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Abstract 

 
Panda is middleware designed to bring the 

benefits of active networks to applications not 

written with active networks in mind.  This paper 

describes the architecture and implementation of 

Panda, and provides data on the overheads 

incurred and performance benefits achieved.  The 

paper also discusses some of the key issues of 

automatically and transparently intercepting data 

streams and converting them into active streams, 

including interception mechanisms, automated 

planning facilities, and allowing user and 

application control of the middleware. 

 

 

1. Introduction 

 
Computer networks continue to improve in 

accessibility, speed, and coverage, leading users 

to rely heavily on connectivity for normal 

activities.  However, the widely varying 

characteristics of networks often cause problems 

for their use, since applications typically assume 

some minimal quality of service from the 

network.  If the network in its current state cannot 

provide that quality, many applications work 

poorly or not at all. 

In many cases, more intelligent handling of 

data in the network could ameliorate these 

problems and allow applications to work well 

even under difficult network conditions.  Active 

networks offer this promise by allowing 

substantial programmability of the network.  

However, most existing active network systems 

work on the assumption that new applications are 

written so that they explicitly instruct the network 

on how to handle their data streams.  This 

approach offers no benefits to applications that 

were written before active networks were created, 

nor to later applications that were not written with 

the possibilities offered by active networks in 

mind.  Even applications that were written for 

active networks are limited by the creativity and 

foresight of the application designer, who must 

become not only an expert in his own application 

area, but in active networking as well, to make 

effective use of the new possibilities.  In many 

cases, certain sets of operations (such as 

cryptographic and authentication operations, 

lossless compression, or alternative routing) may 

be commonly useful for different applications.  

Panda could provide application writers the 

benefits of these operation sets when their 

applications work in active environments without 

requiring the application writers to code them for 

active networks. 

Panda is a middleware system that provides 

the benefits of active networks to unaware 

applications.  Panda traps data streams from those 

applications, converts them to active network 

packet streams, determines the network 

conditions, makes a plan of which adaptations to 

apply to the streams to deal with prevailing 

conditions, and deploys the code necessary to 

ensure proper handling of the streams.  Panda is 

transparent to the applications it services, though 

of course any permanent alterations it makes in 

the data stream will be visible at the destination.   

Consider the following scenario.  Two users 

on portable devices are talking through an 

existing video phone program.  One user is in his 

home, connected by a moderately high-speed 

wireless network to a base station in his house.  

The other is in a public place, using a telephone 

dialup line to connect to his office machine.  

Between the base station and the office machine, 

the communication goes over the Internet.  Since 

the application in use may have been written with 

the assumption of wired networks with fairly high 
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and uniform speeds and bandwidths, very likely 

the limited bandwidth of the dialup line and the 

possible interference on the wireless link will 

cause problems for the video and audio.  Further, 

the users may be concerned about the possible 

loss of privacy because their transmissions are 

crossing a wireless link and the untrustworthy 

Internet. 

The audio packets could be given sufficient 

priority to ensure their timely delivery, the video 

packets could be selectively dropped to ensure 

that the most useful frames make use of the 

limited bandwidth, and all communications could 

be encrypted to provide privacy.  However, the 

designers of the application did none of these 

things.  Further, in some situations the remedies to 

be applied may be best applied somewhere other 

than at the application end points.  For example, 

the home user’s portable machine may lack the 

power to perform strong cryptography, while his 

house’s base station is quite capable of doing so.  

Active networks could easily handle all of these 

problems, but this particular application was also 

not written with active networks in mind. 

Panda provides a solution for the problems of 

matching legacy applications to the new power of 

active networks.  In the prior example, Panda 

would automatically trap the data streams 

representing the video and audio.  After 

examining the conditions of the networks and 

machines involved, Panda could choose 

adaptations to prioritize the audio, selectively 

drop video frames, and suitably encrypt at the 

proper place in the network. Doing so essentially 

requires that Panda automatically create a plan for 

determining which adapters to deploy in which 

locations. Panda would deploy those adaptations, 

convert the application’s data packets into active 

network messages, and ensure that these messages 

were delivered to the Panda active network 

components at all participating nodes.   

The model foreseen for Panda use is that a 

wide variety of adapters would be available for 

Panda’s use.  Some would be highly general, 

some quite specific to certain types of data 

streams or even certain applications.  A general 

planning facility would choose the proper set of 

adapters to meet the prevailing conditions.  If 

necessary, application writers or users could write 

new adapters to handle previously unforeseen 

conditions or special needs of their data streams, 

but even without such specialized code Panda 

should be able to offer useful services to many 

applications.  When appropriate, users and 

application writers should also be able to offer 

Panda advice on how to handle their data streams.  

In essence, Panda would offer a useful service to 

users who know nothing about Panda or active 

networks, while allowing for even greater utility 

for those who do understand those technologies. 

