
 Open access Proceedings Article DOI:10.1109/DANCE.2002.1003504

Panda: middleware to provide the benefits of active networks to legacy applications
— Source link

V. Ferreria, Alexey Rudenko, Kevin Francis Eustice, Richard Guy ...+2 more authors

Institutions: University of California, Los Angeles

Published on: 29 May 2002

Topics: Middleware (distributed applications) and Legacy system

Related papers:

 ANTS: a toolkit for building and dynamically deploying network protocols

 Hermes: A scalable event-based middleware

 GINSENG Data Processing Framework

 Performance of Network-Based Problem-Solving Environments

 A best-effort approach for run-time channel prioritization in real-time robotic application

Share this paper:

View more about this paper here: https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-
373bap62yq

https://typeset.io/
https://www.doi.org/10.1109/DANCE.2002.1003504
https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq
https://typeset.io/authors/v-ferreria-42wxi33s2v
https://typeset.io/authors/alexey-rudenko-dzx7susou8
https://typeset.io/authors/kevin-francis-eustice-1f55nco857
https://typeset.io/authors/richard-guy-udzu0yvjl9
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/topics/middleware-distributed-applications-114spjtl
https://typeset.io/topics/legacy-system-dkxb18co
https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
https://typeset.io/papers/hermes-a-scalable-event-based-middleware-1hguv9oonh
https://typeset.io/papers/ginseng-data-processing-framework-wy0tb9mefe
https://typeset.io/papers/performance-of-network-based-problem-solving-environments-1htb5e284s
https://typeset.io/papers/a-best-effort-approach-for-run-time-channel-prioritization-1prvbi9at2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq
https://twitter.com/intent/tweet?text=Panda:%20middleware%20to%20provide%20the%20benefits%20of%20active%20networks%20to%20legacy%20applications&url=https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq
https://typeset.io/papers/panda-middleware-to-provide-the-benefits-of-active-networks-373bap62yq

 1

Panda: Middleware to Provide the Benefits of Active Networks to
Legacy Applications

1

Vincent Ferreria, Alexey Rudenko, Kevin Eustice, Richard Guy, V. Ramakrishna, and
Peter Reiher

UCLA

1
 This work was supported under DARPA contract number N66001-98-C-8512.

Abstract

Panda is middleware designed to bring the

benefits of active networks to applications not

written with active networks in mind. This paper

describes the architecture and implementation of

Panda, and provides data on the overheads

incurred and performance benefits achieved. The

paper also discusses some of the key issues of

automatically and transparently intercepting data

streams and converting them into active streams,

including interception mechanisms, automated

planning facilities, and allowing user and

application control of the middleware.

1. Introduction

Computer networks continue to improve in

accessibility, speed, and coverage, leading users

to rely heavily on connectivity for normal

activities. However, the widely varying

characteristics of networks often cause problems

for their use, since applications typically assume

some minimal quality of service from the

network. If the network in its current state cannot

provide that quality, many applications work

poorly or not at all.

In many cases, more intelligent handling of

data in the network could ameliorate these

problems and allow applications to work well

even under difficult network conditions. Active

networks offer this promise by allowing

substantial programmability of the network.

However, most existing active network systems

work on the assumption that new applications are

written so that they explicitly instruct the network

on how to handle their data streams. This

approach offers no benefits to applications that

were written before active networks were created,

nor to later applications that were not written with

the possibilities offered by active networks in

mind. Even applications that were written for

active networks are limited by the creativity and

foresight of the application designer, who must

become not only an expert in his own application

area, but in active networking as well, to make

effective use of the new possibilities. In many

cases, certain sets of operations (such as

cryptographic and authentication operations,

lossless compression, or alternative routing) may

be commonly useful for different applications.

Panda could provide application writers the

benefits of these operation sets when their

applications work in active environments without

requiring the application writers to code them for

active networks.

Panda is a middleware system that provides

the benefits of active networks to unaware

applications. Panda traps data streams from those

applications, converts them to active network

packet streams, determines the network

conditions, makes a plan of which adaptations to

apply to the streams to deal with prevailing

conditions, and deploys the code necessary to

ensure proper handling of the streams. Panda is

transparent to the applications it services, though

of course any permanent alterations it makes in

the data stream will be visible at the destination.

Consider the following scenario. Two users

on portable devices are talking through an

existing video phone program. One user is in his

home, connected by a moderately high-speed

wireless network to a base station in his house.

The other is in a public place, using a telephone

dialup line to connect to his office machine.

Between the base station and the office machine,

the communication goes over the Internet. Since

the application in use may have been written with

the assumption of wired networks with fairly high

 2

and uniform speeds and bandwidths, very likely

the limited bandwidth of the dialup line and the

possible interference on the wireless link will

cause problems for the video and audio. Further,

the users may be concerned about the possible

loss of privacy because their transmissions are

crossing a wireless link and the untrustworthy

Internet.

The audio packets could be given sufficient

priority to ensure their timely delivery, the video

packets could be selectively dropped to ensure

that the most useful frames make use of the

limited bandwidth, and all communications could

be encrypted to provide privacy. However, the

designers of the application did none of these

things. Further, in some situations the remedies to

be applied may be best applied somewhere other

than at the application end points. For example,

the home user’s portable machine may lack the

power to perform strong cryptography, while his

house’s base station is quite capable of doing so.

Active networks could easily handle all of these

problems, but this particular application was also

not written with active networks in mind.

