of antioxidant enzymes indicated an activation of these enzymes in group
TAD. SOD and GPx values were higher in the group treated with gold nanoparticles than in
the other groups. Autistic diabetic rats administered gold nanoparticles had significantly
(P < 0.05) higher hepatic SOD, GPx, compared with both the autistic diabetic group and the
diabetic group, suggesting that AuNPs were very effective at increasing the antioxidantstatus
in the liver. No significant differences in catalase activity were observed between normal
diabetic group and the autistic diabetic group after treatment with gold nanoparticles.
Finally, antioxidant capacity (ORAC) was significantly higher in group TAD than in the other
groups. This result is in agreement with the higher SOD, GPx and GR values found in this
AuNP-supplemented rats (Table 1) .

Lipid peroxidation

TBARS levels in the liver measure the liver's susceptibility to lipid peroxidation. As
shown in Figure 1, we observed increased levels of TBARS in all groups relative to the control
group, with the lowest levels observed in AuNPs -treated rats. These results suggest that
the diabetic and autistic diabetic groups were more susceptible to lipid peroxidation than
group TAD and that gold nanoparticles increased the values of antioxidant enzymes relative
to those of group ND and group AD.

Lipid profile

The mean LDL values indicated higher oxidation in the diabetic group and autistic
diabetic group than in controls but the treated autistic diabetic group showed no significant
differences from the control groups (Fig. 2). TG and HDL values were within the reference
ranges in all groups relative to controls, whereas CHOL concentrations were higher in both
groups ND and AD, but did not differ significantly between group TAD and controls.

Table 1. Oxygen radical absorbance capacity (ORAC) and oxidative stress biomarkers in the
liver of Wistar rats of different treatment groups. Values represent means * SEM; values in the
same row with different superscripts are statistically significant p < 0.05

Parameters Control ND AD TAD

GSH (mmol/mg protein 11.1%2.3%  6.9x2.2b 5.1£2.6" 12,7194
GssG (mmol/mg protein 1.8+0.60 2.2+0.1b 2.5+0.3b 1.1+0.3a
Catalase mmol/ (mg protein) 12.1+2.12  8.3+2.5b 7.1+£3.2b 9.8+2.1b
SOD U/mg protein 25.1+£2.61 139+3.6v 152+2.7v 20.7+3.84

Glutathione Peroxidase nmol/ (min_mg protein) 22.3+1.5* 18.1+26" 16.3£5.1" 20.1%£2.72
Glutathione Reductase nmol/ (min_mg protein) 7.2+0.22 5.1+0.1b 5.2+0.5b 6.0+0.2b
ORAC (mmol Trolox/mg Protein) 20.5£1.3*¢  145%1.7v 16.1x2.10 21.8+2.10
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Fig. 1. Lipid peroxidation products (TBARS) in the Fig. 2. Influence of gold nanoparticles on the lipid
liver of rats of different treatment groups. profile of different treatment groups.

Table 2. Comparison of glucose and glycogen in dif-
ferent treatment groups. Values represent means *
SEM; values in the same row with different super- 50

60

scripts are statistically significant p < 0.05
40

Parameters Control ND AD TAD " —+—Blood Urea Nitrogen
Glucose (mmol/L) 6.22+13* 15.12+6.2" 14.01£2.2b 514523 ?éi 30 (meg/d)
Glycogen (umol/g) 150£0.32 125+0.6 165:0,6" 135+0.12 & Creatinine{mg/di)

20
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Fig. 3. Comparison between blood urea nitrogen
(BUN) and creatinine in different treatment groups.

Glycaemia control and glycogen accumulation

Blood glucose was significantly elevated in autisticrats (resultsnot shown). Furthermore,
the increases in glucose level observed in groups ND and AD were not significantly different
from those of the autistic rats, and did not differ among groups. . Nanoparticle treatment
in group TAD significantly decreased blood glucose to close to normal levels in the control
group (Table 2). Glycogen accumulation in the livers of autistic diabetic pups was high
relative to normal control pups; however, a significant decrease in glycogen levels was
observed in normal diabetic pups and treated autistic diabetic pups relative to the highest
levels in autistic diabetic pups.