Panda is intended to run on fairly powerful 

nodes, since it does significant processing on 

packets.  Panda would not be suitable for use on a 

core router, for example, but would be suitable for 

a router providing access between a subnetwork 

and the backbone, or on a gateway to a wireless 

network, or perhaps on a server machine attached 

to a router, assuming that relatively few of the 

packets passing through that router would need to 

be diverted to the Panda server.  Panda provides 

significant benefits to data streams, but it does so 

at a cost, and thus its deployment points should be 

carefully considered. 

This paper describes the basic architecture 

and current implementation of the Panda system.  

The paper also describes demo nstrations of the 

efficacy of Panda and presents performance data 

on the system.  It discusses the lessons learned 

during the Panda project about transparent 

adaptation of data streams, composition of 

multiple adapters, and automated planning for 

active networks. 

 

2. Panda Architecture  

 
To ease implementation, Panda is built on top 

of ANTS, an existing active network execution 

environment (EE).  This EE provides Panda with 

basic active networking services, such as 

executing code at a node on behalf of a packet, 

deploying adaptation code to the required nodes 

in the network, etc.  The ANTS execution 

environment [1] is a Java toolkit that provides a 

protocol-based programming model for 

customizing packet forwarding through a network 

using a data format called capsules.  Simple use of 

ANTS typically carries the programs to be 

executed in the capsule along with the data and 

control fields.  While ANTS did not perfectly 

match the Panda model of active networks, it 

required only minor alterations to support Panda. 

Panda currently supports UDP-based 

application data streams.  The underlying ANTS 

system makes no guarantees regarding the 

delivery of capsules or the order in which 

capsules will be received at the destination, much 

like UDP.  Also, multimedia applications, which 

tend to use UDP, are good candidates to benefit 

from a distributed adaptation system since they 

put heavy demands on the network and often 

perform poorly under degraded network 
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conditions, since random loss of significant 

numbers of multimedia packets tends to seriously 

degrade the quality of the video and audio.  The 

Panda approach could be applied to TCP streams, 

but would require the addition of a reliable data 

delivery model suitable for TCP applications.  [2] 

demonstrates that a TCP-friendly reliability model 

can be built at reasonable cost, but Panda does not 

currently include such a model. 

Currently, Panda supports unicast 

applications only, although it has been used for 

simple multicast-like operations like forwarding 

incoming data to two different outgoing branches. 

 

 

Figure 1.  The Panda Architecture 

The Panda architecture has four modules, 

each of which addresses a major task in the 

middleware system (Figure 1).  The Panda 

Interception Component, or PIC, is responsible 

for obtaining data from clients.  The Panda 

Adaptation Component, or PAC, deploys and runs 

adapters for multiple client applications.  The 

Planner chooses a set of adapters that solve the 

network limitations to meet the users 

requirements and preferences.  The Panda 

Observation Component, or POC, deals with 

gathering and reporting information required for 

all other Panda components, including planning.  

Figure 1 shows a Panda installation on a source 

node, with the arrows indicating the flow of a 

packet from the unaware application, through the 

PIC to the PAC, which passes it to relevant 

adaptors.  When the adaptors are finished, they 

give the packet to ANTS, which invokes node 

operating system services to forward it to its 

destination.  The shaded boxes are the four Panda 

components plus Panda adapters, the part of the 

system reasonably definable as Panda. 

The Panda Interception Component (PIC) 

must intercept all data streams that Panda may 

wish to handle.  Depending on the facilities 

provided by the host operating system, this 

interception can be accomplished in different 

ways.    The current implementation uses a Linux 

loadable kernel module (LKM) to intercept socket 

calls.  Alternatively, the firewalling capabilities 

built in the Linux OS could also allow the 

necessary redirection and masquerading of 

connections, or Linux IPtables could handle this 

problem.  Systems like the x-kernel [3] and Scout 

[4] have built-in capabilities to control handling 

of network connections.  Regardless of the 

interception mechanism used, the PIC must also 

have some way to know which data streams to 

intercept.  

The Panda Adaptation Component (PAC) is 

the core of the Panda system.  It installs the 

necessary adapters for a data stream, delivers 

capsules to the proper adapters, and generally 

controls the flow of a data stream through Panda 

nodes.  Because these responsibilities heavily 

overlap the typical behavior of an execution 

environment, this portion of Panda is tightly 

coupled to the underlying EE.   

Panda adapters are modules that accept a data 

packet and can perform arbitrary modifications on 

that packet, including dropping it or converting it 

into more than one packet.  Panda may deploy 

more than one adapter for a single data stream on 

a particular node, so the system must allow for the 

output of one adapter to serve as the input for the 

next.  Since a packet can be dropped, Panda must 

also allow for situations where not all adapters 

deployed on a node are actually invoked to handle 

a particular packet. 

During execution, an adapter may store data 

at several different locations in the Panda 

environment.  The ANTS node cache and the 

POC provide interfaces to store many distinct data 

items.  The Panda system also provides an 

additional interface to dynamically store data 

within the capsule, known as the capsule cache.  

The content of the capsule cache is maintained as 

the capsule traverses the network and is available 

to any adapter that runs on this capsule.  The 

capsule cache allows adapters on different nodes 

to add information specific to their operations to 

the capsule in a general and commonly known 

way. 