Panda provides a solution for the problems of

matching legacy applications to the new power of

active networks. In the prior example, Panda

would automatically trap the data streams

representing the video and audio. After

examining the conditions of the networks and

machines involved, Panda could choose

adaptations to prioritize the audio, selectively

drop video frames, and suitably encrypt at the

proper place in the network. Doing so essentially

requires that Panda automatically create a plan for

determining which adapters to deploy in which

locations. Panda would deploy those adaptations,

convert the application’s data packets into active

network messages, and ensure that these messages

were delivered to the Panda active network

components at all participating nodes.

The model foreseen for Panda use is that a

wide variety of adapters would be available for

Panda’s use. Some would be highly general,

some quite specific to certain types of data

streams or even certain applications. A general

planning facility would choose the proper set of

adapters to meet the prevailing conditions. If

necessary, application writers or users could write

new adapters to handle previously unforeseen

conditions or special needs of their data streams,

but even without such specialized code Panda

should be able to offer useful services to many

applications. When appropriate, users and

application writers should also be able to offer

Panda advice on how to handle their data streams.

In essence, Panda would offer a useful service to

users who know nothing about Panda or active

networks, while allowing for even greater utility

for those who do understand those technologies.

Panda is intended to run on fairly powerful

nodes, since it does significant processing on

packets. Panda would not be suitable for use on a

core router, for example, but would be suitable for

a router providing access between a subnetwork

and the backbone, or on a gateway to a wireless

network, or perhaps on a server machine attached

to a router, assuming that relatively few of the

packets passing through that router would need to

be diverted to the Panda server. Panda provides

significant benefits to data streams, but it does so

at a cost, and thus its deployment points should be

carefully considered.

This paper describes the basic architecture

and current implementation of the Panda system.

The paper also describes demo nstrations of the

efficacy of Panda and presents performance data

on the system. It discusses the lessons learned

during the Panda project about transparent

adaptation of data streams, composition of

multiple adapters, and automated planning for

active networks.

2. Panda Architecture

To ease implementation, Panda is built on top

of ANTS, an existing active network execution

environment (EE). This EE provides Panda with

basic active networking services, such as

executing code at a node on behalf of a packet,

deploying adaptation code to the required nodes

in the network, etc. The ANTS execution

environment [1] is a Java toolkit that provides a

protocol-based programming model for

customizing packet forwarding through a network

using a data format called capsules. Simple use of

ANTS typically carries the programs to be

executed in the capsule along with the data and

control fields. While ANTS did not perfectly

match the Panda model of active networks, it

required only minor alterations to support Panda.

Panda currently supports UDP-based

application data streams. The underlying ANTS

system makes no guarantees regarding the

delivery of capsules or the order in which

capsules will be received at the destination, much

like UDP. Also, multimedia applications, which

tend to use UDP, are good candidates to benefit

from a distributed adaptation system since they

put heavy demands on the network and often

perform poorly under degraded network

 3

conditions, since random loss of significant

numbers of multimedia packets tends to seriously

degrade the quality of the video and audio. The

Panda approach could be applied to TCP streams,

but would require the addition of a reliable data

delivery model suitable for TCP applications. [2]

demonstrates that a TCP-friendly reliability model

can be built at reasonable cost, but Panda does not

currently include such a model.

Currently, Panda supports unicast

applications only, although it has been used for

simple multicast-like operations like forwarding

incoming data to two different outgoing branches.

Figure 1. The Panda Architecture

The Panda architecture has four modules,

each of which addresses a major task in the

middleware system (Figure 1). The Panda

Interception Component, or PIC, is responsible

for obtaining data from clients. The Panda

Adaptation Component, or PAC, deploys and runs

adapters for multiple client applications. The

Planner chooses a set of adapters that solve the

network limitations to meet the users

requirements and preferences. The Panda

Observation Component, or POC, deals with

gathering and reporting information required for

all other Panda components, including planning.

Figure 1 shows a Panda installation on a source

node, with the arrows indicating the flow of a

packet from the unaware application, through the

PIC to the PAC, which passes it to relevant

adaptors. When the adaptors are finished, they

give the packet to ANTS, which invokes node

operating system services to forward it to its

destination. The shaded boxes are the four Panda

components plus Panda adapters, the part of the

system reasonably definable as Panda.

The Panda Interception Component (PIC)

must intercept all data streams that Panda may

wish to handle. Depending on the facilities

provided by the host operating system, this

interception can be accomplished in different

ways. The current implementation uses a Linux

loadable kernel module (LKM) to intercept socket

calls. Alternatively, the firewalling capabilities

built in the Linux OS could also allow the

necessary redirection and masquerading of

connections, or Linux IPtables could handle this

problem. Systems like the x-kernel [3] and Scout

[4] have built-in capabilities to control handling

of network connections. Regardless of the

interception mechanism used, the PIC must also

have some way to know which data streams to

intercept.

The Panda Adaptation Component (PAC) is

the core of the Panda system. It installs the

necessary adapters for a data stream, delivers

capsules to the proper adapters, and generally

controls the flow of a data stream through Panda

nodes. Because these responsibilities heavily

overlap the typical behavior of an execution

environment, this portion of Panda is tightly

coupled to the underlying EE.

Panda adapters are modules that accept a data

packet and can perform arbitrary modifications on

that packet, including dropping it or converting it

into more than one packet. Panda may deploy

more than one adapter for a single data stream on

a particular node, so the system must allow for the

output of one adapter to serve as the input for the

next. Since a packet can be dropped, Panda must

also allow for situations where not all adapters

deployed on a node are actually invoked to handle

a particular packet.

During execution, an adapter may store data

at several different locations in the Panda

environment. The ANTS node cache and the

POC provide interfaces to store many distinct data

items. The Panda system also provides an

additional interface to dynamically store data

within the capsule, known as the capsule cache.

The content of the capsule cache is maintained as

the capsule traverses the network and is available

to any adapter that runs on this capsule. The

capsule cache allows adapters on different nodes

to add information specific to their operations to

the capsule in a general and commonly known

way.