Cortisol and serotonin estimation

Plasma cortisol levels increased in autistic diabetic group but remained unchanged in
the other groups. This increase in diabetic pups was accompanied by a significant reduction in
cortisol levels after treatment with gold nanoparticles relative to controls. When comparing
serotonin levels among all groups, significant differences were observed between both the
diabetic and autistic diabetic groups and the control group (P < 0.05).However, no significant
differences in serotonin levels between autistic diabetic pups treated with gold nanoparticles
and control groups were observed. The reduction in cortisol and serotonin concentrations
following nanoparticle administration indicates its potential for use in studies of autism and
diabetes.

Creatine and BUN estimation
As shown in Figure 3,diabetic autistic rats treated with gold nanoparticles in group TAD
showed decreased levels of creatine and uric acid relative to controls; however, the highest
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Fig. 4. Control pan-
creatic cells (group I)
exhibiting normal beta
cells Islets of Langer-
hans with numerous
electron dense secre-
tory granules (I), nu-
merous mitochondria
(M), rough endoplas-
mic reticulum (ER),
Golgi apparatus (G), a
few myelin Fig. (MY),
secretory vacuoles (V)
and the euchromatic
nucleus (N). Scale bar
=1 um.

Fig. 5. Normal di-
abetic  (group 1I)
shows  euchromatic
nucleus (N), missing
of insulin containing
granules (I) and Zy-
mogen  granules(Z),
few vacuoles in the
beta cells (asterisk)
and increase of secre-
tory vacuoles (V) with
slight fusion (F). Slight
separation in nuclear
membrane  (arrow)
and crystolysis of the
mitochondria (M).
Scale bar =1 pm.

increases of creatine and uric acid relative to control rats were recorded in autistic diabetic
group. These results reveal the restorative effect of gold nanoparticles on renal function.

TEM findings

Control group. The islets of Langerhans were normal and were comprised primarily
of beta cells. The cytoplasm of these cells contained numerous electron-dense secretory
granules (insulin-containing granules). The latter are surrounded by wide lucent halos and
numerous mitochondria, rough endoplasmic reticulum, Golgi apparatus, few myelin Fig. and
a euchromatic nucleus (Fig. 4).

Normal diabetic group.The beta cells in the islets of Langerhans of the pancreas revealed
euchromatic nuclei and a decreased number of insulin-containing granules, in addition to
few vacuoles in the beta cells and an increase in the number of secretory granules with
fusion. Few cases showed mildly dilated rough endoplasmic reticulum, crystolysis of the
mitochondria and separation of the nuclear membrane (Fig. 5).
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Fig. 6. Autistic diabetic
(group III) shows: vacu-
olation in the beta cells in
islets of Langerhans (aster-
isk), depletion of secretory
granules (I), fusion of some
vacuoles (F), crystolysis of
the mitochondria (M), dila-
tion of the rough endoplas-
mic reticulum (ER), pyknot-
ic nuclei (N), separation of
nuclear membrane(arrow),
focal accumulation of gly-
cogen granules (G) and few
lipid droplets (L), numer-
ous myelin Fig. (MY) and
zymogene-like granules (Z).
Scale bar =1 pm.

Fig. 7. Treated autistic dia-
betic( group IV) exhibiting
euchromatic nuclei (N), a
reduction in insulin con-
taining granules (asterisk),
normal endoplasmic re-
ticulum (ER) and secretory
vacuoles (V), fusion of some
vacuoles (F), normal mito-
chondria (M) and the pres-
ence of gold nanoparticles
in the cytoplasm (arrows).
Scale bar =2 and 1 um.

Autistic diabetic group. The degree of cell damage caused by streptozotocin varied, even
within the same acinus. A marked increase in zymogen granules was confirmed in damaged
cells; these become dispersed throughout each cell. Approximately 80-90 granules were
observed in severely damaged cells; i.e., approximately three times the number observed
in electron micrographs of normal cells. The beta cells in the islets of Langerhans showed
vacuolation and depletion of secretory granules, fusion of some granules and the formation
oflarge secretory vacuoles. Other changes involved the mitochondria and the ER. Crystolysis
of the mitochondria, dilation of the rough endoplasmic reticulum and pyknotic nuclei were
observed. In some cases, the nuclear membrane exhibited strongly separated condensed
chromatin. Glycogen granules and a few lipid droplets accumulated in the affected cells with
numerous myelin Fig. and zymogene-like granules, particularly adjacent to the acinar cells
(Fig. 6).