The Panda Observation Component, or POC 

can be viewed as the central service for messaging 

between all Panda components (analogous to a 

CORBA ORB).  A typical Panda node has a POC 

running locally.  Two types of components 

connect to the POC: sensors and clients.  Sensors 

generate information.  Clients obtain the data 

generated by the sensor via the POC.  In some 
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cases a component may be both a client and a 

sensor to the POC; for example, a component that 

provides hysteresis -type functions on data to a 

client could obtain the original data from another 

POC sensor. 

The Planner is the most important client of 

the POC in the Panda system.  The Planner uses 

the POC to determine the current network 

conditions and other information needed to 

determine a suitable plan for an application’s data 

stream.  The Planner also can optionally accept 

user preferences to better tailor the plan to suit a 

particular user’s needs.  User preferences can be 

implemented as a POC sensor that interacts with 

the user, and this configuration reduces the 

complexity of the Planner as it only needs to be a 

POC client to obtain this additional information 

regarding the user.  The Planner is a sophisticated 

facility that combines distributed data gathering, 

temporary planning at each virtual link between 

two Panda nodes on a data path, and a centralized 

planning facility that uses the data gathered from 

all other nodes. 

Panda is capable of supporting multiple 

different planners.  Initially, Panda used a very 

simple template-based planner.  This simple 

planner has been replaced by a far more powerful 

planner based on heuristic search [5].  In brief, 

this planner uses information about the data 

stream, network and node conditions, and adaptor 

availability to search the space of all possible 

plans for the best plan.  Heuristics based on 

constraints of adaptations and observations of 

how adaptations should be deployed allow the 

planner to create high quality plans in much less 

time than an exhaustive search would require.  

Despite examining less of the solution space, the 

Panda planner typically chooses exactly the same 

plan chosen by a full exhaustive search, as 

demonstrated by thousands of experiments under 

a wide variety of conditions.  Planning runs on the 

node that initiates the data stream. 

Panda, under normal conditions, works 

transparently using automated planning; the 

application programmer or user need not know 

anything about it. Sometimes being less 

transparent may be valuable. An application may 

be aware of the active network; it may have better 

knowledge of critical network and system 

conditions. Therefore, an application programmer 

can control sockets intercepted by Panda through 

a standard socket API.  The API allows the 

applications to control the planning process. For 

example, the application may provide its own 

plan, or it could alter Panda’s plan.  Panda 

provides finer mechanisms to influence planning, 

as well.  

Panda also provides a user interface so that 

users can set preferences for how Panda will 

handle their data streams. Users have the option 

of selecting which streams and data types to adapt 

and with what priority.  Voice transmission may 

have higher priority than bulk data transfer, for 

example. Users can choose data fidelity levels, 

such as minimum tolerated image resolution.   

Other options include security level desired and 

communication delay constraints. All these 

preferences are used as input by Panda when it 

performs its automated planning.  

There are other interface features that are not 

directly related to Panda. The application can use 

an API to communicate with the system to obtain 

the latest information about the system and 

network conditions. When appropriate, the 

application can use such information to trigger 

Panda replanning. 

The Panda project concentrated on the 

feasibility of the core idea and several issues key 

to the notion of application-unaware use of active 

networks.  Thus, the existing system does not 

address all relevant issues for an active network 

middleware component.  First, Panda uses only 

the ANTS mechanism for code transport, which is 

not ideal for its purposes.  Second, Panda does not 

address any security issues involved in providing 

a distributed adaptation service, though associated 

research [6] has addressed some important 

security issues.  Third, since Panda works with 

UDP streams, it does not provide reliable data 

delivery or recovery of failed adaptors or other 

Panda components, though again associated 

research [2] addresses these issues.  Finally, 

Panda does nothing with routing, though alternate 

routing policies could be beneficial. 

 

3. Panda Implementation 

 
3.1. Basic Implementation Details  

 
The current Panda system has 

implementations of the PIC, PAC, and planning 

components, in addition to various adapters.  The 

POC is under development.  Panda is written in 

Java, with the exception of the PIC, which 

contains a Linux LKM (written in C) and a JNI 

interface to control its operation.  The PIC and 

PAC contain approximately nine thousand lines of 

code, not including code for adapters.  The 

planner consists of around five thousand lines of 
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code, plus some code to interface the other Panda 

components to the planner. 

Panda is built on top of a modified version of 

the ANTS 1.2 distribution.  The most significant 

change to ANTS was to support larger capsules – 

larger in both size of code and size of the data 

sent over the network.  Additionally, Panda 

required changes to the ANTS dynamic code-

loading system to allow capsule code to be loaded 

from any node.  Also, instead of being a 

permanent part of a particular protocol, under 

Panda a given adaptor may be used in many 

different situations, which requires alteration to 

ANTS dynamic code-loading, as well.  These 

changes break the fundamental principles of how 

the ANTS system works, but these changes are 

necessary to run Panda. 