The Panda Observation Component, or POC

can be viewed as the central service for messaging

between all Panda components (analogous to a

CORBA ORB). A typical Panda node has a POC

running locally. Two types of components

connect to the POC: sensors and clients. Sensors

generate information. Clients obtain the data

generated by the sensor via the POC. In some

PAC

PIC

POC

Node OS

ANTS

Unaware

App

Adaptors

Planner

PAC

PIC

POC

Node OS

ANTS

Unaware

App

Adaptors

Planner

 4

cases a component may be both a client and a

sensor to the POC; for example, a component that

provides hysteresis -type functions on data to a

client could obtain the original data from another

POC sensor.

The Planner is the most important client of

the POC in the Panda system. The Planner uses

the POC to determine the current network

conditions and other information needed to

determine a suitable plan for an application’s data

stream. The Planner also can optionally accept

user preferences to better tailor the plan to suit a

particular user’s needs. User preferences can be

implemented as a POC sensor that interacts with

the user, and this configuration reduces the

complexity of the Planner as it only needs to be a

POC client to obtain this additional information

regarding the user. The Planner is a sophisticated

facility that combines distributed data gathering,

temporary planning at each virtual link between

two Panda nodes on a data path, and a centralized

planning facility that uses the data gathered from

all other nodes.

Panda is capable of supporting multiple

different planners. Initially, Panda used a very

simple template-based planner. This simple

planner has been replaced by a far more powerful

planner based on heuristic search [5]. In brief,

this planner uses information about the data

stream, network and node conditions, and adaptor

availability to search the space of all possible

plans for the best plan. Heuristics based on

constraints of adaptations and observations of

how adaptations should be deployed allow the

planner to create high quality plans in much less

time than an exhaustive search would require.

Despite examining less of the solution space, the

Panda planner typically chooses exactly the same

plan chosen by a full exhaustive search, as

demonstrated by thousands of experiments under

a wide variety of conditions. Planning runs on the

node that initiates the data stream.

Panda, under normal conditions, works

transparently using automated planning; the

application programmer or user need not know

anything about it. Sometimes being less

transparent may be valuable. An application may

be aware of the active network; it may have better

knowledge of critical network and system

conditions. Therefore, an application programmer

can control sockets intercepted by Panda through

a standard socket API. The API allows the

applications to control the planning process. For

example, the application may provide its own

plan, or it could alter Panda’s plan. Panda

provides finer mechanisms to influence planning,

as well.

Panda also provides a user interface so that

users can set preferences for how Panda will

handle their data streams. Users have the option

of selecting which streams and data types to adapt

and with what priority. Voice transmission may

have higher priority than bulk data transfer, for

example. Users can choose data fidelity levels,

such as minimum tolerated image resolution.

Other options include security level desired and

communication delay constraints. All these

preferences are used as input by Panda when it

performs its automated planning.

There are other interface features that are not

directly related to Panda. The application can use

an API to communicate with the system to obtain

the latest information about the system and

network conditions. When appropriate, the

application can use such information to trigger

Panda replanning.

The Panda project concentrated on the

feasibility of the core idea and several issues key

to the notion of application-unaware use of active

networks. Thus, the existing system does not

address all relevant issues for an active network

middleware component. First, Panda uses only

the ANTS mechanism for code transport, which is

not ideal for its purposes. Second, Panda does not

address any security issues involved in providing

a distributed adaptation service, though associated

research [6] has addressed some important

security issues. Third, since Panda works with

UDP streams, it does not provide reliable data

delivery or recovery of failed adaptors or other

Panda components, though again associated

research [2] addresses these issues. Finally,

Panda does nothing with routing, though alternate

routing policies could be beneficial.

3. Panda Implementation

3.1. Basic Implementation Details

The current Panda system has

implementations of the PIC, PAC, and planning

components, in addition to various adapters. The

POC is under development. Panda is written in

Java, with the exception of the PIC, which

contains a Linux LKM (written in C) and a JNI

interface to control its operation. The PIC and

PAC contain approximately nine thousand lines of

code, not including code for adapters. The

planner consists of around five thousand lines of

 5

code, plus some code to interface the other Panda

components to the planner.

Panda is built on top of a modified version of

the ANTS 1.2 distribution. The most significant

change to ANTS was to support larger capsules –

larger in both size of code and size of the data

sent over the network. Additionally, Panda

required changes to the ANTS dynamic code-

loading system to allow capsule code to be loaded

from any node. Also, instead of being a

permanent part of a particular protocol, under

Panda a given adaptor may be used in many

different situations, which requires alteration to

ANTS dynamic code-loading, as well. These

changes break the fundamental principles of how

the ANTS system works, but these changes are

necessary to run Panda.

Panda runs on the Linux operating system

with kernels from the 2.0 or 2.2 series. It requires

a JVM version 1.1 or higher. It has also run on

Janos [7], using a customized version of the Kaffe

VM [8]. The kernel module of the PIC needed to

be reimplemented to work in the Janos

environment, but the Java interface to the PIC

remained the same, only requiring minor Java

code changes to cope with two different

interception implementations.

3.2. PIC Implementation

The current Panda PIC is a LKM stacked on

top of the native networking functions to provide

additional control over the proxy and

masquerading facilities built into Linux. Using a

kernel module for interception allows Panda to

intercept any application’s data stream running on

the node, regardless of how the application is

linked or what libraries it uses. Panda receives an

application’s data at the system-call level before

any network-level transformations have occurred,

such as segmentation or the addition of

checksums. Unfortunately, this approach is

subject to any user-level buffering that may occur

when using standard I/O libraries. Panda also has

no access to any information that is present in a

user-level networking interface, if one is used.