Treated autistic diabetic group. The gold nanoparticles-treated group showed some
degenerative changes, although not as severe as observed in group ND&AD. The beta cells
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revealed euchromatic nuclei with no evidence of separation of nuclear membrane, a slight
decrease in the number of insulin-containing granules with increased secretory vacuoles
and fusion. The rough endoplasmic reticulum and mitochondria were normal except in some
cases where dilation of the endoplasmic reticulum was observed. Gold particles were also
observed scattered throughout the cytoplasm of these cells (Fig. 7).

Discussion

Nanotechnology is undergoing a broad expansion in many areas benefitting humans.
The promising potential of nanotechnology has increased interest in investigating the
anti-oxidative and anti-hyperglycemic autistic activity of gold nanoparticles in the diabetic
autistic model. The goal of our investigation was to use nontoxic, biologically synthesised
gold nanoparticles, sized 50 nm, to overcome the drawbacks of the in vivo system of autistic
diabetic rats. Recently, intraperitoneal injection of gold nanoparticles was investigated
by Lasagna-Reeves et al. [42]. They found a low level of toxicity at a dosage range of 320-
3200 pg/kg/day. Zhang et al. [43] observed that gold nanoparticles are less toxic when
delivered by intraperitoneal injection than by oral administration at a dose of 1100 pg/kg.
Nanoparticle size is a key factor in biological responses to nanoparticles; smaller particles
tend to be more toxic than larger ones. Exposure to gold nanoparticles (average diameter 5.3
+ 1 nm) produced oxidative stress within 24 h in Mytilus edulis [44]. At sizes larger than 5
nm, the general assumption is that gold is chemically inert. However, the chemical reactivity
of gold particles at diameters of less than 3 nm is most likely different than it is for larger
gold nanoparticles [45]. Zidki et al. [46] reported a potential radical scavenging property
of gold nanoparticles against alkyl radicals. Zhang et al. [47] also observed a reduction in
the EPR signal (indication of radical scavenging) following the interaction of free radicals
with 15 nm gold nanoparticles. Barathmanikanth et al. [48] described the potential of gold
nanoparticles as a therapeutic remedy in diabetic complications and as an anti-oxidative
agent; these benefits arise through the scavenging of free radicals and the creation of a
sustained control over hyperglycemic conditions, suggesting inhibition of the formation of
reactive oxygen species.

Oxidative stress has been suggested as the causative factor in aging [49]and in many
diseases such as diabetes, cardiovascular disease, cancer and autism spectrum disorders
(ASD [50]. Oxidative stress is enhanced in autism [20] and plays a significant role in its
neurobiology [21, 22]; therefore, targeting of oxidative stress is suggested as a therapeutic
approach [21]. The antioxidant enzymes superoxide dismutase (SOD) and GSH-Px are lower
in autism than in controls [23, 24]. Among the biomarkers of oxidative stress are small
biomolecules such as glutathione GSH and SOD, which are depleted in the presence of organic
radicals and peroxides [51]. Autism is a disorder characterised by enhanced oxidative stress
[52], decreased levels of the antioxidant enzymes SOD and GSH-Px [53], brain Inflammation,
apoptosis [54], increased the levels of the proinflammatory cytokines TNF-a and IL-6 [54]
and impaired mitochondrial energy production [55]. Therefore, gold nanoparticles may at
least partially improve some of the symptoms of autism(Table 1,2&3). However, it should be
emphasised that some ROS have roles as second messengers [56].

In the present study, a statistically significant increase in the levels of GSH, SOD and
GPx in the diabetic autistic rats treated with AuNPs relative to controls was found(Table 1).
This result was due to the significant decrease in lipid peroxidation and ROS generation in
diabetic autistic rats treated with AuNPs relative to controls, suggesting that AuNPs prevent
the disruption of organs by protecting lipids from peroxidation by ROS under hyperglycaemic
autistic conditions. The enhancement of AuNP 5 nm by GSH molecules is attributed to the
size increase of AuNP due to the ligand exchange and interparticle interactions leading to
AuNP assembly. The zwitterionic forces are dominant, although the main forces in the GSH-
induced assembly are H bonding [57]. In contrast, our results revealed that AuNPs did not
alter the level of catalase activity (Table 1), potentially due to reactive oxygen species (ROS),
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Table 3. Comparison of cortisol and serotonin in differ- Parameters Control  ND AD TAD
ent treatment groups. Values represent means * SEM; Cortisel [umol/L] 26602 46:05 734020 31£07