Panda runs on the Linux operating system 

with kernels from the 2.0 or 2.2 series.  It requires 

a JVM version 1.1 or higher.  It has also run on 

Janos [7], using a customized version of the Kaffe 

VM [8].  The kernel module of the PIC needed to 

be reimplemented to work in the Janos 

environment, but the Java interface to the PIC 

remained the same, only requiring minor Java 

code changes to cope with two different 

interception implementations. 

 

3.2. PIC Implementation 

 
The current Panda PIC is a LKM stacked on 

top of the native networking functions to provide 

additional control over the proxy and 

masquerading facilities built into Linux.  Using a 

kernel module for interception allows Panda to 

intercept any application’s data stream running on 

the node, regardless of how the application is 

linked or what libraries it uses. Panda receives an 

application’s data at the system-call level before 

any network-level transformations have occurred, 

such as segmentation or the addition of 

checksums.  Unfortunately, this approach is 

subject to any user-level buffering that may occur 

when using standard I/O libraries.  Panda also has 

no access to any information that is present in a 

user-level networking interface, if one is used. 

In the case of UDP communications, the 

middleware opens a new UDP socket for 

interception and performs a LKM sockopt() 

informing the LKM that this socket wishes to 

intercept certain UDP packets.  The LKM diverts 

any outgoing datagram that matches the intercept 

description from the original destination to the 

interception UDP socket opened by the 

middleware service by changing the destination 

address of the packet before it reaches the normal 

kernel networking code.  The original destination 

address is stored in the module in a per-socket 

data structure.  After receiving a diverted 

datagram on the interception socket, the 

middleware service issues an LKM sockopt() to 

obtain the packet’s original destination address.  

At this point, the middleware is now able to send 

the payload over the active network. 

The Panda middleware at the destination 

node strips the active network components from 

the datagram and sends the non-active datagram 

to the real destination application, using the LKM 

to masquerade as the original source.  As in 

packet interception, the middleware makes use of 

a LKM sockopt() to control the masquerade 

address for the packet.  The middleware sends the 

packet over a socket, and the LKM in turn makes 

use of facilities in the standard Linux kernel 

networking code to perform masquerading on the 

packet. 

UDP communication is connectionless, so it 

is unnecessary for an application to send a close 

signal over the network to another computer.  But 

without a close signal, the Panda system cannot 

reliably determine when to free resources 

associated with a data flow.  To solve this 

problem, the LKM watches for UDP socket closes 

and sends a close signal to any interception socket 

that has intercepted data from the closing socket. 

Interception is initially performed on UDP 

packets destined for well-known port numbers.  

Since most applications make use of well-known 

port numbers to reach standard services on a 

server, this has not proved to be a limitation.  

While this approach is certainly less flexible than 

interception based on signatures that may be 

found in the data stream itself, it incurs less 

overhead and latency to the applications that 

cannot receive benefit from the middleware 

service. 

Interception can also occur on other packets 

or connections that are related to the application, 

but not on a well known port number.  For 

instance, in a TFTP file transfer, only the initial 

file request is sent to a well-known port numb er; 

the data transfer and acknowledgement packets 

are sent to dynamically assigned port numbers 

chosen by the operating system.  In these cases, 

the new port number to intercept can be 

determined from the source address or from 

information in the payload. 

 

3.3. PAC Implementation 

 
.  The PAC is implemented as an ANTS 

application that handles data from multiple user 
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applications and converts the data into capsules 

that are sent over the active network.  At the 

destination, the PAC removes the data from the 

capsule and delivers it to the receiving 

application.  The design of ANTS does not 

require a Panda data stream to pass through the 

PAC at intermediate nodes, even if adaptations 

are performed there, other than during the 

planning phase at the start of connection setup. 

 

3.4. Panda Adapter Implementation 

 
Adapters in the Panda system are placed in a 

special portion of an ANTS capsule, with one 

adapter per capsule type.  This placement 

provides a number of benefits and also allows 

reuse of much existing capsule code with a 

minimum of changes.  One of these benefits is 

that the loading of capsule code to a node is 

handled by the ANTS system.  Additionally, 

Panda benefits from any capsule-code security 

mechanisms that are built into ANTS when 

loading capsules at a node. 

In Panda, adapters have complete control 

over the capsule, including routing and 

transformation.  Panda is designed to provide as 

much flexibility as possible in the adapters it can 

use.  This decision also reduces the size and 

complexity of the Panda code resident in the 

capsule by delegating routing and forwarding to 

an adapter. 

Panda creates a plan of which adapters to 

deploy to allow the data capsules to reach their 

destination and receive the special treatment 

required by current network conditions.  When a 

Panda capsule begins evaluation at a node, it does 

not know what adapters need to be run.  The plan 

access method determines which adapters a 

capsule should run.  To support different styles of 

planning, there are three plan access methods built 

into Panda.  First, the plan could be embedded 

into the capsule.  Second, the plan could be in the 

ANTS node cache.  (This method is used for 

Panda’s heuristic-based planner.)  Finally, the 

capsule can visit the planner on the current node 

to determine the set of adapters to run there.  A 

capsule may try any combination of these plan 

access methods, depending on how the capsule 

was initialized.  Should all of these methods fail 

to provide a set of adapters to run, as in the case 

where a capsule is forwarded along an unexpected 

link, a simple shortest-path forwarding routine 

built into the data capsule is run. 