In the case of UDP communications, the

middleware opens a new UDP socket for

interception and performs a LKM sockopt()

informing the LKM that this socket wishes to

intercept certain UDP packets. The LKM diverts

any outgoing datagram that matches the intercept

description from the original destination to the

interception UDP socket opened by the

middleware service by changing the destination

address of the packet before it reaches the normal

kernel networking code. The original destination

address is stored in the module in a per-socket

data structure. After receiving a diverted

datagram on the interception socket, the

middleware service issues an LKM sockopt() to

obtain the packet’s original destination address.

At this point, the middleware is now able to send

the payload over the active network.

The Panda middleware at the destination

node strips the active network components from

the datagram and sends the non-active datagram

to the real destination application, using the LKM

to masquerade as the original source. As in

packet interception, the middleware makes use of

a LKM sockopt() to control the masquerade

address for the packet. The middleware sends the

packet over a socket, and the LKM in turn makes

use of facilities in the standard Linux kernel

networking code to perform masquerading on the

packet.

UDP communication is connectionless, so it

is unnecessary for an application to send a close

signal over the network to another computer. But

without a close signal, the Panda system cannot

reliably determine when to free resources

associated with a data flow. To solve this

problem, the LKM watches for UDP socket closes

and sends a close signal to any interception socket

that has intercepted data from the closing socket.

Interception is initially performed on UDP

packets destined for well-known port numbers.

Since most applications make use of well-known

port numbers to reach standard services on a

server, this has not proved to be a limitation.

While this approach is certainly less flexible than

interception based on signatures that may be

found in the data stream itself, it incurs less

overhead and latency to the applications that

cannot receive benefit from the middleware

service.

Interception can also occur on other packets

or connections that are related to the application,

but not on a well known port number. For

instance, in a TFTP file transfer, only the initial

file request is sent to a well-known port numb er;

the data transfer and acknowledgement packets

are sent to dynamically assigned port numbers

chosen by the operating system. In these cases,

the new port number to intercept can be

determined from the source address or from

information in the payload.

3.3. PAC Implementation

. The PAC is implemented as an ANTS

application that handles data from multiple user

 6

applications and converts the data into capsules

that are sent over the active network. At the

destination, the PAC removes the data from the

capsule and delivers it to the receiving

application. The design of ANTS does not

require a Panda data stream to pass through the

PAC at intermediate nodes, even if adaptations

are performed there, other than during the

planning phase at the start of connection setup.

3.4. Panda Adapter Implementation

Adapters in the Panda system are placed in a

special portion of an ANTS capsule, with one

adapter per capsule type. This placement

provides a number of benefits and also allows

reuse of much existing capsule code with a

minimum of changes. One of these benefits is

that the loading of capsule code to a node is

handled by the ANTS system. Additionally,

Panda benefits from any capsule-code security

mechanisms that are built into ANTS when

loading capsules at a node.

In Panda, adapters have complete control

over the capsule, including routing and

transformation. Panda is designed to provide as

much flexibility as possible in the adapters it can

use. This decision also reduces the size and

complexity of the Panda code resident in the

capsule by delegating routing and forwarding to

an adapter.

Panda creates a plan of which adapters to

deploy to allow the data capsules to reach their

destination and receive the special treatment

required by current network conditions. When a

Panda capsule begins evaluation at a node, it does

not know what adapters need to be run. The plan

access method determines which adapters a

capsule should run. To support different styles of

planning, there are three plan access methods built

into Panda. First, the plan could be embedded

into the capsule. Second, the plan could be in the

ANTS node cache. (This method is used for

Panda’s heuristic-based planner.) Finally, the

capsule can visit the planner on the current node

to determine the set of adapters to run there. A

capsule may try any combination of these plan

access methods, depending on how the capsule

was initialized. Should all of these methods fail

to provide a set of adapters to run, as in the case

where a capsule is forwarded along an unexpected

link, a simple shortest-path forwarding routine

built into the data capsule is run.

Once a set of adapters is found at a node,

control of execution is transferred to the first

adapter, which has complete control over the

capsule. It may choose to transform the payload

or headers (including the planning information),

forward the capsule, or run the next adapter. The

list of adapters to run is kept in memory, and the

currently executing adapter can either call the

next adapter in the list or terminate execution of

the capsule after it has performed its functions.

Most adapters will simply call the next adapter on

the list until the end of the list is reached, where

capsule execution will terminate. This includes

forwarding/routing adapters, which should be

normally placed at the end of the list of adapters

to run. Adapters typically trust each other. Issues

of handling adapters that do not trust each other

are handled by excluding untrustworthy adapters

in the planning phase.

3.5. POC Implementation

The POC must accept sensor information

from various sensors, including ones that do not

reside on the local node. To allow for different

types of POC sensors to be built, the POC

employs a common modular interface to add and

query sensors. This mo dular interface maps

neatly into the Java system. This system can also

integrate with existing monitoring systems, as the

POC sensor module can simply act as a bridge

between the POC and the component that

performs the actual monitoring.

Clients to the POC are typically other Panda

components. POC clients can determine the

available sensors, add and remove sensors, and

obtain information from a sensor attached to the

POC. Adapters can act as either sensors or clients

of the POC, although because adapters are

implemented as capsules, they cannot

communicate with the POC without special

provisions. For operations where the data is not

time-sensitive, the client can get POC information

and store information as a POC sensor in the

ANTS node cache. Periodically, the PAC will

examine the contents of the node cache and act as

a proxy to the POC for the adapters. This method

of communication with the POC lessens the

amount of time the adapter spends performing its

role as a sensor or client. The adapter also has the

ability to communicate with the POC through the

use of an ANTS extension. After finding the POC

extension on a node, an adapter acts as any other

client or sensor to the POC.