values in the same row with different superscripts are ; 43 b 402 "
statistically significant p < 0.05 Serotonin (ng/mL) 9840.5: 123+0.1> 17840.30 96+0.6

including H202, that affect the living system. ROS can oxidise cell components and lead
to inactivation of certain enzymes; in addition, they are known to be involved in oxygen
sensing and signal transduction as secondary messengers [56]. As catalase activity in group
IV did not differ from controls, H202 may not have been generated in sufficient amounts by
the AuNPs to alter catalase activity. Elevated glucose levels are associated with an increased
production of ROS by several different mechanisms [58]. In addition, the process of glucose
auto-oxidation generates superoxide, which is associated with the formation of glycated
proteins in the plasma of diabetic patients [59]. The interaction of advanced glycation
end products with corresponding cell surface receptors stimulates ROS production and
decreases intracellular glutathione levels [60]. The increase in ROS production contributes
to the development of diabetic complications, such as atherosclerosis, and other vascular
complications, such as autism [60]. However, if the initial increase in ROS in response to
oxidative stress conditions is relatively small, the antioxidative response may be sufficient to
compensate for the increase in ROS and to reset the original balance between ROS production
and ROS scavenging capacity. The physiological manifestations of redox regulation typically
involve a temporary increase and/or a temporary shift of the intracellular thiol/disulphide
redox state toward more oxidative conditions. However, in the autistic diabetic group, ROS
production is stronger and more persistent, ROS generated by high glucose levels play a
vital role in the development of diabetic complications [56]. and the antioxidative response
may not be sufficient to reset the system to the original level of redox homeostasis, as it
may now be associated with higher ROS concentrations and different levels of free amino
acids and/or different patterns of gene expression. Such a shift to more oxidative conditions
has occurred in the autistic diabetic rats, implying that a pro-oxidative shift is an overtly
pathological condition.

In addition, hyperglycemia enhances cell-mediated low-density lipoprotein (LDL)
peroxidation in endothelial cells [61]. Treatment with antioxidants ameliorates diabetic
complications, including the dysfunction of endothelial cells and increased platelet
aggregation [61]. Recently, the anti-glycation activity of gold nanoparticles and their
biocompatibility has made them desirable for ophthalmological implications [62]. In our
investigation, the autistic diabetic-treated group did not show significant differences in LDL
relative to the control group(Fig. 2).. Furthermore, the total cholesterol and triglycerides
levels in group IV were restored to near-normal levels, thus yielding lipid functioning similar
to that of the control group. Further, AuNPs administered at a dosage of 2.5 mg/kg. b. wt
significantly decreased the blood glucose and urea levels group TAD relative to controls,
reflecting that the absorbed nanoparticles in the systemic circulation are able to be excreted
by the kidney.

Serotonin is taken up into the beta cells of the pancreas, where it is stored in granules
that contain insulin to modify insulin release [63]. Disturbances in brain serotonin levels
can affect the serotonergic system, leading to incorrectly connecting neural circuits [64].
Changes in serotonergic function and signalling have been found to be associated with ASD
[65]. In addition, inflammatory cytokines, such as the interleukins (IL-1, IL-6) and TNF-a
acting at the pituitary and adrenocortical levels, stimulate cortisol formation [66].

Excessive plasma levels of cortisol increase the expression of the SERT (Serotonin
reuptake transporter), altering serotonin levels and modify prenatal neuronal development
in children diagnosed with ASD. ASD is a disorder, and SERT has been the focus of much
research due to its prominent role in serotonin homeostasis. SERT is encoded by the SLC6A4
(Solute carrier family 6 (neurotransmitter transporter, serotonin, member 4) gene. Several
gene variants of SLC6A4 that are associated with ASD alter the structure, function or
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expression of SERT [67]. Hence, in our investigation, there is evidence to indicate that excess
cortisol levels co-exist with serotonin-selective pathologies, as ASD and treatment with
AuNPs in group TADcaused no significance changes in either cortisol or serotonin relative
to controls (Table 3). Gold nanoparticles (AuNPs) can easily enter cells [68], and the finding
that amine and thiol groups bind strongly to AuNP has led to their surface modification with
amino acids and proteins for biomedical applications [69].