Once a set of adapters is found at a node, 

control of execution is transferred to the first 

adapter, which has complete control over the 

capsule.  It may choose to transform the payload 

or headers (including the planning information), 

forward the capsule, or run the next adapter.  The 

list of adapters to run is kept in memory, and the 

currently executing adapter can either call the 

next adapter in the list or terminate execution of 

the capsule after it has performed its functions.  

Most adapters will simply call the next adapter on 

the list until the end of the list is reached, where 

capsule execution will terminate.  This includes 

forwarding/routing adapters, which should be 

normally placed at the end of the list of adapters 

to run.  Adapters typically trust each other.  Issues 

of handling adapters that do not trust each other 

are handled by excluding untrustworthy adapters 

in the planning phase. 

 

3.5. POC Implementation 

 
The POC must accept sensor information 

from various sensors, including ones that do not 

reside on the local node.  To allow for different 

types of POC sensors to be built, the POC 

employs a common modular interface to add and 

query sensors.  This mo dular interface maps 

neatly into the Java system.  This system can also 

integrate with existing monitoring systems, as the 

POC sensor module can simply act as a bridge 

between the POC and the component that 

performs the actual monitoring. 

Clients to the POC are typically other Panda 

components.  POC clients can determine the 

available sensors, add and remove sensors, and 

obtain information from a sensor attached to the 

POC.  Adapters can act as either sensors or clients 

of the POC, although because adapters are 

implemented as capsules, they cannot 

communicate with the POC without special 

provisions.  For operations where the data is not 

time-sensitive, the client can get POC information 

and store information as a POC sensor in the 

ANTS node cache.  Periodically, the PAC will 

examine the contents of the node cache and act as 

a proxy to the POC for the adapters.  This method 

of communication with the POC lessens the 

amount of time the adapter spends performing its 

role as a sensor or client.  The adapter also has the 

ability to communicate with the POC through the 

use of an ANTS extension.  After finding the POC 

extension on a node, an adapter acts as any other 

client or sensor to the POC. 

POC clients usually run on the same node as 

the POC.  However, many clients, such as the 

Planner, need access to information that resides 

on other nodes.  Thus, the POC implements a 

gateway module to query information that resides 
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on a remote POC.  With the module, a client asks 

its local POC for information residing on a remote 

POC, and the gateway module obtains the 

information from the remote POC and sends it 

transparently to the client on the local machine, 

using underlying Panda out-of-band 

communications facilities.  The gateway module 

can be implemented as a standard client and 

server to the local POC that runs on all nodes. 

The POC currently uses very simple sensors, 

at the moment.  More sophisticated sensors could 

be added, at the cost of their development.  A 

better solution would be a close integration of the 

POC with an existing active network sensing and 

management facility.  In the past, Panda has been 

successfully attached to Nestor [9], and 

investigating further use of Nestor with Panda 

would be valuable. 

 

3.6. Panda Planner Implementation 

 
The Panda planner runs a simp le protocol to 

gather all information necessary to build its plan.  

This protocol requires essentially one round trip 

from source to destination and back before all 

information is available to the planner, with slight 

extra overhead because some processing is 

required at participant nodes during the round trip.  

Thus, gathering the data and performing the 

heuristic search can take some time.  Therefore, 

Panda also creates a temporary plan quickly, to 

allow data to start flowing before the normal 

planning procedure completes.  This temporary 

plan is built on a per-node basis, with each node 

using purely local information from itself and the 

next Panda node to determine which adapters to 

deploy on those nodes.  These temporary plans 

can be very far from optimal, but they allow some 

data to flow while the full planning procedure 

occurs.  Because network conditions can change 

substantially during the lifetime of a data stream, 

the original plan may become ineffective, so 

Panda supports replanning.  The mechanics of 

installing the new plan are essentially the same as 

those of switching from the temporary plan to the 

full plan at the start of the data stream. 

 

3.7. Sample Panda Applications  

 
 An early application of Panda assisted in 

transmitting a video from a server to two 

destinations with differing link throughputs.  

Without Panda, the server would have to send a 

customized version of the video stream to each 

client to provide them with the maximum video 

fidelity attainable over their respective 

connections.  With Panda, we used two adapters 

to achieve a better effect.  The first adapter 

duplicated a single, original quality unicast video 

stream from the server and forwarded it over 

high-quality links to two intermediate nodes.  The 

second adapter was run at these intermediate 

nodes and filtered the video stream to meet the 

individual throughput restrictions to the clients, 

who thus each received the best possible quality 

of service for their connectivity while reducing 

the throughput and computation load on the 

server. 