POC clients usually run on the same node as

the POC. However, many clients, such as the

Planner, need access to information that resides

on other nodes. Thus, the POC implements a

gateway module to query information that resides

 7

on a remote POC. With the module, a client asks

its local POC for information residing on a remote

POC, and the gateway module obtains the

information from the remote POC and sends it

transparently to the client on the local machine,

using underlying Panda out-of-band

communications facilities. The gateway module

can be implemented as a standard client and

server to the local POC that runs on all nodes.

The POC currently uses very simple sensors,

at the moment. More sophisticated sensors could

be added, at the cost of their development. A

better solution would be a close integration of the

POC with an existing active network sensing and

management facility. In the past, Panda has been

successfully attached to Nestor [9], and

investigating further use of Nestor with Panda

would be valuable.

3.6. Panda Planner Implementation

The Panda planner runs a simp le protocol to

gather all information necessary to build its plan.

This protocol requires essentially one round trip

from source to destination and back before all

information is available to the planner, with slight

extra overhead because some processing is

required at participant nodes during the round trip.

Thus, gathering the data and performing the

heuristic search can take some time. Therefore,

Panda also creates a temporary plan quickly, to

allow data to start flowing before the normal

planning procedure completes. This temporary

plan is built on a per-node basis, with each node

using purely local information from itself and the

next Panda node to determine which adapters to

deploy on those nodes. These temporary plans

can be very far from optimal, but they allow some

data to flow while the full planning procedure

occurs. Because network conditions can change

substantially during the lifetime of a data stream,

the original plan may become ineffective, so

Panda supports replanning. The mechanics of

installing the new plan are essentially the same as

those of switching from the temporary plan to the

full plan at the start of the data stream.

3.7. Sample Panda Applications

 An early application of Panda assisted in

transmitting a video from a server to two

destinations with differing link throughputs.

Without Panda, the server would have to send a

customized version of the video stream to each

client to provide them with the maximum video

fidelity attainable over their respective

connections. With Panda, we used two adapters

to achieve a better effect. The first adapter

duplicated a single, original quality unicast video

stream from the server and forwarded it over

high-quality links to two intermediate nodes. The

second adapter was run at these intermediate

nodes and filtered the video stream to meet the

individual throughput restrictions to the clients,

who thus each received the best possible quality

of service for their connectivity while reducing

the throughput and computation load on the

server.

 A more complex application of Panda

involved multiple components from UC Berkeley,

the University of Utah, ISI, and Columbia

University. In this scenario, a Berkeley Ninja

server [10] sent a video stream accompanying a

presentation to a client connected through an

overloaded link. The video stream contained

multiple versions of the video, each encoded at a

different quality. Panda intercepted the video

stream and performed two actions. First, it set up

a virtual active network (VAN) from the source to

the destination node using software designed by

Columbia [11]. The VAN used an active form of

RSVP [12] built by ISI to guarantee the

throughput over the congested links. At an

intermediate node running Panda and Janos [7],

an adapter only forwarded the highest quality

version of the video stream that the client could

receive.

Another demonstration of Panda also

involved interoperation with UC Berkeley’s

Ninja, Columbia’s Virtual Active Networks and

Nestor, and the University of Utah’s Janos

system. The scenario for the demonstration was a

videoconference, with two different video/audio

sessions being streamed to a third participant, in

an extended Y-configuration, through a

heterogeneous network with a variety of

problems. Network problems included a packet

storm on the wired segment, as well as extensive

wireless competition. In order to deliver

acceptable video and audio, network conditions

had to be analyzed by Nestor [9], and the media

appropriately adapted. Adaptation in this case

was a selective layer-based distillation of the

video, encoded in the WaveVideo wavelet codec

[13], based on prioritization of the streams.

Prioritization was determined by a bandwidth

analysis of the audio traffic, hypothesizing that

more audio traffic would indicate a speaker. Due

to the tremendous number of packets from the

videoconferencing sessions, the final wireless link

was incapable of delivering acceptable video for

 8

both senders. Thus, Panda was required to

selectively drop packets from the less desirable

session, while maximizing the quality of the

“focused” session. The end results were usable

video streams with the higher resolution stream

dynamically switched to the camera showing the

current speaker.

4. Panda Performance

4.1. System Overheads

Panda puts substantial code (itself, ANTS,

and adapter code) in the path of packets it

intercepts. The overheads associated with this

code determine the domains for which use of

Panda will be beneficial.

The figures in this section concentrate

primarily on the latency induced by Panda, though

some data on achievable throughput is also

presented. The data covers minimum possible

latency with Panda, the latency effects of

including multiple participating Panda nodes, and

the latencies induced by adding minimal adaptors

and realistic adaptors. Error bars on all figures

show the value of standard error, unless otherwise

indicated.

One fundamental overhead is the additional

latency of delivering a packet. The following

method was applied to measure one-way packet

latency. The packets were stamped with the local

time on the source machine. Upon the arrival at

the destination machine the stamped time was

subtracted from the destination local time to

obtain measured time delivery. The

synchronization of the source and destination

machines' clocks was done with NTP. The NTP

server was located on the destination node. The

source node synchronized itself to the destination

local time before the first packet was sent to the

destination. Then 20,000 packets were sent to the

destination. After the last packet was delivered,

the source machine measured the skewing value.

It was presumed that skewing grows uniformly by

time. The actual time delivery was calculated

with a formula for each data packet n:

ActualTimeDelivery(n) =

measuredTimeDelivery(n) - n
ueskewingVal ?

000,20

The connection was tested with twisted-pair

sequential connections of up to four computers.