In the present study, we demonstrated that Wistar-albino rats given AuNPs are a
suitable model for the treatment of autistic diabetic rats exhibiting some aspects of the
metabolic syndrome, such as oxidative stress, insulin resistance, hypertriglyceridemia
and ROS damaging effects. To date there have been no published trials demonstrating
the effective treatment of diabetic autistic rats using AuNPs. Our treatment modalities
have been directed toward the reduction of oxidative stress, the improvement of glucose
levels, lipid-lowering agents, and hepatoprotective drugs. In the present study, we also
used electron microscopy of the pancreas and investigated the effects of AuNP treatment
on diabetic rats with autism. It has been suggested that islet cells may arise from exocrine
cells [46] [63]. Our observations of granules in the Golgi zone of beta cells of diabetic rats
suggest that the synthesis of some secretory material continues to take place in the beta
cell. If these microgranules are precursors or intermediates of insulin, the mode of action of
streptozotocin may be to block synthesis of the hormone or to interfere with the release of
the immature granules from the Golgi zone [26]. The present study revealed ultrstructural
changes after streptozotocin injection, as evidenced by destructed beta cells. Moreover,
autism elicited significant morphological changes in diabetic rats through the severe injury
of pancreatic beta cells, including a decrease in islets cell numbers (results not shown)
and cell damage. Furthermore, in our study diabetic autistic rats selectively destroyed and
rapidly accumulates in beta cell that shows experimental models of pancreatic damage with
structural and functional alterations such as disorganisation of pancreatic architecture, and
depletion of insulin- producing cells together with, crystolysis of the mitochondria, dilation
of the rough endoplasmic reticulum and pyknotic nuclei. The cytotoxic action of autism is
mediated by reactive oxygen species, with a simultaneous massive increase in cytosolic
calcium concentrations, leading to the rapid destruction of beta cells [70]. Our study shows
that AuNPs increase bloodglucose levels in diabetic autistic rats. The apparent and at least
partial reversibility of islet-cell damage in group TAD during the period when exocrine tissue
was still intact indicates that AuNps may be useful not only in the study of diabetes but also
in the study of autism for the investigation and regeneration of beta cells.

Furthermore, it has been found that oxidative stress (as observed in group ND &AD) is
associated with decreased insulin biosynthesis and secretion, which is the main aetiology
of glucose toxicity. Indeed, it was suggested that the pancreas might be more susceptible to
oxidative stress than other tissues and organs because pancreatic islet cells show extremely
weak manifestation of antioxidative enzymes [71, 72]. It is evident that oxidative stress plays
akeyroleininsulin resistance and beta cell dysfunction through their ability to activate stress-
sensitive signalling pathways [71]. Increases in intracellular glucose lead to an abundance
of electron donors generated in the Krebs cycle. These drive the inner mitochondrial
membrane potential upward; a state associated with mitochondrial dysfunction and
increased ROS production [73]. Degirmenci et al. [74] reported a decrease in the secretory
granules of beta cells, vacuolisation and the swelling of mitochondria after streptozotocin
administration. The semiquantitative evaluation of islet ultrastructure after streptozotocin
injection showed signs of both necrotic and apoptotic cell death and disturbances in the
insulin secretory pattern during and after a streptozotocin perfusion [75]. Streptozotocin
induces damage to beta cell DNA mitochondria and plasma membranes [76]. Vacuolation
was one of the structural indications of the permeability disorders of the membranes, which
results in the enhanced transport of water and electrolytes into the cell. The permeability
disorder might be attributed to many cellular membrane insults caused by reactive oxygen
species mediating the formation of lipid peroxides, which ultimately generate self-sustaining
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lipid peroxidation [77]. It has been reported that AuNps 50 nm scavenges oxygen free
radicals, inhibits lipid peroxidation and protects cellular macromolecules, including DNA,
from oxidative damage [44]. The authors also note that size particles do not accumulate in
the kidney, stating that although these size ranges provide general clearance mechanisms,
other physical parameters, clinical significance, and the long-term persistence of gold
nanoparticles that simultaneous affecting NP movement play a significant role in their
distribution [27]. Our results corroborate those of previous studies demonstrating that gold
nanoparticles of approximately 3, 5, 50 and 100 nm do not show signs of toxic effects [78].

Conclusions

In conclusion, under the conditions of this study, 50-nm-sized gold AuNPs were non-
toxic and produced no systemic or local adverse effects at the given dose. We conclude that
the low production costs and relative ease of modifying nanogold make it a feasible for
future biomedical applications. However, they are easily inactivated by complexation and
precipitation, which may limit their desired function in human systems.
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