 A more complex application of Panda 

involved multiple components from UC Berkeley, 

the University of Utah, ISI, and Columbia 

University.  In this scenario, a Berkeley Ninja 

server [10] sent a video stream accompanying a 

presentation to a client connected through an 

overloaded link.  The video stream contained 

multiple versions of the video, each encoded at a 

different quality.  Panda intercepted the video 

stream and performed two actions.  First, it set up 

a virtual active network (VAN) from the source to 

the destination node using software designed by 

Columbia [11].  The VAN used an active form of 

RSVP [12] built by ISI to guarantee the 

throughput over the congested links.  At an 

intermediate node running Panda and Janos [7], 

an adapter only forwarded the highest quality 

version of the video stream that the client could 

receive. 

Another demonstration of Panda also 

involved interoperation with UC Berkeley’s 

Ninja, Columbia’s Virtual Active Networks and 

Nestor, and the University of Utah’s Janos 

system.  The scenario for the demonstration was a 

videoconference, with two different video/audio 

sessions being streamed to a third participant, in 

an extended Y-configuration, through a 

heterogeneous network with a variety of 

problems.  Network problems included a packet 

storm on the wired segment, as well as extensive 

wireless competition.  In order to deliver 

acceptable video and audio, network conditions 

had to be analyzed by Nestor [9], and the media 

appropriately adapted.  Adaptation in this case 

was a selective layer-based distillation of the 

video, encoded in the WaveVideo wavelet codec 

[13], based on prioritization of the streams.  

Prioritization was determined by a bandwidth 

analysis of the audio traffic, hypothesizing that 

more audio traffic would indicate a speaker.  Due 

to the tremendous number of packets from the 

videoconferencing sessions, the final wireless link 

was incapable of delivering acceptable video for 
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both senders.  Thus, Panda was required to 

selectively drop packets from the less desirable 

session, while maximizing the quality of the 

“focused” session.  The end results were usable 

video streams with the higher resolution stream 

dynamically switched to the camera showing the 

current speaker. 

 

4. Panda Performance 

 
4.1. System Overheads  

 

Panda puts substantial code (itself, ANTS, 

and adapter code) in the path of packets it 

intercepts.  The overheads associated with this 

code determine the domains for which use of 

Panda will be beneficial.   

The figures in this section concentrate 

primarily on the latency induced by Panda, though 

some data on achievable throughput is also 

presented.  The data covers minimum possible 

latency with Panda, the latency effects of 

including multiple participating Panda nodes, and 

the latencies induced by adding minimal adaptors 

and realistic adaptors.  Error bars on all figures 

show the value of standard error, unless otherwise 

indicated. 

One fundamental overhead is the additional 

latency of delivering a packet.  The following 

method was applied to measure one-way packet 

latency.  The packets were stamped with the local 

time on the source machine.  Upon the arrival at 

the destination machine the stamped time was 

subtracted from the destination local time to 

obtain measured time delivery.  The 

synchronization of the source and destination 

machines' clocks was done with NTP.  The NTP 

server was located on the destination node.  The 

source node synchronized itself to the destination 

local time before the first packet was sent to the 

destination.  Then 20,000 packets were sent to the 

destination.  After the last packet was delivered, 

the source machine measured the skewing value.  

It was presumed that skewing grows uniformly by 

time.  The actual time delivery was calculated 

with a formula for each data packet n: 

ActualTimeDelivery(n) = 

measuredTimeDelivery(n) - n
ueskewingVal ?

000,20
 

The connection was tested with twisted-pair 

sequential connections of up to four computers.  

Dell Inspiron 3500 laptops with 333 MHz 

processors were used for one set of tests and 

Hewlett Packard Omnibook 4150 laptops with 

500 MHz processors for another set of tests; all 

machines used Linux Red Hat 7.0 with the 2.2.16 

kernel.  Xircom RealPort2 Ethernet 10/100 

PCMCIA cards were used for the network 

connection between the machines.  The source 

and destination machines ran a user application 

and the Panda code concurrently.  The priority of 

the user application was set lower on the source 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Packet delivery latency 
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machine and higher on the destination machine to 

ensure proper allocations of resources. 

Throughput of the network links is varied 

among 150 Kbps, 800 Kbps, 2000 Kbps, and 

5000 Kbps using CBQ.  

Figure 2 presents packet delivery latency for 

different packet sizes.  The packet delivery 

latency also contains the adaptation latency.  

Figure 2 shows that adding Panda to a data stream 

increases its latency 50 to 150%, with longer 

packets seeing less effect.  Adding more Panda-

enabled nodes or more adapters modestly 

increases the delay for each addition.   