Dell Inspiron 3500 laptops with 333 MHz

processors were used for one set of tests and

Hewlett Packard Omnibook 4150 laptops with

500 MHz processors for another set of tests; all

machines used Linux Red Hat 7.0 with the 2.2.16

kernel. Xircom RealPort2 Ethernet 10/100

PCMCIA cards were used for the network

connection between the machines. The source

and destination machines ran a user application

and the Panda code concurrently. The priority of

the user application was set lower on the source

Figure 2. Packet delivery latency

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

no
 P
an

da

2 n
od

es
, 0

ad
ap

ter
s

3 n
od

es
, 0

 ad
ap

ter
s

4
no

de
s,

 0
 a
da

pte
rs

4
no

de
s,

 1
 a
da

pte
r

4 n
od

es
, 2

 ad
ap

ter
s

4 n
od

es
, 3

 ad
ap

ter
s

4
no

de
s,

 4
 a
da

pte
rs

4 n
od

es
, 5

 ad
ap

ter
s

L
a
te

n
c
y
 (

m
s
e
c
)

 9

machine and higher on the destination machine to

ensure proper allocations of resources.

Throughput of the network links is varied

among 150 Kbps, 800 Kbps, 2000 Kbps, and

5000 Kbps using CBQ.

Figure 2 presents packet delivery latency for

different packet sizes. The packet delivery

latency also contains the adaptation latency.

Figure 2 shows that adding Panda to a data stream

increases its latency 50 to 150%, with longer

packets seeing less effect. Adding more Panda-

enabled nodes or more adapters modestly

increases the delay for each addition.

Figure 3 presents the latency of inserting

adapters that do nothing. All adapters were

deployed on a single node of the connection for

each bar. Without Panda no adapters can be

deployed, so the extra latency for that case is

defined to be zero. Every Panda node always runs

at least one forward adapter, whose only task is to

forward a packet to the next node after all other

adapters are executed. A number of forward

adapters equal to the number of connection nodes

is always present in a Panda connection but this is

not considered in the adapter counts used on these

graphs.

0

10
20

30

40
50

60

1k 2k 4k 8k

Packet size (kilobytes)

L
a

te
n

c
y

 (
m

s
e

c
)

no Panda
2 nodes, 0adapters
3 nodes, 0 adapters
4 nodes, 0 adapters
4 nodes, 1 adapter
4 nodes, 2 adapters
4 nodes, 3 adapters
4 nodes, 4 adapters
4 nodes, 5 adapters

Figure 3. Null adapter latency

0

5

10

15

20

25

Panda Panda & Resolution Drop Panda & Resolution Drop

& Encryption

L
a
te

n
c
y
 (

m
s
e
c
)

Inspiron (null-adapters)

Inspiron (WaveVideo)

HP (WaveVideo)

Figure 4. Latency of running real adapters

 10

Figure 4 presents the latency of the

adaptation with real adapters. This figure and

figure 5 were obtained by running a WaveVideo

application on the same configuration used

throughout this section, using adapters that

filtered the video and/or performed encryption

and decryption. Since real adaptors are often

CPU-bound, more powerful machines achieved

lower latency, as shown in figure 4.

Figure 6 shows how Panda throughput grows

with packet size. As expected, larger packets

achieve higher throughput. Error bars represent

95% confidence intervals.

The planning procedure consists of planning

data-gathering, plan calculation, and plan

deployment. Planning data-gathering takes one

round trip; the source node forwards the data

gathering message to the destination node and

waits for its return. Planning data-gathering for

the four Panda nodes in the test configuration

takes 108 +/- 2.85 milliseconds.

Figure 6 shows the latency of plan calculation

for a connection that may require no adapters, or

just a Resolution Drop adapter, or both Resolution

Drop and Encryptor/Decryptor adapters. The

bandwidth of the links was varied, but the graph

shows that plan calculation latency does not

depend on the available bandwidth.

0

100

200

300

400

500

600

700

800

900

150 800 2000 5000

Bandwidth (kbps)

L
a
te

n
c
y
 (

m
s
e
c
)

no adapters

Resolution Drop

Resolution Drop & Encryption

Figure 5. Plan calculation overhead

0

200
400

600
800

1000
1200

1400
1600

1800

1k 2k 4k 8k

Packet size (kilobytes)

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Figure 6. Panda throughput

 11

The latency for deploying the adapters

selected by the planner depends on adapter size

and the available link bandwidth, as shown in

figure 7. Resolution Drop is a very small adapter

that contains a few lines of code. Encryption is a

heavyweight adapter that processes every

character of user data to perform DES encryption.

The larger the adapter, the longer it takes to

deploy it. The deployment latency does not

depend on bandwidth unless it is less than 150

Kbps.

4.2. Panda Benefits

Panda is worth using only if the benefits it

offers outweigh the overheads. For some

benefits, such as encryption, quantifying the

benefit is hard, particularly for purposes of

comparison to latency overheads. Here we

0

5

10

15

20

25

30

35

40

45

50

1 9 17 25 33 41 49 57 65 73 81 89 97 105

P
S

N
R

Internet

Panda & Resolution Drop

Panda & Resolution Drop & Encryption

WIthout Panda

Figure 7. PSNR for Wavevideo application

0

50

100

150

200

250

300

350

400

150 800 2000 5000

Bandwidth (kpbs)

L
a
te

n
c
y
 (

m
s
e
c
)

no adapters

Resolution Drop

Resolution Drop & Encryption

Figure 8. Plan deployment latency

 12

present benefit metrics that are more quantifiable

and take the latency overheads into account. In

particular, we present improvements in the Peak

Signal-to-Noise Ratio (PSNR) for the WaveVideo

application discussed earlier. Figure 8 presents

PSNR luminance on Dell Inspiron 3500 machines

with a link bandwidth limited to 150 Kbps.