Figure 3 presents the latency of inserting 

adapters that do nothing.  All adapters were 

deployed on a single node of the connection for 

each bar.  Without Panda no adapters can be 

deployed, so the extra latency for that case is 

defined to be zero.  Every Panda node always runs 

at least one forward  adapter, whose only task is to 

forward a packet to the next node after all other 

adapters are executed.  A number of forward 

adapters equal to the number of connection nodes 

is always present in a Panda connection but this is 

not considered in the adapter counts used on these 

graphs.   
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Figure 3.  Null adapter latency 
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Figure 4 presents the latency of the 

adaptation with real adapters.  This figure and 

figure 5 were obtained by running a WaveVideo 

application on the same configuration used 

throughout this section, using adapters that 

filtered the video and/or performed encryption 

and decryption.  Since real adaptors are often 

CPU-bound, more powerful machines achieved 

lower latency, as shown in figure 4.   

Figure 6 shows how Panda throughput grows 

with packet size.  As expected, larger packets 

achieve higher throughput.  Error bars represent 

95% confidence intervals. 

The planning procedure consists of planning 

data-gathering, plan calculation, and plan 

deployment.  Planning data-gathering takes one 

round trip; the source node forwards the data 

gathering message to the destination node and 

waits for its return.  Planning data-gathering for 

the four Panda nodes in the test configuration 

takes 108 +/- 2.85 milliseconds.   

Figure 6 shows the latency of plan calculation 

for a connection that may require no adapters, or 

just a Resolution Drop adapter, or both Resolution 

Drop and Encryptor/Decryptor adapters.  The 

bandwidth of the links was varied, but the graph 

shows that plan calculation latency does not 

depend on the available bandwidth.  
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The latency for deploying the adapters 

selected by the planner depends on adapter size 

and the available link bandwidth, as shown in 

figure 7.  Resolution Drop is a very small adapter 

that contains a few lines of code.  Encryption is a 

heavyweight adapter that processes every 

character of user data to perform DES encryption.  

The larger the adapter, the longer it takes to 

deploy it.  The deployment latency does not 

depend on bandwidth unless it is less than 150 

Kbps.  

 

 

4.2. Panda Benefits  

 
Panda is worth using only if the benefits it 

offers outweigh the overheads.  For some 

benefits, such as encryption, quantifying the 

benefit is hard, particularly for purposes of 

comparison to latency overheads.  Here we 
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Figure 7. PSNR for Wavevideo application 
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present benefit metrics that are more quantifiable 

and take the latency overheads into account.  In 

particular, we present improvements in the Peak 

Signal-to-Noise Ratio (PSNR) for the WaveVideo 

application discussed earlier.  Figure 8 presents 

PSNR luminance on Dell Inspiron 3500 machines 

with a link bandwidth limited to 150 Kbps. 

Without Panda, the PSNR curve declines 

when the channel is saturated and more or less 

random video packets are dropped.  Panda, using 

the Resolution Drop adapter, intelligently adjusts 

to the limited bandwidth by dropping packets 

representing lower  resolution video components.  

As a result , once Panda has completed its 

planning phase and deployed its adapters, its 

PSNR curve improves and exceeds the non-Panda 

curve.  The PSNR performance of Panda with 

Resolution Drop and Encryption adaptation in 

some areas can be even better than Panda with 

Resolution Drop only; this is due to helpful 

buffering effects caused by the extra delay of 

encryption. 

 

5. Related Work 

 
Panda is the intellectual descendant of 

Conductor [14].  Conductor is a TCP-based open 

architecture framework providing a distributed, 

coordinated adaptation facility.  Similar to Panda, 

Conductor supports application transparent 

interception and distributed, coordinated 

adaptation of the network stream.  Unlike Panda, 

Conductor offers an extensive security model, as 

well as a reliability model designed for adaptation 

called semantic segmentation.  As Conductor is a 

TCP-based framework, the adaptation library for 

Conductor is substantially different than Panda’s, 

focusing on HTTP, POP, and other stream-based 

adaptations. 

The Protocol Boosters [15] adaptation 

framework provides a general approach to 

network-level adaptation.  The framework allows 

either a single adaptation module or a pair of 

modules to be transparently deployed, adding new 

features to existing protocols, such as forward 

error correction or fast retransmission.  Boosters 

typically provide lossless adaptation, since the 

system provides no support for ensuring reliable 

delivery if packets intended for delivery are 

generated, dropped, or permanently altered by a 

booster.  Boosters are composable, but the system 

does not provide support for selecting a set of 

boosters that will perform well together.  Panda 

substantially differs from Protocol Boosters in its 

planning capabilities, as well as in its support for 

lossy adaptation. 

Transformer Tunnels [16] use IP tunneling to 

alter the behavior of a protocol over a 

troublesome link. Once created, a transformation 

function is applied to all data flowing through 

each tunnel. Generally, Transformer Tunnels are 

used to provide protocol-independent adaptations, 

such as consolidation of packets, scheduling of 

transmissions to preserve battery power, 

encryption, lossless compression, and buffering.  

Transformer Tunnels are transparent to 

applications and may be interoperable with 

application-level adaptation provided by proxies. 

However, no mechanism is provided to compose 

transformation functions or to coordinate 

transformations with externally provided 

adaptations.  Panda’s adaptor model allows this 

composability; additionally the Panda Planner 

coordinates various adaptations across multiple 

links. 

Proxies are often used to handle single 

troublesome links, particularly links close to 

client nodes.  One of the most advanced proxy 

solutions is the Berkeley proxy [10].  This system 

uses cluster-computing technology to provide a 

shared proxy service for a wide variety of PDAs. 

The proxy can provide a variety of application-

level adaptations, including transformation 

(changing the data from one format to another), 

aggregation (combining several pieces of data into 

one), caching, and customization (typically 

converting a data format for use by a particular 

PDA). The Berkeley researchers have investigated 

methods of composing adaptations on a single 

machine [17]. They have also examined the use of 

a clustered proxy service to provide highly 

reliable and scalable services to a large number of 

customers. In particular, their proxy technology 

has been deployed for large-scale, real-world use, 

supporting palm-computer based web browsing in 

a metropolitan-area wireless network [18].  The 

Berkeley Proxy and other proxy solutions 

typically work at a single location in the network, 

while Panda is designed for distributed adaptation 

at multiple locations. 

CANS used a different approach to provide 

an early form of automated planning [19].  CANS 

performs dynamic deployment of transcoding 

components (similar to Panda adapters).  These 

components use high-level specifications of 

component behavior and network routing 

characteristics as inputs, ensuring that composed 

adaptations are proper through the use of strong 

typing of the inputs and outputs of those 

adaptations.  The CANS algorithm is based on 
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search in a stream-type graph with a 

simplification strategy to reduce the graph’s 

complexity.  

 

6. Conclusions  

 
The Panda project has demonstrated that 

active network technology can be applied 

usefully, even to applications that were not 

written with active networks in mind and that are 

not altered to work with active networks.  This 

demonstration substantially increases the potential 

audience for the improvements offered by active 

networks.  Not only are legacy applications 

potential users of active networks, but future 

programmers can concentrate on the needs of 

their applications, rather than the complexities of 

programming an active network.  Where suitable, 

they can provide hints and direction to Panda or a 

similar system, but they can still expect that the 

active network will perform beneficial actions on 

their data streams even without such advice. 

Panda achieves reasonable performance 

despite being unoptimized and running on an 

early version of ANTS, which is known to have 

poor performance.  Even with these 

disadvantages, realistic applications receive 

measurable user- and application-visible benefits 

from Panda.  In a more optimized form, Panda 

could provide greater benefits to a wider range of 

applications. 

Panda’s architecture is well suited for partial 

deployment of active networks.  Panda must run 

on the source and destination node (though further 

development could remove even those 

restrictions), but otherwise does not require 

intermediate nodes to participate in the active 

network.  Of course, non-participating nodes 

cannot perform useful adaptations, but this 

approach allows selective deployment of Panda at 

nodes that are close to troublesome links, or that 

often are overloaded, or that have other 

characteristics suggesting that they are a good 

spot for adaptation.  The more such nodes 

deployed, the more options available to Panda. 

Panda has also demonstrated that automated 

planning of active network adaptations is possible 

and efficient.  Panda’s automated facility plans 

sufficiently quickly to provide a plan early in 

most data streams, and the plans provided are 

usually as good as those found by exhaustively 

testing all possibilities.  Without a reasonable 

planning facility, the Panda approach could not be 

used in the real world, so this demonstration is 

key to its future success.  Further, this result 

suggests that automated planning based on a 

heuristic search or other AI techniques might have 

a wider applicability in solving many distributed 

systems problems. 

A final lesson from the Panda project is that 

early choices can have long-lasting implications.  

The decision to build on an existing execution 

environment (rather than creating a new one), and 

the choice of ANTS for that EE, had profound 

implications for the project.  ANTS was not 

designed for a model of dynamic composition of 

shared adapters, potentially a new set for each 

connection.  Therefore, much of the Panda 

implementation effort was spent making simple 

concepts fit into a framework that wasn’t 

designed to support them.  The choice had other 

implications, such as mandating an early 

commitment to performing the work in Java.  This 

choice was not a mistake, since the resulting 

system demonstrated all the hypotheses of the 

original project, but it did have wide-ranging 

effects on the work, many of which were not 

foreseen when the decision was made. For 

example, the combined performance overheads of 

ANTS and Java limited the sorts of adaptations 

and applications that we examine for Panda.  

Since running any adaptation would be expensive, 

only adaptations with major payoffs were worth 

considering and only applications with major 

problems were candidates. 

Performance is a key weak point of Panda, as 

it currently stands.  Even with rather high 

overheads to overcome, Panda is useful for many 

applications.  However, a re-implementation that 

divorces it from ANTS and allows it to use a 

much lighter-weight EE would exp and Panda’s 

utility.  

In summary, Panda demonstrates that 

application-unaware use of active networks is 

possible and can provide substantial benefits to 

applications.  The automatic planning capability 

implicit in the idea can be realized with 

sufficiently low overhead and very high quality in 

the resulting plans.  Thus, active network 

deployment need not be dependent on the creation 

of large numbers of active network applications.  

A simple piece of middleware like Panda can 

provide active network benefits to existing 

applications without altering any of their code. 
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