Without Panda, the PSNR curve declines

when the channel is saturated and more or less

random video packets are dropped. Panda, using

the Resolution Drop adapter, intelligently adjusts

to the limited bandwidth by dropping packets

representing lower resolution video components.

As a result , once Panda has completed its

planning phase and deployed its adapters, its

PSNR curve improves and exceeds the non-Panda

curve. The PSNR performance of Panda with

Resolution Drop and Encryption adaptation in

some areas can be even better than Panda with

Resolution Drop only; this is due to helpful

buffering effects caused by the extra delay of

encryption.

5. Related Work

Panda is the intellectual descendant of

Conductor [14]. Conductor is a TCP-based open

architecture framework providing a distributed,

coordinated adaptation facility. Similar to Panda,

Conductor supports application transparent

interception and distributed, coordinated

adaptation of the network stream. Unlike Panda,

Conductor offers an extensive security model, as

well as a reliability model designed for adaptation

called semantic segmentation. As Conductor is a

TCP-based framework, the adaptation library for

Conductor is substantially different than Panda’s,

focusing on HTTP, POP, and other stream-based

adaptations.

The Protocol Boosters [15] adaptation

framework provides a general approach to

network-level adaptation. The framework allows

either a single adaptation module or a pair of

modules to be transparently deployed, adding new

features to existing protocols, such as forward

error correction or fast retransmission. Boosters

typically provide lossless adaptation, since the

system provides no support for ensuring reliable

delivery if packets intended for delivery are

generated, dropped, or permanently altered by a

booster. Boosters are composable, but the system

does not provide support for selecting a set of

boosters that will perform well together. Panda

substantially differs from Protocol Boosters in its

planning capabilities, as well as in its support for

lossy adaptation.

Transformer Tunnels [16] use IP tunneling to

alter the behavior of a protocol over a

troublesome link. Once created, a transformation

function is applied to all data flowing through

each tunnel. Generally, Transformer Tunnels are

used to provide protocol-independent adaptations,

such as consolidation of packets, scheduling of

transmissions to preserve battery power,

encryption, lossless compression, and buffering.

Transformer Tunnels are transparent to

applications and may be interoperable with

application-level adaptation provided by proxies.

However, no mechanism is provided to compose

transformation functions or to coordinate

transformations with externally provided

adaptations. Panda’s adaptor model allows this

composability; additionally the Panda Planner

coordinates various adaptations across multiple

links.

Proxies are often used to handle single

troublesome links, particularly links close to

client nodes. One of the most advanced proxy

solutions is the Berkeley proxy [10]. This system

uses cluster-computing technology to provide a

shared proxy service for a wide variety of PDAs.

The proxy can provide a variety of application-

level adaptations, including transformation

(changing the data from one format to another),

aggregation (combining several pieces of data into

one), caching, and customization (typically

converting a data format for use by a particular

PDA). The Berkeley researchers have investigated

methods of composing adaptations on a single

machine [17]. They have also examined the use of

a clustered proxy service to provide highly

reliable and scalable services to a large number of

customers. In particular, their proxy technology

has been deployed for large-scale, real-world use,

supporting palm-computer based web browsing in

a metropolitan-area wireless network [18]. The

Berkeley Proxy and other proxy solutions

typically work at a single location in the network,

while Panda is designed for distributed adaptation

at multiple locations.

CANS used a different approach to provide

an early form of automated planning [19]. CANS

performs dynamic deployment of transcoding

components (similar to Panda adapters). These

components use high-level specifications of

component behavior and network routing

characteristics as inputs, ensuring that composed

adaptations are proper through the use of strong

typing of the inputs and outputs of those

adaptations. The CANS algorithm is based on

 13

search in a stream-type graph with a

simplification strategy to reduce the graph’s

complexity.

6. Conclusions

The Panda project has demonstrated that

active network technology can be applied

usefully, even to applications that were not

written with active networks in mind and that are

not altered to work with active networks. This

demonstration substantially increases the potential

audience for the improvements offered by active

networks. Not only are legacy applications

potential users of active networks, but future

programmers can concentrate on the needs of

their applications, rather than the complexities of

programming an active network. Where suitable,

they can provide hints and direction to Panda or a

similar system, but they can still expect that the

active network will perform beneficial actions on

their data streams even without such advice.

Panda achieves reasonable performance

despite being unoptimized and running on an

early version of ANTS, which is known to have

poor performance. Even with these

disadvantages, realistic applications receive

measurable user- and application-visible benefits

from Panda. In a more optimized form, Panda

could provide greater benefits to a wider range of

applications.

Panda’s architecture is well suited for partial

deployment of active networks. Panda must run

on the source and destination node (though further

development could remove even those

restrictions), but otherwise does not require

intermediate nodes to participate in the active

network. Of course, non-participating nodes

cannot perform useful adaptations, but this

approach allows selective deployment of Panda at

nodes that are close to troublesome links, or that

often are overloaded, or that have other

characteristics suggesting that they are a good

spot for adaptation. The more such nodes

deployed, the more options available to Panda.

Panda has also demonstrated that automated

planning of active network adaptations is possible

and efficient. Panda’s automated facility plans

sufficiently quickly to provide a plan early in

most data streams, and the plans provided are

usually as good as those found by exhaustively

testing all possibilities. Without a reasonable

planning facility, the Panda approach could not be

used in the real world, so this demonstration is

key to its future success. Further, this result

suggests that automated planning based on a

heuristic search or other AI techniques might have

a wider applicability in solving many distributed

systems problems.

A final lesson from the Panda project is that

early choices can have long-lasting implications.

The decision to build on an existing execution

environment (rather than creating a new one), and

the choice of ANTS for that EE, had profound

implications for the project. ANTS was not

designed for a model of dynamic composition of

shared adapters, potentially a new set for each

connection. Therefore, much of the Panda

implementation effort was spent making simple

concepts fit into a framework that wasn’t

designed to support them. The choice had other

implications, such as mandating an early

commitment to performing the work in Java. This

choice was not a mistake, since the resulting

system demonstrated all the hypotheses of the

original project, but it did have wide-ranging

effects on the work, many of which were not

foreseen when the decision was made. For

example, the combined performance overheads of

ANTS and Java limited the sorts of adaptations

and applications that we examine for Panda.

Since running any adaptation would be expensive,

only adaptations with major payoffs were worth

considering and only applications with major

problems were candidates.

Performance is a key weak point of Panda, as

it currently stands. Even with rather high

overheads to overcome, Panda is useful for many

applications. However, a re-implementation that

divorces it from ANTS and allows it to use a

much lighter-weight EE would exp and Panda’s

utility.

In summary, Panda demonstrates that

application-unaware use of active networks is

possible and can provide substantial benefits to

applications. The automatic planning capability

implicit in the idea can be realized with

sufficiently low overhead and very high quality in

the resulting plans. Thus, active network

deployment need not be dependent on the creation

of large numbers of active network applications.

A simple piece of middleware like Panda can

provide active network benefits to existing

applications without altering any of their code.

References

[1] D. Wetherall, J. Guttag, and D. Tennenhouse.

“ANTS: A Toolkit for Building and Dynamically

Deploying Network Protocols.” Openarch 98, 1998.

 14

 [2] M. Yarvis, P. Reiher, and G. Popek. “A

Reliability Model for Distributed Adaptation.”

OpenArch 2000, March 2000.
[3] N. Hutchinson and L. Peterson. "The x-kernel:

An Architecture for Implementing Network Protocols."

IEEE Transactions on Software Engineering, vol. 17,

no. 1, January 1991.

[4] D. Mosberger and L. Peterson. "Making Paths
Explicit in the Scout Operating System." Proceedings

of the Symposium on Operating Systems Design and

Implementation, October, 1996.

[5] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko.

“Automated Planning for Open Architectures.”
Openarch00, March 2000.

[6] J. Li, M. Yarvis, and P. Reiher. “Securing

Distributed Adaptation.” Computer Networks, Special

Issue on Programmable Networks, vol. 38, no. 3, 2002.

[7] P. Tullman, M. Hibler, and J. Lepreau. "Janos:
A Java-Oriented OS for Active Networks." IEEE

Journal on Selected Areas of Communications, Vol. 19,

No. 3, March 2001.

[8] G. Back, W. Hsieh, and J. Lepreau. “Processes

in KaffeOS: Isolation, Resource Management, and
Sharing in Java.” Fourth Symposium on Operating

Systems Design and Implementation (OSDI 2000),

October 2000.

[9] Y. Yemini, A.V. Konstantinou, and D. Florissi.

"NESTOR: An Architecture for Self-Management and
Organization." IEEE Journal on Selected Areas of

Communications, Vol. 18, No. 5, May 2000.

 [10] A. Fox, S. Gribble, Y. Chawathe, E. Brewer,

P. Gauthier. “Extensible Cluster-Based Scaleable

Network Services.” Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP‘97),

Saint-Malo, France, October 1997.

[11] Y. Yemini and S. da Silva. "Towards

Programmable Networks." IFIP/IEEE International

Workshop on Distributed Systems: Operations and
Management, 1996.

[12] B. Braden. ARP project web page,

http://www.isi.edu/div7/ARP/ARP.

[13] G. Fankhauser, M. Dasen, N. Weiler, B.

Plattner, B. Stiller. “WaveVideo — An Integrated
Approach to Adaptive Wireless Video.” Mobile

Networks And Applications (Special Issue on Adaptive

Mobile Networking and Computing), 4(4):255-271,

December 1999.

[14] M. Yarvis, P. Reiher, G. Popek. “Conductor:
A Framework for Distributed Adaptation.” Proceedings

of the Seventh Workshop on Hot Topics in Operating

Systems (HotOS VII), Rio Rico, Arizona, March 1999.

 [15] D. Feldmeier, A. McAuley, J. Smith, D.

Bakin, W. Marcus, T. Raleigh. “Protocol Boosters.”
IEEE Journal on Selected Areas in Communications

(Special Issue on Protocol Architectures for 21st

Century Applications), 16(3):437-444, April 1998.

[16] P. Sudame, B. Badrinath. “Transformer

Tunnels: A Framework for Providing Route-Specific
Adaptations.” Proceedings of the USENIX Annual

Technical Conference, New Orleans, Louisiana, June

1998.

[17] S. D. Gribble, M. Welsh, E. A. Brewer, and

D. Culler. "The MultiSpace: an Evolutionary Platform

for Infrastructural Services." Proceedings of the 1999
USENIX Annual Technical Conference, Monterey,

California, June 1999.

 [18] A. Fox, I. Goldberg, S. Gribble, D. Lee, A.

Polito, E. Brewer. “Experience With Top Gun

Wingman: A Proxy -Based Graphical Web Browser for
the USR PalmPilot.” Proceedings of the IFIP

International Conference on Distributed Systems

Platforms and Open Distributed Processing

(Middleware '98), Lake District, UK, September 1998.

[19] Xiaodong Fu, Weisong Shi, and Vidjay
Karancheti. “Automatic Deployment of Transcoding

Components for Ubiquitous, Network-Aware Access to

Internet Services.” New York University Computer

Science Department Technical Report CS-TR-2001-

814, March 2001.

